JP2021009930A - Dust core - Google Patents

Dust core Download PDF

Info

Publication number
JP2021009930A
JP2021009930A JP2019123119A JP2019123119A JP2021009930A JP 2021009930 A JP2021009930 A JP 2021009930A JP 2019123119 A JP2019123119 A JP 2019123119A JP 2019123119 A JP2019123119 A JP 2019123119A JP 2021009930 A JP2021009930 A JP 2021009930A
Authority
JP
Japan
Prior art keywords
fatty acid
magnetic nanoparticles
magnetic
dust core
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019123119A
Other languages
Japanese (ja)
Other versions
JP7356270B2 (en
Inventor
明渡 邦夫
Kunio Aketo
邦夫 明渡
理恵 田口
Rie Taguchi
理恵 田口
孝則 村崎
Takanori Murazaki
孝則 村崎
工藤 英弘
Hidehiro Kudo
英弘 工藤
崇央 岡崎
Takao Okazaki
崇央 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2019123119A priority Critical patent/JP7356270B2/en
Publication of JP2021009930A publication Critical patent/JP2021009930A/en
Application granted granted Critical
Publication of JP7356270B2 publication Critical patent/JP7356270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a high-density and high-strength dust core containing magnetic nanoparticles.SOLUTION: A dust core contains magnetic nanoparticles having an average particle size of 1-300 nm, at least one thermosetting resin selected from the group consisting of a phenol resin and an epoxy resin, and a fatty acid with 12-30 carbon atoms. In the dust core, the thermosetting resin is preferably a phenol resin, and it is preferable that, with respect to the total amount of the magnetic nanoparticles, the thermosetting resin and the fatty acid, the content of the thermosetting resin is 0.01-4.99 mass%, the content of the fatty acid is 0.01-4.99 mass%, and the total amount of the thermosetting resin and the fatty acid is 0.02-5 mass%.SELECTED DRAWING: Figure 1

Description

本発明は、圧粉磁心に関し、より詳しくは、磁性ナノ粒子を用いた圧粉磁心に関する。 The present invention relates to a dust core, and more particularly to a powder core using magnetic nanoparticles.

圧粉磁心は、表面が絶縁被膜で覆われた磁性粒子を圧縮成形することによって得られるものであり、変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等の電磁気を利用した様々な製品に用いられている。このような圧粉磁心としては、例えば、鉄基粒子の表面を、チタン等の金属を含む有機酸により形成された絶縁被膜で被覆し、さらに、前記絶縁被膜の表面を、熱可塑性樹脂、熱硬化性樹脂及び高級脂肪酸塩のうちの少なくとも1種により形成された絶縁被膜で被覆した軟磁性材料を加圧成形し、熱処理することによって得られる圧粉磁心(特開2009−57586号公報(特許文献1))が知られている。 The dust core is obtained by compression-molding magnetic particles whose surface is covered with an insulating film, such as a transformer, an electric motor, a generator, a speaker, an induction heater, and various actuators. It is used in various products that utilize the electromagnetics of. As such a dust core, for example, the surface of iron-based particles is coated with an insulating film formed of an organic acid containing a metal such as titanium, and the surface of the insulating film is further coated with a thermoplastic resin or heat. A dust core obtained by pressure-molding a soft magnetic material coated with an insulating film formed of at least one of a curable resin and a higher fatty acid salt and heat-treating it (Japanese Patent Laid-Open No. 2009-57586). Documents 1)) are known.

一方、磁性ナノ粒子は、そのサイズが極めて小さいため、バルクの磁性材料とは異なる性質を示し、例えば、粒径が約100nmを超える範囲では、粒径が小さくなるにつれて保磁力が大きくなり、粒径が約100nm付近で保磁力が最大となるが、粒径が約20nm以下になると、超常磁性現象が発現して保持力が極めて小さくなる。このため、粒径が約20nm以下の磁性ナノ粒子を用いた圧粉磁心においては、ヒステリシス損を極めて小さくすることが可能になると考えられる。また、絶縁性の磁性ナノ粒子や表面に絶縁被膜を有する導電性の磁性ナノ粒子を用いた圧粉磁心において、粒径が約300nm以下の磁性ナノ粒子を用いることによって、高周波において渦電流の経路が制限され、渦電流損を小さくすることが可能になると考えられ、特に、粒径が約20nm以下の磁性ナノ粒子を用いることによって、渦電流損を極めて小さくすることができると考えられる。このように、粒径が約20nm以下の磁性ナノ粒子を用いた圧粉磁心は、ヒステリシス損や渦電流損が極めて小さくなるため、電源用途のトランスコア材として期待されている。 On the other hand, since the magnetic nanoparticles are extremely small in size, they exhibit properties different from those of bulk magnetic materials. For example, in the range where the particle size exceeds about 100 nm, the coercive force increases as the particle size decreases, and the particles The coercive force is maximized when the diameter is around 100 nm, but when the particle size is about 20 nm or less, a supernormal magnetic phenomenon occurs and the holding power becomes extremely small. Therefore, in a powder magnetic core using magnetic nanoparticles having a particle size of about 20 nm or less, it is considered that the hysteresis loss can be extremely reduced. Further, in a powder magnetic core using insulating magnetic nanoparticles or conductive magnetic nanoparticles having an insulating coating on the surface, by using magnetic nanoparticles having a particle size of about 300 nm or less, an eddy current path at a high frequency is used. Is limited, and it is considered that the eddy current loss can be reduced. In particular, it is considered that the eddy current loss can be extremely reduced by using magnetic nanoparticles having a particle size of about 20 nm or less. As described above, the dust core using magnetic nanoparticles having a particle size of about 20 nm or less is expected as a transcore material for power supply use because the hysteresis loss and the eddy current loss are extremely small.

特開2009−57586号公報JP-A-2009-57586

しかしながら、従来の磁性マイクロ粒子を用いた圧粉磁心においては、加圧成形によって磁性マイクロ粒子が大きく変形し、粒子同士が複雑に絡み合うため、機械強度が向上するが、磁性ナノ粒子を用いた圧粉磁心においては、加圧成形による磁性ナノ粒子の変形が小さいため、粒子同士が絡み合いにくく、また、磁性ナノ粒子同士の接触面積も小さいため、機械強度を十分に向上させることは困難であった。 However, in the conventional dust core using magnetic microparticles, the magnetic microparticles are greatly deformed by pressure molding and the particles are intricately entangled with each other, so that the mechanical strength is improved, but the pressure using magnetic nanoparticles is improved. In the powder magnetic core, since the deformation of the magnetic nanoparticles due to pressure molding is small, the particles are difficult to entangle with each other, and the contact area between the magnetic nanoparticles is also small, so that it is difficult to sufficiently improve the mechanical strength. ..

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a high-density and high-strength powder magnetic core containing magnetic nanoparticles.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、磁性ナノ粒子にフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と炭素数が12〜30の脂肪酸とを添加して圧縮成形することによって、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心が得られることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors have made magnetic nanoparticles into at least one thermosetting resin selected from the group consisting of phenol resin and epoxy resin, and has 12 to 30 carbon atoms. It has been found that a high-density and high-strength dust core containing magnetic nanoparticles can be obtained by compression molding by adding the above-mentioned fatty acid, and the present invention has been completed.

すなわち、本発明の圧粉磁心は、平均粒径が1〜300nmの磁性ナノ粒子と、フェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と、炭素数が12〜30の脂肪酸とを含有することを特徴とするものである。このような圧粉磁心においては、前記熱硬化性樹脂がフェノール樹脂であることが好ましく、また、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、前記熱硬化性樹脂の含有量が0.01〜4.99質量%であり、前記脂肪酸の含有量が0.01〜4.99質量%であり、前記熱硬化性樹脂と前記脂肪酸との合計量が0.02〜5質量%であることが好ましい。 That is, the dust core of the present invention contains magnetic nanoparticles having an average particle size of 1 to 300 nm, at least one thermosetting resin selected from the group consisting of phenol resin and epoxy resin, and having 12 to 12 carbon atoms. It is characterized by containing 30 fatty acids. In such a dust core, the thermosetting resin is preferably a phenol resin, and the thermosetting property is obtained with respect to the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid. The resin content is 0.01 to 4.99% by mass, the fatty acid content is 0.01 to 4.99% by mass, and the total amount of the thermosetting resin and the fatty acid is 0. It is preferably 02 to 5% by mass.

なお、前記磁性ナノ粒子にフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と炭素数が12〜30の脂肪酸とを添加することによって、前記磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心が得られる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、前記磁性ナノ粒子にフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂を添加すると、圧縮成形体の密度及び強度が向上する。しかしながら、フェノール樹脂及びエポキシ樹脂は前記磁性ナノ粒子との親和性が十分に高くないため、均一に混合しにくく、圧縮成形時の前記磁性ナノ粒子の流動性が十分に向上しない。このため、前記磁性ナノ粒子を含有する圧粉磁心の密度及び強度は十分に向上しない。一方、前記磁性ナノ粒子に前記熱硬化性樹脂と炭素数が12〜30の脂肪酸とを添加すると、前記磁性ナノ粒子を含有する圧粉磁心の密度及び強度が十分に向上する。この理由は以下のように推察される。すなわち、前記脂肪酸のカルボキシ基は前記磁性ナノ粒子に吸着しやすいため、吸着した前記脂肪酸の炭化水素鎖と前記磁性ナノ粒子間に存在する遊離の前記脂肪酸の炭化水素鎖との相乗効果により前記磁性ナノ粒子の潤滑性が向上し、前記磁性ナノ粒子の流動性が向上すると推察される。また、前記脂肪酸がカップリング剤として作用することによって、吸着した前記脂肪酸の炭化水素鎖が前記熱硬化性樹脂と前記磁性ナノ粒子との親和性や結合力を向上させると推察される。そして、このような前記磁性ナノ粒子の高い流動性及び前記熱硬化性樹脂と前記磁性ナノ粒子との高い親和性によって、前記磁性ナノ粒子を含有する圧粉磁心であっても高密度化されると推察される。また、前記熱硬化性樹脂の高い強度及び前記熱硬化性樹脂と前記磁性ナノ粒子との高い結合力によって、前記磁性ナノ粒子を含有する圧粉磁心であっても高強度化されると推察される。 The magnetic nanoparticles are contained by adding at least one thermosetting resin selected from the group consisting of a phenol resin and an epoxy resin and a fatty acid having 12 to 30 carbon atoms to the magnetic nanoparticles. The reason why a high-density and high-strength dust core can be obtained is not always clear, but the present inventors speculate as follows. That is, when at least one thermosetting resin selected from the group consisting of phenol resin and epoxy resin is added to the magnetic nanoparticles, the density and strength of the compression molded product are improved. However, since the phenol resin and the epoxy resin do not have a sufficiently high affinity with the magnetic nanoparticles, it is difficult to mix them uniformly, and the fluidity of the magnetic nanoparticles during compression molding is not sufficiently improved. Therefore, the density and strength of the dust core containing the magnetic nanoparticles are not sufficiently improved. On the other hand, when the thermosetting resin and the fatty acid having 12 to 30 carbon atoms are added to the magnetic nanoparticles, the density and strength of the dust core containing the magnetic nanoparticles are sufficiently improved. The reason for this can be inferred as follows. That is, since the carboxy group of the fatty acid is easily adsorbed on the magnetic nanoparticles, the magneticity is caused by the synergistic effect of the adsorbed hydrocarbon chain of the fatty acid and the hydrocarbon chain of the free fatty acid existing between the magnetic nanoparticles. It is presumed that the lubricity of the nanoparticles is improved and the fluidity of the magnetic nanoparticles is improved. Further, it is presumed that the adsorbed hydrocarbon chain of the fatty acid improves the affinity and binding force between the thermosetting resin and the magnetic nanoparticles by the action of the fatty acid as a coupling agent. Due to the high fluidity of the magnetic nanoparticles and the high affinity between the thermosetting resin and the magnetic nanoparticles, the density of the dust core containing the magnetic nanoparticles is increased. It is inferred that. Further, it is presumed that the high strength of the thermosetting resin and the high bonding force between the thermosetting resin and the magnetic nanoparticles increase the strength of the powder magnetic core containing the magnetic nanoparticles. To.

本発明によれば、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心を得ることが可能となる。 According to the present invention, it is possible to obtain a high-density and high-strength dust core containing magnetic nanoparticles.

実施例1〜4及び比較例1〜4、6〜10で得られた圧粉磁心の密度を示すグラフである。It is a graph which shows the density of the dust core obtained in Examples 1 to 4 and Comparative Examples 1 to 4, 6 to 10. 実施例1〜4及び比較例1〜4、6〜10で得られた圧粉磁心のクラック率を示すグラフである。It is a graph which shows the crack rate of the dust core obtained in Examples 1 to 4 and Comparative Examples 1 to 4, 6 to 10.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to its preferred embodiment.

本発明の圧粉磁心は、平均粒径が1〜300nmの磁性ナノ粒子と、フェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と、炭素数が12〜30の脂肪酸とを含有するものである。 The dust core of the present invention comprises magnetic nanoparticles having an average particle size of 1 to 300 nm, at least one thermosetting resin selected from the group consisting of phenol resin and epoxy resin, and having 12 to 30 carbon atoms. It contains a fatty acid.

本発明に用いられる磁性ナノ粒子としては圧粉磁心に用いられるものであれば特に制限はないが、例えば、Feナノ粒子、Fe含有合金ナノ粒子、Fe含有金属酸化物ナノ粒子が挙げられる。また、前記Feナノ粒子及び前記Fe含有合金ナノ粒子は、表面に絶縁層を備えていてもよい。これらの磁性ナノ粒子は1種を単独で使用しても2種以上を併用してもよい。これらの中でも、ヒステリシス損及び渦電流損を低減でき、かつ、飽和磁束密度を比較的大きくでき、高温での特性劣化も比較的少ないという観点から、表面に絶縁層を備えるFeナノ粒子、表面に絶縁層を備えるFe含有合金ナノ粒子が好ましい。 The magnetic nanoparticles used in the present invention are not particularly limited as long as they are used for dust cores, and examples thereof include Fe nanoparticles, Fe-containing alloy nanoparticles, and Fe-containing metal oxide nanoparticles. Further, the Fe nanoparticles and the Fe-containing alloy nanoparticles may be provided with an insulating layer on the surface. These magnetic nanoparticles may be used alone or in combination of two or more. Among these, Fe nanoparticles having an insulating layer on the surface, from the viewpoints of being able to reduce hysteresis loss and eddy current loss, relatively increasing the saturation magnetic flux density, and relatively little deterioration of characteristics at high temperatures, are used on the surface. Fe-containing alloy nanoparticles provided with an insulating layer are preferred.

前記Fe含有合金ナノ粒子としては圧粉磁心に用いられるものであれば特に制限はないが、例えば、FeNi合金ナノ粒子(パーマロイBナノ粒子等)、FeSi合金ナノ粒子(ケイ素鋼ナノ粒子等)、FeCo合金ナノ粒子(パーメンジュールナノ粒子等)、NiFe合金ナノ粒子(パーマロイCナノ粒子等)が挙げられる。また、前記Fe含有金属酸化物ナノ粒子としては圧粉磁心に用いられるものであれば特に制限はないが、例えば、NiZnフェライトナノ粒子、MnZnフェライトナノ粒子等のフェライト系ナノ粒子が挙げられる。 The Fe-containing alloy nanoparticles are not particularly limited as long as they are used for dust cores, and are, for example, FeNi alloy nanoparticles (Permalloy B nanoparticles, etc.), FeSi alloy nanoparticles (silicon steel nanoparticles, etc.), and the like. Examples thereof include FeCo alloy nanoparticles (permenzur nanoparticles and the like) and NiFe alloy nanoparticles (permalloy C nanoparticles and the like). The Fe-containing metal oxide nanoparticles are not particularly limited as long as they are used for dust cores, and examples thereof include ferrite nanoparticles such as NiZn ferrite nanoparticles and MnZn ferrite nanoparticles.

前記絶縁層としては、例えば、SiO、Al、Fe、Fe、NiZnフェライト、MnZnフェライト等の金属酸化物からなる絶縁層;脂肪酸(例えば、デカン酸、ラウリン酸、ステアリン酸、オレイン酸、リノレン酸)、シリコーン系有機化合物(例えば、メチルシリコーン樹脂、メチルフェニルシリコーン樹脂、ジメチルポリシロキサン、シリコーンハイドロゲル)等の有機化合物からなる絶縁層;リン系化合物(例えば、リン酸カルシウム、リン酸鉄、リン酸亜鉛、リン酸マンガン)等の無機化合物からなる絶縁層が挙げられる。 The insulating layer includes, for example, an insulating layer made of a metal oxide such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , NiZn ferrite, MnZn ferrite; and fatty acids (for example, decanoic acid and lauric acid). , Stearic acid, oleic acid, linolenic acid), an insulating layer composed of organic compounds such as silicone-based organic compounds (for example, methyl silicone resin, methylphenyl silicone resin, dimethylpolysiloxane, silicone hydrogel); phosphorus-based compounds (for example, An insulating layer made of an inorganic compound such as calcium phosphate, iron phosphate, zinc phosphate, manganese phosphate) can be mentioned.

また、本発明に用いられる磁性ナノ粒子の平均粒径は1〜300nmである。磁性ナノ粒子の平均粒径が前記下限未満になると、粒子表面の影響が大きく、磁性ナノ粒子自体の磁気特性が低下する。他方、磁性ナノ粒子の平均粒径が前記上限を超えると、渦電流損が増大して磁心損失が大きくなる。また、超常磁性現象が発現して保磁力が極めて小さくなり、ヒステリシス損を極めて小さくすることが可能となり、また、高周波において渦電流の経路が制限され、渦電流損を極めて小さくすることが可能となるという観点から、磁性ナノ粒子の平均粒径としては、1〜100nmが好ましく、1〜20nmがより好ましい。なお、磁性ナノ粒子の平均粒径は、TEM観察において100個の粒子の粒径を測定し、その平均値として求めることができる。 The average particle size of the magnetic nanoparticles used in the present invention is 1 to 300 nm. When the average particle size of the magnetic nanoparticles is less than the lower limit, the influence of the particle surface is large and the magnetic properties of the magnetic nanoparticles themselves are deteriorated. On the other hand, when the average particle size of the magnetic nanoparticles exceeds the upper limit, the eddy current loss increases and the magnetic core loss increases. In addition, the superparamagnetic phenomenon occurs and the coercive force becomes extremely small, making it possible to make the hysteresis loss extremely small, and the path of the eddy current is restricted at high frequencies, making it possible to make the eddy current loss extremely small. From the viewpoint of the above, the average particle size of the magnetic nanoparticles is preferably 1 to 100 nm, more preferably 1 to 20 nm. The average particle size of the magnetic nanoparticles can be obtained as an average value obtained by measuring the particle size of 100 particles in TEM observation.

本発明に用いられる熱硬化性樹脂はフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種である。このような熱硬化性樹脂を後述する炭素数が12〜30の脂肪酸と併用して前記磁性ナノ粒子に添加することによって、前記熱硬化性樹脂と前記磁性ナノ粒子との親和性や結合力が向上し、高密度かつ高強度の圧粉磁心を得ることができる。また、これらの熱硬化性樹脂のうち、圧粉磁心の密度及び強度が更に向上するという観点から、フェノール樹脂が好ましい。 The thermosetting resin used in the present invention is at least one selected from the group consisting of phenol resin and epoxy resin. By adding such a thermosetting resin to the magnetic nanoparticles in combination with a fatty acid having 12 to 30 carbon atoms, which will be described later, the affinity and bonding strength between the thermosetting resin and the magnetic nanoparticles can be improved. It is possible to improve and obtain a high-density and high-strength dust core. Further, among these thermosetting resins, a phenol resin is preferable from the viewpoint of further improving the density and strength of the dust core.

一方、フェノール樹脂及びエポキシ樹脂の代わりにポリイミド樹脂、アクリル樹脂又はシリコーン樹脂を用いた場合には、圧粉磁心の密度及び強度が十分に向上しない。 On the other hand, when a polyimide resin, an acrylic resin or a silicone resin is used instead of the phenol resin and the epoxy resin, the density and strength of the dust core are not sufficiently improved.

前記熱硬化性樹脂の含有量としては特に制限はないが、前記磁性ナノ粒子と前記熱硬化性樹脂と後述する脂肪酸との合計量に対して、0.01〜5質量%が好ましく、0.1〜2質量%がより好ましく、0.1〜1質量%が特に好ましい。前記熱硬化性樹脂の含有量が前記下限未満になると、前記熱硬化性樹脂が前記磁性ナノ粒子間に十分に行き渡らないため、圧粉磁心の強度が向上しにくい傾向にあり、他方、前記上限を超えると、非磁性成分の割合が多くなり、圧粉磁心の磁気特性が低下する傾向にある。 The content of the thermosetting resin is not particularly limited, but is preferably 0.01 to 5% by mass, preferably 0.01 to 5% by mass, based on the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid described later. 1 to 2% by mass is more preferable, and 0.1 to 1% by mass is particularly preferable. When the content of the thermosetting resin is less than the lower limit, the thermosetting resin does not sufficiently spread among the magnetic nanoparticles, so that the strength of the dust core tends to be difficult to improve, while the upper limit is mentioned. If it exceeds, the proportion of non-magnetic components increases, and the magnetic properties of the dust core tend to decrease.

また、本発明に用いられる脂肪酸は炭素数が12〜30の脂肪酸である。このような脂肪酸を前記熱硬化性樹脂と併用して前記磁性ナノ粒子に添加することによって、前記熱硬化性樹脂と前記磁性ナノ粒子との親和性や結合力が向上し、高密度かつ高強度の圧粉磁心を得ることができる。また、このような脂肪酸は飽和脂肪酸であっても不飽和脂肪酸であってもよく、これらを併用してもよい。 The fatty acid used in the present invention is a fatty acid having 12 to 30 carbon atoms. By adding such a fatty acid to the magnetic nanoparticles in combination with the thermosetting resin, the affinity and binding force between the thermosetting resin and the magnetic nanoparticles are improved, and the density and strength are high. Powder magnetic core can be obtained. Further, such fatty acids may be saturated fatty acids or unsaturated fatty acids, and these may be used in combination.

前記飽和脂肪酸としては、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、ペンタデシル酸(炭素数15)、パルミチン酸(炭素数16)、マルガリン酸(炭素数17)、ステアリン酸(炭素数18)、アラキジン酸(炭素数20)、ヘンイコシル酸(炭素数21)、ベヘン酸(炭素数22)、リグノセリン酸(炭素数24)、セロチン酸(炭素数26)、モンタン酸(炭素数28)、メリシン酸(炭素数30)が挙げられる。これらの飽和脂肪酸は1種を単独で使用しても2種以上を併用してもよい。 Examples of the saturated fatty acids include lauric acid (12 carbon atoms), melissic acid (14 carbon atoms), pentadecylic acid (15 carbon atoms), palmitic acid (16 carbon atoms), margaric acid (17 carbon atoms), and stearic acid (carbon atoms). Number 18), arachidic acid (20 carbons), henicosylic acid (21 carbons), bechenic acid (22 carbons), lignoceric acid (24 carbons), cerotic acid (26 carbons), montanic acid (28 carbons) ), Melissic acid (30 carbon atoms). These saturated fatty acids may be used alone or in combination of two or more.

前記不飽和脂肪酸として、ミリストレイン酸(炭素数14、二重結合数1)、パルミトレイン酸(炭素数16、二重結合数1)、サピエン酸(炭素数16、二重結合数1)、オレイン酸(炭素数18、二重結合数1)、エライジン酸(炭素数18、二重結合数1)、バクセン酸(炭素数18、二重結合数1)、ガドレイン酸(炭素数20、二重結合数1)、エイコセン酸(炭素数20、二重結合数1)、エルカ酸(炭素数22、二重結合数1)、ネルボン酸(炭素数24、二重結合数1)、リノール酸(炭素数18、二重結合数2)、エイコサジエン酸(炭素数20、二重結合数2)、ドコサジエン酸(炭素数22、二重結合数2)、リノレン酸(炭素数18、二重結合数3)、ピノレン酸(炭素数18、二重結合数3)、エレオステアリン酸(炭素数18、二重結合数3)、ミード酸(炭素数20、二重結合数3)、ジホモ−γ−リノレン酸(炭素数20、二重結合数3)、エイコサトリエン酸(炭素数20、二重結合数3)、ステアリドン酸(炭素数18、二重結合数4)、アラキドン酸(炭素数20、二重結合数4)、エイコサテトラエン酸(炭素数20、二重結合数4)、アドレン酸(炭素数22、二重結合数4)、ボセオペンタエン酸(炭素数18、二重結合数5)、エイコサペンタエン酸(炭素数20、二重結合数5)、オズボンド酸(炭素数22、二重結合数5)、イワシ酸(炭素数22、二重結合数5)、テトラコサペンタエン酸(炭素数24、二重結合数5)、ドコサヘキサエン酸(炭素数22、二重結合数6)、ニシン酸(炭素数24、二重結合数6)が挙げられる。これらの不飽和脂肪酸は1種を単独で使用しても2種以上を併用してもよい。 As the unsaturated fatty acid, myristoleic acid (14 carbons, 1 double bond), palmitreic acid (16 carbons, 1 double bond), sapienoic acid (16 carbons, 1 double bond), olein. Acid (18 carbons, 1 double bond), Elaidic acid (18 carbons, 1 double bond), Baxenoic acid (18 carbons, 1 double bond), Gadrain acid (20 carbons, double bond) Number of bonds 1), eicosenoic acid (20 carbons, 1 double bond), erucic acid (22 carbons, 1 double bond), nervonic acid (24 carbons, 1 double bond), linoleic acid (24 carbons, 1 double bond) 18 carbons, 2 double bonds), eikosazienoic acid (20 carbons, 2 double bonds), docosazienoic acid (22 carbons, 2 double bonds), linolenic acid (18 carbons, 2 double bonds) 3), pinolenic acid (18 carbons, 3 double bonds), eleostearic acid (18 carbons, 3 double bonds), meadic acid (20 carbons, 3 double bonds), dihomo-γ -Linolenic acid (20 carbons, 3 double bonds), Eikosatrienic acid (20 carbons, 3 double bonds), stearidonic acid (18 carbons, 4 double bonds), arachidonic acid (20 carbons) 20, double bond number 4), eikosatetraenoic acid (carbon number 20, double bond number 4), adrenoic acid (carbon number 22, double bond number 4), boseopentaenoic acid (carbon number 18, double bond number) Number 5), Eikosapentaenoic acid (20 carbons, 5 double bonds), Osbondic acid (22 carbons, 5 double bonds), Iwashicic acid (22 carbons, 5 double bonds), Tetracosapenta Examples thereof include enoic acid (24 carbon atoms, 5 double bonds), docosahexaenoic acid (22 carbon atoms, 6 double bonds), and heric acid (24 carbon atoms, 6 double bonds). These unsaturated fatty acids may be used alone or in combination of two or more.

一方、炭素数が11以下の脂肪酸、脂肪酸の金属塩、脂肪酸エステル又は脂肪酸アミドを前記磁性ナノ粒子に添加した場合には、圧粉磁心の密度及び強度が十分に向上しない。 On the other hand, when a fatty acid having 11 or less carbon atoms, a metal salt of a fatty acid, a fatty acid ester or a fatty acid amide is added to the magnetic nanoparticles, the density and strength of the dust core are not sufficiently improved.

前記脂肪酸の中でも、前記磁性ナノ粒子の流動性が向上し、圧粉磁心の密度が向上するという観点、並び、前記熱硬化性樹脂との絡み合いが多くなり、圧粉磁心の強度が向上するという観点から、炭素数が12〜20のものが好ましく、炭素数が15〜20のものがより好ましい。 Among the fatty acids, from the viewpoint of improving the fluidity of the magnetic nanoparticles and improving the density of the dust core, the entanglement with the thermosetting resin is increased, and the strength of the dust core is improved. From the viewpoint, those having 12 to 20 carbon atoms are preferable, and those having 15 to 20 carbon atoms are more preferable.

また、前記脂肪酸としては直鎖状のものであっても分岐状のものであってもよいが、前記磁性ナノ粒子の流動性が向上し、圧粉磁心の密度が向上するという観点からは、直鎖状のものが好ましく、一方、前記熱硬化性樹脂との絡み合いが多くなり、圧粉磁心の強度が向上するという観点からは、分岐状のものが好ましい。したがって、圧粉磁心の密度と強度をバランスよく向上させることができるという観点から、直鎖状の脂肪酸と分岐状の脂肪酸とを併用することが好ましい。 The fatty acid may be linear or branched, but from the viewpoint of improving the fluidity of the magnetic nanoparticles and improving the density of the dust core, the fatty acid may be linear or branched. A linear one is preferable, while a branched one is preferable from the viewpoint of increasing entanglement with the thermosetting resin and improving the strength of the dust core. Therefore, from the viewpoint that the density and strength of the dust core can be improved in a well-balanced manner, it is preferable to use a linear fatty acid and a branched fatty acid in combination.

さらに、前記不飽和脂肪酸においては、圧縮成形時の応力が緩和され、クラックの発生が抑制されるという観点から、炭素−炭素二重結合数が2個以上有するものが好ましく、炭素−炭素二重結合数が3個以上有するものがより好ましい。 Further, the unsaturated fatty acid preferably has two or more carbon-carbon double bonds from the viewpoint of relaxing stress during compression molding and suppressing the occurrence of cracks, and carbon-carbon double bonds. It is more preferable that the number of bonds is 3 or more.

前記脂肪酸の含有量としては特に制限はないが、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、0.01〜5質量%が好ましく、0.1〜2質量%がより好ましく、0.1〜1質量%が特に好ましい。前記脂肪酸の含有量が前記下限未満になると、前記脂肪酸が前記磁性ナノ粒子間に十分に行き渡らないため、その部分の磁性ナノ粒子の流動性が低くなり、圧粉磁心の密度が向上しにくい傾向にあり、他方、前記上限を超えると、非磁性成分の割合が多くなり、圧粉磁心の磁気特性が低下する傾向にある。 The content of the fatty acid is not particularly limited, but is preferably 0.01 to 5% by mass, preferably 0.1 to 2% by mass, based on the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid. % Is more preferable, and 0.1 to 1% by mass is particularly preferable. When the content of the fatty acid is less than the lower limit, the fatty acid does not sufficiently spread among the magnetic nanoparticles, so that the fluidity of the magnetic nanoparticles in that portion becomes low and the density of the dust core tends to be difficult to improve. On the other hand, when the upper limit is exceeded, the proportion of non-magnetic components increases, and the magnetic properties of the dust core tend to decrease.

なお、前記脂肪酸の含有量は、前記磁性ナノ粒子の間に存在する遊離の脂肪酸の量であり、前記磁性ナノ粒子の表面を予め修飾している脂肪酸の量を含んでいない。前記磁性ナノ粒子の表面を予め修飾している脂肪酸は、その炭化水素鎖が前記磁性ナノ粒子の表面に対して垂直な方向に延びているため、すべり方向に対しても垂直に延びており、前記磁性ナノ粒子の流動性の向上が限定的となる。一方、前記磁性ナノ粒子の表面を予め修飾している脂肪酸のほかに、遊離の脂肪酸が前記磁性ナノ粒子の間に存在すると、この遊離の脂肪酸は、すべり方向に対して平行に配置されているため、前記磁性ナノ粒子の流動性が大きく向上する。 The content of the fatty acid is the amount of free fatty acid existing between the magnetic nanoparticles, and does not include the amount of fatty acid in which the surface of the magnetic nanoparticles is preliminarily modified. Since the hydrocarbon chain of the fatty acid having the surface of the magnetic nanoparticles preliminarily modified extends in the direction perpendicular to the surface of the magnetic nanoparticles, it also extends perpendicular to the sliding direction. The improvement of the fluidity of the magnetic nanoparticles is limited. On the other hand, if free fatty acids are present between the magnetic nanoparticles in addition to the fatty acids that pre-modify the surface of the magnetic nanoparticles, the free fatty acids are arranged parallel to the sliding direction. Therefore, the fluidity of the magnetic nanoparticles is greatly improved.

また、前記熱硬化性樹脂と前記脂肪酸との合計量としては、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、0.02〜5質量%(この場合、前記熱硬化性樹脂の含有量は0.01〜4.99質量%であり、前記脂肪酸の含有量は0.01〜4.99質量%である)が好ましく、0.1〜2質量%(この場合、前記熱硬化性樹脂の含有量は0.1〜1.9質量%であり、前記脂肪酸の含有量は0.1〜1.9質量%である)がより好ましく、0.1〜1質量%(この場合、前記熱硬化性樹脂の含有量は0.1〜0.9質量%であり、前記脂肪酸の含有量は0.1〜0.9質量%である)が特に好ましい。前記熱硬化性樹脂と前記脂肪酸との合計量が前記下限未満になると、前記熱硬化性樹脂及び前記脂肪酸が前記磁性ナノ粒子間に十分に行き渡らないため、圧粉磁心の密度や強度が向上しにくい傾向にあり、他方、前記上限を超えると、非磁性成分の割合が多くなり、圧粉磁心の磁気特性が低下する傾向にある。 The total amount of the thermosetting resin and the fatty acid is 0.02 to 5% by mass (in this case, the said) with respect to the total amount of the magnetic nanoparticles, the thermosetting resin and the fatty acid. The content of the thermosetting resin is 0.01 to 4.99% by mass, and the content of the fatty acid is preferably 0.01 to 4.99% by mass), preferably 0.1 to 2% by mass (this). In this case, the content of the thermosetting resin is 0.1 to 1.9% by mass, and the content of the fatty acid is 0.1 to 1.9% by mass), more preferably 0.1 to 1%. Mass% (in this case, the content of the thermosetting resin is 0.1 to 0.9% by mass and the content of the fatty acid is 0.1 to 0.9% by mass) is particularly preferable. When the total amount of the thermosetting resin and the fatty acid is less than the lower limit, the thermosetting resin and the fatty acid are not sufficiently distributed between the magnetic nanoparticles, so that the density and strength of the dust core are improved. On the other hand, when the upper limit is exceeded, the proportion of non-magnetic components tends to increase, and the magnetic properties of the dust core tend to decrease.

また、前記熱硬化性樹脂と前記脂肪酸との合計量に対する前記脂肪酸の割合としては特に制限はないが、0.1〜90質量%が好ましく、1〜50質量%がより好ましく、20〜50質量%が特に好ましい。前記脂肪酸の割合が前記下限未満になると、圧粉磁心の強度が向上しにくい傾向にあり、他方、前記上限を超えると、磁性ナノ粒子の流動性が低くなり、圧粉磁心の密度が向上しにくい傾向にある。 The ratio of the fatty acid to the total amount of the thermosetting resin and the fatty acid is not particularly limited, but is preferably 0.1 to 90% by mass, more preferably 1 to 50% by mass, and 20 to 50% by mass. % Is particularly preferable. When the ratio of the fatty acid is less than the lower limit, the strength of the dust core tends to be difficult to improve, while when the ratio exceeds the upper limit, the fluidity of the magnetic nanoparticles is lowered and the density of the dust core is improved. It tends to be difficult.

このような本発明の圧粉磁心の密度は6.3g/cm以上であり、高い比透磁率を有するものである。また、より高い比透磁率を有するという観点から、圧粉磁心の密度としては6.5g/cm以上が好ましい。 The density of the dust core of the present invention is 6.3 g / cm 3 or more, and has a high relative magnetic permeability. Further, from the viewpoint of having a higher relative magnetic permeability, the density of the dust core is preferably 6.5 g / cm 3 or more.

このような本発明の圧粉磁心の製造方法としては、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸とを均一に混合できる方法であれば特に制限はなく、例えば、以下の方法により本発明の圧粉磁心を製造することができる。すなわち、先ず、前記磁性ナノ粒子と前記脂肪酸とを所定の含有量となるように混合する。前記磁性ナノ粒子と前記脂肪酸との混合方法としては特に制限はなく、例えば、ボールミルや乳鉢を用いて混合する方法、溶媒に前記磁性ナノ粒子と前記脂肪酸とを分散・溶解させた後、乾燥等により溶媒を除去することによって混合する方法等が挙げられる。 The method for producing the dust core of the present invention is not particularly limited as long as the magnetic nanoparticles, the thermosetting resin, and the fatty acid can be uniformly mixed. For example, the following method is used. The dust core of the present invention can be produced. That is, first, the magnetic nanoparticles and the fatty acid are mixed so as to have a predetermined content. The method for mixing the magnetic nanoparticles and the fatty acid is not particularly limited, and for example, a method of mixing using a ball mill or a dairy pot, a method of dispersing and dissolving the magnetic nanoparticles and the fatty acid in a solvent, and then drying and the like. Examples thereof include a method of mixing by removing the solvent.

次に、このようにして調製した前記磁性ナノ粒子と前記脂肪酸との混合物に前記熱硬化性樹脂を所定の含有量となるように混合する。前記混合物と前記熱硬化性樹脂との混合方法としては特に制限はなく、例えば、ボールミルや乳鉢を用いて混合する方法、溶媒に前記混合物と前記熱硬化性樹脂とを分散・溶解させた後、乾燥等により溶媒を除去することによって混合する方法等が挙げられる。 Next, the thermosetting resin is mixed with the mixture of the magnetic nanoparticles and the fatty acid thus prepared so as to have a predetermined content. The method of mixing the mixture and the thermosetting resin is not particularly limited. For example, a method of mixing using a ball mill or a dairy bowl, after dispersing and dissolving the mixture and the thermosetting resin in a solvent, Examples thereof include a method of mixing by removing the solvent by drying or the like.

本発明の圧粉磁心の製造方法において、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合順は特に制限はなく、上述した方法のように、前記磁性ナノ粒子と前記脂肪酸とを混合した後、前記熱硬化性樹脂を混合してもよいし、前記熱硬化性樹脂と前記脂肪酸とを混合した後、前記磁性ナノ粒子を混合してもよい。 In the method for producing a dust core of the present invention, the mixing order of the magnetic nanoparticles, the thermosetting resin, and the fatty acid is not particularly limited, and the magnetic nanoparticles and the fatty acid are mixed as in the above method. After mixing, the thermosetting resin may be mixed, or the thermosetting resin and the fatty acid may be mixed, and then the magnetic nanoparticles may be mixed.

このようにして調製した前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物は均一性が高いため、後述する加圧成形において前記磁性ナノ粒子の流動性が確保され、高密度かつ高強度の圧粉磁心を得ることが可能となる。 Since the mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid prepared in this manner has high uniformity, the fluidity of the magnetic nanoparticles is ensured in the pressure molding described later, and the density and high density are high. It is possible to obtain a strong dust core.

また、前記磁性ナノ粒子は再配列性に劣るため、溶媒に前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物を分散・溶解させた後、スプレードライ等により顆粒状の混合物を調製してもよい。これにより、圧縮成形時に顆粒状の混合物が崩れて前記磁性ナノ粒子が再配列しやすくなるため、圧粉磁心の密度が向上する。 Further, since the magnetic nanoparticles are inferior in rearrangement property, a mixture of the magnetic nanoparticles, the thermosetting resin and the fatty acid is dispersed and dissolved in a solvent, and then a granular mixture is prepared by spray drying or the like. You may. As a result, the granular mixture collapses during compression molding, and the magnetic nanoparticles are easily rearranged, so that the density of the dust core is improved.

次に、このようにして得られた前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物を、潤滑剤を塗布した金型に充填する。前記潤滑剤としては特に制限はなく、例えば、ステアリン酸リチウム、ステアリン酸亜鉛等の飽和脂肪酸の金属塩、潤滑グリース(例えば、株式会社ミスミ製「M−HGSSC−H500」)等が挙げられる。 Next, the mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid thus obtained is filled in a mold coated with a lubricant. The lubricant is not particularly limited, and examples thereof include metal salts of saturated fatty acids such as lithium stearate and zinc stearate, and lubricating greases (for example, "M-HGSSC-H500" manufactured by Misumi Co., Ltd.).

次に、金型に充填した前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物を加圧成形することによって、本発明の圧粉磁心を得ることができる。成形温度としては特に制限はないが、通常、室温〜200℃であり、前記磁性ナノ粒子の流動性を確保するという観点から、前記熱硬化性樹脂及び前記脂肪酸の融点以上の温度が好ましい。また、金型に潤滑剤として飽和脂肪酸の金属塩を塗布した場合には、150℃以上の温度で加圧成形することが好ましい。成形圧力としては700MPa〜3GPaが好ましく、1GPa〜2GPaがより好ましい。成形圧力が前記下限未満になると、前記混合物が十分に圧縮されないため、圧粉磁心の密度が小さくなる傾向にあり、他方、前記上限を超えると、スプリングバック現象の影響が大きく、圧粉磁心の密度が小さくなる傾向にある。また、金型寿命も短くなる傾向にある。 Next, the dust core of the present invention can be obtained by pressure molding a mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid packed in a mold. The molding temperature is not particularly limited, but is usually room temperature to 200 ° C., and from the viewpoint of ensuring the fluidity of the magnetic nanoparticles, a temperature equal to or higher than the melting point of the thermosetting resin and the fatty acid is preferable. When a metal salt of saturated fatty acid is applied to the mold as a lubricant, it is preferably pressure-molded at a temperature of 150 ° C. or higher. The molding pressure is preferably 700 MPa to 3 GPa, more preferably 1 GPa to 2 GPa. When the forming pressure is less than the lower limit, the mixture is not sufficiently compressed, so that the density of the dust core tends to decrease. On the other hand, when the molding pressure exceeds the upper limit, the effect of the springback phenomenon is large, and the powder magnetic core is affected. The density tends to decrease. In addition, the life of the mold tends to be shortened.

また、このようにして製造した圧粉磁心には、必要に応じて熱処理を施してもよい。これにより、加圧により圧粉磁心に生じた歪みを緩和し、磁気特性を改善することができる。このような熱処理の温度は通常500〜800℃である。 Further, the dust core produced in this manner may be heat-treated if necessary. As a result, the strain generated in the dust core due to pressurization can be alleviated and the magnetic characteristics can be improved. The temperature of such heat treatment is usually 500 to 800 ° C.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
磁性ナノ粒子として平均粒径100nmのFeNi合金ナノ粒子(アルドリッチ社製)4.925gと脂肪酸として飽和脂肪酸であるラウリン酸(和光純薬工業株式会社製、炭素数12)0.025gとを混合し、さらに、乳鉢で30分間破砕混合した。次に、熱硬化性樹脂としてフェノール樹脂系接着剤(セメダイン株式会社製「110」)を樹脂成分が0.05gとなるように秤量し、これを2−メトキシエタノール10mlに溶解した。得られた溶液に前記FeNi合金ナノ粒子とラウリン酸との混合物を添加し、自転公転ミキサーを用いて攪拌した。得られたペーストを室温で真空乾燥させて溶媒を除去した後、大気中、乳鉢で30分間破砕混合した。得られた破砕混合物を、グリース(株式会社ミスミ製「M−HGSSC−H500」)を塗布したペレット試験片用金型に充填し、手動加熱プレス機(株式会社井元製作所製「IMC−1946型改」)を用いて1.4GPaに加圧しながら180℃で20分間加熱した。加圧を停止した後、室温まで冷却して、得られた磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を金型から取り出した。得られた成形体の密度を表1及び図1に示す。
(Example 1)
4.925 g of FeNi alloy nanoparticles (manufactured by Aldrich) having an average particle size of 100 nm as magnetic nanoparticles and 0.025 g of lauric acid (manufactured by Wako Pure Chemical Industries, Ltd., 12 carbon atoms) which is a saturated fatty acid as a fatty acid are mixed. Further, the mixture was crushed and mixed in a dairy pot for 30 minutes. Next, as a thermosetting resin, a phenol resin adhesive (“110” manufactured by Cemedine Co., Ltd.) was weighed so that the resin component was 0.05 g, and this was dissolved in 10 ml of 2-methoxyethanol. A mixture of the FeNi alloy nanoparticles and lauric acid was added to the obtained solution, and the mixture was stirred using a rotation / revolution mixer. The obtained paste was vacuum dried at room temperature to remove the solvent, and then crushed and mixed in an air mortar for 30 minutes. The obtained crushed mixture was filled into a die for pellet test pieces coated with grease (“M-HGSSC-H500” manufactured by Misumi Co., Ltd.), and a manual heating press machine (“IMC-1946” manufactured by Imoto Seisakusho Co., Ltd. was modified. ”) And heating at 180 ° C. for 20 minutes while pressurizing to 1.4 GPa. After stopping the pressurization, the mixture was cooled to room temperature, and the obtained magnetic nanoparticle molded body (powder magnetic core pellet (outer diameter 3 mmφ)) was taken out from the mold. The densities of the obtained molded products are shown in Table 1 and FIG.

(実施例2)
熱硬化性樹脂としてエポキシ樹脂ワニス(ソマール株式会社製「エピフォームR2400」、硬化剤としてジアミノジフェニルメタンを添加)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Example 2)
Magnetic nanoparticles molded product in the same manner as in Example 1 except that 0.05 g of epoxy resin varnish (“Epiform R2400” manufactured by Somer Co., Ltd. and diaminodiphenylmethane added as a curing agent) was used as a thermosetting resin. (Powder magnetic core pellet (outer diameter 3 mmφ)) was prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

(実施例3)
脂肪酸として飽和脂肪酸であるリグノセリン酸(東京化成工業株式会社製、炭素数24)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Example 3)
Magnetic nanoparticle compact (dust magnetic core pellet (outer diameter 3 mmφ)) in the same manner as in Example 1 except that 0.025 g of lignoceric acid (manufactured by Tokyo Chemical Industry Co., Ltd., 24 carbon atoms), which is a saturated fatty acid, was used as the fatty acid. ) Was prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

(実施例4)
脂肪酸として不飽和脂肪酸であるリノレン酸(ナカライテスク株式会社製、炭素数18)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Example 4)
Magnetic nanoparticle molded body (dust magnetic core pellet (outer diameter 3 mmφ)) in the same manner as in Example 1 except that 0.025 g of linolenic acid (manufactured by Nacalai Tesque, Inc., 18 carbon atoms), which is an unsaturated fatty acid, was used as the fatty acid. ) Was prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例1)
脂肪酸及び熱硬化性樹脂を混合しなかった以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 1)
A magnetic nanoparticle molded product (powdered magnetic core pellet (outer diameter 3 mmφ)) was prepared in the same manner as in Example 1 except that the fatty acid and the thermosetting resin were not mixed. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例2)
脂肪酸を混合しなかった以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 2)
A magnetic nanoparticle molded product (compact magnetic core pellet (outer diameter 3 mmφ)) was prepared in the same manner as in Example 1 except that the fatty acid was not mixed. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例3)
脂肪酸を混合しなかった以外は実施例2と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 3)
A magnetic nanoparticle molded product (compact magnetic core pellet (outer diameter 3 mmφ)) was prepared in the same manner as in Example 2 except that the fatty acid was not mixed. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例4)
脂肪酸としてカプリン酸(和光純薬工業株式会社製、炭素数10)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 4)
A magnetic nanoparticle molded body (powder magnetic core pellet (outer diameter 3 mmφ)) was prepared in the same manner as in Example 1 except that 0.025 g of capric acid (manufactured by Wako Pure Chemical Industries, Ltd., 10 carbon atoms) was used as the fatty acid. did. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例5)
脂肪酸の代わりに飽和脂肪酸アミドであるエチレンビスステアリン酸アミド(和光純薬工業株式会社製、炭素数38)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体を作製したが、金型から取り出す際に磁性ナノ粒子成形体が割れたため、密度測定はできなかった。
(Comparative Example 5)
A magnetic nanoparticle compact was prepared in the same manner as in Example 1 except that 0.025 g of ethylene bisstearic acid amide (manufactured by Wako Pure Chemical Industries, Ltd., 38 carbon atoms), which is a saturated fatty acid amide, was used instead of the fatty acid. However, the density could not be measured because the magnetic nanoparticle molded body cracked when it was taken out from the mold.

(比較例6)
脂肪酸の代わりに飽和脂肪酸エステルであるモノステアリン酸グリセロール(和光純薬工業株式会社製、炭素数21)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 6)
Magnetic nanoparticle molded body (powder magnetic core) in the same manner as in Example 1 except that 0.025 g of glycerol monostearate (manufactured by Wako Pure Chemical Industries, Ltd., 21 carbon atoms) which is a saturated fatty acid ester was used instead of fatty acid. Pellets (outer diameter 3 mmφ)) were prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例7)
脂肪酸の代わりに飽和脂肪酸金属塩であるラウリン酸亜鉛(和光純薬工業株式会社製、炭素数12)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 7)
Magnetic nanoparticle compact (dust magnetic core) in the same manner as in Example 1 except that 0.025 g of zinc laurate (manufactured by Wako Pure Chemical Industries, Ltd., 12 carbon atoms), which is a saturated fatty acid metal salt, was used instead of the fatty acid. Pellets (outer diameter 3 mmφ)) were prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例8)
フェノール樹脂系接着剤の代わりにポリイミド樹脂ワニス(ソマール株式会社製「SPIXAREA」)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 8)
Magnetic nanoparticle molded body (dust magnetic core pellet (outer powder magnetic core pellet (outside)) in the same manner as in Example 1 except that 0.05 g of polyimide resin varnish (“SPIXAREA” manufactured by Somer Co., Ltd.) was used as a resin component instead of the phenol resin adhesive. A diameter of 3 mmφ)) was produced. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例9)
フェノール樹脂系接着剤の代わりにアクリル樹脂系接着剤(協立化学産業株式会社製「WORLD ROCK」)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 9)
A magnetic nanoparticles molded product (in the same manner as in Example 1) except that 0.05 g of an acrylic resin adhesive (“WORLD ROCK” manufactured by Kyoritsu Chemical Industry Co., Ltd.) was used as a resin component instead of the phenol resin adhesive. Phenol formaldehyde pellets (outer diameter 3 mmφ)) were prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

(比較例10)
フェノール樹脂系接着剤の代わりにシリコーン樹脂系接着剤(セメダイン株式会社製「スーパーX」)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 10)
Magnetic nanoparticle molded body (compact magnetic core) in the same manner as in Example 1 except that 0.05 g of a silicone resin adhesive (“Super X” manufactured by Cemedine Co., Ltd.) was used as a resin component instead of the phenol resin adhesive. Pellets (outer diameter 3 mmφ)) were prepared. The densities of the obtained molded products are shown in Table 1 and FIG.

<クラック率>
実施例1〜4及び比較例1〜4、6〜9で得られた圧粉磁心ペレットを、ペレットの長手方向に平行な面で切断、研磨し、走査型電子顕微鏡を用いてその断面を観察した。50倍の倍率で取得した画像においてクラックの長さを計測し、クラックの長さを観察した断面の面積で割った値をクラック率(単位:cm/cm)として求めた。この測定を1つのペレットについて4箇所行い、その平均値を求めた。その結果を表1及び図2に示す。なお、比較例5で得られた磁性ナノ粒子成形体は、金型から取り出す際に割れたため、クラック率の測定ができなかった。
<Crack rate>
The dust core pellets obtained in Examples 1 to 4 and Comparative Examples 1 to 4, 6 to 9 are cut and polished on a plane parallel to the longitudinal direction of the pellet, and the cross section thereof is observed using a scanning electron microscope. did. The length of the crack was measured in the image acquired at a magnification of 50 times, and the value obtained by dividing the length of the crack by the area of the observed cross section was obtained as the crack ratio (unit: cm / cm 2 ). This measurement was performed at 4 points for one pellet, and the average value was calculated. The results are shown in Table 1 and FIG. Since the magnetic nanoparticle molded product obtained in Comparative Example 5 cracked when it was taken out from the mold, the crack ratio could not be measured.

表1及び図1に示したように、磁性ナノ粒子のみからなる場合(比較例1)に比べて、磁性ナノ粒子とフェノール樹脂(比較例2)又はエポキシ樹脂(比較例3)とを混合した場合には、圧粉磁心の密度が高くなり、炭素12〜24の飽和又は不飽和の脂肪酸を更に混合した場合(実施例1〜4)には、圧粉磁心の密度が更に高くなる(6.3g/cm以上)ことがわかった。また、フェノール樹脂を混合した場合(実施例1)には、エポキシ樹脂を混合した場合(実施例2)に比べて、高密度の圧粉磁心が得られることがわかった。一方、磁性ナノ粒子と炭素数10の飽和脂肪酸(比較例4)、飽和脂肪酸エステル(比較例6)又は飽和脂肪酸金属塩(比較例7)とフェノール樹脂とを混合した場合には、磁性ナノ粒子のみからなる場合(比較例1)に比べて、圧粉磁心の密度は高くなったが、6.3g/cm未満であり、磁性ナノ粒子と炭素12〜24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1〜4)に比べて、低くなった。また、磁性ナノ粒子と炭素数12の飽和脂肪酸とポリイミド樹脂(比較例8)、アクリル樹脂(比較例9)又はシリコーン樹脂(比較例10)とを混合した場合には、圧粉磁心の密度は、磁性ナノ粒子のみからなる場合(比較例1)と同等以上であったが、6.3g/cm未満であり、磁性ナノ粒子と炭素12〜24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1〜4)に比べて、低くなった。これらの結果から、磁性ナノ粒子に炭素数12〜30の脂肪酸とフェノール樹脂又はエポキシ樹脂とを配合することによって、圧粉磁心の密度がより向上することが確認された。 As shown in Table 1 and FIG. 1, the magnetic nanoparticles and the phenol resin (Comparative Example 2) or the epoxy resin (Comparative Example 3) were mixed as compared with the case consisting of only the magnetic nanoparticles (Comparative Example 1). In some cases, the density of the dust core becomes high, and when the saturated or unsaturated fatty acids of carbons 12 to 24 are further mixed (Examples 1 to 4), the density of the dust core becomes higher (6). .3 g / cm 3 or more) was found. Further, it was found that when the phenol resin was mixed (Example 1), a higher density dust core was obtained as compared with the case where the epoxy resin was mixed (Example 2). On the other hand, when the magnetic nanoparticles and the saturated fatty acid having 10 carbon atoms (Comparative Example 4), the saturated fatty acid ester (Comparative Example 6) or the saturated fatty acid metal salt (Comparative Example 7) and the phenol resin are mixed, the magnetic nanoparticles The density of the dust core was higher than that of the case consisting of only (Comparative Example 1), but it was less than 6.3 g / cm 3 , and the magnetic nanoparticles and the saturated or unsaturated fatty acids of carbons 12 to 24 were used. It was lower than that when the phenol resin or the epoxy resin was mixed (Examples 1 to 4). Further, when the magnetic nanoparticles, the saturated fatty acid having 12 carbon atoms, and the polyimide resin (Comparative Example 8), the acrylic resin (Comparative Example 9), or the silicone resin (Comparative Example 10) are mixed, the density of the dust core becomes high. It was equal to or higher than the case consisting of only magnetic nanoparticles (Comparative Example 1), but less than 6.3 g / cm 3 , and the magnetic nanoparticles and saturated or unsaturated fatty acids of carbons 12 to 24 and phenol resin or It was lower than that when mixed with the epoxy resin (Examples 1 to 4). From these results, it was confirmed that the density of the dust core was further improved by blending the magnetic nanoparticles with the fatty acid having 12 to 30 carbon atoms and the phenol resin or the epoxy resin.

また、表1及び図2に示したように、磁性ナノ粒子のみからなる場合(比較例1)に比べて、磁性ナノ粒子とフェノール樹脂(比較例2)又はエポキシ樹脂(比較例3)とを混合した場合には、圧粉磁心のクラック率が小さくなり、炭素12〜24の飽和又は不飽和の脂肪酸を更に混合した場合(実施例1〜4)には、圧粉磁心のクラック率が更に小さくなることがわかった。また、フェノール樹脂を混合した場合(実施例1)には、エポキシ樹脂を混合した場合(実施例2)に比べて、圧粉磁心のクラック率が小さくなることがわかった。一方、磁性ナノ粒子と炭素数10の飽和脂肪酸(比較例4)、飽和脂肪酸エステル(比較例6)又は飽和脂肪酸金属塩(比較例7)とフェノール樹脂とを混合した場合には、磁性ナノ粒子のみからなる場合(比較例1)に比べて、圧粉磁心のクラック率は小さくなったが、磁性ナノ粒子と炭素12〜24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1〜4)に比べて、高くなった。また、磁性ナノ粒子と炭素数12の飽和脂肪酸とポリイミド樹脂とを混合した場合(比較例8)には、磁性ナノ粒子のみからなる場合(比較例1)に比べて、圧粉磁心のクラック率は高くなった。さらに、磁性ナノ粒子と炭素数12の飽和脂肪酸とアクリル樹脂(比較例9)又はシリコーン樹脂(比較例10)とを混合した場合には、圧粉磁心のクラック率は磁性ナノ粒子のみからなる場合(比較例1)と同等以下であったが、磁性ナノ粒子と炭素12〜24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1〜4)に比べて、高くなった。これらの結果から、磁性ナノ粒子に炭素数12〜30の脂肪酸とフェノール樹脂又はエポキシ樹脂とを配合することによって、圧粉磁心のクラック率がより小さくなることがわかった。したがって、成形歪みを緩和する力に比べて成形体の強度が小さい場合にクラックが発生することから、本発明の圧粉磁心は高い強度を有するものであることが確認された。 Further, as shown in Table 1 and FIG. 2, the magnetic nanoparticles and the phenol resin (Comparative Example 2) or the epoxy resin (Comparative Example 3) are compared with the case where only the magnetic nanoparticles are composed (Comparative Example 1). When mixed, the crack ratio of the dust core becomes smaller, and when the saturated or unsaturated fatty acids of carbons 12 to 24 are further mixed (Examples 1 to 4), the crack ratio of the dust core further increases. It turned out to be smaller. Further, it was found that when the phenol resin was mixed (Example 1), the crack rate of the dust core was smaller than that when the epoxy resin was mixed (Example 2). On the other hand, when the magnetic nanoparticles and the saturated fatty acid having 10 carbon atoms (Comparative Example 4), the saturated fatty acid ester (Comparative Example 6) or the saturated fatty acid metal salt (Comparative Example 7) and the phenol resin are mixed, the magnetic nanoparticles The crack rate of the dust core was smaller than that of the case consisting of only (Comparative Example 1), but the magnetic nanoparticles, saturated or unsaturated fatty acids of carbons 12 to 24, and phenol resin or epoxy resin were mixed. It was higher than the case (Examples 1 to 4). Further, when the magnetic nanoparticles, the saturated fatty acid having 12 carbon atoms and the polyimide resin are mixed (Comparative Example 8), the crack ratio of the dust core is higher than that in the case of containing only the magnetic nanoparticles (Comparative Example 1). Has become higher. Further, when the magnetic nanoparticles, the saturated fatty acid having 12 carbon atoms and the acrylic resin (Comparative Example 9) or the silicone resin (Comparative Example 10) are mixed, the crack ratio of the dust core consists only of the magnetic nanoparticles. It was equal to or less than that of (Comparative Example 1), but compared with the case where magnetic nanoparticles, saturated or unsaturated fatty acids having 12 to 24 carbons and a phenol resin or epoxy resin were mixed (Examples 1 to 4). It got higher. From these results, it was found that the crack rate of the dust core was further reduced by blending the magnetic nanoparticles with a fatty acid having 12 to 30 carbon atoms and a phenol resin or an epoxy resin. Therefore, it was confirmed that the dust core of the present invention has a high strength because cracks occur when the strength of the molded body is smaller than the force for alleviating the molding strain.

以上説明したように、本発明によれば、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心を得ることが可能となる。したがって、本発明の圧粉磁心は、比透磁率が高く、ヒステリシス損や渦電流損が小さくなるため、変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等の電磁気を利用した製品のコア材などとして有用である。 As described above, according to the present invention, it is possible to obtain a high-density and high-strength dust core containing magnetic nanoparticles. Therefore, the dust core of the present invention has a high relative permeability and a small hysteresis loss and eddy current loss. Therefore, a transformer, an electric motor, a generator, a speaker, an induction heater, various actuators, etc. It is useful as a core material for products that utilize electromagnetic currents.

Claims (3)

平均粒径が1〜300nmの磁性ナノ粒子と、フェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と、炭素数が12〜30の脂肪酸とを含有することを特徴とする圧粉磁心。 It is characterized by containing magnetic nanoparticles having an average particle size of 1 to 300 nm, at least one thermosetting resin selected from the group consisting of phenol resin and epoxy resin, and fatty acids having 12 to 30 carbon atoms. Powder magnetic core. 前記熱硬化性樹脂がフェノール樹脂であることを特徴とする請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the thermosetting resin is a phenol resin. 前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、前記熱硬化性樹脂の含有量が0.01〜4.99質量%であり、前記脂肪酸の含有量が0.01〜4.99質量%であり、前記熱硬化性樹脂と前記脂肪酸との合計量が0.02〜5質量%であることを特徴とする請求項1又は2に記載の圧粉磁心。 The content of the thermosetting resin is 0.01 to 4.99% by mass with respect to the total amount of the magnetic nanoparticles, the thermosetting resin and the fatty acid, and the content of the fatty acid is 0. The dust core according to claim 1 or 2, wherein the amount is 01 to 4.99% by mass, and the total amount of the thermosetting resin and the fatty acid is 0.02 to 5% by mass.
JP2019123119A 2019-07-01 2019-07-01 powder magnetic core Active JP7356270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123119A JP7356270B2 (en) 2019-07-01 2019-07-01 powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123119A JP7356270B2 (en) 2019-07-01 2019-07-01 powder magnetic core

Publications (2)

Publication Number Publication Date
JP2021009930A true JP2021009930A (en) 2021-01-28
JP7356270B2 JP7356270B2 (en) 2023-10-04

Family

ID=74199698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123119A Active JP7356270B2 (en) 2019-07-01 2019-07-01 powder magnetic core

Country Status (1)

Country Link
JP (1) JP7356270B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267160A (en) * 2000-01-12 2001-09-28 Tdk Corp Coil sealing dust core and method for manufacturing the same
JP2001358005A (en) * 2000-06-13 2001-12-26 Daido Steel Co Ltd Atomized soft magnetic powder and dust core using it
JP2002260909A (en) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Composite magnetic material
JP2003318014A (en) * 2002-04-24 2003-11-07 Kobe Steel Ltd Dust core powder, high-strength dust core, and method of manufacturing the same
JP2004259807A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2009249739A (en) * 2008-04-11 2009-10-29 Hitachi Metals Ltd Metal magnetic particulate, method for producing the same and powder magnetic core
JP2010053372A (en) * 2008-08-26 2010-03-11 Nec Tokin Corp Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
JP2013522441A (en) * 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Composition for producing magnetic or magnetized molded article, and method for producing the composition
JP2015170843A (en) * 2014-03-07 2015-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267160A (en) * 2000-01-12 2001-09-28 Tdk Corp Coil sealing dust core and method for manufacturing the same
JP2001358005A (en) * 2000-06-13 2001-12-26 Daido Steel Co Ltd Atomized soft magnetic powder and dust core using it
JP2002260909A (en) * 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Composite magnetic material
JP2003318014A (en) * 2002-04-24 2003-11-07 Kobe Steel Ltd Dust core powder, high-strength dust core, and method of manufacturing the same
JP2004259807A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2009249739A (en) * 2008-04-11 2009-10-29 Hitachi Metals Ltd Metal magnetic particulate, method for producing the same and powder magnetic core
JP2010053372A (en) * 2008-08-26 2010-03-11 Nec Tokin Corp Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
JP2013522441A (en) * 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Composition for producing magnetic or magnetized molded article, and method for producing the composition
JP2015170843A (en) * 2014-03-07 2015-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
JP7356270B2 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP2019104954A (en) Metal element-containing powder, and molded body
KR20120125966A (en) Method for producing dust core, and dust core obtained by the method
JP2010251696A (en) Soft magnetic powder core and method of manufacturing the same
KR20140010456A (en) Iron-base soft magnetic powder for dust cores, manufacturing method thereof, and dust core
JP7332283B2 (en) dust core
JPWO2010038441A1 (en) Composite magnetic material and manufacturing method thereof
JP2010153638A (en) Composite soft magnetic material, method for manufacturing composite soft magnetic material, and electromagnetic circuit component
WO2017159366A1 (en) Mixed powder for dust core and production method for mixed powder for dust core
JP6609255B2 (en) Soft magnetic powder mixture
JP2015135920A (en) Low-noise reactor, dust core, and method for producing the dust core
JP2011171346A (en) Iron-based soft magnetic powder for dust core, method of manufacturing the same, and dust core
JP7356270B2 (en) powder magnetic core
WO2021095467A1 (en) Dust core
JP2009252961A (en) Soft magnetic material for dust core and dust core
JP2021009929A (en) Dust core
JP7387528B2 (en) Powder magnetic core and its manufacturing method
JP7348596B2 (en) powder magnetic core
JP2008143720A (en) Magnetite-iron composite powder, its manufacturing method and dust core
JP5410699B2 (en) Method for producing Fe-based soft magnetic material, Fe-based soft magnetic material, and dust core
JP4759533B2 (en) Powder for powder magnetic core, powder magnetic core, and method for producing the same
JP5431490B2 (en) Manufacturing method of dust core
JP2011211026A (en) Composite magnetic material
JP6618858B2 (en) Iron nitride magnet
WO2019044467A1 (en) Method for manufacturing dust core and raw material powder for dust core

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230922

R150 Certificate of patent or registration of utility model

Ref document number: 7356270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150