(PUSCHプリコーダ)
NRでは、UEがコードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートすることが検討されている。
例えば、UEは少なくとも測定用参照信号(Sounding Reference Signal(SRS))リソースインデックス(SRS Resource Index(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。
UEは、CBベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
SRI、TRI、TPMIなどは、下り制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。
UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))などであってもよい。
UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。
なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、適用するプリコーダが同じである、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。
なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
プリコーダタイプは、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどで読み替えられてもよい。
UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCIから得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。
図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。図1は、DFT-s-OFDM(Discrete Fourier Transform spread OFDM、変換プリコーディング(transform precoding)が有効である)で4アンテナポートを用いたシングルレイヤ送信用のプリコーディング行列Wのテーブルに該当する。
図1において、プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。
図1は、現状のRel-15 NRにおいて規定されているテーブルである。このテーブルでは、インデックス12から27に該当する完全コヒーレントの送信電力を1(=(1/2)2*4)とおくと、インデックス4から11に該当する部分コヒーレントの送信電力は1/2(=(1/2)2*2)であり、インデックス0から3に該当するノンコヒーレントの送信電力は1/4(=(1/2)2*1)である。
つまり、現状のRel-15 NRの仕様によれば、UEが複数のポートを用いてコードブックベース送信する場合に、一部のコードブックを利用すると、シングルポートの場合と比べて送信電力が小さくなる(フルパワー送信ができない)場合がある。
なお、図1に示すように、各列の成分がそれぞれ1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。各列の成分がそれぞれ所定の数(全てではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。各列の成分が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。
なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。
なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。
(フルパワー送信のUE能力)
コードブックを用いる場合でも、フルパワーUL送信を適切に行うことが好ましい。このため、NRでは、複数のパワーアンプ(Power Amplifier(PA))を用いたコードブックベースのフルパワーUL送信に関連するUE能力が検討されている。これまでのNRの議論では、以下のUE能力1-3が提案されている:
・UE能力1:各送信チェイン(Tx chain)において最大定格電力を出力可能なPA(フルレイテッドPA(full rated PA))をサポートする(又は有する)、
・UE能力2:送信チェインのいずれもフルレイテッドPAをサポートしない、
・UE能力3:送信チェインのサブセット(一部)がフルレイテッドPAをサポートする。
なお、当該UE能力1-3の少なくとも1つを有するUEは、UL送信のフルパワーをサポートしていることを意味してもよい。UEは、UE能力1-3とは別に、ULフルパワー送信能力をサポートしていることを示す能力情報を、ネットワーク(例えば、基地局)に報告してもよい。UEは、フルパワー送信をサポートすることをネットワークから設定されてもよい。
当該UE能力1/2/3は、それぞれ、フルパワー送信に関するUE能力1/2/3、フルパワー送信タイプ1/2/3、電力割り当てタイプ1/2/3などで読み替えられてもよい。本開示において、タイプ、モード、能力などは互いに読み替えられてもよい。また、本開示において、1/2/3は、A/B/Cなど任意の数字又は文字のセットで読み替えられてもよい。
図2は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。図2は、UEの構成としてPA及び送信アンテナポート(送信アンテナで読み替えられてもよい)のみを簡略的に示している。なお、PA及び送信アンテナポートの数がそれぞれ4である例を示すが、これに限られない。
なお、PはUE最大出力電力[dBm]を示し、PPAはPA最大出力電力[dBm]を示す。なお、Pは、例えばパワークラス3のUEでは23dBm、パワークラス2のUEでは26dBmであってもよい。本開示ではPPA≦Pを想定するが、PPA>Pの場合に本開示の実施形態が適用されてもよい。
UE能力1の構成は、実装が高コストになると想定されるが、1つ以上の任意のアンテナポートを用いてフルパワー送信が可能である。UE能力2の構成は、ノンフルレイテッドPAのみを含み、安価に実装できると期待されるが、アンテナポートを1つだけ用いてもフルパワー送信できないため、各PAに入力される信号の位相、振幅などを制御することが求められる。
UE能力3の構成は、UE能力1の構成及びUE能力2の構成の中間である。フルパワー送信可能なアンテナポート(本例では送信アンテナ#0及び#2)と可能でないアンテナポート(本例では送信アンテナ#1及び#3)が混在している。
なお、UE能力3のフルパワー送信可能なアンテナポートのインデックス、数などは、これに限定されない。また、本例では、ノンフルレイテッドPAのPPA=P/2と想定するが、PPAの値はこれに限られない。
ところで、UE能力2又は3をサポートするUEが、フルパワー送信の動作について2つのモード(モード1、2)の少なくとも一方を設定されることが検討されている。モード1、2はそれぞれ動作モード1、2などと呼ばれてもよい。
ここで、モード1は、用途(usage)が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、同じSRSポート数を有するようにUEが設定されるモード(例えば、第1のフルパワー送信モードと呼ばれてもよい)であってもよい。モード1で動作するUEは、全アンテナポートを用いてフルパワー送信してもよい。
モード1で動作するUEは、フルパワー送信を実現するための1レイヤ内のポートを結合するTPMIのサブセットを用いるように、ネットワークから設定されてもよい。Rel-15 NRで定義される「fullyAndPartialAndNonCoherent」に対応するTPMIプリコーダを含み、フルパワー送信に利用できないランク値にのみ、新たなコードブックサブセットが導入されてもよい。
一方、モード2は、用途(usage)が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、異なるSRSポート数を有するようにUEが設定されるモード(例えば、第2のフルパワー送信モードと呼ばれてもよい)であってもよい。モード2で動作するUEは、全アンテナポートではなく一部のアンテナポートを用いてフルパワー送信してもよい。
モード2で動作するUEは、アンテナ仮想化が用いられるか否かに関わらず、PUSCH及びSRSを同じ方法で送信してもよい。モード2のUEに対しては、1ポートより多いSRSリソースをサポートするために、フルパワー送信を実現するためのTPMIのセットが通知されてもよい。モード2の場合、1つのSRSリソースセットにつき、2又は3個のSRSリソースが設定されてもよい(Rel-15 NRでは、最大2個)。
モード1はモード2に比べて、必要なSRIフィールドのサイズが小さくて良いという利点がある(1SRSリソースでフルパワー送信が可能である)。
モード2はモード1に比べて、シングルポート送信とマルチポート送信をDCIによって動的に切り替えできるという利点がある。また、一部のアンテナポートでフルパワー送信できるため、例えばフルレイテッドPAを有するアンテナのみを用いてフルパワー送信したり、コヒーレントなアンテナのみを用いてフルパワー送信したりできる。
しかしながら、UEがモード2で動作できる場合であっても、どのTPMI(又はアンテナポート)を用いてフルパワー送信できるかをUEからネットワークに報告しなければ、ネットワークは適切なUEのULスケジューリングを制御できない。また、UEが複数のモードに対応する場合、どちらのモードを用いてPUSCH送信するかをどのように判断するかについては、まだ検討が進んでいない。
これらを実現する方法について明確に規定しなければ、適切にUEがフルパワー送信を行うことができない。フルパワー送信できない場合、カバレッジの減少などが生じ、通信スループットの増大が抑制されるおそれがある。
そこで、本発明者らは、適切にフルパワー送信を行うための制御方法を着想した。本開示の一態様によれば、フルパワーでUL MIMO(Multi Input Multi Output)送信を行うことができ、シングルアンテナと同様のセルカバレッジを維持できる。また、UL MIMOによれば空間ダイバーシティ利得が得られ、スループット向上が期待できる。さらに、フルレイテッドPAを持たないUEであっても、適切にフルパワー送信を行うことができる。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
なお、以下の実施形態の「アンテナ」及び「アンテナポート」は、互いに読み替えられてもよい。
本開示では、「フルパワー」は、「パワーブースティング」、「最大電力」、「拡張電力」、「Rel-15 UEに比べて高い電力」などで読み替えられてもよい。
また、本開示では、UE能力X(X=1、2、3)を有することは、UE能力Xを報告すること、UE能力Xの構成を用いてフルパワー送信を行えること、などと互いに読み替えられてもよい。
本開示では、コヒーレントに関する能力(例えば、完全コヒーレント、部分コヒーレント、ノンコヒーレント)を有することは、当該能力を報告すること、当該コヒーレントを設定されたこと、などと互いに読み替えられてもよい。
また、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントに関する能力を有するUE、部分コヒーレントに関する能力を有するUE、完全コヒーレントに関する能力を有するUEと互いに読み替えられてもよい。
また、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれ「ノンコヒーレント(nonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」のコードブックサブセットを上位レイヤで設定されたUEを意味してもよい。なお、本開示において、コードブックサブセット及びコードブックは、互いに読み替えられてもよい。
ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントコードブック、部分コヒーレントコードブック及び完全コヒーレントコードブックを用いて送信できるUEを意味してもよい。
(無線通信方法)
<第1の実施形態>
第1の実施形態は、UEがフルパワーUL送信をサポートする場合に、ネットワークに報告するUE能力情報に関する。
このUE能力情報は、段階的な構成を有してもよい。図3は、フルパワーUL送信に関するUE能力情報の一例を示す図である。図3は、ASN.1(Abstract Syntax Notation One)記法を用いて記載されている(なお、あくまで例であるため、完全な記載ではない)。なお、RRCパラメータ名は、示される名前に限られない。
UEは、UE能力1を有する場合、フルパワー送信をサポートするか否かを示すRRCパラメータ「ulfullPowerTx」の値をサポート(「supported」)にして報告すればよい。
UEは、UE能力2又は3を有する場合、「ulfullPowerTx」に加えて、又は「ulfullPowerTx」の代わりに、モードに関する別のRRCパラメータ「ulfullPowerTxMode」を報告すればよい。
モード1だけをサポートするUEは、「ulfullPowerTxMode」として、モード1をサポートするか否かを示すRRCパラメータ「onlyMode1」を報告すればよい。
モード2をサポートするUEは、「ulfullPowerTxMode」として、モード2をサポートするか否かを示すRRCパラメータ「Mode2」を報告すればよい。なお、モード2だけをサポートするUEは、「Mode1」を含まない「Mode2」を報告すればよく、モード1及び2の両方をサポートするUEは、「Mode1」を含む「Mode2」を報告すればよい。
なお、「Mode2」は、フルパワー送信を行うためのTPMIのサブセットに関する能力を含んでもよい。例えば、図3の「tpmiGroupUpto2txBitmap」は、2ポートまでの送信について一部のポート(つまり1ポート)でフルパワー送信を行うことができるTPMI(以下、プリコーディング行列で読み替えられてもよい)を示す1ビットのビット列(ビットマップ)を意味してもよい。
図3の「tpmiGroupUpto4txNoncoherentBitmap」は、4ポートまでの送信について一部のポート(つまり3ポート以下)でノンコヒーレントUEがフルパワー送信を行うことができるTPMIを示す8ビットのビット列を意味してもよい。
図3の「tpmiGroupUpto4txPartialcoherentBitmap」は、4ポートまでの送信について一部のポート(つまり3ポート以下)で部分コヒーレントUEがフルパワー送信を行うことができるTPMIを示す10ビットのビット列を意味してもよい。
図3の「tpmiGroupUpto4txFullycoherentBitmap」は、4ポートまでの送信について一部のポート(つまり3ポート以下)でフルコヒーレントUEがフルパワー送信を行うことができるTPMIを示す10ビットのビット列を意味してもよい。
なお、上記UE能力情報に含まれるビットマップはこれらに限られない。上記UE能力情報には、例えば、4より多くのアンテナポートを用いたフルパワー送信のためのビットマップが含まれてもよい。
UEは、これらのビット列について、含まれるビットの1つだけが‘1’になり得ると想定してもよいし、含まれるビットの複数が‘1’になり得ると想定してもよい。
図4A-4Cは、フルパワー送信を行うためのTPMIのサブセットを示すビットマップの一例を示す図である。図4Aは、2ポート送信の場合である。この場合、UEはノンコヒーレントUEかフルコヒーレントUEのいずれかである。モード2の場合、UEは1つのアンテナポートのみを用いてフルパワー送信(ランク1)することになるため、「tpmiGroupUpto2txBitmap」としては1ビットだけでフルパワー送信のためのTPMIを指定できる。
例えば、この1ビット(ビット列インデックス=0のビット)が‘0’の場合、コードブック(プリコーディング行列)として、[1 0]T(Tは転置行列を示す。以下同様)が示され、‘1’の場合、行列[0 1]Tが示されてもよい。
なお、仮に「tpmiGroupUpto2txBitmap」を2ビットで表現することにし、ビット列インデックス0(例えば、最上位ビット)が‘1’の場合に、行列[0 1]Tを示し、トビット列インデックス1が‘1’の場合に、行列[0 1]Tが示されると想定すると、UEは、当該ビット0及びビット1の両方が‘1’に設定されることはないと想定してもよい(その場合、フルコヒーレントUEに該当すると言えるためである)。
図4Bは、4ポート送信の場合である。この表の上(ビット列インデックス=0-7)は、「tpmiGroupUpto4txNoncoherentBitmap」に対応し、この表の下(ビット列インデックス=0-9)は、「tpmiGroupUpto4txPartialcoherentBitmap」、「tpmiGroupUpto4txFullycoherentBitmap」に対応してもよい。
例えば、「tpmiGroupUpto4txNoncoherentBitmap」について、ビット列インデックス=0-3はランク1のフルパワー送信に対応し、ビット列インデックス=4-6はランク2のフルパワー送信に対応し、ビット列インデックス=7はランク3のフルパワー送信に対応してもよい。
なお、これらのビットマップのビット数は図3に示すものに限られない。例えば、図4Cは、4ポート送信の各ビットマップを図4Bに比べて3ビット増加し、ランク2で利用できるTPMIを増加したビットマップを示している。
UEは、フルパワー送信を行うためのTPMIのサブセットを示すビットマップの代わりに又は一緒に、フルレイテッドPAを有する(又は、フルレイテッドPAで送信可能な)アンテナポートを示すビットマップを、UE能力情報として送信してもよい。
図5A-5Dは、フルレイテッドPAを有するアンテナポートを示すビットマップの一例を示す図である。これらのビットマップは、ランクに関わらず(ランクに共通して)、フルレイテッドPAを有する(又は、フルレイテッドPAで送信可能な)アンテナポートを示してもよい。
図5Aは、2ポート送信の場合である。例えば、この1ビット(ビット列インデックス=0のビット)が‘0’の場合、コードブック(プリコーディング行列)として、[1 0]T(Tは転置行列を示す。以下同様)が示され、‘1’の場合、行列[0 1]Tが示されてもよい。[1 0]Tは、例えばアンテナポート#0がフルレイテッドPAを有することを意味してもよい。
図5Bは、4ポート送信であって、UEがフルレイテッドPAを1つ有する(1つ利用できる)場合である。4アンテナポートのうち1つが指定されるので、ビット列としては2ビットで表現できる。
図5Cは、4ポート送信であって、UEがフルレイテッドPAを2つ有する(2つ利用できる)場合である。4アンテナポートのうち2つが指定されるので、ビット列としては3ビットで表現できる。
図5Dは、4ポート送信であって、UEがフルレイテッドPAを3つ有する(3つ利用できる)場合である。4アンテナポートのうち3つが指定されるので、ビット列としては2ビットで表現できる。
上記UE能力情報を受信したネットワーク(基地局)は、上述のビットマップを考慮して、フルパワー送信を行えるTPMI(又はアンテナポート)を用いたPUSCH送信を、当該UEにスケジュールしてもよい。
以上説明した第1の実施形態によれば、UEは、フルパワー送信に関する能力を適切にネットワークに報告できる。
<第2の実施形態>
第2の実施形態は、UEがモード1及び2の両方をサポートする場合に、当該UEは、所定の優先順、その他の設定又は指示されるパラメータの少なくとも1つに基づいてどちらかのモードを想定してもよい。
第2の実施形態は、モード1及び2の両方をサポートするUEについて、以下に大別されてもよい:
(実施形態2-1)モードを上位レイヤシグナリングによって明示的に設定、
(実施形態2-2)モードをDCIのSRIフィールドに基づいて決定、
(実施形態2-3)モードをDCIの新たなフィールドに基づいて決定、
(実施形態2-4)モードをDCIのSRSリクエストフィールドに基づいて決定、
(実施形態2-5)モードを上位レイヤパラメータ及びDCIの少なくとも一方に基づいて暗示的に決定。
[実施形態2-1]
UEは、いずれかのモードを有効化する情報を上位レイヤシグナリングによって設定されてもよい。
UEは、モード1を設定される場合、モード1の処理を想定して(言い換えると、モード1に基づいて)PUSCHを送信してもよい。UEは、モード2を設定される場合、モード2の処理を想定して(言い換えると、モード2に基づいて)PUSCHを送信してもよい。
UEは、明示的にモードを設定されない場合、いずれかのモードを想定してPUSCHを送信してもよい。または、UEは、明示的にモードを設定されない場合、どちらのモードも想定せず、Rel-15 NRと同様の動作を行ってもよい。
実施形態2-1によれば、モード1及び2の決定のための通信オーバヘッドが少ない。
[実施形態2-2]
UEは、同じSRSポート数(上位レイヤパラメータ「nrofSRS-Ports」が同じ)の1つより多いSRSリソースを含む用途が「コードブック」の第1のSRSリソースセットと、異なるSRSポート数の1つより多いSRSリソースを含む用途が「コードブック」の第2のSRSリソースセットと、を設定される場合には、DCIのSRIによってPUSCH送信に用いるSRSリソースセット(すなわち、モード)を指定されると想定してもよい。
なお、Rel-15 NRでは、SRIフィールドのサイズは、コードブックベース送信(RRCパラメータ「txConfig」=’codebook’)を設定された場合は最大1ビット、ノンコードブックベース送信(RRCパラメータ「txConfig」=’nonCodebook’)を設定された場合は最大2ビットである。上述のように同じ用途のSRSリソースセットが複数設定されるUEは、DCIに含まれるSRIフィールドのサイズがRel-15 NRのSRIフィールドより大きいと想定してもよい。
図6A及び6Bは、実施形態2-2におけるモード決定の一例を示す図である。図6Aは、SRIフィールドの値(インデックス)とSRSリソースセットインデックス(ただし、用途が「コードブック」のもの)の対応関係を示す。なお、当該対応関係は、仕様によって予め規定されてもよいし、上位レイヤシグナリングによって設定されてもよい。本例では、SRIインデックス0及び1がSRSリソースセットインデックス0に関連付けられており、SRIインデックス2及び3がSRSリソースセットインデックス1に関連付けられている。
図6Bの左側は、上位レイヤシグナリングによってUEに対して設定される2つのSRSリソースセット(いずれも、用途はコードブック)を示している。SRSリソースセット#0は、SRSポート数2(nrofSRS-Ports=2)のSRSリソース#0及び#3を含む。SRSリソースセット#1は、SRSポート数1のSRSリソース#3とSRSポート数4のSRSリソース#4と、を含む。つまり、SRSリソースセット#0はモード1に対応し、SRSリソースセット#1はモード2に対応する。
図6Aの対応関係があると想定すると、SRI={00}(値としては0)又は{01}(値としては1)を含むDCIを受信したUEは、SRSリソースセット#0(つまりモード1)が指定されたと判断してもよい。また、SRSリソースセット#0の2つのSRIの値のうち、より小さい(又はより大きい)値が、より小さい(又はより大きい)SRSリソースインデックスに対応すると判断してもよい。本例では、UEは、SRI=0がSRSリソースセット#0のSRSリソース#0を示し、SRI=1がSRSリソースセット#0のSRSリソース#3を示すと判断してもよい。
なお、本開示の{x}は、xが2進数表記されていることを意味してもよい。
また、SRI={10}(値としては2)又は{11}(値としては3)を含むDCIを受信したUEは、SRSリソースセット#1(つまりモード2)が指定されたと判断してもよい。また、SRSリソースセット#1の2つのSRIの値のうち、より小さい(又はより大きい)値が、より小さい(又はより大きい)SRSリソースインデックスに対応すると判断してもよい。本例では、UEは、SRI=2がSRSリソースセット#1のSRSリソース#3を示し、SRI=3がSRSリソースセット#1のSRSリソース#4を示すと判断してもよい。
実施形態2-2によれば、モード1及び2を動的に切り替えることができる。
[実施形態2-3]
UEは、同じSRSポート数の1つより多いSRSリソースを含む、用途が「コードブック」の第1のSRSリソースセットと、異なるSRSポート数の1つより多いSRSリソースを含む、用途が「コードブック」の第2のSRSリソースセットと、を設定される場合には、DCIの新たなフィールドによってPUSCH送信に用いるSRSリソースセット(すなわち、モード)を指定されると想定してもよい。
当該新たなフィールドは、例えば、モードインディケーター(Mode Indicator(MI))フィールド、有効化モード(enabled mode)インディケーターフィールド、モードフィールド、SRSリソースセットインディケーターフィールドなどと呼ばれてもよい。
なお、MIフィールドは、フルパワーのPUSCH送信のための有効化モードを示してもよい。実施形態2-3において、SRIフィールドのサイズは、Rel-15 NRと同じであってもよい。
図7A及び7Bは、実施形態2-3におけるモード決定の一例を示す図である。図7Aは、MIフィールドの値(インデックス)とSRSリソースセットインデックス(ただし、用途が「コードブック」のもの)の対応関係を示す。なお、当該対応関係は、仕様によって予め規定されてもよいし、上位レイヤシグナリングによって設定されてもよい。本例では、MIインデックス0がSRSリソースセットインデックス0に関連付けられており、MIインデックス1がSRSリソースセットインデックス1に関連付けられている。
図7Bの左側は、図6Bの左側のSRSリソースセットの設定と同じであるため、説明は繰り返さない。図7Aの対応関係があると想定すると、MI={0}(値としては0)を含むDCIを受信したUEは、SRSリソースセット#0(つまりモード1)が指定されたと判断してもよい。また、SRSリソースセット#0の2つのSRIの値のうち、より小さい(又はより大きい)値が、より小さい(又はより大きい)SRSリソースインデックスに対応すると判断してもよい。本例では、UEは、SRI=0がSRSリソースセット#0のSRSリソース#0を示し、SRI=1がSRSリソースセット#0のSRSリソース#3を示すと判断してもよい。
また、MI={1}(値としては1)を含むDCIを受信したUEは、SRSリソースセット#1(つまりモード2)が指定されたと判断してもよい。また、SRSリソースセット#1の2つのSRIの値のうち、より小さい(又はより大きい)値が、より小さい(又はより大きい)SRSリソースインデックスに対応すると判断してもよい。本例では、UEは、SRI=0がSRSリソースセット#1のSRSリソース#3を示し、SRI=1がSRSリソースセット#1のSRSリソース#4を示すと判断してもよい。
実施形態2-3によれば、モード1及び2を動的に切り替えることができる。
[実施形態2-4]
UEは、同じSRSポート数の1つより多いSRSリソースを含む、用途が「コードブック」の第1のSRSリソースセットと、異なるSRSポート数の1つより多いSRSリソースを含む、用途が「コードブック」の第2のSRSリソースセットと、を設定される場合には、DCIのSRSリクエストフィールドによってPUSCH送信に用いるSRSリソースセット(すなわち、モード)を指定されると想定してもよい。
当該第1のSRSリソースセットと、当該第2のSRSリソースセットと、を設定される場合には、UEは、非周期的SRSトリガが無効化される(非周期的SRSの測定及び報告の少なくとも一方を行うことができない)と想定してもよい。
なお、実施形態2-4において、SRIフィールドのサイズは、Rel-15 NRと同じであってもよい。SRSリクエストフィールドのサイズは、Rel-15 NRと同じ2ビットであってもよいし、異なるビット数であってもよい。
図8A及び8Bは、実施形態2-4におけるモード決定の一例を示す図である。図8Aは、SRSリクエストフィールドの値(インデックス)とSRSリソースセットインデックス(ただし、用途が「コードブック」のもの)の対応関係を示す。なお、当該対応関係は、仕様によって予め規定されてもよいし、上位レイヤシグナリングによって設定されてもよい。本例では、SRSリクエストフィールド={00}、{10}がSRSリソースセットインデックス0に関連付けられており、SRSリクエストフィールド={01}、{11}がSRSリソースセットインデックス1に関連付けられている。
図8Bの左側は、図6Bの左側のSRSリソースセットの設定と同じであるため、説明は繰り返さない。図8Aの対応関係があると想定すると、SRSリクエストフィールド={00}を含むDCIを受信したUEは、SRSリソースセット#0(つまりモード1)が指定されたと判断してもよい。また、SRSリソースセット#0の2つのSRIの値のうち、より小さい(又はより大きい)値が、より小さい(又はより大きい)SRSリソースインデックスに対応すると判断してもよい。本例では、UEは、SRI=0がSRSリソースセット#0のSRSリソース#0を示し、SRI=1がSRSリソースセット#0のSRSリソース#3を示すと判断してもよい。
また、SRSリクエストフィールド={01}を含むDCIを受信したUEは、SRSリソースセット#1(つまりモード2)が指定されたと判断してもよい。また、SRSリソースセット#1の2つのSRIの値のうち、より小さい(又はより大きい)値が、より小さい(又はより大きい)SRSリソースインデックスに対応すると判断してもよい。本例では、UEは、SRI=0がSRSリソースセット#1のSRSリソース#3を示し、SRI=1がSRSリソースセット#1のSRSリソース#4を示すと判断してもよい。
実施形態2-4によれば、モード1及び2を動的に切り替えることができる。
なお、実施形態2-4のSRSリクエストフィールドは、PUSCHをスケジュールするDCIフォーマット(例えば、DCIフォーマット0_1)に含まれるSRSリクエストフィールドに限られず、例えば、PDSCHをスケジュールするDCIフォーマット(例えば、DCIフォーマット1_1)に含まれるSRSリクエストフィールド、グループ共通のDCI(例えば、DCIフォーマット2_3)に含まれるSRSリクエストフィールドなどであってもよい。
また、実施形態2-4のSRSリクエストフィールドは、DCIの他のフィールドで読み替えられてもよい。
[実施形態2-5]
UEは、例えば以下の少なくとも1つに基づいて、PUSCH送信に用いるモードを決定してもよい:
(1)SRSリソースセット、
(2)PUSCHのトランスフォームプリコーダ(トランスフォームプリコーディング)、
(3)PUSCH送信の帯域幅(例えば、リソースブロック数)、
(4)DCI(PDCCH)又はPDSCHの受信に関するパラメータ。
上記(1)について、UEは、同じSRSポート数の1つより多いSRSリソースを含む、用途が「コードブック」のSRSリソースセットを設定される場合には、モード1の処理を想定してPUSCHを送信してもよい。上記(1)について、UEは、異なるSRSポート数の1つより多いSRSリソースを含む、用途が「コードブック」のSRSリソースセットを設定される場合には、モード2の処理を想定してPUSCHを送信してもよい。
上記(2)について、UEは、PUSCHのトランスフォームプリコーダが有効に設定された場合、モード1及び2のいずれかの処理を想定してPUSCHを送信してもよい。UEは、PUSCHのトランスフォームプリコーダが無効に設定された場合、モード1及び2のいずれか(例えば、有効の場合とは異なるモード)の処理を想定してPUSCHを送信してもよい。
なお、トランスフォームプリコーダが有効である(enabled)場合、UEはDiscrete Fourier Transform Spread OFDM(DFT-s-OFDM)を適用してPUSCH送信し、トランスフォームプリコーダが無効である(disabled)場合、UEはCyclic Prefix OFDM(CP-OFDM)を適用してPUSCH送信を行う。DFT-s-OFDMは低いピーク電力対平均電力比(Peak-to-Average Power Ratio(PAPR))特性を有するため、セル端の通信に好適である。一方、CP-OFDMは、高いスループットを実現しやすいため、セル中央の通信に好適である。
PUSCHのトランスフォームプリコーダとモードとの対応関係は、仕様によって定められてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。上述のようなセル端、セル中央の通信の望ましい特性を考慮して、トランスフォームプリコーダにモードが関連付けられることが好ましい。
上記(3)について、UEは、PUSCHのためのPRB(物理リソースブロック)数が閾値より大きい場合、モード1及び2のいずれかの処理を想定してPUSCHを送信してもよい。UEは、PUSCHのためのPRB数が閾値以下の場合、モード1及び2のいずれか(例えば、閾値より大きい場合とは異なるモード)の処理を想定してPUSCHを送信してもよい。
なお、セル端の通信、セル中央の通信に応じて、PUSCHに割り当てられるPRB数の傾向が異なると考えられる。例えば、セル端の通信はあまり効率が良くないためPRB数が比較的少なく、セル中央の通信は効率が良いためPRB数が比較的大きいと想定されてもよい。
PUSCHのPRB数(スケジュールされるPRB数)とモードとの対応関係は、仕様によって定められてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。上述のようなセル端、セル中央通信の動作特性を考慮して、PUSCHのPRB数にモードが関連付けられることが好ましい。
また、上記閾値は、仕様によって定められてもよいし、上位レイヤシグナリングによってUEに設定されてもよい。例えば、上記閾値は、20PRBなどであってもよい。
上記(4)について、UEは、特定のパラメータ(又は特定のパラメータに基づく値)に基づいて、PUSCH送信に適用するモードを決定してもよい。UEは、例えば、特定のパラメータに基づく値(又は、当該値をDCIのSRIによって指示されるSRSリソースのSRSポート数で割った余り)が偶数である場合、モード1及び2を想定し、奇数である場合、モード1及び2のいずれか(例えば、有効の場合とは異なるモード)を想定してもよい。
ここで、当該特定のパラメータ(に基づく値)は、以下の少なくとも1つであってもよい:
・PUSCHをスケジュールするDCI(PDCCH)がマップされる特定の制御チャネル要素(Control Channel Element(CCE))インデックス(例えば、当該PDCCHがマップされる最小のCCEインデックス)、
・PUSCHをスケジュールするDCI(PDCCH)に対応する制御リソースセット(COntrol REsource SET(CORESET))インデックス、
・PUSCHをスケジュールするDCI(PDCCH)に関連するTransmission Configuration Indication state(TCI状態)又は擬似コロケーション(Quasi-Co-Location(QCL))想定のインデックス、
・所定のセル(例えば、セカンダリセル)のPDSCHをスケジュールするDCIに含まれる送信電力制御(Transmit Power Control(TPC))コマンド。
実施形態2-5によれば、モード1及び2の決定のための通信オーバヘッドを抑制しつつ、モード1及び2を動的に切り替えることができる。
以上説明した第2の実施形態によれば、モード1及び2に対応するUEであっても、適切にUL送信に利用するモードを判断できる。
<その他>
各実施形態では、用途がコードブックのSRSリソースセットについて説明したが、これに限られない。各実施形態の説明は、例えば、用途がノンコードブックのSRSリソースセットについてのモード1又は2の決定に読み替えられてもよい。この場合、SRIフィールドのビット数の違いなどは当業者によって適切に理解される。例えば、用途がノンコードブックのSRSリソースセットで実施形態を読み替える場合、Rel-15 NRのSRIフィールドのビット数は2であると当業者によって適切に理解される。
また、上述の実施形態では2つのモードを想定して説明したが、これに限られない。例えば、モードは3つ以上定義されてもよい。
また、上述の各実施形態では、アンテナポートを用いたUL送信は、PUSCHを想定して説明したが、PUSCHに加えて又はPUSCHの代わりに、他の信号及びチャネルの少なくとも1つのフルパワー送信が制御されてもよい。
つまり、上述の各実施形態におけるアンテナポートは、PUSCH(及びPUSCH用の復調用参照信号(DeModulation Reference Signal(DMRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS)))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、SRSなどの少なくとも1つのアンテナポートであってもよく、フルパワー送信はこれらの信号及びチャネルの少なくとも1つに適用されてもよい。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
なお、送受信部120は、ユーザ端末20から、フルパワー送信をサポートすることを示す能力情報を受信した場合、かつ当該ユーザ端末にノンコヒーレント、又は部分及びノンコヒーレントのコードブックサブセットを設定した場合に、下り制御情報(DCI)によって完全コヒーレントのコードブックサブセットを指定してもよい。
(ユーザ端末)
図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
なお、制御部210は、用途が「コードブック」の1つの測定用参照信号(Sounding Reference Signal(SRS))リソースセット内に含まれる1つ又は複数のSRSリソースが、同じSRSポート数を有するようにUEが設定される場合の第1のモード(モード1)と、用途が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、異なるSRSポート数を有するようにUEが設定される場合の第2のモード(モード2)と、をサポートする場合に、上り共有チャネル(PUSCH)の送信に適用するためのモードが当該第1のモード及び当該第2のモードの一方であると決定してもよい。
送受信部220は、決定した上記モードを適用して前記上り共有チャネルを送信してもよい。
制御部210は、下り制御情報(DCI)に含まれる、3GPP Release 15 New RadioのSRSリソースインデックス(SRS Resource Index(SRI))フィールド(例えば、用途がコードブックのSRSリソースセットを設定される場合は1ビット、用途がノンコードブックのSRSリソースセットを設定される場合は2ビット、など)よりサイズが大きいSRIフィールド(例えば、用途がコードブックのSRSリソースセットを設定される場合は2ビット、用途がノンコードブックのSRSリソースセットを設定される場合は4ビット、など)に基づいて、前記上り共有チャネルの送信に適用するためのモードを決定してもよい。
制御部210は、下り制御情報に含まれるモードインディケーターフィールドに基づいて、前記上り共有チャネルの送信に適用するためのモードを決定してもよい。
制御部210は、下り制御情報に含まれるSRSリクエストフィールドに基づいて、前記上り共有チャネルの送信に適用するためのモードを決定してもよい。
制御部210は、前記上り共有チャネルに適用するトランスフォームプリコーダ(の有効/無効)に基づいて、前記上り共有チャネルの送信に適用するためのモードを決定してもよい。
なお、本開示におけるコードブックサブセットは、特定のトランスフォームプリコーダ(例えば、有、無)、特定のランク数などにおけるコードブックサブセットを意味してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。