JP7356032B2 - Load-bearing walls and wooden buildings - Google Patents

Load-bearing walls and wooden buildings Download PDF

Info

Publication number
JP7356032B2
JP7356032B2 JP2020036214A JP2020036214A JP7356032B2 JP 7356032 B2 JP7356032 B2 JP 7356032B2 JP 2020036214 A JP2020036214 A JP 2020036214A JP 2020036214 A JP2020036214 A JP 2020036214A JP 7356032 B2 JP7356032 B2 JP 7356032B2
Authority
JP
Japan
Prior art keywords
wall
load
vertical
wall material
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020036214A
Other languages
Japanese (ja)
Other versions
JP2021139135A (en
Inventor
圭一 佐藤
綾那 久積
信孝 清水
伸一 濱田
良道 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020036214A priority Critical patent/JP7356032B2/en
Publication of JP2021139135A publication Critical patent/JP2021139135A/en
Application granted granted Critical
Publication of JP7356032B2 publication Critical patent/JP7356032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐力壁及び木造建物に関する。 The present invention relates to load-bearing walls and wooden buildings.

特許文献1には、建物の上下の梁材に接合される金属製の一対の縦材と、一対の縦材に接合され、複数のバーリング孔が上下に1列に形成された金属製の壁面材と、を備える耐力壁が開示されている。 Patent Document 1 describes a pair of metal vertical members that are joined to the upper and lower beams of a building, and a metal wall surface that is joined to the pair of vertical members and has a plurality of burring holes formed in a vertical row. A load-bearing wall is disclosed.

特許第5805893号公報Patent No. 5805893

特許文献1に開示された耐力壁では、一対の縦材の表面に壁面材を接合している。このため、上記耐力壁では、地震等の水平荷重が作用した場合、縦材に該縦材を捩じるような力が作用する。ここで、縦材が金属材料よりも低強度で且つ低剛性の木質材料によって構成される場合には、水平荷重に対して壁面材の性能が十分に発揮されるよりも前(壁面材が大変形に至る前)に、縦材や縦材と壁面材との接合部に破損が生じる虞がある。 In the load-bearing wall disclosed in Patent Document 1, a wall material is joined to the surfaces of a pair of vertical members. For this reason, in the above-mentioned load-bearing wall, when a horizontal load such as an earthquake is applied, a force that twists the vertical member acts on the vertical member. Here, if the vertical members are made of wooden materials that have lower strength and stiffness than metal materials, it is necessary to (before deformation occurs), there is a risk of damage to the vertical members or the joints between the vertical members and the wall material.

上記のように水平荷重によって耐力壁が大変形に至る前に、縦材や縦材と壁面材との接合部に破損が生じたりすることで、耐力壁を大変形まで安定して変形させられない。 As mentioned above, before the load-bearing wall undergoes large deformation due to horizontal loads, damage may occur in the vertical members or the joints between the vertical members and the wall surface material, making it difficult for the load-bearing wall to stably deform to a large deformation. do not have.

本発明は上記事実を考慮し、金属製の壁面材と木製の縦枠材とを備える構成において、縦枠材や縦枠材と壁面材との接合部に破損が生じるのを抑制しつつ、大変形時まで安定した耐力を保持できる耐力壁、及びこの耐力壁を用いた木造建物を提供することを課題とする。 The present invention takes the above facts into consideration, and in a configuration including a metal wall material and a wooden vertical frame material, while suppressing damage to the vertical frame material or the joint between the vertical frame material and the wall material, It is an object of the present invention to provide a load-bearing wall that can maintain stable strength even during large deformations, and a wooden building using this load-bearing wall.

本発明の第1態様の耐力壁は、上下方向に間隔をあけて開口が形成された金属製の壁面材と、前記壁面材の前記開口の縁部に沿って設けられ、該縁部から前記壁面材の厚み方向に突出する環状のリブと、前記上下方向に延び、前記壁面材における幅方向の両端部がそれぞれ接合された一対の縦枠材と、を備え、前記縦枠材は、前記壁面材の厚み方向の一方側に配置された木製の第1縦材と、前記壁面材の厚み方向の他方側に配置されて前記第1縦材との間で前記壁面材の前記幅方向の端部を挟む木製の第2縦材と、を有する、 The load-bearing wall of the first aspect of the present invention includes a metal wall material in which openings are formed at intervals in the vertical direction, and is provided along an edge of the opening of the wall material, and is provided from the edge to the an annular rib protruding in the thickness direction of the wall material; and a pair of vertical frame members extending in the vertical direction and having both widthwise ends of the wall material joined to each other, and the vertical frame member includes the In the width direction of the wall material, a first vertical member made of wood is arranged on one side in the thickness direction of the wall material and the first vertical member is arranged on the other side in the thickness direction of the wall material. a second wooden vertical member sandwiching the ends;

第1態様の耐力壁では、壁面材の幅方向の両端部がそれぞれ第1縦材と第2縦材とで挟まれた状態で、縦枠材が壁面材に接合されていることから、例えば、縦枠材の表面に壁面材が接合される構成と比べて、壁面材が壁厚み方向の中央寄りに位置する。すなわち、壁面材と縦枠材との壁厚み方向の偏心が小さくなる。このため、第1態様の耐力壁を木造躯体の隣り合う柱材間に配置し、一対の縦枠材を隣り合う柱材にそれぞれ接合した状態で、当該耐力壁に地震等による水平荷重が伝達されても、縦枠材(第1縦材及び第2縦材)に作用する該縦枠材を捩じる力が低減されるため、縦枠材や縦枠材と壁面材との接合部に破損が生じるのが抑制される。
また、上記耐力壁では、壁面材の幅方向の端部を第1縦材と第2縦材とで壁厚み方向から挟むことから、壁面材と縦枠材との接合部が2面せん断となり、これらの接合部の耐力と剛性が向上する。これにより、縦枠材や縦枠材と壁面材との接合部に破損が生じるのが更に抑制される。
In the load-bearing wall of the first aspect, since the vertical frame material is joined to the wall material with both ends of the wall material in the width direction sandwiched between the first vertical member and the second vertical member, for example, Compared to a structure in which the wall material is joined to the surface of the vertical frame material, the wall material is located closer to the center in the wall thickness direction. That is, the eccentricity in the wall thickness direction between the wall surface material and the vertical frame material is reduced. For this reason, when the load-bearing wall of the first aspect is placed between adjacent pillars of a wooden frame, and a pair of vertical frame members are respectively connected to the adjacent pillars, horizontal loads due to earthquakes, etc. are transmitted to the load-bearing wall. Even if the vertical frame members (the first vertical member and the second vertical member) are twisted, the force acting on the vertical frame members is reduced, so that the joints between the vertical frame members and the vertical frame members and the wall material are reduced. This prevents damage from occurring.
In addition, in the above-mentioned load-bearing wall, since the widthwise end of the wall material is sandwiched between the first vertical member and the second vertical member from the wall thickness direction, the joint between the wall material and the vertical frame material becomes a two-plane shear. , the strength and rigidity of these joints are improved. This further suppresses damage to the vertical frame material or the joint between the vertical frame material and the wall surface material.

また、上記耐力壁では、壁面材に上下方向に間隔をあけて開口を形成していることから、水平荷重が伝達された場合に、壁面材における上下方向に隣り合う開口間の部分が変形(せん断変形)しやすい。このため、耐力壁では、例えば、壁面材に開口を形成しない構成と比べて、壁面材が水平荷重に対してせん断変形しやすく、縦枠材や縦枠材と壁面材との接合部に破損が生じるのをより抑制することができる。
このように上記耐力壁では、地震等による水平荷重によって壁面材が大変形に至る前に、縦枠材や縦枠材と壁面材との接合部に破損が生じるのが抑制されるため、壁面材が大変形まで安定して変形できる。すなわち、耐力壁は、大変形時まで安定した耐力を保持できる。その結果、第1態様の耐力壁は、地震エネルギー等を安定して吸収することが可能となる。
In addition, in the above-mentioned load-bearing wall, since the openings are formed in the wall material at intervals in the vertical direction, when a horizontal load is transmitted, the portion of the wall material between the vertically adjacent openings deforms ( shear deformation). For this reason, in load-bearing walls, for example, compared to a structure in which no opening is formed in the wall material, the wall material is more likely to undergo shear deformation due to horizontal loads, causing damage to the vertical frame material or the joint between the vertical frame material and the wall material. The occurrence of this can be further suppressed.
In this way, in the above-mentioned load-bearing wall, damage to the vertical frame material or the joint between the vertical frame material and the wall material is suppressed, before the wall material undergoes large deformation due to horizontal loads caused by earthquakes, etc. The material can be stably deformed up to large deformations. In other words, the load-bearing wall can maintain stable load-bearing strength until it undergoes large deformation. As a result, the load-bearing wall of the first aspect can stably absorb earthquake energy and the like.

本発明の第2態様の耐力壁は、第1態様の耐力壁において、前記壁面材の前記幅方向の両端部には、該端部から前記幅方向内側に折り返された折り返し部がそれぞれ設けられており、前記折り返し部が前記壁面材に重なった状態で、前記壁面材が前記縦枠材に接合されている。 In the load-bearing wall of the second aspect of the present invention, in the load-bearing wall of the first aspect, both end portions of the wall material in the width direction are provided with folded portions that are folded back from the end portions inward in the width direction. The wall material is joined to the vertical frame material with the folded portion overlapping the wall material.

第2態様の耐力壁では、折り返し部が壁面材に重なり、壁面材の幅方向の端部が第1縦材と第2縦材とで挟まれた状態で壁面材が縦枠材に接合されている。すなわち、上記耐力壁では、第1縦材と第2縦材とで挟んだ部分において金属板が2重になるため、例えば、第1縦材と第2縦材とで挟んだ部分において金属板が一重の構成と比べて、壁面材及び折り返し部と縦枠材との接合部の耐力及び剛性が向上する。これにより、上記耐力壁では、壁面材が大変形に至る前に、壁面材及び折り返し部と縦枠材との接合部に破損が生じるのが更に抑制される。 In the load-bearing wall of the second aspect, the folded portion overlaps the wall material, and the wall material is joined to the vertical frame material with the widthwise end of the wall material being sandwiched between the first vertical member and the second vertical member. ing. That is, in the above-mentioned load-bearing wall, since the metal plate is doubled in the part sandwiched between the first vertical member and the second vertical member, for example, the metal plate is doubled in the part sandwiched between the first vertical member and the second vertical member. Compared to a single structure, the strength and rigidity of the joint between the wall material and the folded portion and the vertical frame material are improved. As a result, in the above-mentioned load-bearing wall, damage to the wall material and the joint between the folded portion and the vertical frame material is further suppressed from occurring before the wall material undergoes large deformation.

本発明の第3態様の耐力壁は、第1態様又は第2態様の耐力壁において、前記リブは、前記壁面材の前記厚み方向の他方側に突出しており、前記第2縦材の断面積が前記第1縦材の断面積よりも小さい。 In the load-bearing wall of the third aspect of the present invention, in the load-bearing wall of the first aspect or the second aspect, the rib protrudes to the other side in the thickness direction of the wall material, and the cross-sectional area of the second vertical member is is smaller than the cross-sectional area of the first longitudinal member.

第3態様の耐力壁では、壁面材の厚み方向でリブの突出側に配置された第2縦材の断面積を、第1縦材の断面積よりも小さくしていることから、例えば、第1縦材の断面積が第2縦材の断面積以上の構成と比べて、壁面材と縦枠材とを含む壁全体としてのせん断中心と壁の軸線とのずれが小さくなる。これにより、上記耐力壁では、水平荷重が作用した場合の縦枠材(第1縦材及び第2縦材)の捩じれが抑制され、縦枠材と壁面材との接合部に破損が生じるのが抑制される。 In the load-bearing wall of the third aspect, the cross-sectional area of the second vertical member disposed on the protruding side of the rib in the thickness direction of the wall material is smaller than the cross-sectional area of the first vertical member. Compared to a configuration in which the cross-sectional area of the first vertical member is greater than or equal to the cross-sectional area of the second vertical member, the deviation between the shear center of the wall as a whole including the wall surface material and the vertical frame material and the axis of the wall becomes smaller. As a result, in the above-mentioned load-bearing wall, twisting of the vertical frame members (first vertical member and second vertical member) is suppressed when a horizontal load is applied, and damage occurs at the joint between the vertical frame member and the wall surface material. is suppressed.

本発明の第4態様の耐力壁は、第1態様~第3態様のいずれか1態様の耐力壁において、少なくとも2枚の前記壁面材を備えており、前記一対の縦枠材間には、前記上下方向に延びる中間枠材が配置されており、一方の前記壁面材の前記幅方向の端部と他方の前記壁面材の前記幅方向の端部が前記厚み方向で重なった状態で、前記中間枠材に接合されている。 A load-bearing wall according to a fourth aspect of the present invention is the load-bearing wall according to any one of the first to third aspects, and includes at least two of the wall materials, and between the pair of vertical frame materials, The intermediate frame member extending in the vertical direction is disposed, and the widthwise end of one of the wall materials and the widthwise end of the other wall material overlap in the thickness direction, and the It is joined to the intermediate frame material.

第4態様の耐力壁では、一方の壁面材の幅方向の端部と他方の壁面材の幅方向の端部が壁厚み方向で重なった状態で、中間枠材に接合されている。すなわち、上記耐力壁では、2枚の壁面材が壁厚み方向で重なって2重になった部分に中間枠材が接合されていることから、壁面材と中間枠材との接合部の耐力及び剛性が向上する。これにより、上記耐力壁では、壁面材が大変形に至る前に、中間枠と壁面材との接合部に破損が生じるのが更に抑制される。 In the load-bearing wall of the fourth aspect, the widthwise end of one wall material and the widthwise end of the other wall material overlap in the wall thickness direction and are joined to the intermediate frame material. In other words, in the above-mentioned load-bearing wall, since the intermediate frame material is joined to the double layered portion where the two wall materials overlap in the wall thickness direction, the strength and strength of the joint between the wall material and the intermediate frame material are reduced. Improves rigidity. Thereby, in the above-mentioned load-bearing wall, damage to the joint between the intermediate frame and the wall material is further suppressed from occurring before the wall material undergoes large deformation.

本発明の第5態様の耐力壁は、第1態様~第4態様のいずれか1態様の耐力壁において、前記壁面材の前記幅方向に延び、前記壁面材における上端部及び下端部がそれぞれ接合された一対の横枠材を更に有する。 The load-bearing wall according to a fifth aspect of the present invention is the load-bearing wall according to any one of the first to fourth aspects, which extends in the width direction of the wall material, and has an upper end portion and a lower end portion of the wall material joined together. It further includes a pair of horizontal frame members.

第5態様の耐力壁では、壁面材の幅方向にそれぞれ延びる一対の横枠材に、壁面材における上端部及び下端部がそれぞれ接合されている。このため、第5態様の耐力壁を木造躯体の隣り合う柱材間に配置し、上枠材を上梁材に接合し、下枠材を下梁材に接合した状態で、当該耐力壁に地震等による水平荷重が伝達された場合に、縦枠材と壁面材との接合部に作用する力が、横枠材と壁面材との接合部に分散されるため、縦枠材と壁面材との接合部に破損が生じるのが抑制される。 In the load-bearing wall of the fifth aspect, the upper end and the lower end of the wall material are respectively joined to a pair of horizontal frame members extending in the width direction of the wall material. For this reason, the load-bearing wall of the fifth aspect is placed between adjacent column materials of a wooden frame, and the upper frame material is joined to the upper beam material, and the lower frame material is joined to the lower beam material. When a horizontal load due to an earthquake is transmitted, the force acting on the joint between the vertical frame and the wall material is dispersed to the joint between the horizontal frame and the wall material. This prevents damage from occurring at the joint with the

本発明の第6態様の耐力壁は、第1態様~第4態様のいずれか1態様の耐力壁において、前記壁面材を厚み方向から見て、前記開口の形状及び大きさが同じである。 In the load-bearing wall of the sixth aspect of the present invention, in the load-bearing wall of any one of the first to fourth aspects, the shape and size of the opening are the same when the wall material is viewed from the thickness direction.

第6態様の耐力壁では、壁面材を厚み方向から見て、開口の形状及び大きさが同じであることから、例えば、開口の形状及び大きさの少なくとも一方が異なる構成と比べて、開口及び開口の縁部に設けられるリブ毎に作用する応力を一定にできる。これにより、壁面材に早期にせん断座屈が生じるのが抑制される。また、壁面材に開口及びリブを形成するに際して、開口及びリブの形状及び大きさに合わせた様々な加工具(金型含む)を用いる必要がないため、耐力壁の製造(加工)が容易になる。 In the load-bearing wall of the sixth aspect, since the shape and size of the openings are the same when the wall material is viewed from the thickness direction, for example, compared to a structure in which at least one of the shape and size of the openings is different, the openings and The stress acting on each rib provided at the edge of the opening can be made constant. This suppresses early shear buckling in the wall material. In addition, when forming openings and ribs in wall materials, there is no need to use various processing tools (including molds) that match the shape and size of the openings and ribs, making it easier to manufacture (process) load-bearing walls. Become.

本発明の第7態様の耐力壁は、第6態様の耐力壁において、前記壁面材を厚み方向から見て、前記開口の形状が円形である。 In the load-bearing wall of the seventh aspect of the present invention, in the load-bearing wall of the sixth aspect, the shape of the opening is circular when the wall material is viewed from the thickness direction.

第7態様の耐力壁では、壁面材を厚み方向から見て、開口の形状を円形としていることから、例えば、開口の形状を多角形状とした構成と比べて、水平荷重が作用したときの、開口及び開口の縁部に設けられるリブへの局部応力集中が緩和され、大変形時まで安定した耐力を保持できる。 In the load-bearing wall of the seventh aspect, since the opening has a circular shape when the wall material is viewed from the thickness direction, for example, compared to a configuration in which the opening has a polygonal shape, when a horizontal load is applied, Local stress concentration on the opening and the ribs provided at the edge of the opening is alleviated, and stable yield strength can be maintained until large deformations occur.

本発明の第8態様の木造建物は、複数の柱材と複数の梁材を組み立てた木造躯体と、前記木造躯体に用いられる第1態様~第7態様のいずれか1態様の耐力壁と、を備え、前記耐力壁は、隣り合う前記柱材の間に配置された状態で一対の縦枠材が前記隣り合う柱材にそれぞれ接合されている。 A wooden building according to an eighth aspect of the present invention includes a wooden frame assembled from a plurality of columns and a plurality of beams, and a load-bearing wall according to any one of the first to seventh aspects used for the wooden frame; In the load-bearing wall, a pair of vertical frame members are respectively joined to the adjacent pillar members while being arranged between the adjacent pillar members.

地震等による水平荷重が耐力壁に伝達されても、第1態様~第7態様のいずれか1態様の耐力壁では、大変形に至る前に、縦枠材や縦枠材と壁面材との接合部に破損が生じるのが抑制されるため、大変形時まで安定した耐力を保持できる。第8態様の木造建物では、上記のような耐力壁を用いることから、地震エネルギーが耐力壁によって安定して吸収されるため、耐震性能が向上する。 Even if a horizontal load due to an earthquake or the like is transmitted to a load-bearing wall, in the load-bearing wall of any one of the first to seventh aspects, the relationship between the vertical frame material or the vertical frame material and the wall surface material may be damaged before large deformation occurs. Since damage to the joints is suppressed, stable yield strength can be maintained until large deformations occur. In the wooden building of the eighth aspect, since the above load-bearing walls are used, seismic energy is stably absorbed by the load-bearing walls, so that seismic performance is improved.

本発明によれば、金属製の壁面材と木製の縦枠材とを備える構成において、縦枠材や縦枠材と壁面材との接合部に破損が生じるのを抑制しつつ、大変形時まで安定した耐力を保持できる耐力壁、及びこの耐力壁を用いた木造建物を提供することができる。 According to the present invention, in a configuration including a metal wall material and a wooden vertical frame material, damage to the vertical frame material or the joint between the vertical frame material and the wall material can be suppressed, and even when large deformation occurs. It is possible to provide a load-bearing wall that can maintain stable load-bearing strength up to a maximum of 100 degrees, and a wooden building using this load-bearing wall.

本発明の第1実施形態の耐力壁の斜視図である。It is a perspective view of the load-bearing wall of a 1st embodiment of the present invention. 図1の耐力壁の分解斜視図である。FIG. 2 is an exploded perspective view of the load-bearing wall of FIG. 1; 図1の耐力壁の正面図である。FIG. 2 is a front view of the load-bearing wall of FIG. 1; 図3における矢印4X-4X線断面の拡大図である。4 is an enlarged view of a cross section taken along arrow 4X-4X in FIG. 3. FIG. 図3における矢印5X-5X線断面の拡大図である。4 is an enlarged view of a cross section taken along arrow 5X-5X in FIG. 3. FIG. 図3の耐力壁を木造躯体に設置した状態を示す、耐力壁の正面図である。FIG. 4 is a front view of the load-bearing wall shown in FIG. 3 , showing a state in which the load-bearing wall is installed on a wooden frame. 図6における矢印7X-7X線断面の拡大図である。7 is an enlarged view of a cross section taken along arrow 7X-7X in FIG. 6. FIG. 図6における矢印8X-8X線断面の拡大図である。7 is an enlarged view of a cross section taken along arrow 8X-8X in FIG. 6. FIG. (A)比較例の耐力壁に水平荷重が作用した状態を示す、縦枠材と壁面材の接合部の拡大断面図である。(B)水平荷重により比較例の耐力壁の縦枠材が破損した状態を示す、拡大断面図(図9(A)に対応する部分の拡大断面図)である。(C)水平荷重により比較例の耐力壁の縦枠材と壁面材の接合部が破損した状態を示す、拡大断面図(図9(A)に対応する部分の拡大断面図)である。(A) It is an enlarged cross-sectional view of the joint part of the vertical frame material and wall surface material, showing the state in which a horizontal load acts on the load-bearing wall of a comparative example. (B) is an enlarged sectional view (an enlarged sectional view of a portion corresponding to FIG. 9(A)) showing a state in which the vertical frame material of the load-bearing wall of the comparative example is damaged due to a horizontal load. (C) is an enlarged cross-sectional view (an enlarged cross-sectional view of a portion corresponding to FIG. 9(A)) showing a state in which the joint between the vertical frame material and the wall surface material of the load-bearing wall of the comparative example is damaged due to a horizontal load. (A)図6の耐力壁に水平荷重が作用した状態を示す、縦枠材と壁面材の接合部の拡大断面図である。(B)水平荷重に対して、図6の耐力壁の縦枠材及び縦枠材と壁面材との接合部の破損が抑制された状態を示す、拡大断面図(図10(A)に対応する部分の拡大断面図)である。(A) It is an enlarged cross-sectional view of the joint part of the vertical frame material and wall surface material, showing the state in which a horizontal load acts on the load-bearing wall of FIG. (B) Enlarged sectional view showing a state in which damage to the vertical frame of the load-bearing wall in Figure 6 and the joint between the vertical frame and the wall surface material is suppressed against horizontal loads (corresponding to Figure 10 (A)) FIG. 第1実施形態の耐力壁の変形例の正面図である。It is a front view of the modification of the load-bearing wall of 1st Embodiment. 図11における矢印12X-12X線断面の拡大図である。12 is an enlarged view of a cross section taken along arrow 12X-12X in FIG. 11. FIG. 本発明の第2実施形態の耐力壁の正面図である。It is a front view of the load-bearing wall of 2nd Embodiment of this invention. 図13における矢印14X-14X線断面の拡大図である。14 is an enlarged view of a cross section taken along arrow 14X-14X in FIG. 13. FIG. 本発明の第3実施形態の耐力壁における縦枠材と壁面材の接合部の拡大断面図である。It is an enlarged cross-sectional view of the joint part of the vertical frame material and wall surface material in the load-bearing wall of 3rd Embodiment of this invention. 本発明の第4実施形態の耐力壁における縦枠材と壁面材の接合部の拡大断面図である。It is an enlarged cross-sectional view of the joint part of the vertical frame material and wall surface material in the load-bearing wall of 4th Embodiment of this invention. 本発明の第4実施形態の耐力壁の変形における縦枠材と壁面材の接合部の拡大断面図である。It is an enlarged cross-sectional view of the joint part of the vertical frame material and wall surface material in the deformation|transformation of the load-bearing wall of 4th Embodiment of this invention.

図面を用いて、本発明の一実施形態の耐力壁及びこの耐力壁を用いた木造建物について説明する。 A load-bearing wall according to an embodiment of the present invention and a wooden building using this load-bearing wall will be described with reference to the drawings.

[第1実施形態]
まず、図1~図8を用いて本発明の第1実施形態の耐力壁20及びこの耐力壁20を用いた木造建物100について説明する。なお、図中に示された矢印UPは、本実施形態の耐力壁20が用いられる木造建物100の上方向を示している。また、図中に示された矢印Wは、耐力壁20の幅方向(以下、適宜「壁幅方向」と記載する。)を示し、矢印Tは、耐力壁20の厚み方向(以下、適宜「壁厚み方向」と記載する。)を示している。なお、本実施形態では、壁幅方向と木造建物100の水平方向が一致している。また、壁幅方向と壁厚み方向は直交している。
[First embodiment]
First, a load-bearing wall 20 according to a first embodiment of the present invention and a wooden building 100 using this load-bearing wall 20 will be described using FIGS. 1 to 8. Note that the arrow UP shown in the figure indicates the upward direction of the wooden building 100 in which the load-bearing wall 20 of this embodiment is used. Further, arrow W shown in the figure indicates the width direction of the load-bearing wall 20 (hereinafter referred to as "wall width direction" as appropriate), and arrow T indicates the thickness direction of the load-bearing wall 20 (hereinafter referred to as "wall width direction" as appropriate). (described as "wall thickness direction"). Note that in this embodiment, the wall width direction and the horizontal direction of the wooden building 100 coincide. Further, the wall width direction and the wall thickness direction are perpendicular to each other.

<木造建物100>
まず、耐力壁20を用いた木造建物100について説明する。図6~図8に示すように、木造建物100は、木造躯体102と、この木造躯体102に設置された耐力壁20を備えている。木造躯体102は、軸組工法の柱梁骨組であり、複数の柱材と複数の梁材とを組み立てて形成されている。具体的には、木造躯体102は、図6に示すように、複数の柱材104と、複数の柱材104の下端部が固定される下梁材108と、複数の柱材104の上端部が固定される上梁材106と、を備えている。なお、本実施形態の柱材104、上梁材106及び下梁材108は、それぞれ断面形状が略矩形の木材である(図7及び図8参照)。
<Wooden buildings 100>
First, a wooden building 100 using load-bearing walls 20 will be described. As shown in FIGS. 6 to 8, the wooden building 100 includes a wooden frame 102 and a load-bearing wall 20 installed on the wooden frame 102. The wooden frame 102 is a column-beam frame using the frame construction method, and is formed by assembling a plurality of columns and a plurality of beams. Specifically, as shown in FIG. 6, the wooden frame 102 includes a plurality of columns 104, a lower beam 108 to which the lower ends of the plurality of columns 104 are fixed, and an upper end of the plurality of columns 104. and an upper beam member 106 to which is fixed. Note that the pillar material 104, the upper beam material 106, and the lower beam material 108 of this embodiment are each made of wood having a substantially rectangular cross-sectional shape (see FIGS. 7 and 8).

図8に示すように、耐力壁20は、木造躯体102の隣り合う柱材104間に配置されており、後述する一対の縦枠材26が、隣り合う柱材104にそれぞれ接合されている。このように一対の縦枠材26が隣り合う柱材104にそれぞれ接合されることで、耐力壁20が木造躯体102に設置されている。なお、本実施形態では、耐力壁20の上枠材40が上梁材106に接合され、下枠材50が下梁材108に接合されている。 As shown in FIG. 8, the load-bearing wall 20 is arranged between adjacent pillars 104 of the wooden frame 102, and a pair of vertical frames 26, which will be described later, are joined to the adjacent pillars 104, respectively. In this way, the load-bearing wall 20 is installed in the wooden frame 102 by joining the pair of vertical frame members 26 to the adjacent pillar members 104, respectively. In addition, in this embodiment, the upper frame material 40 of the load-bearing wall 20 is joined to the upper beam material 106, and the lower frame material 50 is joined to the lower beam material 108.

また本実施形態の耐力壁20は、木造建物100の真壁として用いられる。耐力壁20の表面側(図7では耐力壁20の左側)、すなわち、建物の室内側には、図示しない内装材が配設され、耐力壁20の裏面側(図7では耐力壁20の右側)、すなわち、建物の室外側には、図示しない外装材が配設されている。 Moreover, the load-bearing wall 20 of this embodiment is used as a true wall of the wooden building 100. Interior materials (not shown) are disposed on the front side of the load-bearing wall 20 (the left side of the load-bearing wall 20 in FIG. 7), that is, on the indoor side of the building, and on the back side of the load-bearing wall 20 (the right side of the load-bearing wall 20 in FIG. 7). ), that is, an exterior material (not shown) is provided on the outdoor side of the building.

<耐力壁20>
図1及び図2に示すように、本実施形態の耐力壁20は、壁面材22と、環状リブ24と、一対の縦枠材26と、を備えている。
<Load-bearing wall 20>
As shown in FIGS. 1 and 2, the load-bearing wall 20 of this embodiment includes a wall material 22, an annular rib 24, and a pair of vertical frame members 26.

(壁面材22)
図1及び図2に示すように、壁面材22は、矩形状の金属板(本実施形態では、厚み0.8mm~1.2mmの鋼板(所謂薄板))である。この壁面材22には、上下方向に間隔をあけて複数(本実施形態では7つ)の開口28が形成されている。これら7つの開口28は、上下方向に1列に形成されている。なお、本実施形態では、壁面材22の壁幅方向の中心を通って上下方向に延びる中心線上に全ての開口28の中心が位置しているが、本発明はこの構成に限定されない。例えば、壁面材22の中心線に対して壁幅方向にオフセットした直線上に全ての開口28の中心が位置していてもよい。
なお、本実施形態における壁面材22の幅方向及び厚み方向は、それぞれ壁幅方向及び壁厚み方向と同じ方向である。
(Wall material 22)
As shown in FIGS. 1 and 2, the wall material 22 is a rectangular metal plate (in this embodiment, a steel plate (so-called thin plate) having a thickness of 0.8 mm to 1.2 mm). A plurality of (seven in this embodiment) openings 28 are formed in this wall material 22 at intervals in the vertical direction. These seven openings 28 are formed in one row in the vertical direction. In addition, in this embodiment, although the centers of all the openings 28 are located on the center line extending in the vertical direction through the center of the wall material 22 in the wall width direction, the present invention is not limited to this configuration. For example, the centers of all the openings 28 may be located on a straight line offset in the wall width direction with respect to the center line of the wall material 22.
Note that the width direction and the thickness direction of the wall material 22 in this embodiment are the same directions as the wall width direction and the wall thickness direction, respectively.

図3に示すように、開口28の形状は、壁面材22を壁厚み方向から見て、円形である。そして、壁面材22を壁厚み方向から見て、上下方向に隣り合う開口28の形状及び大きさが、同じ形状及び大きさとされている。なお、本実施形態では、全ての開口28の形状及び大きさが同じに設定されている。また、開口28の直径は、配管や配線を通す観点から150mm以上、より好ましくは200mm以上に設定されている。 As shown in FIG. 3, the opening 28 has a circular shape when the wall material 22 is viewed from the wall thickness direction. When the wall material 22 is viewed from the wall thickness direction, the vertically adjacent openings 28 have the same shape and size. In addition, in this embodiment, the shape and size of all the openings 28 are set to be the same. Further, the diameter of the opening 28 is set to 150 mm or more, more preferably 200 mm or more from the viewpoint of passing piping and wiring.

(環状リブ24)
図2及び図3に示すように、環状リブ24は、壁面材22の開口28の縁部に沿って設けられており、該縁部から壁厚み方向に突出する環状の突条部である。なお、本実施形態では、環状リブ24は、壁厚み方向の他方側(図4では右側)に向けて突出している。また、本実施形態では、開口28の形状が円形のため、環状リブ24の形状が円環状とされている。
(Annular rib 24)
As shown in FIGS. 2 and 3, the annular rib 24 is an annular protrusion that is provided along the edge of the opening 28 of the wall material 22 and protrudes from the edge in the wall thickness direction. In addition, in this embodiment, the annular rib 24 protrudes toward the other side (right side in FIG. 4) in the wall thickness direction. Further, in this embodiment, since the opening 28 has a circular shape, the annular rib 24 has a circular shape.

また、本実施形態では、壁面材22にバーリング加工を施すことで、壁面材22に開口28及び環状リブ24を形成している。このため、環状リブ24は、壁面材22と一体に形成されている。なお、本発明は上記構成に限定されず、例えば、壁面材22にプレス加工で開口28を形成し、この開口28の縁部に円形の環状部材(筒状部材)を接合して環状リブ24を形成してもよい。 Further, in this embodiment, the opening 28 and the annular rib 24 are formed in the wall material 22 by performing burring processing on the wall material 22. Therefore, the annular rib 24 is formed integrally with the wall material 22. Note that the present invention is not limited to the above configuration, and for example, an opening 28 is formed in the wall material 22 by press working, and a circular annular member (cylindrical member) is joined to the edge of this opening 28 to form an annular rib 24. may be formed.

(縦枠材26)
図1及び図3に示すように、一対の縦枠材26は、壁幅方向に間隔をあけて配置されており、それぞれ上下方向に延びている。これらの一対の縦枠材26には、図5に示すように、壁面材22における壁幅方向の幅端部22Aがそれぞれ接合されている。
(Vertical frame material 26)
As shown in FIGS. 1 and 3, the pair of vertical frame members 26 are arranged at intervals in the wall width direction, and each extends in the vertical direction. As shown in FIG. 5, width end portions 22A of the wall surface material 22 in the wall width direction are joined to these pair of vertical frame members 26, respectively.

図2及び図5に示すように、縦枠材26は、第1縦材30と、第2縦材32とを有している。 As shown in FIGS. 2 and 5, the vertical frame member 26 includes a first vertical member 30 and a second vertical member 32. As shown in FIGS.

図2及び図4に示すように、第1縦材30は、上下方向に延びる長尺な木材であり、壁面材22の壁厚み方向の一方側の板面22B上に配置されている。なお、第1縦材30の長手方向と直交する方向の断面形状は、略長方形とされている。また、壁面材22の板面22Bは、環状リブ24の突出側と反対側の板面である。 As shown in FIGS. 2 and 4, the first vertical member 30 is a long piece of wood that extends in the vertical direction, and is arranged on the plate surface 22B of the wall material 22 on one side in the wall thickness direction. Note that the cross-sectional shape of the first vertical member 30 in the direction orthogonal to the longitudinal direction is approximately rectangular. Further, a plate surface 22B of the wall material 22 is a plate surface on the opposite side to the protruding side of the annular rib 24.

第2縦材32は、上下方向に延びる長尺な木材であり、壁面材22の壁厚み方向の他方側の板面22C上に配置されている。なお、第2縦材32の長手方向と直交する方向の断面形状は、略長方形とされている。また、壁面材22の板面22Cは、壁面材22の板面22Bと反対側の板面である。
なお、本実施形態の第1縦材30と第2縦材32は、同一寸法形状の木材である。すなわち、第1縦材30の断面積と第2縦材32の断面積は同じである。
The second vertical member 32 is a long piece of wood that extends in the vertical direction, and is arranged on the plate surface 22C on the other side of the wall material 22 in the wall thickness direction. Note that the cross-sectional shape of the second vertical member 32 in the direction orthogonal to the longitudinal direction is approximately rectangular. Further, the plate surface 22C of the wall material 22 is a plate surface on the opposite side to the plate surface 22B of the wall material 22.
Note that the first vertical member 30 and the second vertical member 32 of this embodiment are wood having the same size and shape. That is, the cross-sectional area of the first vertical member 30 and the cross-sectional area of the second vertical member 32 are the same.

図5に示すように、第1縦材30と第2縦材32によって、壁面材22の幅端部22Aが壁厚み方向で挟まれている。このように第1縦材30と第2縦材32が壁面材22の幅端部22Aを挟んだ状態で、第1縦材30、第2縦材32及び壁面材22が接合具34によって接合されている。この接合具34としては、釘や木ネジ(例えば、ドリル付きの木ネジ)等が挙げられる。なお、本実施形態では、接合具34として鋼板釘を用いており、この接合具34が第1縦材30から第2縦材32へ向けて打ち込まれて、縦枠材26に壁面材22が接合されている。 As shown in FIG. 5, the width end portion 22A of the wall material 22 is sandwiched between the first vertical member 30 and the second vertical member 32 in the wall thickness direction. In this way, with the first vertical member 30 and the second vertical member 32 sandwiching the width end portion 22A of the wall material 22, the first vertical member 30, the second vertical member 32, and the wall material 22 are joined by the joining tool 34. has been done. Examples of the connector 34 include nails, wood screws (for example, wood screws with a drill), and the like. In this embodiment, steel plate nails are used as the connectors 34, and the connectors 34 are driven from the first vertical member 30 to the second vertical member 32, and the wall material 22 is attached to the vertical frame member 26. It is joined.

また、以下では、第1縦材30、第2縦材32及び壁面材22との接合具34による接合部分を接合部36と記載する。これらの接合部36は、上下方向に間隔をあけて複数形成されている。なお、本実施形態の耐力壁20では、接合部36が略一定の間隔で設けられているが、本発明はこの構成に限定されない。例えば、耐力壁20に地震等による水平荷重が伝達された場合に、せん断力が大きく作用する領域に接合部36を密に配置してもよい。 Further, hereinafter, the joint portion between the first vertical member 30, the second vertical member 32, and the wall material 22 by the joint tool 34 will be referred to as a joint portion 36. A plurality of these joint parts 36 are formed at intervals in the vertical direction. Note that in the load-bearing wall 20 of this embodiment, the joint portions 36 are provided at substantially constant intervals, but the present invention is not limited to this configuration. For example, when a horizontal load due to an earthquake or the like is transmitted to the load-bearing wall 20, the joints 36 may be closely arranged in a region where a large shear force acts.

また、本実施形態の縦枠材26は、図8に示すように、接合具38によって柱材104に接合されている。具体的には、接合具38によって第1縦材30及び第2縦材32がそれぞれ柱材104に接合されている。この接合具38としては、接合具34と同様に、釘や木ネジ(例えば、ドリル付きの木ネジ)等を用いることができる。なお、本実施形態では、接合具38として木材用の釘を用いている。そして、第1縦材30から柱材104へ向けて接合具38が打ち込まれて第1縦材30が柱材104に接合され、第2縦材32から柱材104へ向けて接合具38が打ち込まれて第2縦材32が柱材104に接合されている。このようにして縦枠材26が柱材104に接合されている。 Moreover, the vertical frame member 26 of this embodiment is joined to the column member 104 by a joining tool 38, as shown in FIG. Specifically, the first vertical member 30 and the second vertical member 32 are each joined to the column member 104 by a joining tool 38. As the connector 38, similar to the connector 34, a nail, a wood screw (for example, a wood screw with a drill), or the like can be used. Note that in this embodiment, wood nails are used as the connectors 38. Then, the joining tool 38 is driven from the first vertical member 30 to the pillar material 104 to join the first vertical member 30 to the pillar material 104, and the joining tool 38 is driven from the second vertical member 32 to the pillar material 104. The second vertical member 32 is joined to the column member 104 by being driven. In this way, the vertical frame member 26 is joined to the column member 104.

図2及び図3に示すように、耐力壁20は、上枠材40と、下枠材50と、を更に有している。なお、本実施形態の上枠材40と下枠材50は、それぞれ本発明における一対の横枠材の一例である。 As shown in FIGS. 2 and 3, the load-bearing wall 20 further includes an upper frame member 40 and a lower frame member 50. In addition, the upper frame material 40 and the lower frame material 50 of this embodiment are each an example of a pair of horizontal frame materials in this invention.

(上枠材40)
図1及び図2に示すように、上枠材40は、壁幅方向に延びており、壁面材22における上端部22Dが接合されている。
(Top frame material 40)
As shown in FIGS. 1 and 2, the upper frame member 40 extends in the wall width direction, and the upper end portion 22D of the wall member 22 is joined.

図2及び図4に示すように、上枠材40は、第1横材42と、第2横材44とを有している。 As shown in FIGS. 2 and 4, the upper frame member 40 includes a first cross member 42 and a second cross member 44. As shown in FIGS.

第1横材42は、壁幅方向に延びる長尺な木材であり、壁面材22の壁厚み方向の一方側の板面22B上に配置されている。なお、第1横材42の長手方向と直交する方向の断面形状は、略長方形とされている。 The first cross member 42 is a long piece of wood extending in the wall width direction, and is arranged on the plate surface 22B of the wall member 22 on one side in the wall thickness direction. Note that the cross-sectional shape of the first cross member 42 in the direction orthogonal to the longitudinal direction is approximately rectangular.

第2横材44は、壁幅方向に延びる長尺な木材であり、壁面材22の壁厚み方向の他方側の板面22C上に配置されている。なお、第2横材44の長手方向と直交する方向の断面形状は、略長方形とされている。 The second cross member 44 is a long piece of wood that extends in the wall width direction, and is arranged on the plate surface 22C on the other side of the wall material 22 in the wall thickness direction. Note that the cross-sectional shape of the second cross member 44 in the direction orthogonal to the longitudinal direction is approximately rectangular.

なお、本実施形態の第1横材42と第2横材44は、同一寸法形状の木材である。すなわち、第1横材42の断面積と第2横材44の断面積は同じである。 Note that the first cross member 42 and the second cross member 44 of this embodiment are wood having the same size and shape. That is, the cross-sectional area of the first cross member 42 and the cross-sectional area of the second cross member 44 are the same.

図4に示すように、第1横材42と第2横材44によって、壁面材22の上端部22Dが壁厚み方向で挟まれている。このように第1横材42と第2横材44が壁面材22の上端部22Dを挟んだ状態で、第1横材42、第2横材44及び壁面材22が接合具34によって接合されている。なお、本実施形態では、接合具34が第1横材42から第2横材44へ向けて打ち込まれて、上枠材40に壁面材22が接合されている。 As shown in FIG. 4, the upper end portion 22D of the wall material 22 is sandwiched between the first cross member 42 and the second cross member 44 in the wall thickness direction. In this way, with the first cross member 42 and the second cross member 44 sandwiching the upper end 22D of the wall material 22, the first cross member 42, the second cross member 44, and the wall material 22 are joined by the joining tool 34. ing. In this embodiment, the joint tool 34 is driven from the first cross member 42 to the second cross member 44, and the wall material 22 is joined to the upper frame member 40.

また、以下では、第1横材42、第2横材44及び壁面材22との接合具34による接合部分を接合部46と記載する。これらの接合部46は、壁幅方向に間隔をあけて複数形成されている。なお、本実施形態の耐力壁20では、接合部46が略一定の間隔で設けられているが、本発明はこの構成に限定されない。 Moreover, below, the joint part with the 1st cross member 42, the 2nd cross member 44, and the wall surface material 22 by the joint tool 34 is described as the joint part 46. A plurality of these joint portions 46 are formed at intervals in the wall width direction. Note that in the load-bearing wall 20 of this embodiment, the joint portions 46 are provided at substantially constant intervals, but the present invention is not limited to this configuration.

また、本実施形態の上枠材40は、図7に示すように、接合具38によって上梁材106に接合されている。具体的には、接合具38によって第1横材42及び第2横材44がそれぞれ上梁材106に接合されている。なお、本実施形態では、第1横材42から上梁材106へ向けて接合具38が打ち込まれて第1横材42が上梁材106に接合され、第2横材44から上梁材106へ向けて接合具38が打ち込まれて第2横材44が上梁材106に接合されている。このようにして上枠材40が上梁材106に接合されている。 Further, the upper frame material 40 of this embodiment is joined to the upper beam material 106 by a joining tool 38, as shown in FIG. Specifically, the first cross member 42 and the second cross member 44 are each joined to the upper beam member 106 by a joining tool 38. In this embodiment, the joining tool 38 is driven from the first cross member 42 to the upper beam member 106 to join the first cross member 42 to the upper beam member 106, and from the second cross member 44 to the upper beam member 106. A joining tool 38 is driven toward the upper beam member 106 to join the second cross member 44 to the upper beam member 106. In this way, the upper frame member 40 is joined to the upper beam member 106.

(下枠材50)
図1及び図2に示すように、下枠材50は、上枠材40に対して上下方向に間隔をあけて配置されている。この下枠材50は、壁幅方向に延びており、壁面材22における下端部22Eが接合されている。
(Bottom frame material 50)
As shown in FIGS. 1 and 2, the lower frame member 50 is arranged at intervals in the vertical direction with respect to the upper frame member 40. This lower frame material 50 extends in the wall width direction, and the lower end portion 22E of the wall surface material 22 is joined.

図2及び図5に示すように、下枠材50は、第1横材52と、第2横材54とを有している。 As shown in FIGS. 2 and 5, the lower frame member 50 includes a first cross member 52 and a second cross member 54.

第1横材52は、壁幅方向に延びる長尺な木材であり、壁面材22の壁厚み方向の一方側の板面22B上に配置されている。なお、第1横材52の長手方向と直交する方向の断面形状は、略長方形とされている。 The first cross member 52 is a long piece of wood extending in the wall width direction, and is arranged on the plate surface 22B of the wall member 22 on one side in the wall thickness direction. Note that the cross-sectional shape of the first cross member 52 in the direction orthogonal to the longitudinal direction is approximately rectangular.

第2横材54は、壁幅方向に延びる長尺な木材であり、壁面材22の壁厚み方向の他方側の板面22C上に配置されている。なお、第2横材54の長手方向と直交する方向の断面形状は、略長方形とされている。 The second cross member 54 is a long piece of wood that extends in the wall width direction, and is arranged on the plate surface 22C on the other side of the wall material 22 in the wall thickness direction. Note that the cross-sectional shape of the second cross member 54 in the direction orthogonal to the longitudinal direction is approximately rectangular.

なお、本実施形態の第1横材52と第2横材54は、同一寸法形状の木材である。すなわち、第1横材52の断面積と第2横材54の断面積は同じである。 Note that the first cross member 52 and the second cross member 54 of this embodiment are wood having the same size and shape. That is, the cross-sectional area of the first cross member 52 and the cross-sectional area of the second cross member 54 are the same.

図4に示すように、第1横材52と第2横材54によって、壁面材22の下端部22Eが壁厚み方向で挟まれている。このように第1横材52と第2横材54が壁面材22の下端部22Eを挟んだ状態で、第1横材52、第2横材54及び壁面材22が接合具34によって接合されている。なお、本実施形態では、接合具34が第1横材52から第2横材54へ向けて打ち込まれて、下枠材50に壁面材22が接合されている。 As shown in FIG. 4, the lower end 22E of the wall material 22 is sandwiched between the first cross member 52 and the second cross member 54 in the wall thickness direction. In this manner, with the first cross member 52 and the second cross member 54 sandwiching the lower end 22E of the wall member 22, the first cross member 52, the second cross member 54, and the wall member 22 are joined by the joining tool 34. ing. In this embodiment, the joint tool 34 is driven from the first cross member 52 toward the second cross member 54, and the wall material 22 is joined to the lower frame member 50.

また、以下では、第1横材52、第2横材54及び壁面材22との接合具34による接合部分を接合部56と記載する。これらの接合部56は、壁幅方向に間隔をあけて複数形成されている。なお、本実施形態の耐力壁20では、接合部56が略一定の間隔で設けられているが、本発明はこの構成に限定されない。 Moreover, below, the joint part with the 1st cross member 52, the 2nd cross member 54, and the wall surface material 22 by the joint tool 34 is described as the joint part 56. A plurality of these joint portions 56 are formed at intervals in the wall width direction. Note that in the load-bearing wall 20 of this embodiment, the joint portions 56 are provided at substantially constant intervals, but the present invention is not limited to this configuration.

また、本実施形態の下枠材50は、図7に示すように、接合具38によって下梁材108に接合されている。具体的には、接合具38によって第1横材52及び第2横材54がそれぞれ下梁材108に接合されている。なお、本実施形態では、第1横材52から下梁材108へ向けて接合具38が打ち込まれて第1横材52が下梁材108に接合され、第2横材54から下梁材108へ向けて接合具38が打ち込まれて第2横材54が下梁材108に接合されている。このようにして下枠材50が下梁材108に接合されている。 Further, the lower frame member 50 of this embodiment is joined to the lower beam member 108 by a joining tool 38, as shown in FIG. Specifically, the first cross member 52 and the second cross member 54 are each joined to the lower beam member 108 by a joining tool 38. In addition, in this embodiment, the joining tool 38 is driven from the first cross member 52 toward the lower beam member 108 to join the first cross member 52 to the lower beam member 108, and from the second cross member 54 to the lower beam member 108. The second cross member 54 is joined to the lower beam member 108 by driving the joining tool 38 toward the lower beam member 108 . In this way, the lower frame member 50 is joined to the lower beam member 108.

また、本実施形態では、第1横材42が一対の第1縦材30の上端部同士を連結し、第1横材52が一対の第1縦材30の下端部同士を連結している。これら一対の第1縦材30、第1横材42及び第1横材52によって第1枠材60(図2参照)が形成されている。同様に、第2横材44が一対の第2縦材32の上端部同士を連結し、第2横材54が一対の第2縦材32の下端部同士を連結している。これら一対の第2縦材32、第2横材44及び第2横材54によって第2枠材62(図2参照)が形成されている。これら第1枠材60と第2枠材62によって、壁面材22が壁厚み方向の両側から挟まれている。なお、縦材と横材の連結は、公知の技術を用いて行われる。例えば、縦材と横材は、釘、木ネジ、接着剤等を用いて連結されてもよいし、板材等を介して連結されてもよい。また、本実施形態の耐力壁20は、第1枠材60と第2枠材62をそれぞれ形成した後で、第1枠材60と第2枠材62で壁面材22を壁厚み方向で挟み、その状態で、接合具34によって第1枠材60及び第2枠材62と壁面材22とを接合して形成してもよく、壁面材22を各縦材で挟んだ状態で接合具34によって壁面材22と各縦材を接合し、壁面材22を各横材で挟んだ状態で接合具34によって壁面材22と各横材を接合し、その後、縦材と横材を連結して形成してもよい。
なお、本実施形態では、縦材と横材を連結する構成としているが、本発明はこの構成に限定されず、縦材と横材が連結されない構成でもよい。
Further, in this embodiment, the first horizontal member 42 connects the upper ends of the pair of first vertical members 30, and the first horizontal member 52 connects the lower ends of the pair of first vertical members 30. . A first frame member 60 (see FIG. 2) is formed by the pair of first vertical members 30, first cross members 42, and first cross members 52. Similarly, a second cross member 44 connects the upper ends of the pair of second vertical members 32, and a second cross member 54 connects the lower ends of the pair of second vertical members 32. A second frame member 62 (see FIG. 2) is formed by the pair of second vertical members 32, second cross members 44, and second cross members 54. The wall material 22 is sandwiched between the first frame material 60 and the second frame material 62 from both sides in the wall thickness direction. Note that the vertical members and the horizontal members are connected using a known technique. For example, the vertical members and the horizontal members may be connected using nails, wood screws, adhesives, etc., or may be connected via board materials, etc. In addition, in the load-bearing wall 20 of this embodiment, after forming the first frame material 60 and the second frame material 62, the wall material 22 is sandwiched between the first frame material 60 and the second frame material 62 in the wall thickness direction. In this state, the first frame member 60 and second frame member 62 may be joined to the wall material 22 using the joining tool 34, and the joining tool 34 may be used with the wall material 22 sandwiched between the vertical members. The wall material 22 and each of the vertical members are joined together using the joining tool 34 with the wall material 22 sandwiched between each of the horizontal members, and then the vertical members and the horizontal members are connected. may be formed.
Although the present embodiment has a configuration in which the vertical members and the horizontal members are connected, the present invention is not limited to this configuration, and a configuration in which the vertical members and the horizontal members are not connected may be used.

図1及び図4に示すように、上下方向に隣り合う開口28の中心間距離D1は、一対の縦枠材26と壁面材22との接合部36間の水平方向(壁幅方向)に沿った水平距離D2(図5参照)よりも短くなっている。なお、ここでいう、水平距離D2は、壁幅方向で一方の接合部36の中心から壁幅方向で他方の接合部36の中心までの壁幅方向に沿った距離である。また、開口28の水平方向(壁幅方向)に沿った幅W1は、水平距離D2の30%~80%の範囲内に設定されている。 As shown in FIGS. 1 and 4, the distance D1 between the centers of vertically adjacent openings 28 is defined along the horizontal direction (wall width direction) between the joints 36 between a pair of vertical frame members 26 and wall members 22. This distance is shorter than the horizontal distance D2 (see FIG. 5). In addition, the horizontal distance D2 here is the distance along the wall width direction from the center of one joint part 36 in the wall width direction to the center of the other joint part 36 in the wall width direction. Further, the width W1 of the opening 28 along the horizontal direction (wall width direction) is set within a range of 30% to 80% of the horizontal distance D2.

次に本実施形態の作用並びに効果について説明する。 Next, the operation and effects of this embodiment will be explained.

図9(A)には、比較例1の耐力壁70が示されている。この耐力壁70は、一対の縦枠材72と、一対の縦枠材72の上端部同士及び下端部同士を連結する一対の横枠材74とで構成される木製の枠材76の表面に第1実施形態の壁面材22を接合具34で接合した耐力壁である。このような耐力壁70を木造躯体102の隣り合う柱材104間に設置した状態で、地震等による水平荷重HLが耐力壁70に伝達されると、図9(A)に示されるように、縦枠材72に該縦枠材72を捩じる力Fが作用する。ここで、縦枠材72が金属製の壁面材22よりも低強度で且つ低剛性の木材によって構成されている場合、水平荷重HLに対して壁面材22の性能が十分に発揮されるよりも前(壁面材22が大変形に至る前)に、図9(B)に示すように縦枠材72が捩じれて該縦枠材72が破損する、又は、図9(C)に示すように縦枠材72から接合具34が引き抜かれて、縦枠材72と壁面材22との接合部が破損する虞がある。 FIG. 9(A) shows the load-bearing wall 70 of Comparative Example 1. This load-bearing wall 70 is constructed on the surface of a wooden frame member 76 that is composed of a pair of vertical frame members 72 and a pair of horizontal frame members 74 that connect the upper ends and lower ends of the pair of vertical frame members 72. This is a load-bearing wall in which the wall material 22 of the first embodiment is joined using a joining tool 34. When a horizontal load HL due to an earthquake or the like is transmitted to the load-bearing wall 70 with such a load-bearing wall 70 installed between adjacent pillars 104 of the wooden frame 102, as shown in FIG. 9(A), A force F that twists the vertical frame member 72 acts on the vertical frame member 72. Here, if the vertical frame material 72 is made of wood having lower strength and rigidity than the metal wall material 22, the performance of the wall material 22 may not be fully exhibited against the horizontal load HL. Before (before the wall material 22 undergoes large deformation), the vertical frame material 72 is twisted and damaged as shown in FIG. 9(B), or the vertical frame material 72 is damaged as shown in FIG. 9(C). There is a possibility that the joint tool 34 may be pulled out from the vertical frame material 72 and the joint between the vertical frame material 72 and the wall surface material 22 may be damaged.

上記のように、水平荷重によって耐力壁が大変形に至る前に、縦枠材や、縦枠材と壁面材との接合部に破損が生じた場合、耐力壁(壁面材)が大変形まで安定して変形できない。そのため、耐力壁には、縦枠材や、縦枠材と壁面材との接合部に破損が生じるのを抑制しつつ、大変形時まで安定した耐力を保持できることが求められている。これらのことを考慮のうえ、本発明者らは、本発明の開発に至った。 As mentioned above, if damage occurs to the vertical frame material or the joint between the vertical frame material and the wall material before the load-bearing wall undergoes major deformation due to horizontal loads, the load-bearing wall (wall material) may undergo major deformation. It cannot be stably deformed. Therefore, load-bearing walls are required to be able to maintain stable strength even during large deformations while suppressing damage to the vertical frame materials and the joints between the vertical frame materials and the wall surface materials. Taking these matters into consideration, the present inventors have developed the present invention.

本実施形態の耐力壁20では、壁面材22の両方の幅端部22Aがそれぞれ第1縦材30と第2縦材32とで挟まれた状態で、縦枠材26が壁面材22に接合されていることから、例えば、比較例1のように縦枠材72の表面に壁面材22が接合される構成と比べて、壁面材22が壁厚み方向の中央寄りに位置する。すなわち、壁面材22と縦枠材26との壁厚み方向の偏心が小さくなる。このため、本実施形態の耐力壁20を木造躯体102の隣り合う柱材104間に配置し、一対の縦枠材26を隣り合う柱材104にそれぞれ接合した状態で、図10(A)に示すように耐力壁20に水平荷重HLが伝達されても、縦枠材26(第1縦材30及び第2縦材32)に作用する該縦枠材26を捩じる力Fが低減される。これにより、耐力壁20では、縦枠材26の捩じれが抑制されたり、縦枠材26から接合具34が引き抜かれたりするのが抑制される(図10(B)参照)。すなわち、耐力壁20では、水平荷重HLによって縦枠材26や縦枠材26と壁面材22との接合部36に破損が生じたりするのを抑制できる。 In the load-bearing wall 20 of this embodiment, the vertical frame member 26 is joined to the wall member 22 with both width end portions 22A of the wall member 22 being sandwiched between the first vertical member 30 and the second vertical member 32, respectively. Therefore, compared to, for example, a configuration in which the wall material 22 is joined to the surface of the vertical frame material 72 as in Comparative Example 1, the wall material 22 is located closer to the center in the wall thickness direction. That is, the eccentricity in the wall thickness direction between the wall surface material 22 and the vertical frame material 26 is reduced. For this reason, the load-bearing wall 20 of this embodiment is arranged between the adjacent pillars 104 of the wooden frame 102, and the pair of vertical frames 26 are respectively joined to the adjacent pillars 104, as shown in FIG. 10(A). As shown, even when the horizontal load HL is transmitted to the load-bearing wall 20, the force F acting on the vertical frame members 26 (first vertical members 30 and second vertical members 32) that twists the vertical frame members 26 is reduced. Ru. Thereby, in the load-bearing wall 20, twisting of the vertical frame member 26 is suppressed, and pulling out of the joint tool 34 from the vertical frame member 26 is suppressed (see FIG. 10(B)). That is, in the load-bearing wall 20, damage to the vertical frame material 26 or the joint portion 36 between the vertical frame material 26 and the wall surface material 22 can be suppressed from occurring due to the horizontal load HL.

また、耐力壁20では、壁面材22の幅端部22Aを第1縦材30と第2縦材32とで壁厚み方向から挟むことから、壁面材22と縦枠材26との接合部36が2面せん断となり、これらの接合部36の耐力と剛性が向上する。これにより、縦枠材26や縦枠材26と壁面材22との接合部36に破損が生じるのが更に抑制される。 In addition, in the load-bearing wall 20, since the width end portion 22A of the wall material 22 is sandwiched between the first vertical member 30 and the second vertical member 32 from the wall thickness direction, the joint portion 36 between the wall material 22 and the vertical frame material 26 becomes a two-plane shear, and the proof strength and rigidity of these joints 36 are improved. This further suppresses damage to the vertical frame material 26 and the joint portion 36 between the vertical frame material 26 and the wall surface material 22.

さらに、耐力壁20では、壁面材22に上下方向に間隔をあけて開口28を形成していることから、水平荷重HLが伝達された場合に、壁面材22における上下方向に隣り合う開口28間の部分が変形(せん断変形)しやすい。このため、耐力壁20では、例えば、壁面材22に開口28を形成しない構成と比べて、壁面材22が水平荷重HLに対してせん断変形しやすく、縦枠材26や縦枠材26と壁面材22との接合部36に破損が生じるのをより抑制することができる。 Furthermore, in the load-bearing wall 20, since the openings 28 are formed in the wall material 22 at intervals in the vertical direction, when the horizontal load HL is transmitted, the gap between the vertically adjacent openings 28 in the wall material 22 is The parts are easily deformed (shear deformation). Therefore, in the load-bearing wall 20, the wall material 22 is easily sheared and deformed by the horizontal load HL, and the vertical frame material 26 and the wall surface Damage to the joint portion 36 with the material 22 can be further suppressed.

このように耐力壁20では、水平荷重HLによって壁面材22が大変形に至る前に、縦枠材26や、縦枠材26と壁面材22との接合部36に破損が生じるのを抑制できるため、壁面材22が大変形まで安定して変形することができる。すなわち、耐力壁20は、大変形時まで安定した耐力を保持できる。その結果、耐力壁20は、地震エネルギー等を安定して吸収することが可能となる。このような耐力壁20を用いる木造建物100では、耐力壁20によって地震エネルギーが安定して吸収されるため、耐震性能が向上する。 In this way, in the load-bearing wall 20, damage to the vertical frame material 26 and the joint 36 between the vertical frame material 26 and the wall material 22 can be suppressed from occurring before the wall material 22 is significantly deformed by the horizontal load HL. Therefore, the wall material 22 can be stably deformed up to large deformations. In other words, the load-bearing wall 20 can maintain stable load-bearing strength until it undergoes large deformation. As a result, the load-bearing wall 20 can stably absorb earthquake energy and the like. In the wooden building 100 using such a load-bearing wall 20, earthquake energy is stably absorbed by the load-bearing wall 20, so that seismic performance is improved.

また、耐力壁20では、壁面材22の上端部22Dに上枠材40が接合され、壁面材の22の下端部22Eに下枠材50が接合されている。このため、耐力壁20の一対の縦枠材26を隣り合う柱材104にそれぞれ接合し、上枠材40を上梁材106に接合し、下枠材50を下梁材108に接合した状態で、当該耐力壁20に水平荷重HLが伝達されると、縦枠材26と壁面材22との接合部36に作用する力が、上枠材40と壁面材22との接合部46及び下枠材50と壁面材22との接合部56にそれぞれ分散されるため、縦枠材26と壁面材22との接合部36に破損が生じるのが抑制される。 Further, in the load-bearing wall 20, an upper frame member 40 is joined to the upper end portion 22D of the wall member 22, and a lower frame member 50 is joined to the lower end portion 22E of the wall member 22. For this reason, a state in which the pair of vertical frame members 26 of the load-bearing wall 20 are respectively joined to the adjacent column members 104, the upper frame member 40 is joined to the upper beam member 106, and the lower frame member 50 is joined to the lower beam member 108. When the horizontal load HL is transmitted to the load-bearing wall 20, the force acting on the joint 36 between the vertical frame member 26 and the wall material 22 is applied to the joint 46 between the upper frame member 40 and the wall member 22, and the lower Since they are distributed at the joints 56 between the frame material 50 and the wall material 22, damage to the joints 36 between the vertical frame material 26 and the wall material 22 is suppressed.

また、耐力壁20では、壁面材22を壁厚み方向から見て、全ての開口28の形状及び大きさが同じであることから、例えば、開口28の形状及び大きさの少なくとも一方が異なる構成と比べて、開口28及び開口28の縁部に設けられる環状リブ24毎に作用する応力を一定にできる。これにより、壁面材22に早期にせん断座屈が生じるのが抑制される。また、壁面材22に開口28及び環状リブ24を形成するに際して、開口28及び環状リブ24の形状及び大きさに合わせた様々な加工具(金型含む)を用いる必要がないため、耐力壁の製造(加工)が容易になる。 In addition, in the load-bearing wall 20, since all the openings 28 have the same shape and size when the wall material 22 is viewed from the wall thickness direction, for example, the openings 28 may have a different shape and/or size. In comparison, the stress acting on each of the openings 28 and the annular ribs 24 provided at the edges of the openings 28 can be made constant. Thereby, early shear buckling of the wall material 22 is suppressed. Furthermore, when forming the openings 28 and the annular ribs 24 in the wall material 22, there is no need to use various processing tools (including molds) that match the shapes and sizes of the openings 28 and the annular ribs 24. Manufacturing (processing) becomes easier.

さらに、耐力壁20では、壁面材22を壁厚み方向から見て、全ての開口28の形状を円形としていることから、例えば、開口28の形状を多角形状とした構成と比べて、水平荷重HLが作用したときの、開口28及び環状リブ24への局部応力集中が緩和され、大変形時まで安定した耐力を保持できる。 Furthermore, in the load-bearing wall 20, since the shape of all the openings 28 is circular when the wall material 22 is viewed from the wall thickness direction, the horizontal load HL When this occurs, the local stress concentration on the opening 28 and the annular rib 24 is alleviated, and stable yield strength can be maintained until large deformations occur.

耐力壁20では、中心間距離D1が水平距離D2よりも短いため、水平荷重HLが耐力壁20に伝達された場合に、壁面材22において、一対の接合部36と開口28との水平方向の中間部22Gにおけるせん断応力(ミーゼス応力)値が、上下方向に隣り合う開口28間の上下方向の中間部22Fのせん断応力値よりも低くなる。その結果、耐力壁20では、壁面材22における上下方向に隣り合う開口28間の上下方向の中間部22Fが変形する前に、縦枠材26と壁面材22との接合部36に破損が生じるのが抑制され、大変形時まで安定した耐力を保持できる。 In the load-bearing wall 20, since the center-to-center distance D1 is shorter than the horizontal distance D2, when the horizontal load HL is transmitted to the load-bearing wall 20, the horizontal direction between the pair of joints 36 and the opening 28 in the wall material 22 The shear stress (von Mises stress) value in the intermediate portion 22G is lower than the shear stress value in the vertical intermediate portion 22F between the vertically adjacent openings 28. As a result, in the load-bearing wall 20, before the vertical intermediate portion 22F between the vertically adjacent openings 28 in the wall material 22 is deformed, the joint 36 between the vertical frame material 26 and the wall material 22 is damaged. is suppressed, and stable yield strength can be maintained even during large deformations.

また、耐力壁20では、幅W1が水平距離D2の30%~80%の範囲内であることから、壁面材22において上下方向に隣り合う開口28間の中間部22Fが変形する前に、縦枠材26と壁面材22との接合部36に破損が生じるのを効果的に抑制できる。 In addition, in the load-bearing wall 20, since the width W1 is within the range of 30% to 80% of the horizontal distance D2, before the intermediate portion 22F between the vertically adjacent openings 28 in the wall material 22 is deformed, Damage to the joint 36 between the frame material 26 and the wall surface material 22 can be effectively suppressed.

そして、耐力壁20では、壁面材22に開口28が形成されているため、この開口28を用いて配管や配線を実施できる。このため、耐力壁20では、例えば、壁面材に開口を形成しない構成と比べて、配管や配線を迂回させる必要がなく、また、壁面材に貫通孔を現場加工する必要もないため、施工現場において省力化が図れる。さらに、壁面材22に開口28を形成することで、軽量化を図ることができる。 In the load-bearing wall 20, since an opening 28 is formed in the wall material 22, piping and wiring can be carried out using this opening 28. For this reason, in the load-bearing wall 20, for example, compared to a structure in which no opening is formed in the wall material, there is no need to detour piping or wiring, and there is no need to process through holes in the wall material on-site, so the construction site Labor saving can be achieved. Furthermore, by forming the opening 28 in the wall material 22, weight reduction can be achieved.

また、耐力壁20では、壁面材22の幅端部22Aを第1縦材30と第2縦材32とで挟み込む構造のため、この挟み込み部分の寸法を適宜調整することで、木造躯体102の寸法公差や施工誤差を耐力壁20において吸収することが可能となる。 In addition, since the load-bearing wall 20 has a structure in which the width end portion 22A of the wall material 22 is sandwiched between the first vertical member 30 and the second vertical member 32, the width of the wooden frame 102 can be adjusted by appropriately adjusting the dimensions of this sandwiched portion. It becomes possible to absorb dimensional tolerances and construction errors in the load-bearing wall 20.

第1実施形態では、耐力壁20を構成する壁面材22に開口28を1列形成しているが、本発明はこの構成に限定されない。例えば、図11に示す耐力壁80のように、耐力壁80を構成する壁面材82に開口28を複数列(耐力壁80では2列)形成してもよい。この耐力壁80は、隣り合う柱材104間の距離が広い場合に用いられるため、第1実施形態よりも壁面材82の壁幅方向の幅が広くなっている。このような耐力壁80を隣り合う柱材104間に設置すると、壁面材82における2列の開口28間の部分の剛性が不足するため、図11及び図12では一対の縦枠材26間に中間枠材84を配置し、この中間枠材84と壁面材82とを接合して、壁面材82における上記部分を補強している。なお、中間枠材84は、上端部が上枠材40に接合され、下端部が下枠材50に接合されている。具体的には、中間枠材84は、壁面材82の壁厚み方向の一方側の板面82A上に配置される第1縦材86と、壁面材82の板面82Aと反対側の板面82B上に配置される第2縦材88とを有しており、接合具34を第1縦材86から第2縦材88に向けて打ち込むことで壁面材82に接合されている。なお、以下では、中間枠材84と壁面材82との接合具34による接合部分を接合部90と記載する。これらの接合部90は、壁幅方向に間隔をあけて複数形成されている。ここで、図12に示すように、耐力壁80では、上下方向に隣り合う開口28の中心間距離D1が一方又は他方の接合部36から接合部90までの水平距離D2よりも短くなっている。そして、開口28の幅W1は、水平距離D3の30%~80%の範囲内に設定されている。これらの構成により、耐力壁80では、水平荷重HLが耐力壁80に伝達された場合に、壁面材82において、一方の接合部36と開口28との水平方向の中間部におけるせん断応力(ミーゼス応力)値及び接合部90と開口28との水平方向の中間部におけるせん断応力値が、上下方向に隣り合う開口28間の上下方向の中間部のせん断応力値よりも低くなる。その結果、耐力壁80では、壁面材82における上下方向に隣り合う開口28間の中間部が変形する前に、接合部36と接合部90に破損が生じるのが抑制され、大変形時まで安定した耐力を保持できる。なお、図11及び図12で示す符号92は、第1枠材60に第1縦材86を組み入れた枠材であり、符号94は、第2枠材62に第2縦材88を組み入れた枠材である。また、中間枠材84を構成する第1縦材86と第2縦材88は同一寸法形状である。 In the first embodiment, one row of openings 28 is formed in the wall material 22 that constitutes the load-bearing wall 20, but the present invention is not limited to this configuration. For example, as in a load-bearing wall 80 shown in FIG. 11, a plurality of rows (two rows in the load-bearing wall 80) of openings 28 may be formed in a wall material 82 constituting the load-bearing wall 80. Since this load-bearing wall 80 is used when the distance between adjacent pillar members 104 is wide, the width of the wall member 82 in the wall width direction is wider than in the first embodiment. If such a load-bearing wall 80 is installed between adjacent column members 104, the rigidity of the portion between the two rows of openings 28 in the wall member 82 will be insufficient, so in FIG. 11 and FIG. An intermediate frame member 84 is arranged, and the intermediate frame member 84 and the wall member 82 are joined to reinforce the above-mentioned portion of the wall member 82. Note that the intermediate frame member 84 has an upper end portion joined to the upper frame member 40 and a lower end portion joined to the lower frame member 50. Specifically, the intermediate frame member 84 includes a first vertical member 86 disposed on a plate surface 82A on one side in the wall thickness direction of the wall material 82, and a plate surface on the opposite side to the plate surface 82A of the wall material 82. 82B, and is joined to the wall material 82 by driving the joining tool 34 from the first vertical member 86 to the second vertical member 88. In addition, below, the joint part by the joint tool 34 of the intermediate frame material 84 and the wall surface material 82 is described as the joint part 90. A plurality of these joint portions 90 are formed at intervals in the wall width direction. Here, as shown in FIG. 12, in the load-bearing wall 80, the distance D1 between the centers of vertically adjacent openings 28 is shorter than the horizontal distance D2 from one or the other joint 36 to the joint 90. . The width W1 of the opening 28 is set within a range of 30% to 80% of the horizontal distance D3. With these configurations, in the load-bearing wall 80, when the horizontal load HL is transmitted to the load-bearing wall 80, the shear stress (Mieses stress) in the horizontal intermediate portion between one joint 36 and the opening 28 in the wall material 82 is reduced. ) and the shear stress value at the horizontal intermediate portion between the joint portion 90 and the opening 28 are lower than the shear stress value at the vertical intermediate portion between the vertically adjacent openings 28. As a result, in the load-bearing wall 80, damage to the joint portion 36 and the joint portion 90 is suppressed before the intermediate portion between the vertically adjacent openings 28 in the wall material 82 is deformed, and the load-bearing wall 80 is stable until large deformation occurs. It can maintain a certain strength. Note that the reference numeral 92 shown in FIGS. 11 and 12 is a frame member in which the first vertical member 86 is incorporated into the first frame member 60, and the reference numeral 94 is a frame member in which the second vertical member 88 is incorporated in the second frame member 62. It is a frame material. Further, the first vertical member 86 and the second vertical member 88 that constitute the intermediate frame member 84 have the same size and shape.

[第2実施形態]
本発明の第2実施形態の耐力壁110について説明する。なお、第1実施形態と同一の部材には、同一の符号を付し、重複する説明は省略又は簡略化する。
[Second embodiment]
A load-bearing wall 110 according to a second embodiment of the present invention will be described. Note that the same members as in the first embodiment are given the same reference numerals, and overlapping explanations will be omitted or simplified.

図13及び図14に示すように、本実施形態の耐力壁110は、隣り合う柱材104間の距離が第1実施形態よりも広い木造躯体102に用いられる。このため、図13及び図14に示すように、耐力壁110は、第1実施形態の壁面材22を2枚用いて構成されている(同一寸法形状の壁面材22を2枚用いている)。具体的には、図13及び図14に示すように、2枚の壁面材22を同じ向きで壁幅方向に並べ、1枚目の壁面材22の幅端部22Aと2枚目の壁面材22の幅端部22Aを重ね、この重なり部分を接合具34で接合している。 As shown in FIGS. 13 and 14, the load-bearing wall 110 of this embodiment is used for a wooden frame 102 in which the distance between adjacent pillars 104 is wider than that of the first embodiment. Therefore, as shown in FIGS. 13 and 14, the load-bearing wall 110 is constructed using two wall materials 22 of the first embodiment (two wall materials 22 of the same size and shape are used). . Specifically, as shown in FIGS. 13 and 14, two wall materials 22 are arranged in the same direction in the wall width direction, and the width end 22A of the first wall material 22 and the second wall material The width end portions 22A of 22 are overlapped, and this overlapping portion is joined by a joining tool 34.

図13及び図14に示すように、耐力壁110では、一対の縦枠材26間に中間枠材112を配置し、この中間枠材112と2枚の壁面材22とを接合している。具体的には、中間枠材112は、第1縦材114と第2縦材116とを備えており、これらの第1縦材114と第2縦材116とによって、2枚の壁面材22の重なり部分が壁厚み方向で挟まれている。そして、接合具34が第1縦材114から第2縦材116に向けて打ち込まれることで、中間枠材112と2枚の壁面材22とが接合されている。なお、以下では、中間枠材112と壁面材22との接合具34による接合部分を接合部118と記載する。これらの接合部118は、上下方向に間隔をあけて複数形成されている。ここで、図14に示すように、耐力壁110では、上下方向に隣り合う開口28の中心間距離D1が一方又は他方の接合部36から接合部118までの水平距離D2よりも短くなっている。 As shown in FIGS. 13 and 14, in the load-bearing wall 110, an intermediate frame member 112 is disposed between a pair of vertical frame members 26, and the intermediate frame member 112 and the two wall members 22 are joined. Specifically, the intermediate frame member 112 includes a first vertical member 114 and a second vertical member 116, and these first vertical members 114 and second vertical members 116 form two wall members 22. The overlapping parts of the walls are sandwiched in the wall thickness direction. Then, the joining tool 34 is driven from the first vertical member 114 toward the second vertical member 116, thereby joining the intermediate frame member 112 and the two wall members 22. In addition, below, the joint part by the joint tool 34 of the intermediate frame material 112 and the wall surface material 22 is described as the joint part 118. A plurality of these joint parts 118 are formed at intervals in the vertical direction. Here, as shown in FIG. 14, in the load-bearing wall 110, the distance D1 between the centers of vertically adjacent openings 28 is shorter than the horizontal distance D2 from one or the other joint 36 to the joint 118. .

なお、図13及び図14で示す符号120は、第1枠材60に第1縦材114を組み入れた枠材であり、符号122は、第2枠材62に第2縦材116を組み入れた枠材である。また、中間枠材112を構成する第1縦材114と第2縦材116は同一寸法形状である。 Note that the reference numeral 120 shown in FIGS. 13 and 14 is a frame material in which the first vertical member 114 is incorporated into the first frame member 60, and the reference numeral 122 is a frame member in which the second vertical member 116 is incorporated in the second frame member 62. It is a frame material. Further, the first vertical member 114 and the second vertical member 116 that constitute the intermediate frame member 112 have the same size and shape.

次に、本実施形態の作用並びに効果について説明する。
なお、第1実施形態と同様の構成で得られる作用並びに効果については、その説明を省略する。
Next, the operation and effects of this embodiment will be explained.
Note that descriptions of the functions and effects obtained by the configuration similar to those of the first embodiment will be omitted.

耐力壁110では、1枚目の壁面材22の幅端部22Aと2枚目の壁面材22の幅端部22Aを壁厚み方向で重ねて、この重なり部分を第1縦材114と第2縦材116で挟んだ状態で接合具34に2枚の壁面材22を中間枠材112に接合している。ここで、耐力壁110では、2枚の壁面材22が壁厚み方向で重なって2重になった部分に中間枠材112が接合されていることから、2枚の壁面材22と中間枠材112との接合部の耐力及び剛性が向上する。これにより、上記耐力壁110では、壁面材22が大変形に至る前に、中間枠材112と2枚の壁面材22との接合部118に破損が生じるのが更に抑制される。 In the load-bearing wall 110, the width end portion 22A of the first wall material 22 and the width end portion 22A of the second wall material 22 are overlapped in the wall thickness direction, and this overlapped portion is used as the first vertical member 114 and the second vertical member 114. The two wall materials 22 are joined to the intermediate frame material 112 by a joining tool 34 while being sandwiched between the vertical members 116. Here, in the load-bearing wall 110, since the intermediate frame material 112 is joined to the portion where the two wall materials 22 overlap in the wall thickness direction and become double, the two wall materials 22 and the intermediate frame material The strength and rigidity of the joint with 112 are improved. Thereby, in the load-bearing wall 110, damage to the joint 118 between the intermediate frame member 112 and the two wall members 22 is further suppressed from occurring before the wall member 22 undergoes large deformation.

また、耐力壁110では、同一寸法形状の2枚の壁面材22を用いるため、異なる寸法形状の壁面材を用いる構成と比べて、部品管理が容易であり、生産コストの削減も図れる。 Furthermore, since the load-bearing wall 110 uses two wall materials 22 having the same size and shape, parts management is easier and production costs can be reduced compared to a configuration using wall materials with different dimensions and shapes.

第2実施形態の耐力壁110では、2枚の壁面材22を同じ向きで壁幅方向に並べ、1枚目の壁面材22の幅端部22Aと2枚目の壁面材22の幅端部22Aを重ね、この重なり部分で、2枚の壁面材22と中間枠材112とを接合具34で接合しているが、本発明はこの構成に限定されない。例えば、2枚の壁面材22を同じ向きで各々の幅端部22A同士が重ならないように壁幅方向に並べ、各々の幅端部22Aを中間枠材112に接合具34で接合してもよい。なお、ここでいう2枚の壁面材22の各々の幅端部22A同士が重ならないように壁幅方向に並べるには、2枚の壁面材22の各々の幅端部22A同士を接した状態で並べたものや各々の幅端部22A同士を離した状態で並べたものを含む。 In the load-bearing wall 110 of the second embodiment, two wall materials 22 are arranged in the same direction in the wall width direction, and the width end portion 22A of the first wall material 22 and the width end portion of the second wall material 22 are arranged in the same direction in the wall width direction. 22A are overlapped, and the two wall materials 22 and the intermediate frame material 112 are joined using a joining tool 34 at this overlapping portion, but the present invention is not limited to this configuration. For example, two wall materials 22 may be arranged in the same direction in the wall width direction so that their width ends 22A do not overlap each other, and each width end 22A may be joined to the intermediate frame material 112 using the joining tool 34. good. Note that in order to arrange the width ends 22A of the two wall materials 22 in the wall width direction so that they do not overlap, the width ends 22A of the two wall materials 22 should be in contact with each other. This includes those arranged side by side with their respective width ends 22A separated from each other.

[第3実施形態]
本発明の第3実施形態の耐力壁130について説明する。なお、第1実施形態と同一の部材には、同一の符号を付し、重複する説明は省略又は簡略化する。
[Third embodiment]
A load-bearing wall 130 according to a third embodiment of the present invention will be described. Note that the same members as in the first embodiment are given the same reference numerals, and overlapping explanations will be omitted or simplified.

図15に示すように、本実施形態の耐力壁130は、第1実施形態の壁面材22と、この壁面材22の幅端部22Aに設けられた折り返し部132と、を有している。具体的には、折り返し部132は、壁面材22の幅端部22Aから壁幅方向内側に折り返された部分であり、壁面材22と一体成形されている。この折り返し部132が壁面材22に重なった状態で、壁面材22が縦枠材26に接合されている。具体的には、第1縦材30と第2縦材32とによって、壁面材22と、この壁面材22に重なった折り返し部132とが壁厚み方向に挟まれて、接合具34によって接合されている。なお、以下では、縦枠材26と壁面材22との接合具34による接合部分を接合部134と記載する。これらの接合部134は、上下方向に間隔をあけて複数形成されている。 As shown in FIG. 15, the load-bearing wall 130 of this embodiment includes the wall material 22 of the first embodiment and a folded portion 132 provided at the width end portion 22A of this wall material 22. Specifically, the folded portion 132 is a portion folded back inward in the wall width direction from the width end portion 22A of the wall material 22, and is integrally molded with the wall material 22. The wall material 22 is joined to the vertical frame material 26 with the folded portion 132 overlapping the wall material 22. Specifically, the wall material 22 and the folded portion 132 overlapping the wall material 22 are sandwiched between the first vertical member 30 and the second vertical member 32 in the wall thickness direction, and are joined by the joining tool 34. ing. In addition, below, the joint part by the joint tool 34 of the vertical frame material 26 and the wall surface material 22 is described as the joint part 134. A plurality of these joint parts 134 are formed at intervals in the vertical direction.

次に、本実施形態の作用並びに効果について説明する。
なお、第1実施形態と同様の構成で得られる作用並びに効果については、その説明を省略する。
Next, the operation and effects of this embodiment will be explained.
Note that descriptions of the functions and effects obtained by the configuration similar to those of the first embodiment will be omitted.

耐力壁130では、折り返し部132が壁面材22に重なり、壁面材22の幅端部22Aが第1縦材30と第2縦材32とで挟まれた状態で壁面材22が縦枠材26に接合されている。すなわち、耐力壁130では、第1縦材30と第2縦材32とで挟んだ部分において金属板が2重になるため、例えば、第1縦材30と第2縦材32とで挟んだ部分において金属板が一重の構成と比べて、壁面材22及び折り返し部132と縦枠材26との接合部134の耐力及び剛性が向上する。これにより、上記耐力壁では、壁面材22が大変形に至る前に、壁面材22及び折り返し部132と縦枠材26との接合部134に破損が生じるのが更に抑制される。 In the load-bearing wall 130, the folded portion 132 overlaps the wall material 22, and the wall material 22 is folded into the vertical frame material 26 with the width end portion 22A of the wall material 22 being sandwiched between the first vertical member 30 and the second vertical member 32. is joined to. That is, in the load-bearing wall 130, since the metal plate is doubled in the portion sandwiched between the first vertical member 30 and the second vertical member 32, for example, the metal plate is doubled at the portion sandwiched between the first vertical member 30 and the second vertical member 32 Compared with a structure in which a single metal plate is used in a portion, the strength and rigidity of the joint portion 134 between the wall material 22 and the folded portion 132 and the vertical frame member 26 are improved. As a result, in the above-mentioned load-bearing wall, damage to the wall material 22 and the joint portion 134 between the folded portion 132 and the vertical frame member 26 is further suppressed from occurring before the wall material 22 undergoes large deformation.

第3実施形態では、壁面材22の幅端部22Aに折り返し部132を設けたが、本発明はこの構成に限定されない。例えば、壁面材22の上端部22D、下端部22Eにそれぞれ折り返し部を設けてもよい。 In the third embodiment, the folded portion 132 is provided at the width end portion 22A of the wall material 22, but the present invention is not limited to this configuration. For example, folded portions may be provided at the upper end 22D and lower end 22E of the wall material 22, respectively.

[第4実施形態]
本発明の第4実施形態の耐力壁140について説明する。なお、第1実施形態と同一の部材には、同一の符号を付し、重複する説明は省略又は簡略化する。
[Fourth embodiment]
A load-bearing wall 140 according to a fourth embodiment of the present invention will be described. Note that the same members as in the first embodiment are given the same reference numerals, and overlapping explanations will be omitted or simplified.

図16に示すように、本実施形態の耐力壁140は、第1実施形態の壁面材22と、第1枠材60と、第2枠材142とを有している。 As shown in FIG. 16, the load-bearing wall 140 of this embodiment includes the wall material 22 of the first embodiment, a first frame material 60, and a second frame material 142.

第2枠材142は、一対の第2縦材144、第2横材44及び第2横材54を有している。第2縦材144の断面積は、第1縦材30の断面積よりも小さい。具体的には、第2縦材144の壁幅方向に沿った幅が、第1縦材30の壁幅方向に沿った幅よりも狭くなっており、第2縦材144の断面積が第1縦材30の断面積よりも小さくされている。 The second frame member 142 has a pair of second vertical members 144, a second cross member 44, and a second cross member 54. The cross-sectional area of the second longitudinal member 144 is smaller than the cross-sectional area of the first longitudinal member 30. Specifically, the width of the second vertical member 144 along the wall width direction is narrower than the width of the first vertical member 30 along the wall width direction, and the cross-sectional area of the second vertical member 144 is smaller than the width of the first vertical member 30 along the wall width direction. 1 is made smaller than the cross-sectional area of the vertical member 30.

次に、本実施形態の作用並びに効果について説明する。
なお、第1実施形態と同様の構成で得られる作用並びに効果については、その説明を省略する。
Next, the operation and effects of this embodiment will be explained.
Note that descriptions of the functions and effects obtained by the configuration similar to those of the first embodiment will be omitted.

耐力壁130では、壁面材22の壁厚み方向で環状リブ24の突出側に配置された第2縦材144の断面積を、第1縦材30の断面積よりも小さくしていることから、例えば、第1縦材30の断面積が第2縦材144の断面積以上の構成と比べて、壁面材22と縦枠材146とを含む壁全体としてのせん断中心と壁の軸線とのずれが小さくなる。これにより、耐力壁130では、水平荷重HLが作用した場合の縦枠材146(第1縦材30及び第2縦材144)の捩じれが抑制され、縦枠材146と壁面材22との接合具34による接合部148に破損が生じるのが抑制される。 In the load-bearing wall 130, the cross-sectional area of the second vertical member 144 disposed on the protruding side of the annular rib 24 in the wall thickness direction of the wall member 22 is smaller than the cross-sectional area of the first vertical member 30. For example, compared to a configuration in which the cross-sectional area of the first vertical member 30 is greater than or equal to the cross-sectional area of the second vertical member 144, the deviation between the shear center of the wall as a whole including the wall member 22 and the vertical frame member 146 and the axis of the wall becomes smaller. As a result, in the load-bearing wall 130, twisting of the vertical frame members 146 (the first vertical members 30 and the second vertical members 144) when the horizontal load HL is applied is suppressed, and the joint between the vertical frame members 146 and the wall member 22 is suppressed. Damage to the joint 148 caused by the tool 34 is suppressed.

第4実施形態の耐力壁140では、第2縦材144の壁幅方向に沿った幅を第1縦材30の壁幅方向に沿った幅よりも狭くして、第2縦材144の断面積を第1縦材30の断面積よりも小さくしているが、本発明はこの構成に限定されない。例えば、図17に示す耐力壁150のように、第2縦材154の壁厚み方向に沿った厚みを第1縦材30の壁厚み方向に沿った厚みよりも薄くして、第2縦材154の断面積を第1縦材30の断面積よりも小さくしてもよい。なお、図17における符号152は、一対の第2縦材154、第2横材44及び第2横材54を有する第2枠材を示し、符号156は、第1縦材30及び第2縦材154で構成される縦枠材を示し、符号158は、縦枠材156と壁面材22との接合具34による接合部を示している。 In the load-bearing wall 140 of the fourth embodiment, the width along the wall width direction of the second vertical member 144 is made narrower than the width along the wall width direction of the first vertical member 30, and the cross section of the second vertical member 144 is Although the area is smaller than the cross-sectional area of the first vertical member 30, the present invention is not limited to this configuration. For example, like the load-bearing wall 150 shown in FIG. 17, the thickness of the second vertical member 154 along the wall thickness direction is made thinner than the thickness of the first vertical member 30 along the wall thickness direction, 154 may be smaller than the cross-sectional area of the first longitudinal member 30. In addition, the code|symbol 152 in FIG. 17 shows the 2nd frame member which has a pair of 2nd vertical member 154, the 2nd horizontal member 44, and the 2nd horizontal member 54, and the code|symbol 156 shows the 1st vertical member 30 and the 2nd vertical member. A vertical frame member made of a material 154 is shown, and reference numeral 158 indicates a joint portion between the vertical frame member 156 and the wall surface material 22 by the joint tool 34.

前述の実施形態では、壁厚み方向から見て、開口28の形状を円形にしているが、本発明はこの構成に限定されない。例えば、開口28の形状を楕円形にしてもよいし、多角形状としてもよい。 In the embodiment described above, the opening 28 has a circular shape when viewed from the wall thickness direction, but the present invention is not limited to this configuration. For example, the opening 28 may have an elliptical shape or a polygonal shape.

また、前述の実施形態では、壁厚み方向から見て、全ての開口28の形状及び大きさを同じ形状及び寸法としているが、本発明はこの構成に限定されない。例えば、隣り合う開口28の形状及び大きさが異なっていてもよい。 Further, in the above-described embodiment, all the openings 28 have the same shape and size when viewed from the wall thickness direction, but the present invention is not limited to this configuration. For example, adjacent openings 28 may have different shapes and sizes.

前述の実施形態では、接合具(接合具34、38)を接合対象に対して垂直に打ち込んでいるが、本発明はこの構成に限定されず、接合具を接合対象に対して斜めに打ち込んでもよい。例えば、一の接合具38を第1横材42の表面(壁面材22と反対側の面)から上梁材106に向けて斜めに打ち込み、他の接合具38を第2横材44の表面(壁面材22と反対側の面)から上梁材106に向けて、上記一の接合具38と逆向きに斜めに打ち込んでもよい。 In the embodiment described above, the joining tools (jointing tools 34, 38) are driven perpendicularly to the object to be joined, but the present invention is not limited to this configuration, and the joining tools may be driven diagonally to the object to be joined. good. For example, one joint tool 38 is driven diagonally from the surface of the first cross member 42 (the surface opposite to the wall material 22) toward the upper beam member 106, and the other joint tool 38 is driven into the surface of the second cross member 44. It may be driven diagonally from the side opposite to the wall material 22 toward the upper beam material 106 in the opposite direction to the first joining tool 38 described above.

以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施することが可能であることは勿論である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above, and can be implemented with various modifications other than the above without departing from the spirit thereof. Of course.

20 耐力壁
22 壁面材
22A 幅端部(幅方向の端部)
22D 上端部
22E 下端部
24 環状リブ(リブ)
26 縦枠材
28 開口
30 第1縦材
32 第2縦材
40 上枠材
50 下枠材
52 第1横材
54 第2横材
80 耐力壁
82 壁面材
84 中間枠材
86 第1縦材
88 第2縦材
100 木造建物
102 木造躯体
104 柱材
106 上梁材
108 下梁材
110 耐力壁
112 中間枠材
114 第1縦材
116 第2縦材
130 耐力壁
132 折り返し部
140 耐力壁
144 縦材
146 縦枠材
150 耐力壁
154 縦材
156 縦枠材
20 Load-bearing wall 22 Wall material 22A Width end (width direction end)
22D Upper end 22E Lower end 24 Annular rib (rib)
26 Vertical frame member 28 Opening 30 First vertical member 32 Second vertical member 40 Upper frame member 50 Lower frame member 52 First cross member 54 Second cross member 80 Load-bearing wall 82 Wall material 84 Intermediate frame member 86 First vertical member 88 Second vertical member 100 Wooden building 102 Wooden frame 104 Column material 106 Upper beam material 108 Lower beam material 110 Load-bearing wall 112 Intermediate frame member 114 First vertical member 116 Second vertical member 130 Load-bearing wall 132 Folded portion 140 Load-bearing wall 144 Vertical member 146 Vertical frame material 150 Load-bearing wall 154 Vertical material 156 Vertical frame material

Claims (8)

上下方向に間隔をあけて開口が形成された金属製の壁面材と、
前記壁面材の前記開口の縁部に沿って設けられ、該縁部から前記壁面材の厚み方向に突出する環状のリブと、
前記上下方向に延び、前記壁面材における幅方向の両端部がそれぞれ接合された一対の縦枠材と、
を備え、
前記縦枠材は、前記壁面材の前記厚み方向の一方側に配置された木製の第1縦材と、前記壁面材の前記厚み方向の他方側に配置されて前記第1縦材との間で前記壁面材の前記幅方向の端部を挟む木製の第2縦材と、を有する、耐力壁。
A metal wall material with openings formed at intervals in the vertical direction,
an annular rib provided along the edge of the opening of the wall material and protruding from the edge in the thickness direction of the wall material;
a pair of vertical frame members extending in the vertical direction and having both widthwise ends of the wall material joined to each other;
Equipped with
The vertical frame member is between a first wooden vertical member disposed on one side of the wall material in the thickness direction and a first vertical member disposed on the other side of the wall material in the thickness direction. and a second vertical member made of wood that sandwiches the ends of the wall material in the width direction.
前記壁面材の前記幅方向の両端部には、該端部から前記幅方向内側に折り返された折り返し部がそれぞれ設けられており、
前記折り返し部が前記壁面材に重なった状態で、前記壁面材が前記縦枠材に接合されている、請求項1に記載の耐力壁。
Both end portions of the wall material in the width direction are provided with folded portions that are folded back from the end portions inward in the width direction,
The load-bearing wall according to claim 1, wherein the wall material is joined to the vertical frame material with the folded portion overlapping the wall material.
前記リブは、前記壁面材の前記厚み方向の他方側に突出しており、
前記第2縦材の断面積が前記第1縦材の断面積よりも小さい、請求項1又は請求項2に記載の耐力壁。
The rib protrudes to the other side of the wall material in the thickness direction,
The load-bearing wall according to claim 1 or claim 2, wherein the cross-sectional area of the second longitudinal member is smaller than the cross-sectional area of the first longitudinal member.
少なくとも2枚の前記壁面材を備えており、
前記一対の縦枠材間には、前記上下方向に延びる中間枠材が配置されており、
一方の前記壁面材の前記幅方向の端部と他方の前記壁面材の前記幅方向の端部が前記厚み方向で重なった状態で、前記中間枠材に接合されている、請求項1~請求項3のいずれか1項に記載の耐力壁。
comprising at least two of the wall materials,
An intermediate frame member extending in the vertical direction is arranged between the pair of vertical frame members,
Claims 1 to 3, wherein the widthwise end of one of the wall materials and the widthwise end of the other wall material overlap in the thickness direction and are joined to the intermediate frame material. The load-bearing wall according to any one of Item 3.
前記壁面材の前記幅方向に延び、前記壁面材における上端部及び下端部がそれぞれ接合された一対の横枠材を更に有する、請求項1~請求項4のいずれか1項に記載の耐力壁。 The load-bearing wall according to any one of claims 1 to 4, further comprising a pair of horizontal frame members extending in the width direction of the wall material and having upper and lower end portions of the wall material joined, respectively. . 前記壁面材を厚み方向から見て、前記開口の形状及び大きさが同じである、請求項1~請求項5のいずれか1項に記載の耐力壁。 The load-bearing wall according to any one of claims 1 to 5, wherein the openings have the same shape and size when the wall material is viewed from the thickness direction. 前記壁面材を厚み方向から見て、前記開口の形状が円形である、請求項6に記載の耐力壁。 The load-bearing wall according to claim 6, wherein the opening has a circular shape when the wall material is viewed from the thickness direction. 複数の柱材と複数の梁材を組み立てた木造躯体と、
前記木造躯体に用いられる請求項1~請求項7のいずれか1項に記載の耐力壁と、を備え、
前記耐力壁は、隣り合う前記柱材の間に配置された状態で一対の縦枠材が前記隣り合う柱材にそれぞれ接合されている、木造建物。
A wooden frame made up of multiple columns and beams,
The load-bearing wall according to any one of claims 1 to 7 used for the wooden frame,
The load-bearing wall is a wooden building in which a pair of vertical frame members are respectively joined to the adjacent pillar members while being arranged between the adjacent pillar members.
JP2020036214A 2020-03-03 2020-03-03 Load-bearing walls and wooden buildings Active JP7356032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036214A JP7356032B2 (en) 2020-03-03 2020-03-03 Load-bearing walls and wooden buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036214A JP7356032B2 (en) 2020-03-03 2020-03-03 Load-bearing walls and wooden buildings

Publications (2)

Publication Number Publication Date
JP2021139135A JP2021139135A (en) 2021-09-16
JP7356032B2 true JP7356032B2 (en) 2023-10-04

Family

ID=77668014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036214A Active JP7356032B2 (en) 2020-03-03 2020-03-03 Load-bearing walls and wooden buildings

Country Status (1)

Country Link
JP (1) JP7356032B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121338A (en) 2008-11-19 2010-06-03 Act Co Ltd Bearing wall constituting panel and bearing wall structure
WO2015034099A1 (en) 2013-09-09 2015-03-12 新日鐵住金株式会社 Bearing wall and wall surface material for bearing wall
JP3215862U (en) 2018-02-06 2018-04-19 新日鐵住金株式会社 Wall panel structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222807B2 (en) * 1997-07-15 2001-10-29 ミサワホーム株式会社 Load-bearing wall panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121338A (en) 2008-11-19 2010-06-03 Act Co Ltd Bearing wall constituting panel and bearing wall structure
WO2015034099A1 (en) 2013-09-09 2015-03-12 新日鐵住金株式会社 Bearing wall and wall surface material for bearing wall
JP3215862U (en) 2018-02-06 2018-04-19 新日鐵住金株式会社 Wall panel structure

Also Published As

Publication number Publication date
JP2021139135A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CA2923802C (en) Bearing wall and wall surface member for bearing wall
JP6558716B2 (en) Brace mounting structure
US20140123587A1 (en) Framework connecting device of prefabricated building structure
KR20080107471A (en) Buckling-stiffening structure for box-shaped sectional type thin-plate member
KR20200114876A (en) Permanent Beam Form
KR102543666B1 (en) Roof frame
JP7356032B2 (en) Load-bearing walls and wooden buildings
JP7473787B2 (en) Load-bearing walls and wooden buildings
JP5693484B2 (en) Beam-column joint structure
JP7399420B2 (en) bracing metal fittings
JP2005344500A (en) Joint fitting between members as well as joint structure and joining method for vertical frame members of upper and lower floors
JP6895080B2 (en) Floor structure and its construction method
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP2016037730A (en) Extrusion section
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
JP7340435B2 (en) Steel pipe column joint structure
JP7262518B2 (en) Stud type steel damper
JP5588212B2 (en) Unit building and unit building structure calculation method
JP4178157B2 (en) Beam-column joint structure
JP6648067B2 (en) Connection structure and building
JP2023023290A (en) Frame reinforcement structure
JP2023110433A (en) Channel steel, joint structure of channel steel, frame member, panel member, manufacturing method of channel steel, and manufacturing method of joint structure of channel steel
JP2024045894A (en) Folding box type shear panel plate, shear panel assembled with the same and its manufacturing method
JP2020139270A (en) Bearing wall and wall material
JP5155791B2 (en) Floor panel reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7356032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151