JP7354109B2 - Optical glass and optical elements - Google Patents

Optical glass and optical elements Download PDF

Info

Publication number
JP7354109B2
JP7354109B2 JP2020531207A JP2020531207A JP7354109B2 JP 7354109 B2 JP7354109 B2 JP 7354109B2 JP 2020531207 A JP2020531207 A JP 2020531207A JP 2020531207 A JP2020531207 A JP 2020531207A JP 7354109 B2 JP7354109 B2 JP 7354109B2
Authority
JP
Japan
Prior art keywords
glass
component
optical
components
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020531207A
Other languages
Japanese (ja)
Other versions
JPWO2020017274A1 (en
Inventor
道子 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Publication of JPWO2020017274A1 publication Critical patent/JPWO2020017274A1/en
Application granted granted Critical
Publication of JP7354109B2 publication Critical patent/JP7354109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Description

本発明は、光学ガラス及び光学素子に関する。 TECHNICAL FIELD The present invention relates to optical glasses and optical elements.

光学系を構成する光学素子の材料として、1.75以上の屈折率(n)と30以上40以下のアッベ数(ν)を有する高屈折率低分散ガラスの需要が非常に高まっている。Demand for high refractive index, low dispersion glass having a refractive index (n d ) of 1.75 or more and an Abbe number (ν d ) of 30 or more and 40 or less is increasing extremely as a material for optical elements that constitute optical systems. .

このような高屈折率低分散ガラスとしては、例えば特許文献1に代表されるようなガラス組成物が知られている。 As such a high refractive index low dispersion glass, a glass composition typified by, for example, Patent Document 1 is known.

国際公開第2018/003582号International Publication No. 2018/003582

近年、高屈折率低分散ガラスをデジタルカメラ等の光学製品に搭載する場合、色収差を改善するために、光学ガラスの部分分散比が小さいことが望まれている。 In recent years, when high refractive index, low dispersion glass is installed in optical products such as digital cameras, it is desired that the partial dispersion ratio of the optical glass be small in order to improve chromatic aberration.

光学ガラスには、短波長域の部分分散性を表す部分分散比(θg,F)とアッベ数(ν)との間に、およそ直線的な関係がある。この関係を表す直線は、部分分散比を縦軸に、アッベ数を横軸に採用した直交座標上で、NSL7とPBM2の部分分散比及びアッベ数をプロットした2点を結ぶ直線で表され、ノーマルラインと呼ばれている。ノーマルラインの基準となるノーマルガラスは光学ガラスメーカー毎によっても異なるが、各社ともほぼ同等の傾きと切片で定義している。(NSL7とPBM2は株式会社オハラ社製の光学ガラスであり、PBM2のアッベ数(ν)は36.3,部分分散比(θg,F)は0.5828、NSL7のアッベ数(ν)は60.5、部分分散比(θg,F)は0.5436である。)In optical glass, there is an approximately linear relationship between the partial dispersion ratio (θg, F) representing partial dispersion in a short wavelength range and the Abbe number (ν d ). A straight line representing this relationship is expressed by a straight line connecting two points where the partial dispersion ratio and Abbe number of NSL7 and PBM2 are plotted on the orthogonal coordinates with the partial dispersion ratio on the vertical axis and the Abbe number on the horizontal axis, It is called the normal line. Normal glass, which is the standard for the normal line, differs depending on the optical glass manufacturer, but each company defines it using almost the same slope and intercept. (NSL7 and PBM2 are optical glasses manufactured by OHARA Co., Ltd., and the Abbe number (ν d ) of PBM2 is 36.3, the partial dispersion ratio (θg, F) is 0.5828, and the Abbe number (ν d ) of NSL7 is 60.5, and the partial dispersion ratio (θg, F) is 0.5436.)

近年、光学設計上の観点から、高屈折率低分散を有するガラスにおいては、部分分散比(θg,F)がノーマルラインよりも高い値にあることが多いが、色収差を改善するために、少なくとも正の方向にノーマルラインに近く、より好ましくは負の方向に離れているアッベ数(ν)と部分分散比(θg,F)の組合せを有することが望まれる。In recent years, from the viewpoint of optical design, in glasses with high refractive index and low dispersion, the partial dispersion ratio (θg, F) is often higher than the normal line, but in order to improve chromatic aberration, at least It is desirable to have a combination of Abbe number (ν d ) and partial dispersion ratio (θg, F) that is close to the normal line in the positive direction, and more preferably away from the normal line in the negative direction.

本発明は、上記光学設計上の要求に鑑みてなされたものであって、その目的とするところは、高屈折率低分散の光学特性を有し、且つ、異常分散性(Δθg,F)が低い値をとり、色収差の改善に寄与できる光学ガラスと、これを用いた光学素子を提供することにある。 The present invention has been made in view of the above-mentioned optical design requirements, and its purpose is to have optical properties of high refractive index and low dispersion, and to have low anomalous dispersion (Δθg, F). An object of the present invention is to provide an optical glass that has a low value and can contribute to improving chromatic aberration, and an optical element using the same.

本発明者は、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO成分、B成分、Nb成分及びBaO成分と、Ln成分のうち少なくともいずれかを併用し、各成分の含有量を調整することによって、所望の屈折率及びアッベ数を有しながらも、異常分散性が低い値をとり得ることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。In order to solve the above-mentioned problems, the inventors of the present invention have conducted extensive testing and research and found that at least any of the 2 components of SiO, the 3 components of B 2 O, the 5 components of Nb 2 O, the BaO component, and the 3 components of Ln 2 O. We have discovered that by using these in combination and adjusting the content of each component, it is possible to have a low anomalous dispersion value while having the desired refractive index and Abbe number, and have completed the present invention. . Specifically, the present invention provides the following.

(1) 質量%で、
SiO成分を2.0%以上25.0%以下、
成分を3.0%以上25.0%以下、
Nb成分を0%超30.0%以下、
BaO成分を10.0%以上60.0%以下
含有し、
Ln成分を合計で10.0%以上50.0%以下含有し(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)、
屈折率(n)が1.75以上、アッベ数(ν)が30以上40以下であり、
アッベ数(ν)をx軸、部分分散比(θg,F)をy軸にした座標系で、(x、y)=(36.3、0.5828)と(60.5、0.5436)の2点を結ぶ直線からのy軸方向に関するずれの大きさ(異常分散性(Δθg,F))が+0.001以下である光学ガラス。
(1) In mass%,
2.0% or more and 25.0% or less of SiO 2 components,
3.0% or more and 25.0% or less of B 2 O 3 components,
Nb 2 O 5 component more than 0% and not more than 30.0%,
Contains a BaO component of 10.0% or more and 60.0% or less,
Contains a total of 10.0% or more and 50.0% or less of Ln 2 O 3 components (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb),
The refractive index (n d ) is 1.75 or more, the Abbe number (ν d ) is 30 or more and 40 or less,
In a coordinate system in which the Abbe number (ν d ) is the x axis and the partial dispersion ratio (θg, F) is the y axis, (x, y) = (36.3, 0.5828) and (60.5, 0. 5436) in the y-axis direction from a straight line connecting two points (abnormal dispersion (Δθg, F)) of +0.001 or less.

(2) -30~70℃における平均線膨張係数(α)が 75×10-7/℃~100×10-7/℃である(1)に記載の光学ガラス。(2) The optical glass according to (1), which has an average coefficient of linear expansion (α) at -30 to 70°C of 75×10 −7 /°C to 100×10 −7 /°C.

(3) (1)又は(2)に記載の光学ガラスからなる光学素子。 (3) An optical element made of the optical glass according to (1) or (2).

(4) (3)に記載の光学素子を備える光学機器。 (4) An optical device comprising the optical element according to (3).

本発明によれば、高屈折率低分散の光学特性を有し、異常分散性(Δθg,F)が小さい値をとり、色収差が低減された光学ガラスと、これを用いた光学素子を得ることができる。 According to the present invention, it is possible to obtain an optical glass having optical properties of high refractive index and low dispersion, a small value of anomalous dispersion (Δθg, F), and reduced chromatic aberration, and an optical element using the same. I can do it.

また、本発明によれば、低分散ガラスに近い熱膨張性を有する光学ガラスと、これを用いた光学素子を得ることができる。 Further, according to the present invention, it is possible to obtain an optical glass having thermal expansion properties close to that of low-dispersion glass, and an optical element using the same.

本発明の光学ガラスは、質量%で、SiO成分を2.0%以上25.0%以下、B成分を3.0%以上25.0%以下、BaO成分を10.0%以上60.0%以下、Nb成分を1.0%以上30.0%以下、Ln成分を合計で10.0%以上50.0%以下(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)含有し、1.75以上の屈折率(n)と30以上40以下のアッベ数(ν)を有し、アッベ数(ν)をx軸、部分分散比(θg,F)をy軸にした座標系で、(x、y)=(36.3、0.5828)と(60.5、0.5436)の2点を結ぶ直線からのy軸方向に関するずれの大きさ(異常分散性(Δθg,F))が+0.001以下である。SiO成分、B成分、Nb成分及びBaO成分と、Ln成分のうち少なくともいずれかを併用し、各成分の含有量を調整することによって、所望の屈折率及びアッベ数を有しながらも、異常分散性が低い値をとる。そのため、デジタルカメラ等のレンズユニットとして使用された際の色収差の改善に寄与することが可能な光学ガラスを得ることができる。The optical glass of the present invention has a SiO 2 component of 2.0% or more and 25.0% or less, a B 2 O 3 component of 3.0% or more and 25.0% or less, and a BaO component of 10.0% by mass%. 60.0% or less, the Nb 2 O 5 component is 1.0% or more and 30.0% or less, the Ln 2 O 3 component is 10.0% or more and 50.0% or less (in the formula, Ln is La, (one or more selected from the group consisting of Gd, Y, Yb), has a refractive index (n d ) of 1.75 or more, an Abbe number (ν d ) of 30 or more and 40 or less, and has an Abbe number (ν d ) of 30 or more and 40 or less. d ) is the x axis and the partial dispersion ratio (θg, F) is the y axis, (x, y) = (36.3, 0.5828) and (60.5, 0.5436) The magnitude of the deviation in the y-axis direction from the straight line connecting the points (abnormal dispersion (Δθg, F)) is +0.001 or less. A desired refractive index and a desired refractive index can be obtained by using at least one of SiO 2 components, B 2 O 3 components, Nb 2 O 5 components, BaO component, and Ln 2 O 3 components and adjusting the content of each component. Although it has an Abbe number, its anomalous dispersion takes a low value. Therefore, it is possible to obtain an optical glass that can contribute to improving chromatic aberration when used as a lens unit of a digital camera or the like.

また、SiO成分、B成分、Nb成分及びBaO成分と、Ln成分のうち少なくともいずれかを併用し、各成分の含有量を調整することによって、フツリン酸ガラス等の低分散ガラスに近い熱膨張性を有する、高屈折率低分散の光学ガラスが得られる。本発明にあるような高屈折率低分散ガラスは、色収差を低減させる等の目的で、低分散ガラスと接合させてレンズユニットに用いることがある。そして、このようなレンズユニットでは、使用環境や照射される光によって温度変化が生じることが多い。この場合であっても、本発明の高屈折率低分散ガラスが低分散ガラスに近い熱膨張性を有するため、低分散ガラスとの接合性を良好に維持することができる。In addition, by using at least one of SiO 2 components, B 2 O 3 components, Nb 2 O 5 components, BaO component, and Ln 2 O 3 components together and adjusting the content of each component, fluorophosphate glass can be produced. An optical glass with a high refractive index and low dispersion, which has thermal expansion properties close to those of low-dispersion glasses such as the above, can be obtained. A high refractive index, low dispersion glass as in the present invention may be bonded with a low dispersion glass and used in a lens unit for purposes such as reducing chromatic aberration. In such a lens unit, temperature changes often occur depending on the usage environment and the irradiated light. Even in this case, since the high refractive index, low dispersion glass of the present invention has thermal expansion properties close to that of the low dispersion glass, good bondability with the low dispersion glass can be maintained.

以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the optical glass of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present invention. Note that the description may be omitted as appropriate for parts where the description overlaps, but this does not limit the gist of the invention.

[ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成の全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量数を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the optical glass of the present invention will be described below. In this specification, unless otherwise specified, the content of each component is expressed in mass % based on the total mass of the composition in terms of oxides. Here, the "composition equivalent to oxide" refers to the composition when it is assumed that the oxides, composite salts, metal fluorides, etc. used as raw materials for the glass components of the present invention are all decomposed and converted into oxides when melted. The composition shows each component contained in the glass, with the total mass number of produced oxides being 100% by mass.

<必須成分、任意成分について>
SiO成分は、ガラス形成酸化物として必須の成分であり、化学的耐久性を高められ、熔融ガラスの粘度を高められ、ガラスの着色を低減できる。また、ガラスの安定性を高めて量産に耐えるガラスを得易くできる。さらに、平均線膨張係数を低くする効果がある。従って、SiO成分の含有量は、好ましくは2.0%、より好ましくは3.0%、さらに好ましくは4.0%を下限とする。
他方で、屈折率の低下を抑えるため、SiO成分の含有量は、好ましくは25.0%、より好ましくは23.0%、さらに好ましくは20.0%を上限とする。
<About essential ingredients and optional ingredients>
The SiO 2 component is an essential component as a glass-forming oxide, and can enhance chemical durability, increase the viscosity of molten glass, and reduce coloring of glass. Furthermore, the stability of the glass can be improved, making it easier to obtain glass that can withstand mass production. Furthermore, it has the effect of lowering the average coefficient of linear expansion. Therefore, the lower limit of the content of the two SiO 2 components is preferably 2.0%, more preferably 3.0%, and even more preferably 4.0%.
On the other hand, in order to suppress a decrease in the refractive index, the upper limit of the content of the SiO 2 component is preferably 25.0%, more preferably 23.0%, and even more preferably 20.0%.

成分は、ガラス形成酸化物として必須の成分であり、ガラスの失透を低減でき、且つガラスのアッベ数を高められる。従って、B成分の含有量は、好ましくは3.0%、より好ましくは4.0%、さらに好ましくは5.0%を下限とする。
他方で、より大きな屈折率を得易くでき、相対屈折率の温度係数を小さくでき、且つ化学的耐久性の悪化を抑えるため、B成分の含有量は、好ましくは25.0%、より好ましくは22.0%、さらに好ましくは20.0%を上限とする。
The B 2 O 3 component is an essential component as a glass-forming oxide, and can reduce devitrification of the glass and increase the Abbe number of the glass. Therefore, the lower limit of the content of the three B 2 O components is preferably 3.0%, more preferably 4.0%, and even more preferably 5.0%.
On the other hand, in order to easily obtain a larger refractive index, reduce the temperature coefficient of relative refractive index, and suppress deterioration of chemical durability, the content of the three B 2 O components is preferably 25.0%, The upper limit is more preferably 22.0%, and even more preferably 20.0%.

Nb成分は、0%超含有する場合に、屈折率を高め、分散を大きくしつつ異常分散性を低くする必須の成分である。従って、Nb成分の含有量は、好ましくは0%超、より好ましくは0.3%以上、より好ましくは1.0%以上、さらに好ましくは4.0%以上、さらに好ましくは7.0%以上、さらに好ましくは10.0%以上とする。
他方で、その量が少なすぎるとその効果が不十分となり、多すぎると逆に耐失透性が悪くなり、可視光短波長域の透過率も悪化しやすくなる。従って、Nb成分の含有量は、好ましくは30.0%、より好ましくは28.0%、さらに好ましくは26.0%、さらに好ましくは22.0%を上限とする。
The Nb 2 O 5 component, when contained in an amount exceeding 0%, is an essential component that increases the refractive index, increases dispersion, and lowers anomalous dispersion. Therefore, the content of the Nb 2 O 5 component is preferably more than 0%, more preferably 0.3% or more, more preferably 1.0% or more, even more preferably 4.0% or more, still more preferably 7.0% or more. The content should be 0% or more, more preferably 10.0% or more.
On the other hand, if the amount is too small, the effect will be insufficient, and if it is too large, the resistance to devitrification will deteriorate, and the transmittance in the short wavelength range of visible light will also tend to deteriorate. Therefore, the upper limit of the content of the Nb 2 O 5 component is preferably 30.0%, more preferably 28.0%, even more preferably 26.0%, and even more preferably 22.0%.

BaO成分は、ガラス原料の熔融性を高められ、ガラスの失透を低減でき、屈折率を高められ、相対屈折率の温度係数を小さくできる必須成分である。また、平均線膨張係数を高くする効果がある。従って、BaO成分の含有量は、好ましくは10.0%、より好ましくは12.0%、さらに好ましくは14.0%、さらに好ましくは18.0%を下限とする。
特に低い異常分散性と、フツリン酸塩ガラスに近い平均線膨張係数を実現しやすくするためには、19%以上を下限とすることが好ましい。
他方で、ガラスの屈折率の低下や、化学的耐久性の低下、失透を低減させるため、BaO成分の含有量は、好ましくは60.0%、より好ましくは55.0%、さらに好ましくは50.0%、さらに好ましくは45.0%、さらに好ましくは40.0%を上限とする。
The BaO component is an essential component that can enhance the meltability of the glass raw material, reduce devitrification of the glass, increase the refractive index, and reduce the temperature coefficient of the relative refractive index. It also has the effect of increasing the average coefficient of linear expansion. Therefore, the lower limit of the BaO component content is preferably 10.0%, more preferably 12.0%, even more preferably 14.0%, and even more preferably 18.0%.
In order to easily achieve particularly low anomalous dispersion and an average linear expansion coefficient close to that of fluorophosphate glass, the lower limit is preferably 19% or more.
On the other hand, in order to reduce the reduction in the refractive index of the glass, the reduction in chemical durability, and the devitrification, the content of the BaO component is preferably 60.0%, more preferably 55.0%, and even more preferably The upper limit is 50.0%, more preferably 45.0%, even more preferably 40.0%.

Al成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、且つ熔融ガラスの耐失透性を向上できる任意成分である。また、平均線膨張係数を低くする効果がある。
他方で、失透を低減させる観点から、Al成分の含有量は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とし、さらに好ましくは1.0%未満とする。
The Al 2 O 3 component is an optional component that can improve the chemical durability of glass and improve the devitrification resistance of molten glass when it is contained in an amount exceeding 0%. It also has the effect of lowering the average coefficient of linear expansion.
On the other hand, from the viewpoint of reducing devitrification, the content of the three Al 2 O components is preferably 10.0%, more preferably 8.0%, still more preferably 5.0%, and still more preferably 3.0%. %, more preferably less than 1.0%.

成分は、0%超含有する場合に、高屈折率及び高アッベ数を維持しながらも、他の希土類元素に比べてガラスの材料コストを抑えられ、且つ、他の希土類成分よりもガラスの比重を低減できる任意成分である。また、異常分散性を高くし、平均線膨張係数を低くする効果がある。
他方で、Y成分を過剰に含有すると、ガラスの安定性が低下し、ガラス原料の熔解性も悪化する。従って、Y成分の含有量は、好ましくは30.0%、より好ましくは27.0%、さらに好ましくは25.0%、さらに好ましくは21.0%を上限とする。
When the Y 2 O 3 component is contained in an amount exceeding 0%, it maintains a high refractive index and a high Abbe number, while reducing the material cost of glass compared to other rare earth elements, and is more effective than other rare earth components. is also an optional component that can reduce the specific gravity of glass. It also has the effect of increasing anomalous dispersion and lowering the average coefficient of linear expansion.
On the other hand, if the Y 2 O 3 component is contained excessively, the stability of the glass will decrease and the solubility of the glass raw material will also deteriorate. Therefore, the upper limit of the content of the three Y 2 O components is preferably 30.0%, more preferably 27.0%, even more preferably 25.0%, and even more preferably 21.0%.

La成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められる任意成分である。また、異常分散性を低くする効果がある。そのため、La成分の含有量は、好ましくは0%超、より好ましくは1.0%以上、さらに好ましくは5.0%以上、さらに好ましくは10.0%以上としてもよい。
他方で、La成分を過剰に含有すると、ガラスの安定性が低下し、ガラス原料の熔解性も悪化する。従って、La成分の含有量は、好ましくは50.0%、より好ましくは45.0%、さらに好ましくは40.0%、さらに好ましくは32.0%、さらに好ましくは28.0%、さらに好ましくは25.0%を上限とする。
The La 2 O 3 component is an optional component that can increase the refractive index and Abbe number of the glass when contained in an amount exceeding 0%. It also has the effect of lowering anomalous dispersion. Therefore, the content of the three La 2 O components is preferably more than 0%, more preferably 1.0% or more, still more preferably 5.0% or more, and still more preferably 10.0% or more.
On the other hand, when the La 2 O 3 component is contained excessively, the stability of the glass decreases and the solubility of the glass raw material also deteriorates. Therefore, the content of the three La 2 O components is preferably 50.0%, more preferably 45.0%, even more preferably 40.0%, even more preferably 32.0%, and even more preferably 28.0%. The upper limit is more preferably 25.0%.

Gd成分及びYb成分は、0%超含有する場合に、ガラスの屈折率を高められる任意成分である。
他方で、Gd成分及びYb成分は希土類の中でも原料価格が高く、その含有量が多いと生産コストが高くなる。また、Gd成やYb成分の含有量を低減させることで、ガラスのアッベ数の上昇を抑えられる。従って、Gd成分の含有量は、好ましくは50.0%、より好ましくは45.0%、さらに好ましくは35.0%、さらに好ましくは30.0%を上限とする。また、Yb成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。
The Gd 2 O 3 component and the Yb 2 O 3 component are optional components that can increase the refractive index of the glass when contained in an amount exceeding 0%.
On the other hand, the raw material costs of the Gd 2 O 3 component and the Yb 2 O 3 component are high among rare earth elements, and if their content is large, the production cost will be high. Further, by reducing the content of the Gd 2 O 3 component and the Yb 2 O 3 component, an increase in the Abbe number of the glass can be suppressed. Therefore, the upper limit of the content of the three Gd 2 O components is preferably 50.0%, more preferably 45.0%, still more preferably 35.0%, and even more preferably 30.0%. Further, the upper limit of the content of the Yb 2 O 3 component is preferably 10.0%, more preferably 5.0%, even more preferably 3.0%, and even more preferably 1.0%.

TiO成分は、0%超含有する場合に、ガラスの屈折率を高め、且つガラスの失透を低減できる任意成分である。また、異常分散性を高くし、平均線膨張係数を低くする効果がある。
他方で、過剰な含有による失透を低減し、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えるため、TiO成分の含有量は、好ましくは20.0%、より好ましくは15.0%、さらに好ましくは12.5%、さらに好ましくは10.0%、さらに好ましくは6.0%を上限とする。
The TiO2 component is an optional component that can increase the refractive index of the glass and reduce the devitrification of the glass when contained in an amount exceeding 0%. It also has the effect of increasing anomalous dispersion and lowering the average coefficient of linear expansion.
On the other hand, in order to reduce devitrification due to excessive content and suppress a decrease in the transmittance of the glass to visible light (particularly wavelengths of 500 nm or less), the content of the two TiO components is preferably 20.0%, more preferably The upper limit is 15.0%, more preferably 12.5%, even more preferably 10.0%, even more preferably 6.0%.

ZrO成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高め、且つ失透を低減できる任意成分である。また、異常分散性を低くする効果がある。
他方で、過剰に含有すると耐失透性が悪化する。従って、ZrO成分の含有量は、好ましくは10.0%、より好ましくは9.0%、さらに好ましくは8.0%、さらに好ましくは6.0%を上限とする。
The ZrO2 component is an optional component that can increase the refractive index and Abbe number of the glass and reduce devitrification when contained in an amount exceeding 0%. It also has the effect of lowering anomalous dispersion.
On the other hand, if it is contained in excess, devitrification resistance will deteriorate. Therefore, the upper limit of the content of the two ZrO components is preferably 10.0%, more preferably 9.0%, still more preferably 8.0%, and even more preferably 6.0%.

Ta成分は、0%超含有する場合に、ガラスの屈折率を高め、且つ耐失透性を高められる任意成分である。また、異常分散性を低くする効果がある。
しかしながら、Ta成分は原料価格が高く、ガラス融液の溶解温度を高める成分であるため、その含有量が多いと生産コストが上昇する。従って、Ta成分の含有量は、好ましくは5.0%、より好ましくは3.0%、さらに好ましくは1.0%を上限とする。特に材料コストを低減させる観点では、Ta成分を含有しないことが最も好ましい。
The Ta 2 O 5 component is an optional component that, when contained in an amount exceeding 0%, can increase the refractive index of the glass and improve the devitrification resistance. It also has the effect of lowering anomalous dispersion.
However, the Ta 2 O 5 component has a high raw material price and is a component that increases the melting temperature of the glass melt, so if its content is large, the production cost will increase. Therefore, the upper limit of the content of the Ta 2 O 5 component is preferably 5.0%, more preferably 3.0%, and even more preferably 1.0%. Particularly from the viewpoint of reducing material costs, it is most preferable not to contain the Ta 2 O 5 component.

WO成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら、屈折率を高め、ガラス転移点を低くでき、且つ失透を低減できる任意成分である。
他方で、アッベ数の低下を抑え、ガラスの着色を低減させる観点から、WO成分の含有量は、好ましくは10.0%、より好ましくは8.0%、さらに好ましくは5.0%、さらに好ましくは3.0%を上限とする。
The WO 3 components are optional components that, when contained in an amount exceeding 0%, can increase the refractive index, lower the glass transition point, and reduce devitrification while reducing the coloring of the glass caused by other high refractive index components. .
On the other hand, from the viewpoint of suppressing the decrease in the Abbe number and reducing the coloring of the glass, the content of the three WO components is preferably 10.0%, more preferably 8.0%, even more preferably 5.0%, More preferably, the upper limit is 3.0%.

ZnO成分は、0%超含有する場合に、原料の熔解性を高め、溶解したガラスからの脱泡を促進し、また、ガラスの安定性を高められる任意成分である。また、平均線膨張係数を低くする効果がある。また、ガラス転移点を低くでき、且つ化学的耐久性を改善できる成分でもある。
他方で、屈折率の低下を抑えて、ガラスの安定性を高める観点から、ZnO成分の含有量は、好ましくは10.0%、より好ましくは6.0%、さらに好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。
The ZnO component is an optional component that, when contained in an amount exceeding 0%, can improve the solubility of the raw material, promote defoaming from the melted glass, and improve the stability of the glass. It also has the effect of lowering the average coefficient of linear expansion. It is also a component that can lower the glass transition point and improve chemical durability.
On the other hand, from the viewpoint of suppressing the decrease in the refractive index and increasing the stability of the glass, the content of the ZnO component is preferably 10.0%, more preferably 6.0%, still more preferably 5.0%, The upper limit is more preferably 3.0%, and even more preferably 1.0%.

MgO成分、CaO成分及びSrO成分は、0%超含有する場合に、ガラスの屈折率や熔融性、耐失透性を調整できる任意成分である。
他方で、屈折率の低下を抑えて、ガラスの安定性を高める観点から、MgO成分の含有量は、好ましくは5.0%、より好ましくは4.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。また、同様の理由により、CaO成分及びSrO成分の含有量は、それぞれ好ましくは15.0%、より好ましくは14.0%、さらに好ましくは12.0%、さらに好ましくは10.0%、さらに好ましくは7.0%を上限とする。
The MgO component, CaO component, and SrO component are optional components that can adjust the refractive index, meltability, and devitrification resistance of the glass when contained in an amount exceeding 0%.
On the other hand, from the viewpoint of suppressing the decrease in the refractive index and increasing the stability of the glass, the content of the MgO component is preferably 5.0%, more preferably 4.0%, still more preferably 3.0%, More preferably, the upper limit is 1.0%. Further, for the same reason, the content of the CaO component and the SrO component is preferably 15.0%, more preferably 14.0%, still more preferably 12.0%, still more preferably 10.0%, and The upper limit is preferably 7.0%.

LiO成分、NaO成分及びKO成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。また、いずれも異常分散性を低くし、平均線膨張係数を高くする効果がある。
他方で、LiO成分、NaO成分及びKO成分の含有量を低減させることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。また、特にLiO成分の含有量を低減させることで、ガラスの粘性が高められるため、ガラスの脈理を低減できる。従って、LiO成分、NaO成分及びKO成分の含有量は、それぞれ好ましくは10.0%、より好ましくは8.0%、さらに好ましくは6.0%、さらに好ましくは4.0%、さらに好ましくは2.0%を上限とする。
The Li 2 O component, Na 2 O component, and K 2 O component are optional components that can improve the meltability of glass and lower the glass transition point when contained in an amount exceeding 0%. Moreover, both have the effect of lowering anomalous dispersion and increasing the average linear expansion coefficient.
On the other hand, by reducing the contents of the Li 2 O component, Na 2 O component, and K 2 O component, the refractive index of the glass can be made difficult to decrease and devitrification of the glass can be reduced. In addition, especially by reducing the content of the Li 2 O component, the viscosity of the glass is increased, so striae in the glass can be reduced. Therefore, the contents of the Li 2 O component, Na 2 O component, and K 2 O component are each preferably 10.0%, more preferably 8.0%, still more preferably 6.0%, and still more preferably 4.0%. The upper limit is 0%, more preferably 2.0%.

Sb成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
他方で、過剰に含有させると、可視光領域の短波長領域における透過率の低下や、ガラスのソラリゼーション、内部品質の低下を招く恐れがある。
従って、Sb成分の含有量は、好ましくは1.0%、より好ましくは0.5%、さらに好ましくは0.2%を上限とする。
The Sb 2 O 3 component is an optional component capable of defoaming the molten glass when contained in an amount exceeding 0%.
On the other hand, if it is contained in an excessive amount, it may cause a decrease in transmittance in the short wavelength region of the visible light region, solarization of the glass, and a decrease in internal quality.
Therefore, the upper limit of the content of the three Sb 2 O components is preferably 1.0%, more preferably 0.5%, and even more preferably 0.2%.

なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。Note that the component for clarifying and defoaming the glass is not limited to the above-mentioned three Sb 2 O components, and a known clarifying agent, defoaming agent, or a combination thereof in the field of glass manufacturing can be used.

SnO成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つガラスの可視光透過率を高められる任意成分である。
他方で、過剰に含有すると、熔融ガラスの還元によるガラスの着色や、ガラスの失透が生じることがある。従って、SnO成分の含有量は、好ましくは3.0%、より好ましくは1.0%、さらに好ましくは0.5%を上限とする。
The SnO 2 component is an optional component that, when contained in an amount exceeding 0%, can reduce oxidation of the molten glass, clarify it, and increase the visible light transmittance of the glass.
On the other hand, if it is contained in excess, the glass may be colored or devitrified due to the reduction of the molten glass. Therefore, the upper limit of the content of the SnO 2 component is preferably 3.0%, more preferably 1.0%, and even more preferably 0.5%.

成分は任意成分であり、その含有量を10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、P成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。The P 2 O 5 component is an optional component, and by controlling its content to 10.0% or less, the liquidus temperature of the glass can be lowered and the devitrification resistance can be improved. Therefore, the upper limit of the content of the P 2 O 5 component is preferably 10.0%, more preferably 5.0%, even more preferably 3.0%, and even more preferably 1.0%.

GeO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を向上できる任意成分である。
しかしながら、GeOは原料価格が高く、その含有量が多いと生産コストが高くなる。従って、GeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。
The GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when contained in an amount exceeding 0%.
However, GeO 2 has a high raw material price, and if its content is high, the production cost will be high. Therefore, the upper limit of the content of the two GeO components is preferably 10.0%, more preferably 5.0%, even more preferably 3.0%, and even more preferably 1.0%.

Bi成分は、0%超含有する場合に、屈折率を高め、且つガラス転移点を下げ得る任意成分である。
他方で、Bi成分の含有量を10.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Bi成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。
The Bi 2 O 3 component is an optional component that can increase the refractive index and lower the glass transition point when contained in an amount exceeding 0%.
On the other hand, by controlling the content of the three Bi 2 O components to 10.0% or less, the liquidus temperature of the glass can be lowered and the devitrification resistance can be improved. Therefore, the upper limit of the content of the three Bi 2 O components is preferably 10.0%, more preferably 5.0%, even more preferably 3.0%, and even more preferably 1.0%.

TeO成分は、0%超含有する場合に、屈折率を高め、且つガラス転移点を下げられる任意成分である。
他方で、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化し得る問題がある。従って、TeO成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。
The TeO2 component is an optional component that can increase the refractive index and lower the glass transition point when contained in an amount exceeding 0%.
On the other hand, TeO 2 has the problem of being alloyed with platinum when a glass raw material is melted in a platinum crucible or a melting tank in which the portion in contact with molten glass is made of platinum. Therefore, the upper limit of the content of the two TeO components is preferably 10.0%, more preferably 5.0%, still more preferably 3.0%, and even more preferably 1.0%.

F成分は、0%超含有する場合に、ガラスのアッベ数を高め、ガラス転移点を低くし、且つ耐失透性を向上できる任意成分である。
しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が10.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。また、アッベ数が必要以上に上昇する。
従って、F成分の含有量は、好ましくは10.0%、より好ましくは5.0%、さらに好ましくは3.0%、さらに好ましくは1.0%を上限とする。
The F component is an optional component that can increase the Abbe number of the glass, lower the glass transition point, and improve the devitrification resistance when contained in an amount exceeding 0%.
However, if the content of the F component, that is, the total amount of fluoride substituted for part or all of the oxides of one or more of the above-mentioned metal elements as F exceeds 10.0%, Since the amount of component volatilization increases, it becomes difficult to obtain stable optical constants and it becomes difficult to obtain homogeneous glass. Moreover, the Abbe number increases more than necessary.
Therefore, the upper limit of the content of the F component is preferably 10.0%, more preferably 5.0%, even more preferably 3.0%, and even more preferably 1.0%.

Ln成分(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)は、ガラスの屈折率及びアッベ数が高め、所望の屈折率及びアッベ数を有するガラスを得易くする。従って、Ln成分の含有量の和(質量和)は、好ましくは10.0%、より好ましくは12.0%、さらに好ましくは14.0%を下限とする。
他方で、Ln成分の質量和を50.0%以下にすることで、ガラスの失透を低減し、アッベ数の必要以上の上昇を抑えることができる。従って、Ln成分の質量和は、好ましくは50.0%、より好ましくは45.0%、さらに好ましくは40.0%%、さらに好ましくは35.0%、さらに好ましくは31.0%を上限とする。
The three Ln 2 O components (in the formula, Ln is one or more selected from the group consisting of La, Gd, Y, and Yb) increase the refractive index and Abbe number of the glass and have the desired refractive index and Abbe number. Makes it easier to obtain glass. Therefore, the lower limit of the sum of contents (sum of mass) of the three Ln 2 O components is preferably 10.0%, more preferably 12.0%, and even more preferably 14.0%.
On the other hand, by controlling the sum of the masses of the three Ln 2 O components to 50.0% or less, devitrification of the glass can be reduced and the Abbe number can be prevented from increasing more than necessary. Therefore, the mass sum of the three Ln 2 O components is preferably 50.0%, more preferably 45.0%, even more preferably 40.0%, still more preferably 35.0%, and still more preferably 31.0%. The upper limit is %.

RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和(質量和)は、5.0%以上60.0%以下が好ましい。
特に、RO成分の質量和を5.0%以上にすることで、ガラスの失透を低減でき、且つ、相対屈折率の温度係数を小さくできる。従って、RO成分の質量和は、好ましくは5.0%、より好ましくは10.0%、さらに好ましくは12.0%、さらに好ましくは15.0%、さらに好ましくは20.0%、さらに好ましくは25.0%を下限とする。
他方で、RO成分の質量和を60.0%以下にすることで、屈折率の低下を抑えられ、また、ガラスの安定性を高められる。従って、RO成分の質量和は、好ましくは60.0%、より好ましくは55.0%、さらに好ましくは50.0%を上限とする。
The sum of the contents (sum of mass) of the RO components (wherein R is one or more selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably 5.0% or more and 60.0% or less.
In particular, by setting the mass sum of the RO components to 5.0% or more, devitrification of the glass can be reduced and the temperature coefficient of the relative refractive index can be reduced. Therefore, the mass sum of the RO components is preferably 5.0%, more preferably 10.0%, even more preferably 12.0%, even more preferably 15.0%, even more preferably 20.0%, and even more preferably The lower limit is 25.0%.
On the other hand, by setting the mass sum of the RO components to 60.0% or less, the decrease in the refractive index can be suppressed and the stability of the glass can be improved. Therefore, the upper limit of the mass sum of the RO components is preferably 60.0%, more preferably 55.0%, and still more preferably 50.0%.

RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%以下が好ましい。これにより、溶融ガラスの粘性の低下を抑えられ、ガラスの屈折率を低下し難くでき、且つガラスの失透を低減できる。従って、RnO成分の質量和は、好ましくは10.0%、より好ましくは7.0%、さらに好ましくは4.0%を上限とする。The sum of the contents (sum of mass) of the Rn 2 O component (wherein Rn is one or more selected from the group consisting of Li, Na, and K) is preferably 10.0% or less. Thereby, it is possible to suppress a decrease in the viscosity of the molten glass, to make it difficult to decrease the refractive index of the glass, and to reduce devitrification of the glass. Therefore, the upper limit of the mass sum of the Rn 2 O components is preferably 10.0%, more preferably 7.0%, and still more preferably 4.0%.

<含有すべきでない成分について>
次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<About ingredients that should not be included>
Next, components that should not be included in the optical glass of the present invention and components that are not preferably included will be explained.

他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Other components may be added as necessary within a range that does not impair the properties of the glass of the present invention. However, each transition metal component such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, may be used individually. Or, even if it is contained in a small amount in combination, the glass will be colored and have the property of causing absorption at specific wavelengths in the visible range, so it is preferable that it is substantially not included, especially in optical glasses that use wavelengths in the visible range. .

また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。Further, since lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components with a high environmental load, it is desirable that they are substantially not contained, that is, not contained at all except for unavoidable contamination.

さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物質として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 Furthermore, the use of Th, Cd, Tl, Os, Be, and Se as harmful chemical substances has tended to be avoided in recent years, and they are used not only in the glass manufacturing process but also in the processing process and disposal after product production. Environmental measures are required throughout. Therefore, when placing importance on the environmental impact, it is preferable not to substantially contain these.

なお、本明細書における「実質的に含有しない」とは、好ましくは含有量を0.1%未満にすることであり、より好ましくは不可避不純物を除いて含有しないことである。ここで、不可避不純物として含まれる成分の含有量は、例えば0.01%未満や0.001%未満であるが、これに限定されない。 In this specification, "substantially not contained" means that the content is preferably less than 0.1%, and more preferably that it is not contained except for inevitable impurities. Here, the content of components included as unavoidable impurities is, for example, less than 0.01% or less than 0.001%, but is not limited thereto.

[製造方法]
本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記各成分の原料として、酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を、各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1500℃の温度範囲で2~5時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, as the raw materials for each of the above components, high purity raw materials used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphoric acid compounds, etc. are used, and each component is mixed with a predetermined content. The prepared mixture is poured into a platinum crucible and melted in an electric furnace at a temperature of 1000 to 1500°C for 2 to 5 hours depending on the difficulty of melting the glass raw material, stirring homogeneously. It is produced by lowering the temperature to an appropriate temperature, casting it into a mold, and slowly cooling it.

<物性>
本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有する。
特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.75、より好ましくは1.77、さらに好ましくは1.78を下限とする。この屈折率(n)は、好ましくは2.00、より好ましくは1.95、さらに好ましくは1.90、さらに好ましくは1.85を上限としてもよい。
また、本発明の光学ガラスのアッベ数(ν)は、好ましくは30、より好ましくは31、さらに好ましくは32、さらに好ましくは34を下限とする。このアッベ数(ν)は、好ましくは50、より好ましくは45、より好ましくは43、さらに好ましくは42、さらに好ましくは40を上限としてもよい。
このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズとして用いたときに光の波長による焦点のずれ(色収差)を小さくできる。そのため、例えば高分散(低いアッベ数)を有する光学素子と組み合わせて光学系を構成した場合に、その光学系の全体として収差を低減させて高い結像特性等を図ることができる。
このように、本発明の光学ガラスは、光学設計上有用であり、特に光学系を構成したときに、高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
<Physical properties>
The optical glass of the present invention has a high refractive index and a high Abbe number (low dispersion).
In particular, the lower limit of the refractive index (n d ) of the optical glass of the present invention is preferably 1.75, more preferably 1.77, and even more preferably 1.78. The upper limit of this refractive index (n d ) is preferably 2.00, more preferably 1.95, even more preferably 1.90, and even more preferably 1.85.
Further, the lower limit of the Abbe number (v d ) of the optical glass of the present invention is preferably 30, more preferably 31, still more preferably 32, and even more preferably 34. The upper limit of this Abbe number (v d ) is preferably 50, more preferably 45, more preferably 43, still more preferably 42, and even more preferably 40.
By having such a high refractive index, a large amount of light refraction can be obtained even if the optical element is made thinner. Moreover, by having such low dispersion, when used as a single lens, the shift of focus (chromatic aberration) due to the wavelength of light can be reduced. Therefore, for example, when an optical system is configured in combination with an optical element having high dispersion (low Abbe number), the aberrations of the optical system as a whole can be reduced and high imaging characteristics can be achieved.
As described above, the optical glass of the present invention is useful in optical design, and in particular, when an optical system is configured, it is possible to downsize the optical system while achieving high imaging characteristics, etc. The degree of freedom can be expanded.

また、本発明の光学ガラスは光学設計上の有用性の観点から、部分分散比(θg,F)が好ましくは0.550、より好ましくは0.555、さらに好ましくは0.560、さらに好ましくは0.565、さらに好ましくは0.570を下限とし、好ましくは0.620、より好ましくは0.615、さらに好ましくは0.610、さらに好ましくは0.600、さらに好ましくは0.590を上限とする。 Further, from the viewpoint of usefulness in optical design, the optical glass of the present invention has a partial dispersion ratio (θg, F) of preferably 0.550, more preferably 0.555, still more preferably 0.560, and even more preferably The lower limit is 0.565, more preferably 0.570, and the upper limit is preferably 0.620, more preferably 0.615, even more preferably 0.610, even more preferably 0.600, and still more preferably 0.590. do.

本発明の光学ガラスは、アッベ数(ν)をx軸、部分分散比(θg,F)をy軸にした座標系で、(x、y)=(36.3、0.5828)と(60.5、0.5436)の2点を結ぶ直線からのy軸方向(θg,F方向)に関する大きさ(本明細書において、「異常分散性(Δθg,F)」という。)が+0.001以下であることが好ましい。すなわち、アッベ数(ν)と部分分散比(θg,F)の組合せが、この直線上の値からy軸方向に+0.001又はそれよりもy軸方向について負の方向の値であることが好ましい。これにより、上述の(x、y)=(36.3、0.5828)と(60.5、0.5436)の2点を結ぶ直線、すなわちノーマルラインの近傍か、それよりも低い部分分散比(θg,F)を有する光学ガラスが得られる。そのため、ガラスの高屈折率及び低分散化を図りながらも、この光学ガラスから形成される光学素子の色収差を低減できる。ここで、光学ガラスの異常分散性(Δθg,F)は、好ましくは+0.0010以下、より好ましくは+0.0008以下、さらに好ましくは+0.0005以下を上限とする。他方で、光学ガラスの異常分散性(Δθg,F)の下限値は、特に限定されないが、例えば-0.0300であってもよく、-0.0100であってもよい。The optical glass of the present invention has a coordinate system in which the Abbe number (ν d ) is the x-axis and the partial dispersion ratio (θg, F) is the y-axis, and (x, y) = (36.3, 0.5828). The size in the y-axis direction (θg, F direction) from the straight line connecting the two points of (60.5, 0.5436) (herein referred to as "anomalous dispersion (Δθg, F)") is +0 It is preferable that it is .001 or less. In other words, the combination of Abbe's number (ν d ) and partial dispersion ratio (θg, F) must be +0.001 in the y-axis direction from the value on this straight line, or a value in a more negative direction in the y-axis direction. is preferred. As a result, the partial dispersion is near the straight line connecting the two points (x, y) = (36.3, 0.5828) and (60.5, 0.5436), that is, the normal line, or lower than that. An optical glass having the ratio (θg, F) is obtained. Therefore, while achieving a high refractive index and low dispersion of the glass, it is possible to reduce the chromatic aberration of an optical element formed from this optical glass. Here, the upper limit of the anomalous dispersion (Δθg, F) of the optical glass is preferably +0.0010 or less, more preferably +0.0008 or less, still more preferably +0.0005 or less. On the other hand, the lower limit of the anomalous dispersion (Δθg, F) of the optical glass is not particularly limited, and may be, for example, -0.0300 or -0.0100.

本発明の光学ガラスは、-30~70℃における平均線膨張係数(α)が70~110×10-7-1の範囲内であることが好ましい。特に、本発明の光学ガラスの平均線膨張係数は、より好ましくは75×10-7-1、さらに好ましくは80×10-7-1を下限とし、より好ましくは105×10-7-1、さらに好ましくは103×10-7-1を上限とする。これにより、本発明の光学ガラスをフツリン酸ガラス等の比較的膨張が大きいガラスと接合させた場合に、周囲の温度が変化しても、両材料の接合性を良好に維持することができる。The optical glass of the present invention preferably has an average coefficient of linear expansion (α) at −30 to 70° C. within the range of 70 to 110×10 −7 K −1 . In particular, the lower limit of the average linear expansion coefficient of the optical glass of the present invention is more preferably 75×10 −7 K −1 , even more preferably 80×10 −7 K −1 , and more preferably 105×10 −7 K -1 , more preferably 103×10 -7 K -1 . As a result, when the optical glass of the present invention is bonded to a glass having a relatively large expansion such as fluorophosphate glass, the bondability between both materials can be maintained well even if the ambient temperature changes.

[プリフォーム及び光学素子]
作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Preform and optical element]
A glass molded body can be produced from the produced optical glass using, for example, a polishing method or a mold press forming method such as reheat press molding or precision press molding. That is, mechanical processing such as grinding and polishing is performed on optical glass to produce a glass molded body, or a preform for mold press molding is produced from optical glass, and this preform is subjected to reheat press molding. After that, a glass molded body is produced by polishing, or a glass molded body is produced by performing precision press molding on a preform produced by polishing, or a preform molded by known levitation molding, etc. can be created. Note that the means for producing the glass molded body are not limited to these means.

このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォームの形成が可能になるため、光学素子の大型化を図りながらも、光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。 Thus, the optical glass of the present invention is useful for various optical elements and optical designs. Among these, it is particularly preferable to form a preform from the optical glass of the present invention and perform reheat press molding, precision press molding, etc. using this preform to produce optical elements such as lenses and prisms. This makes it possible to form a preform with a large diameter, so even though the optical element is made larger, it is possible to achieve high-definition and highly accurate imaging and projection characteristics when used in optical equipment.

本発明の光学ガラスからなるガラス成形体は、例えばレンズ、プリズム、ミラー等の光学素子の用途に用いることができ、典型的には車載用光学機器やプロジェクタやコピー機等の、高温になり易い機器に用いることができる。 The glass molded article made of the optical glass of the present invention can be used for optical elements such as lenses, prisms, mirrors, etc., and is typically used in automotive optical equipment, projectors, copy machines, etc. that are prone to high temperatures. Can be used for equipment.

本発明の実施例(No.1~No.118)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)及び異常分散性(Δθg,F)、-30~70℃における平均線膨張係数(α)の結果を表1~表15に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。Compositions of Examples (No. 1 to No. 118) of the present invention, and refractive index (n d ), Abbe number (ν d ), and anomalous dispersion (Δθg, F) of these glasses, -30 to 70 The results of the average linear expansion coefficient (α) at °C are shown in Tables 1 to 15. Note that the following examples are for illustrative purposes only, and are not intended to be limiting.

Figure 0007354109000001
Figure 0007354109000001

Figure 0007354109000002
Figure 0007354109000002

Figure 0007354109000003
Figure 0007354109000003

Figure 0007354109000004
Figure 0007354109000004

Figure 0007354109000005
Figure 0007354109000005

Figure 0007354109000006
Figure 0007354109000006

Figure 0007354109000007
Figure 0007354109000007

Figure 0007354109000008
Figure 0007354109000008

Figure 0007354109000009
Figure 0007354109000009

Figure 0007354109000010
Figure 0007354109000010

Figure 0007354109000011
Figure 0007354109000011

Figure 0007354109000012
Figure 0007354109000012

Figure 0007354109000013
Figure 0007354109000013

Figure 0007354109000014
Figure 0007354109000014

Figure 0007354109000015
Figure 0007354109000015

本発明の実施例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1000~1500℃の温度範囲で2~5時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。 The glasses of the embodiments of the present invention are all high-purity raw materials used for ordinary optical glasses, such as oxides, hydroxides, carbonates, nitrates, fluorides, and metaphosphoric acid compounds, which correspond to the raw materials for each component. After weighing and mixing uniformly so as to achieve the composition ratio of each example shown in the table, it is placed in a platinum crucible and heated at 1000 to 1500°C in an electric furnace depending on the difficulty of melting the glass raw material. After melting at a temperature range of 2 to 5 hours, the mixture was homogenized by stirring, cast into a mold, etc., and slowly cooled.

実施例及び比較例のガラスの屈折率(n)は、JIS B 7071-2:2018に規定されるVブロック法に準じてヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、上記d線の屈折率と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。
また、部分分散比は、C線(波長656.27nm)における屈折率n、F線(波長486.13nm)における屈折率n、g線(波長435.835nm)における屈折率nを測定し、(θg,F)=(n-n)/(n-n)の式により算出した。
なお、本測定に用いたガラスは、徐冷降温速度を-25℃/hrとして、徐冷炉にて処理を行ったものを用いた。
The refractive index (n d ) of the glasses of Examples and Comparative Examples was shown as a value measured against the d-line (587.56 nm) of a helium lamp according to the V-block method specified in JIS B 7071-2:2018. In addition, the Abbe number (ν d ) is the refractive index of the above d-line, the refractive index (n F ) for the F-line (486.13 nm) of the hydrogen lamp, and the refractive index (n C ) for the C-line (656.27 nm). It was calculated from the formula of Abbe number (ν d )=[( nd −1)/(n F −n C )] using the value of .
In addition, the partial dispersion ratio is determined by measuring the refractive index n C at the C line (wavelength 656.27 nm), the refractive index n F at the F line (wavelength 486.13 nm), and the refractive index n g at the G line (wavelength 435.835 nm). It was calculated using the formula (θg,F)=(n g −n F )/(n F −n C ).
Note that the glass used in this measurement was treated in a slow cooling furnace at a slow cooling temperature drop rate of -25° C./hr.

異常分散性Δθg,Fについては、求められたアッベ数(ν)及び部分分散比(θg,F)の値について、アッベ数(ν)をx軸、部分分散比(θg,F)をy軸にした座標系で、(x、y)=(36.3、0.5828)と(60.5、0.5436)の2点を結ぶ直線からのy軸方向に関するずれの大きさを求めた。Regarding the anomalous dispersion property Δθg, F, regarding the values of the Abbe number (ν d ) and partial dispersion ratio (θg, F), the Abbe number (ν d ) is plotted on the x-axis and the partial dispersion ratio (θg, F) is plotted on the x-axis. In a coordinate system with the y-axis as I asked for it.

ガラスの平均線膨張係数(α)は、日本光学硝子工業会規格JOGIS16-2003「光学ガラスの常温付近の平均線膨張係数の測定方法」に従って、-30~70℃における平均線膨張係数を求めた。 The average linear expansion coefficient (α) of the glass was determined from -30 to 70°C according to the Japan Optical Glass Industry Association standard JOGIS 16-2003 "Measurement method of average linear expansion coefficient of optical glass near room temperature". .

表1~15に表されるように、実施例の光学ガラスは、いずれも屈折率(n)が1.75以上、より詳細には1.78以上であり、所望の範囲内であった。
また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が30以上50以下の範囲内、より詳細には32以上42以下の範囲内にあり、所望の範囲内であった。
As shown in Tables 1 to 15, all of the optical glasses of Examples had a refractive index (n d ) of 1.75 or more, more specifically 1.78 or more, which was within the desired range. .
Furthermore, all of the optical glasses of the examples of the present invention had an Abbe number (ν d ) within the range of 30 or more and 50 or less, more specifically within the range of 32 or more and 42 or less, which was within the desired range. .

また、本発明の実施例の光学ガラスは、異常分散性Δθg,Fが+0.0100以下の範囲内にあり、所望の範囲内であった。
他方、比較例は、異常分散性Δθg,Fが本発明において所望の範囲を満たすことができなかった。
Further, the optical glasses of the examples of the present invention had anomalous dispersion Δθg,F within the range of +0.0100 or less, which was within the desired range.
On the other hand, in the comparative example, the anomalous dispersion Δθg,F could not satisfy the desired range in the present invention.

また、本発明の実施例の光学ガラスは、-30~70℃における平均線膨張係数(α)が75×10-7/℃~100×10-7/℃の範囲内にあり、所望の範囲内であった。Further, the optical glass of the example of the present invention has an average coefficient of linear expansion (α) at -30 to 70°C within the range of 75 x 10 -7 /°C to 100 x 10 -7 /°C, which is within the desired range. It was within.

また、実施例の光学ガラスは、安定なガラスを形成しており、ガラス作製時において失透が起こり難いものであった。 Moreover, the optical glass of the example formed a stable glass, and devitrification was unlikely to occur during glass production.

さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。 Furthermore, a glass block was formed using the optical glass of the example of the present invention, and this glass block was ground and polished to be processed into the shapes of lenses and prisms. As a result, we were able to stably process various lens and prism shapes.

以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 Although the present invention has been described in detail above for the purpose of illustration, this embodiment is only for the purpose of illustration, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. will be understood.

Claims (4)

質量%で、
SiO成分を2.0%以上25.0%以下、
成分を3.0%以上25.0%以下、
Nb成分を5.16%以上30.0%以下、
BaO成分を30.02%以上60.0%以下、
TiO成分を6.37%以下
含有し、
Ln成分を合計で10.0%以上50.0%以下含有し(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)、
屈折率(n)が1.75以上、アッベ数(ν)が30以上40以下であり、
アッベ数(ν)をx軸、部分分散比(θg,F)をy軸にした座標系で、(x、y)=(36.3、0.5828)と(60.5、0.5436)の2点を結ぶ直線からのy軸方向に関するずれの大きさ(異常分散性(Δθg,F))が+0.001以下である光学ガラス。
In mass%,
2.0% or more and 25.0% or less of SiO 2 components,
3.0% or more and 25.0% or less of B 2 O 3 components,
Nb 2 O 5 component 5.16% or more and 30.0% or less,
BaO component is 30.02 % or more and 60.0% or less,
Contains 6.37% or less of TiO 2 components,
Contains a total of 10.0% or more and 50.0% or less of Ln 2 O 3 components (wherein Ln is one or more selected from the group consisting of La, Gd, Y, and Yb),
The refractive index (n d ) is 1.75 or more, the Abbe number (ν d ) is 30 or more and 40 or less,
In a coordinate system in which the Abbe number (ν d ) is the x axis and the partial dispersion ratio (θg, F) is the y axis, (x, y) = (36.3, 0.5828) and (60.5, 0. 5436) in the y-axis direction from a straight line connecting two points (abnormal dispersion (Δθg, F)) of +0.001 or less.
-30~70℃における平均線膨張係数(α)が75×10-7/℃~100×10-7/℃であることを特徴とする請求項1に記載の光学ガラス。 The optical glass according to claim 1, characterized in that the average coefficient of linear expansion (α) at -30 to 70°C is 75 x 10 -7 /°C to 100 x 10 -7 /°C. 請求項1又は2に記載の光学ガラスからなる光学素子。 An optical element comprising the optical glass according to claim 1 or 2. 請求項3に記載の光学素子を備える光学機器。 An optical device comprising the optical element according to claim 3.
JP2020531207A 2018-07-18 2019-06-27 Optical glass and optical elements Active JP7354109B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018134837 2018-07-18
JP2018134837 2018-07-18
PCT/JP2019/025751 WO2020017274A1 (en) 2018-07-18 2019-06-27 Optical glass and optical element

Publications (2)

Publication Number Publication Date
JPWO2020017274A1 JPWO2020017274A1 (en) 2021-08-02
JP7354109B2 true JP7354109B2 (en) 2023-10-02

Family

ID=69164502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531207A Active JP7354109B2 (en) 2018-07-18 2019-06-27 Optical glass and optical elements

Country Status (4)

Country Link
JP (1) JP7354109B2 (en)
CN (1) CN112424134B (en)
TW (1) TWI793345B (en)
WO (1) WO2020017274A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128568A (en) 1998-10-19 2000-05-09 Carl Zeiss:Fa Lead-free optical glass
JP2005179142A (en) 2002-12-27 2005-07-07 Hoya Corp Optical glass, glass gob for press molding and optical device
JP2007153734A (en) 2005-12-07 2007-06-21 Schott Ag Optical glass
JP2012206894A (en) 2011-03-29 2012-10-25 Ohara Inc Optical glass, perform, and optical device
CN103086599A (en) 2013-01-25 2013-05-08 湖北新华光信息材料有限公司 Optical glass
JP2015227276A (en) 2013-12-27 2015-12-17 株式会社オハラ Glass
CN106365440A (en) 2016-09-05 2017-02-01 成都光明光电股份有限公司 Dense lanthanum flint glass
JP2017202972A (en) 2016-05-10 2017-11-16 成都光明光▲電▼股▲分▼有限公司 Lanthanum flint optical glass
WO2018066577A1 (en) 2016-10-03 2018-04-12 株式会社オハラ Optical glass, preform, and optical element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950048A (en) * 1982-09-16 1984-03-22 Ohara Inc Optical glass

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128568A (en) 1998-10-19 2000-05-09 Carl Zeiss:Fa Lead-free optical glass
JP2005179142A (en) 2002-12-27 2005-07-07 Hoya Corp Optical glass, glass gob for press molding and optical device
JP2007153734A (en) 2005-12-07 2007-06-21 Schott Ag Optical glass
JP2012206894A (en) 2011-03-29 2012-10-25 Ohara Inc Optical glass, perform, and optical device
CN103086599A (en) 2013-01-25 2013-05-08 湖北新华光信息材料有限公司 Optical glass
JP2015227276A (en) 2013-12-27 2015-12-17 株式会社オハラ Glass
JP2017202972A (en) 2016-05-10 2017-11-16 成都光明光▲電▼股▲分▼有限公司 Lanthanum flint optical glass
CN106365440A (en) 2016-09-05 2017-02-01 成都光明光电股份有限公司 Dense lanthanum flint glass
WO2018066577A1 (en) 2016-10-03 2018-04-12 株式会社オハラ Optical glass, preform, and optical element

Also Published As

Publication number Publication date
JPWO2020017274A1 (en) 2021-08-02
CN112424134A (en) 2021-02-26
CN112424134B (en) 2023-04-18
WO2020017274A1 (en) 2020-01-23
TW202012328A (en) 2020-04-01
TWI793345B (en) 2023-02-21

Similar Documents

Publication Publication Date Title
JP6932423B2 (en) Optical glass, preforms and optics
JP6903373B2 (en) Optical glass, preform materials and optical elements
TWI777931B (en) Optical glass, preforms and optical components
JP7112856B2 (en) Optical glass, preforms and optical elements
JP2020019711A (en) Optical glass, preform and optical element
TW202313501A (en) Optical glass, preform, and optical element
JP2015044724A (en) Optical glass, preform, and optical element
JP7227693B2 (en) Optical glass, preforms and optical elements
JP2011230997A (en) Optical glass, optical element and preform for precision press forming
JP6363141B2 (en) Optical glass, preform material and optical element
JP7446052B2 (en) Optical glass, preforms and optical elements
JP7545192B2 (en) Optical glass, preforms and optical elements
JP2014210694A (en) Optical glass, preform material, and optical element
JP7064283B2 (en) Optical glass, preforms and optical elements
JP7064282B2 (en) Optical glass, preforms and optical elements
JP6804264B2 (en) Optical glass, preforms and optics
JP7424978B2 (en) Optical glass, preforms and optical elements
JP7082936B2 (en) Optical glass, optical elements and preforms
JP7354362B2 (en) Optical glass, preforms and optical elements
JP6866012B2 (en) Optical glass, preform materials and optical elements
JP2022171696A (en) Optical glass, preform and optical element
TW201441174A (en) Optical glass, preform material and optical element
WO2020235223A1 (en) Optical glass, preform, and optical element
JP7354109B2 (en) Optical glass and optical elements
JP7126350B2 (en) Optical glass, optical elements and preforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230920

R150 Certificate of patent or registration of utility model

Ref document number: 7354109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150