JP7355712B2 - 炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム - Google Patents

炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム Download PDF

Info

Publication number
JP7355712B2
JP7355712B2 JP2020109162A JP2020109162A JP7355712B2 JP 7355712 B2 JP7355712 B2 JP 7355712B2 JP 2020109162 A JP2020109162 A JP 2020109162A JP 2020109162 A JP2020109162 A JP 2020109162A JP 7355712 B2 JP7355712 B2 JP 7355712B2
Authority
JP
Japan
Prior art keywords
furnace
production department
blast furnace
operation management
production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020109162A
Other languages
English (en)
Other versions
JP2022006742A (ja
Inventor
啓 岸本
智樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020109162A priority Critical patent/JP7355712B2/ja
Publication of JP2022006742A publication Critical patent/JP2022006742A/ja
Application granted granted Critical
Publication of JP7355712B2 publication Critical patent/JP7355712B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラムに関する。
太陽光エネルギーまたは風力エネルギーなどの自然エネルギーを用いることにより、環境負荷を低減させる技術が、例えば特許文献1~3に開示されている。特許文献1~3の技術では、自然エネルギーを多く利用することにより、二酸化炭素の排出量の削減を図っている。
特開2011-167048号公報 特開2012-196122号公報 特開2012-196123号公報
ところで、製鉄製鋼所は、製造過程において多くの二酸化炭素を排出する。そのため、製鉄製鋼所では、二酸化炭素の排出量の削減が求められている。しかしながら、自然エネルギーを利用することにより、製鉄製鋼所の各種の炉の稼働を調整し、二酸化炭素の排出量を効率的に削減するシステムは構築されていない。特に、自然エネルギーは不安定であるため、製鉄製鋼所の高炉のように安定した操業が求められる装置に自然エネルギーを効率的に供給するには多大な困難を伴う。
本発明は、炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラムにおいて、安定した高炉操業と二酸化炭素の排出量の削減とを実現することを課題とする。
本発明の第1の態様は、高炉および転炉を含む第1生産部と、自然エネルギーを利用して発電された電力で稼働する電気炉を含む第2生産部とを備える製鉄製鋼システムの稼働を管理する炉稼働管理装置であって、電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、前記第1生産部および前記第2生産部の稼働計画を計画する稼働計画部と、前記高炉の出銑比を計測する計測部と、高炉操業を行うための所定範囲以内に前記出銑比を制御するとともに前記電気炉を少なくとも稼働させる条件下で前記稼働計画に対応して前記第1生産部および前記第2生産部を稼働させる稼働決定部とを含む、炉稼働管理装置を提供する。
この構成によれば、第1生産部だけでなく第2生産部を備える製鉄製鋼システムの稼働を好適に管理できる。このような製鉄製鋼システムでは、第1生産部にて高炉および転炉が操業され、第2生産部にて自然エネルギーを利用した電気炉が操業される。そのため、第1生産部における二酸化炭素の排出量が相対的に多く、第2生産部における二酸化炭素の排出量が相対的に少ない。このような製鉄製鋼システムでは、第1生産部および第2生産部の合計生産量を維持して安定した生産を確保するとともに、第2生産部を可能な限り多く稼働させて二酸化炭素の排出量を削減することが好ましい。これに対し、上記構成では、稼働計画部が電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて稼働計画を計画するため、自然エネルギーを大量に利用して第2生産部を稼働させることができる。しかしながら、第2生産部の稼働量を増加させるためには、第1生産部の稼働量を低下させる必要があり、即ち第1生産部の高炉の出銑比(一日あたりの銑鉄の出銑質量を高炉の容積で割った値)を低下させる必要がある。しかし、高炉の出銑比が大幅に低下すると、高炉を安定して操業できず、不具合が生じるおそれがある。これに対し、上記構成では、稼働決定部は安定した高炉操業を行うための所定範囲以内に出銑比を制御するとともに電気炉を少なくとも稼働させる。これにより、安定した高炉操業と二酸化炭素の排出量の削減とを実現できる。
前記発電予定量は、前記自然エネルギーの時間特性に応じて推定されたものであってもよい。
この構成によれば、稼働計画部において、自然エネルギーの時間特性を考慮して高精度の稼働計画を計画できる。ここで、時間特性とは、自然エネルギーの経時的な変動特性をいう。自然エネルギーを利用した発電では、経時的に発電量が変動することが多い。このような発電量の変動は、時間特性を考慮することで高精度に予測できる。従って、自然エネルギーの時間特性を考慮することにより、発電予定量を一層正確に特定でき、高精度の稼働計画を計画できる。
前記時間特性は、天気情報または天候情報等の気象情報から予測されたものであってもよい。
この構成によれば、稼働計画部において、気象情報を考慮して一層高精度の稼働計画を計画できる。自然エネルギーを利用した発電は、気象情報に影響を受けることが多い。従って、気象情報を考慮することで、発電予定量を一層正確に特定できる。
前記時間特性は、電力販売者から取得したものであってもよい。
この構成によれば、時間特性を簡易に取得できる。
前記稼働計画部は、逐次的に前記稼働計画を修正してもよい。
この構成によれば、稼働計画が順に遂行される中で、様々な内乱要因または外乱要因に応じて稼働計画を修正できる。第2生産部で利用され得る電力量は、様々な内乱要因または外乱要因によって発電予定量の通りとならない場合がある。例えば、内乱要因は設備の故障などを含み、外乱要因は予想外の天候の変化や景気の影響などを含む。従って、そのような内乱要因および外乱要因を考慮して逐次的に稼働計画を修正することで、第2生産部を適切に稼働させることができる。
前記出銑比の前記所定範囲は、1.6以上かつ2.2以下であってもよい。
この構成によれば、安定した高炉操業を実現できる。上記数値範囲は、発明者らが高炉を実際に操業する中で得られた知見に基づいている。
前記稼働計画部は、前記発電予定量が多いほど、前記第2生産部の稼働量を増加させるとともに前記第1生産部の稼働量を減少させるように前記稼働計画を計画してもよい。
この構成によれば、自然エネルギーを最大限利用できる稼働計画を計画することができる。
前記稼働決定部は、前記稼働計画において前記出銑比が前記所定範囲以内となる場合、前記稼働計画にて前記高炉を操業し、前記稼働計画において前記出銑比が前記所定範囲の上限値を超過する場合、前記出銑比が前記所定範囲の上限値となるように前記高炉を操業し、前記稼働計画において前記出銑比が前記所定範囲の下限値を下回る場合、前記出銑比が前記所定範囲の下限値となるように前記高炉を操業してもよい。
この構成によれば、所定範囲以内での出銑比で具体的に高炉を操業できる。
本発明の第2の態様は、高炉および転炉を含む第1生産部と、自然エネルギーを利用して発電される電力で稼働する電気炉を含む第2生産部とを含む製鉄製鋼システムの稼働を管理する炉稼働管理方法であって、電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、前記第1生産部および前記第2生産部の稼働計画を計画し、前記高炉の出銑比を計測し、安定した高炉操業を行うための所定範囲以内に前記出銑比を制御するとともに前記電気炉を少なくとも稼働させる条件下で前記稼働計画に対応して前記第1生産部および前記第2生産部を稼働させることを含む、炉稼働管理方法を提供する。
本発明の第3の態様は、高炉および転炉を含む第1生産部と、自然エネルギーを利用して発電された電力で稼働する電気炉を含む第2生産部とを含む製鉄製鋼システムの稼働を管理する炉稼働管理方法をコンピュータに実行させるための炉稼働管理プログラムであって、電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、前記第1生産部および前記第2生産部の稼働計画を計画し、前記高炉の出銑比を計測し、安定した高炉操業を行うための所定範囲以内に前記出銑比を制御するとともに前記電気炉を少なくとも稼働させる条件下で前記稼働計画に対応して前記第1生産部および前記第2生産部を稼働させることを含む、炉稼働管理プログラムを提供する。
本発明によれば、炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラムにおいて、安定した高炉操業と二酸化炭素の排出量の削減とを実現できる。
本発明の一実施形態に係る炉稼働管理装置を含む製鉄製鋼システムの概略構成図。 稼働計画部によって実行されるプロセスの一例を示すフローチャート。 一実施形態に係る炉稼働管理方法を示すフローチャート。 二酸化炭素排出量の削減とそれに伴うコスト削減の効果を示す表。
以下、添付図面を参照して本発明の実施形態を説明する。
図1は、本発明の一実施形態に係る炉稼働管理装置10を含む製鉄製鋼システム1の概略構成図を示している。炉稼働管理装置10は、製鉄製鋼システム1の稼働を管理するための装置である。
製鉄製鋼システム1は、電力を効率的に利用して製鉄を行い、鉄鋼製品を製造するための一連の設備を含むシステムである。製鉄製鋼システム1には、製鉄製鋼所100と、一般家庭などの電力需要者200と、電力を販売する業者などの電力販売者300とが含まれる。これらは、所定の地域2内に位置し、インターネットなどの通信ネットワーク3を介して互いに情報通信可能となっている(図1中の破線の矢印参照)。ここで、所定の地域2とは、例えば都道府県またはそれらが一定程度集合した地域などのことをいう。
電力需要者200は、家電製品などの電力消費装置を有している。電力需要者200は、後述するように、製鉄製鋼所100または電力販売者300から電力の供給を受ける。
電力販売者300は、所定の地域2外の火力または原子力などの非自然エネルギーを利用する発電設備310にて発電した電力と、風力または太陽光などの自然エネルギーを利用する発電設備320にて発電した電力とを、製鉄製鋼所100および電力需要者200に販売する(図1中の一点鎖線の矢印参照)。電力販売者300は、発電設備320にて自然エネルギーを利用して発電される見込みである発電予定量を管理する管理サーバを有している。当該発電予定量は、インターネットなどの通信ネットワーク3を介して炉稼働管理装置10に送信され得る。また、電力販売者300は、電力を販売するだけでなく、製鉄製鋼所100および電力需要者200から電力を買い取ってもよい。
製鉄製鋼所100は、第1生産部110と、第2生産部120と、加工装置130と、発電所140と、炉稼働管理装置10とを備える。
第1生産部110は、高炉111および転炉112を含む。高炉111では、鉄鉱石から銑鉄が取り出される。転炉112では、高炉111から取り出された銑鉄が不純物を取り除かれて鉄鋼にされる。また、高炉111および転炉112では、炭素成分を含む多くの高温高圧ガスが発生する。この高温高圧ガスは、発電所140に送られ、タービン発電機などの駆動に利用され、即ち発電に利用される。
第2生産部120は、電気炉121を含む。電気炉121は、自然エネルギーを利用して発電された電力(発電設備310で発電された電力)で稼働し、鉄くずなどのスクラップを鉄鋼にする。また、第2生産部120でも高温高圧ガスが発生する。この高温高圧ガスもまた、発電所140に送られ、発電に利用される。
加工装置130では、転炉112および電気炉121から供給された鉄鋼に対して圧延加工などの加工を施す。これにより、鉄鋼が所望の形状に加工される。
発電所140にて上記のようにして発電した電力は、電力需要者200または電力販売者300などに供給される(図1中の一点鎖線の矢印参照)。また、発電所140にて発電した電力は、製鉄製鋼所100の各種設備で利用されてもよい。
炉稼働管理装置10は、CPU(Central Processing Unit)、RAM(Random Access Memory)、およびROM(Read Only Memory)等のハードウェアと、それらに実装されたソフトウェアとにより構成されている。炉稼働管理装置10は、機能的構成として、計測部11と、稼働計画部12と、稼働決定部13とを含んでいる。これらは、ハードウェア資源であるプロセッサと、ソフトウェアであるプログラムとの協働により実現される。
計測部11は、高炉111の出銑比を計測する部分である。出銑比とは、高炉111における一日あたりの銑鉄の出銑質量を高炉111の容積で割った値である。高炉111を安定して操業するためには、出銑比は1.6以上かつ2.2以下であることが好ましい。当該数値範囲は、発明者らが高炉111を実際に操業する中で得られた知見に基づいている。
稼働計画部12は、第1生産部110および第2生産部120の稼働計画を計画する部分である。本実施形態では、稼働計画部12は、年間の稼働計画を計画する。稼働計画は、工程計画と、エネルギー計画とを含む。
図2は、稼働計画部12によって実行されるプロセスの一例を示すフローチャートである。
まず、稼働計画部12は、年間の工程計画を計画する(ステップS2-1)。工程計画には、生産計画および設備更新および保全計画が含まれる。生産計画は、受注量を充足する生産量を確保するため、年間を通じて生産量を計画するものである。設備更新および保全計画は、製鉄製鋼所100の各種設備の更新および保全の時期を計画するものである。
次いで、稼働計画部12は、年間のエネルギー計画を計画する(ステップS2-2)。エネルギー計画は、年間を通じたエネルギーコストの削減と、自然エネルギーの効率的な利用とを計画するものである。稼働計画部12は、電力販売者300により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、第1生産部110および第2生産部120を稼働させるように計画する。例えば、発電予定量が多い場合には、第2生産部120を多く稼働させるとともに第1生産部110を少なく稼働させてもよい。反対に、発電予定量が少ない場合には、第2生産部120を少なく稼働させるとともに第1生産部110を多く稼働してもよい。このようにして、第2生産部120を最大限稼働させ、自然エネルギーを最大限に利用するエネルギー計画を計画してもよい。
好ましくは、稼働計画部12は、自然エネルギーの時間特性を考慮して稼働計画を計画する。ここで、時間特性とは、自然エネルギーの経時的な変動特性をいう。自然エネルギーを利用した発電設備310の発電では、経時的に発電量が変動することが多い。このような発電量の変動は、自然エネルギーの時間特性を考慮することで高精度に予測できる。従って、自然エネルギーの時間特性を考慮することにより、発電予定量を一層正確に特定でき、高精度の稼働計画を計画できる。
上記時間特性としては、具体的に以下の例が挙げられる。太陽光エネルギーは、一日の中では日中多く夜間にゼロとなる。また、太陽光エネルギーは、一年の中では、夏に多く、冬に少ない。風力エネルギーは、地域によっても異なるが、例えば一日の中では朝晩に多く昼間に少ない場合がある。また、風力エネルギーは、同様に地域によって異なるが、例えば夏に少なく冬に多い場合がある。これら以外にも水力エネルギーまたは地熱エネルギーなどは比較的変動が少なく安定しているが、それぞれに応じた時間特性を有している。
また、上記時間特性は、天気または天候のような気象によって影響を受ける。そのため、時間特性は、気象情報の一例である天気情報または天候情報に応じたものであることが好ましい。従って、好ましくは、稼働計画部12は、気象情報を取得するための気象情報取得部12aを有している。気象情報取得部12aは、インターネットなどの通信ネットワーク3を介して天気情報または天候情報等を取得してもよい。天候が時間特性に影響を与える例としては、太陽光エネルギーは、晴天の時間帯では多く、曇天の時間帯では少ない。このように、自然エネルギーを利用して発電される電力量は、天気情報または天候情報等を考慮することで高精度に予測され得る。一例として太陽光エネルギーを挙げているが、太陽光エネルギー以外についても同様である。
また、上記時間特性は、気象情報会社または電力販売者300から取得されてもよい。これにより、簡易に上記時間特性を取得できる。
次いで、稼働計画部12は、逐次的に稼働計画を修正する(ステップS2-3)。様々な内乱要因または外乱要因が発生に応じて稼働計画の修正の要否が判断される(ステップS2-3)。様々な内乱要因または外乱要因が発生している場合には、稼働計画が修正される(Y:ステップS2-3)。様々な内乱要因または外乱要因が発生していない場合には、稼働計画を修正せずにそのまま遂行する(N:ステップS2-3)。例えば、内乱要因は各種設備の故障などを含み、外乱要因は予想外の天候の変化または景気の影響などを含む。従って、そのような内乱要因および外乱要因を考慮して逐次的に稼働計画を修正することで、第2生産部120を適切に稼働させることができる。
稼働決定部13は、安定した高炉111の操業を行うための所定範囲以内に出銑比を制御するとともに電気炉121を少なくとも稼働させる条件下で稼働計画に合わせて第1生産部110および第2生産部120を稼働させる。
図3は、本実施形態に係る炉稼働管理方法を示すフローチャートである。
まず、炉稼働管理装置10は、発電設備320により自然エネルギーを利用して発電される見込みである発電予定量を、前述のように電力販売者300の管理サーバから取得する(ステップS3-1)。次いで、稼働計画部12にて、当該発電予定量に基づいて前述の図2のように稼働計画を計画する(ステップS3-2)。次いで、稼働計画を実行する際に、計測部11にて高炉111の出銑比を取得する(ステップS3-3)。次いで、稼働決定部13にて、取得した出銑比が所定範囲以内であるか否かを判定する(ステップS3-4)。出銑比が所定範囲以内である場合(Y:ステップS3-4)、そのままの出銑比での稼働を決定する(ステップS3-5)。出銑比が所定範囲の下限値より小さい場合(N1:ステップS3-4)、当該下限値である最低出銑比での稼働を決定する(ステップS3-6)。本実施形態では、当該下限値である最低出銑比は1.6である。出銑比が所定範囲の上限値より大きい場合(N2:ステップS3-4)、当該上限値である最高出銑比での稼働を決定する(ステップS3-7)。本実施形態では、当該上限値である最高出銑比は2.2である。
また、計測部11で取得する出銑比は、高炉111を実際に稼働させた場合の実測値であってもよいし、高炉111を実際に稼働させる前の予測値であってもよい。いずれの場合においても、高炉111の出銑比は、上記所定範囲である1.6以上かつ2.2以下に実質的に維持される。
また、上記炉稼働管理方法を構成する各ステップは、コンピュータに実行させる炉稼働管理プログラムによって実現されてもよい。炉稼働管理プログラムを実行することによっても、上記方法の奏する作用効果を得ることが可能となる。言い換えると、上記方法を使用しているとも言える。
本実施形態によれば、第1生産部110だけでなく第2生産部120を備える製鉄製鋼システム1の稼働を好適に管理できる。このような製鉄製鋼システム1では、第1生産部110にて高炉111および転炉112が操業され、第2生産部120にて自然エネルギーを利用した電気炉121が操業される。そのため、第1生産部110における二酸化炭素の排出量が相対的に多く、第2生産部120における二酸化炭素の排出量が相対的に少ない。このような製鉄製鋼システム1では、第1生産部110および第2生産部120の合計生産量を維持して安定した生産を確保するとともに、第2生産部120を可能な限り多く稼働させて二酸化炭素の排出量を削減することが好ましい。これに対し、本実施形態の構成では、稼働計画部12が電力販売者300により自然エネルギーを利用して発電される見込みである発電予定量に基づいて稼働計画を計画するため、自然エネルギーを大量に利用して第2生産部120を稼働させることができる。しかしながら、第2生産部120の稼働量を増加させるためには、第1生産部110の稼働量を低下させる必要があり、即ち第1生産部110の高炉111の出銑比を低下させる必要がある。しかし、高炉111の出銑比が大幅に低下すると、高炉111を安定して操業できず、不具合が生じるおそれがある。これに対し、本実施形態の構成では、稼働決定部13は安定した高炉111の操業を行うための所定範囲以内に出銑比を制御するとともに電気炉121を少なくとも稼働させる。これにより、安定した高炉111の操業と二酸化炭素の排出量の削減とを実現できる。
図4は、二酸化炭素排出量の削減とそれに伴うコスト削減の効果を示す表である。図4では、自然エネルギーを間接的に利用する電気炉121を備えていない従来の製鉄製鋼システム(比較例)と、本実施形態の製鉄製鋼システム1(実施形態)とを比較している。この表は、製鉄製鋼所100の規模や二酸化炭素の排出コストなどによって変わり得る要素を含むため、理解を容易にするための一例として示す。
鉄鋼生産量(t)に対する二酸化炭素の排出量(t)を比較すると、比較例が2.10であるのに対し、本実施形態が1.79である。即ち、本実施形態の方が比較例よりも二酸化炭素の排出量が少ない。これは、本実施形態では、電気炉121の操業に伴い、高炉111の稼働量が減少することによる。また、年間の二酸化炭素の排出量を比較すると、例えば鉄鋼生産量が年間1000万tの場合には、本実施形態は比較例よりも310tの二酸化炭素の排出量の削減が見込まれる。
また、二酸化炭素は排出のためのコストを要する。そのため、上記二酸化炭素の排出量の削減がコスト低下にもつながり得る。例えば、二酸化炭素の排出量1tあたり1500円のコストを要する場合、上記試算によれば年間あたり46.5億円のコスト削減が見込まれる。ただし、本実施形態は、比較例に比べて、電気炉121等のランニングコスト(電気代)が増加する。例えば、電気代増分のコストとして1kWhあたり10円とすると、年間あたり12.5億円の電気代の増加が見込まれる。
結果として、本実施形態は、比較例に比べて年間あたり34億円程度のコスト削減が見込まれる。従って、本実施形態によれば、単に二酸化炭素の排出量を削減できるだけでなく、それに伴うコスト削減をも図ることができる。
以上より、本発明の具体的な実施形態について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
例えば、上記実施形態では、業者などの電力販売者300と、一般家庭の電力需要者200とを分けて記載しているが、これらは区別されなくてもよい。例えば、太陽光パネルを設置している一般家庭では、太陽光発電に伴って生じる余剰電力を販売することがある。従って、そのような一般家庭を電力販売者として取り扱ってもよい。これにより、電力需要者と電力販売者との区別なく電気のやりとりを実現してもよい。
1 製鉄製鋼システム
2 地域
3 通信ネットワーク
10 炉稼働管理装置
11 計測部
12 稼働計画部
12a 気象情報取得部
13 稼働決定部
100 製鉄製鋼所
110 第1生産部
111 高炉
112 転炉
120 第2生産部
121 電気炉
130 加工装置
140 発電所
200 電力需要者
300 電力販売者
310 (非自然エネルギーを利用する)発電設備
320 (自然エネルギーを利用する)発電設備

Claims (10)

  1. 高炉および転炉を含む第1生産部と、自然エネルギーを利用して発電された電力で稼働する電気炉を含む第2生産部とを備える製鉄製鋼システムの稼働を管理する炉稼働管理装置であって、
    電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、前記第1生産部および前記第2生産部の稼働計画を計画する稼働計画部と、
    前記高炉の出銑比を計測する計測部と、
    高炉操業を行うための所定範囲以内に前記出銑比を制御するとともに前記電気炉を少なくとも稼働させる条件下で前記稼働計画に対応して前記第1生産部および前記第2生産部を稼働させる稼働決定部と
    を含む、炉稼働管理装置。
  2. 前記発電予定量は、前記自然エネルギーの時間特性に応じて推定されたものである、請求項1に記載の炉稼働管理装置。
  3. 前記時間特性は、気象情報から予測されたものである、請求項2に記載の炉稼働管理装置。
  4. 前記時間特性は、電力販売者から取得したものである、請求項2に記載の炉稼働管理装置。
  5. 前記稼働計画部は、逐次的に前記稼働計画を修正する、請求項2から請求項4のいずれか1項に記載の炉稼働管理装置。
  6. 前記出銑比の前記所定範囲は、1.6以上かつ2.2以下である、請求項1から請求項5のいずれか1項に記載の炉稼働管理装置。
  7. 前記稼働計画部は、前記発電予定量が多いほど、前記第2生産部の稼働量を増加させるとともに前記第1生産部の稼働量を減少させるように前記稼働計画を計画する、請求項1から請求項6のいずれか1項に記載の炉稼働管理装置。
  8. 前記稼働決定部は、
    前記稼働計画において前記出銑比が前記所定範囲以内となる場合、前記稼働計画にて前記高炉を操業し、
    前記稼働計画において前記出銑比が前記所定範囲の上限値を超過する場合、前記出銑比が前記所定範囲の上限値となるように前記高炉を操業し、
    前記稼働計画において前記出銑比が前記所定範囲の下限値を下回る場合、前記出銑比が前記所定範囲の下限値となるように前記高炉を操業する、請求項1から請求項7のいずれか1項に記載の炉稼働管理装置。
  9. 高炉および転炉を含む第1生産部と、自然エネルギーを利用して発電される電力で稼働する電気炉を含む第2生産部とを含む製鉄製鋼システムの稼働を管理する炉稼働管理方法であって、
    電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、前記第1生産部および前記第2生産部の稼働計画を計画し、
    前記高炉の出銑比を計測し、
    安定した高炉操業を行うための所定範囲以内に前記出銑比を制御するとともに前記電気炉を少なくとも稼働させる条件下で前記稼働計画に対応して前記第1生産部および前記第2生産部を稼働させる
    ことを含む、炉稼働管理方法。
  10. 高炉および転炉を含む第1生産部と、自然エネルギーを利用して発電された電力で稼働する電気炉を含む第2生産部とを含む製鉄製鋼システムの稼働を管理する炉稼働管理方法をコンピュータに実行させるための炉稼働管理プログラムであって、
    電力販売者により自然エネルギーを利用して発電される見込みである発電予定量に基づいて、前記第1生産部および前記第2生産部の稼働計画を計画し、
    前記高炉の出銑比を計測し、
    安定した高炉操業を行うための所定範囲以内に前記出銑比を制御するとともに前記電気炉を少なくとも稼働させる条件下で前記稼働計画に対応して前記第1生産部および前記第2生産部を稼働させる
    ことを含む、炉稼働管理プログラム。
JP2020109162A 2020-06-24 2020-06-24 炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム Active JP7355712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109162A JP7355712B2 (ja) 2020-06-24 2020-06-24 炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109162A JP7355712B2 (ja) 2020-06-24 2020-06-24 炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム

Publications (2)

Publication Number Publication Date
JP2022006742A JP2022006742A (ja) 2022-01-13
JP7355712B2 true JP7355712B2 (ja) 2023-10-03

Family

ID=80110527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109162A Active JP7355712B2 (ja) 2020-06-24 2020-06-24 炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム

Country Status (1)

Country Link
JP (1) JP7355712B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262458A (ja) 2001-03-02 2002-09-13 Toshiba Eng Co Ltd 気象予測情報を利用した電力供給システム
JP2005055997A (ja) 2003-08-07 2005-03-03 Nippon Steel Corp 鉄鋼生産工場の操業最適化方法
JP2006311675A (ja) 2005-04-27 2006-11-09 Sanyo Electric Co Ltd 電力源特定システム
JP2017127092A (ja) 2016-01-13 2017-07-20 Jfeスチール株式会社 電力調整方法
JP2020066759A (ja) 2018-10-22 2020-04-30 日本製鉄株式会社 高炉操業方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002262458A (ja) 2001-03-02 2002-09-13 Toshiba Eng Co Ltd 気象予測情報を利用した電力供給システム
JP2005055997A (ja) 2003-08-07 2005-03-03 Nippon Steel Corp 鉄鋼生産工場の操業最適化方法
JP2006311675A (ja) 2005-04-27 2006-11-09 Sanyo Electric Co Ltd 電力源特定システム
JP2017127092A (ja) 2016-01-13 2017-07-20 Jfeスチール株式会社 電力調整方法
JP2020066759A (ja) 2018-10-22 2020-04-30 日本製鉄株式会社 高炉操業方法

Also Published As

Publication number Publication date
JP2022006742A (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
Theo et al. An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park
Tesema et al. Energy efficiency improvement potentials for the cement industry in Ethiopia
Sun et al. A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties
CN111476509B (zh) 基于igdt模型的用户侧综合能源系统规划方法及装置
Wang et al. An integrated optimization model for generation and batch production load scheduling in energy intensive enterprise
Lin et al. Energy conservation of electrolytic aluminum industry in China
Andreassi et al. Innovative method for energy management: Modelling and optimal operation of energy systems
CN107077105B (zh) 用于发电系统的经济优化的设备及方法
CN112308411A (zh) 基于动态碳交易模型的综合能源站随机规划方法及系统
Sitas et al. Assessment of technical and economic efficiency indicators of cogeneration in modern market conditions
Orcajo et al. Coordinated management of electrical energy in a steelworks and a wind farm
Beiter et al. The potential impact of offshore wind energy on a future power system in the US northeast
WO2021200118A1 (ja) 製鉄所におけるエネルギー運用条件の最適計算方法、製鉄所におけるエネルギー運用条件の最適計算装置、及び製鉄所の操業方法
Zhao et al. An enhanced network-constrained UC model for leveraging system operation cost and financial profitability of incentive-based DR loads
JP7355712B2 (ja) 炉稼働管理装置、炉稼働管理方法、および炉稼働管理プログラム
JP2010237774A (ja) 消費エネルギー改善支援システム、消費エネルギー改善支援方法、消費エネルギー改善支援装置、消費エネルギー改善支援プログラム、および記録媒体
Leenders et al. Integrated scheduling of batch production and utility systems for provision of control reserve
Hou System Dynamics Simulation of Large‐Scale Generation System for Designing Wind Power Policy in China
Zimmermann et al. An analysis of long-term impacts of demand response on investments in thermal power plants and generation adequacy
van Niekerk et al. Developing an optimisation model for industrial furnace gaseous fuel distribution for energy cost savings
Abahussain et al. Optimal scheduling of a natural gas processing facility with Price-based Demand Response
CN115685898A (zh) 提升锅炉灵活性的输配储给煤方法、装置、设备及介质
US20230299584A1 (en) Method and device for predicting an energy service offering and software program product
Su et al. Multi-objective scheduling of a steelmaking plant integrated with renewable energy sources and energy storage systems: Balancing costs, emissions and make-span
CN110492500B (zh) 一种负载调度方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R151 Written notification of patent or utility model registration

Ref document number: 7355712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151