JP7345859B2 - 抵抗素子を含む数理問題解法回路 - Google Patents

抵抗素子を含む数理問題解法回路 Download PDF

Info

Publication number
JP7345859B2
JP7345859B2 JP2020517172A JP2020517172A JP7345859B2 JP 7345859 B2 JP7345859 B2 JP 7345859B2 JP 2020517172 A JP2020517172 A JP 2020517172A JP 2020517172 A JP2020517172 A JP 2020517172A JP 7345859 B2 JP7345859 B2 JP 7345859B2
Authority
JP
Japan
Prior art keywords
circuit
matrix
input
output
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020517172A
Other languages
English (en)
Other versions
JP2020537219A (ja
Inventor
イエルミニ,ダニエレ
サン,ゾン
ペドレッティ,ジャコモ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Politecnico di Milano
Original Assignee
Politecnico di Milano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Politecnico di Milano filed Critical Politecnico di Milano
Publication of JP2020537219A publication Critical patent/JP2020537219A/ja
Application granted granted Critical
Publication of JP7345859B2 publication Critical patent/JP7345859B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/32Arrangements for performing computing operations, e.g. operational amplifiers for solving of equations or inequations; for matrices
    • G06G7/34Arrangements for performing computing operations, e.g. operational amplifiers for solving of equations or inequations; for matrices of simultaneous equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5027Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Amplifiers (AREA)
  • Complex Calculations (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

本発明は、抵抗素子を用いる電子回路によって行われる数学的計算の分野に関する。
抵抗メモリは、数学的計算電子回路において頻繁に応用されていることが見られる。この件に関して、特許文献1には、交点行列で編成された抵抗メモリを備え、かつ、タイプx=Abの行列ベクトル積演算を行うために構築される抵抗メモリを備える回路が記載されており、式中、xは電流ベクトル、Aはコンダクタンス行列、及びbは交点行列のそれぞれの行に印加される電圧のベクトルである。
特許文献2には、計算アクセラレータに対する、とりわけ、方程式系を解くためのものであり、反復数値計算技法を用いることによる、抵抗メモリの行列が記載されている。このような解法には、収束を得るためのいくつかの反復が必要とされると考えられる。
特許文献2に開示されるものと類似したアプローチが、M.Le Gallo、「Mixed-Precision Memcomputing」、arXiv:1701.04279[cs.ET]において見出される。ここでは、混合精度解法に対する相変化メモリの行列を組み合わせることによって反復アプローチ(クリロフ部分空間法)によって線形系を解くという問題に直面している。
米国特許第9152827号明細書 米国特許出願公開第2017/0040054号明細書
M.Le Gallo、「Mixed-Precision Memcomputing」、arXiv:1701.04279[cs.ET]
出願人は、先行技術の計算処理方法は、実行可能な演算処理のタイプ(すなわち、簡易な乗算)との関連で、及び代数的な問題を解く可能性に対する計算負荷に関して、限界を示していると考えた。
本発明の第1の目的は、独立請求項1に記載されるような数理問題解法回路である。詳細な実施形態は、従属請求項2~15に記載されている。
本発明について、以下の図面における例証的なやり方でのみ示される非限定的な例を参照して、以下に説明する。これらの図面は、本発明の種々の態様及び実施形態を示しており、適切な場合、種々の図における同様の構造、構成要素、材料、及び/または要素は同じ参照番号で指示される。
数理問題解法回路の例を示す図である。 正方方程式系を解くための第1の回路の例を示す図である。 例として、正方方程式系を解くための第2の回路を示す図である。 固有ベクトルを算出するための第1の回路の例を示す図である。 固有ベクトルを算出するための第2の回路の例を示す図である。 三端子抵抗素子を使用して一実施形態における正方方程式系を解くための第1の回路を示す図である。 抵抗メモリと組み合わせた三端子抵抗素子を使用して一実施形態における正方方程式系を解くための第1の回路を示す図である。 開ループ演算増幅器を含む一実施形態における固有ベクトルを算出するための第1の回路を示す図である。 線形回帰アクセラレータ回路の例を示す図である。 線形回帰アクセラレータ回路を使用することによってトレーニングされるニューラルネットワークの例を示す図である。
本発明は種々の修正及び代替的な構成の影響を受けやすいが、いくつかの、対応して例証される実施形態が図面に示され、かつ以下に具体的に説明されるものになる。いずれにしても、本発明を特定の示される実施形態に限定することは意図されておらず、それどころか、本発明は、特許請求の範囲で定められるような本発明の範囲内にある、修正、代替的な構成、及び等価物全てを包含することが意図されていることを述べておく。
図1は、数理問題100を解くための回路の例について触れる。解法回路100は、複数の行導体Li、複数の列導体Cj、及びそれぞれが対応する行導体Liと対応する列導体Cjとの間で接続される複数のアナログ抵抗メモリGijを含む、交点行列Mを含む。
本発明の目的で、(メモリスタとしても既知の)抵抗メモリは、可能な新しい構成が得られるまで維持される値にするように構成可能であるコンダクタンスを有する2つの端子(換言すれば、双極子)を有する回路素子である。例えば、以下のデバイスは、抵抗メモリ:抵抗変化型メモリ(RRAM(登録商標))、導電性ブリッジランダムアクセスメモリ(CBRAM)、相変化メモリ(PCM)、種々のタイプの磁気抵抗ランダムアクセスメモリ(MRAM)、種々のタイプの強誘電ランダムアクセスメモリ(FeRAM)、有機体メモリ、または、電気、磁界、熱、光、機械動作、もしくは任意の他のタイプの動作、またはこれらの組合せによるこのコンダクタンスを変更できる他のデバイスである。
上述した抵抗メモリGijは、好ましくは、アナログタイプのものであり、これは、これらの抵抗メモリが、動作範囲内で連続したコンダクタンス値にすることができることを意味するが、デジタルタイプの抵抗メモリGijの可能性は除外されず、これは、これらの抵抗メモリが値の有限集合にあるコンダクタンス値にできることを意味する。
特定の示される例は、行導体Liの数N=3、列導体Cjの等しい数N=3、及びこれらのコンダクタンスGijによって表されるアナログ抵抗メモリの数N×N=3×3を示す。
また、回路100は、閉ループ構成を有する複数の演算増幅器AOiを含み、それぞれは、対応する行導体Liに接続される第1の入力端子IN1i、及び、アース端子GR及び出力端子OUiに接続される第2の入力端子IN2iを有する。とりわけ、第1の入力端子IN1iは、対応する演算増幅器OAiの反転端子であり、第2の入力端子IN2iは、対応する演算増幅器OAiの非反転端子である。
それぞれの演算増幅器OAiの出力端子OUiは、対応する列Cjに接続される。具体的には、図1によると、それぞれの出力端子OUiは、j=iである列Cjの端部に接続される。図1は、説明される例によると、3つの演算増幅器OAi(OA1、OA2、OA3)を示すことで、3つの第1の入力端子IN1i(IN11、IN12、IN13)、3つの第2の入力端子IN2i(IN21、IN22、IN23)、及び3つの出力端子OUi(OU1、OU2、OU3)が示されている。
負帰還により、それぞれの演算増幅器AOiは、対応する第1の入力端子IN1iを仮想接地にするために、換言すれば、第2の入力端子IN2iによって想定されるアースGRのものに近い(理論上は等しい)電圧値にするために、動作できることが分かる。仮想接地は、有限利得を有する演算増幅器によって理論上想定されることが分かる。とりわけ、それぞれの演算増幅器AOiは反転構成を有する。
解かれるべき数理問題に関して、複数の抵抗メモリGijは、対応するコンダクタンス値によって(さらにはGijによって指示される)、数理問題の第1の複数の既知の値を表すように構成可能である。
また、回路100は、解かれるべき数理問題の第2の既知の値または第2の複数の既知の値を表すように構成可能であるように適応される、回路自体の複数の電気の大きさを検出できるようにする。この第2の複数の既知の値は、例えば、それぞれの行導体において流された電流の値を含む、または、既知の値は、複数の演算増幅器AOiに接続可能な追加の電気部品のコンダクタンス(または別のパラメータ)とすることができる。
複数の演算増幅器AOiは、数理問題を解く複数の値を代表する(それぞれの出力端子OUiで測定可能な)複数の出力電圧Viを定める。
特定の実施形態によると、解法回路100は、線形代数の問題の近似解に使用可能であり、この中で、以下が例示として挙げられる:
-行列形式で表現できる正方方程式系の解;
-実正方行列の反転;
-固有ベクトルの算出。
解法回路100は、(示されない)電圧値Viを測定するための少なくとも1つの装置をさらに備えることができる。このような測定装置は、アナログ(すなわち、電位差計)またはデジタルとすることができ、それによって、アナログからデジタルに電圧値Viを変えることが必要とされる。
本明細書において、同一のまたは類似の回路部品は図における同じ特定する記号で指示されることが分かる。
正方方程式系の解
図2は、上述される回路100の第1の実施形態に触れており、例として、正方方程式系を解くための第1の回路200を示す。
第1系の解法回路200は、以下の行列形式によって表現できる正方方程式系を解くことが可能である。
Ax=b (1)
式中、Aは寸法N×Nを有する実係数の行列であり、xは長さがNである未知のベクトルであり、bは長さがNである実素子のベクトルである。
抵抗メモリGijは、最小値Gminと最大値Gmaxとの間の範囲内で(不確定性マージン以外の)所定の値にするように構成可能であることが分かる。
行列1の抵抗メモリのそれぞれのコンダクタンス値Gijは、行列Aの要素Aijに等しいまたは比例する。とりわけ、図2に示される、正方方程式系を解くための第1の回路200は、全て正である行列Aの要素AiJを指す。
第1系の解法回路200はまた、それぞれが、例えば、行導体Liの第1の端部に接続される複数の電流発生器Iiを備える。それぞれの演算増幅器AOiは、例えば、電流発生器Iiに接続される第1の端部の反対側の第2の端部で、対応する行導体Liに接続されることが分かる。例によると、抵抗メモリGijは、固有の行導体Lの第1の端部と第2の端部との間に含まれる、ノードnijにおいて対応する行導体に接続される対応する端子を示す。
電流発生器Iは、各行導体において、電流I(I、I、I)を流すように構成され、これらの値は、行列系(1)の既知のベクトルbの要素に等しくなるまたは比例するように選択される。電流Iiは定電流またはパルス電流である。
演算では、行導体Lに供給する電流Iは、それぞれの演算増幅器AOの第1の入力端子INi(換言すれば、仮想接地端子IN1i)に流れる。電圧Vは、対応する出力端子OUとアースGRとの間で数値が求められる。
図2から、オームの法則及びキルヒホッフの法則に基づいて以下の式を書き込むことが可能である:
11+V12+V13=-I
21+V22+V23=-I (2)
31+V32+V33=-I
式(2)は、数式(3):
ΣjVjGij=-Ii (3)
にあるようなコンパクトなやり方で、及びまた、以下の行列方程式(4):
AV=-I (4)
による代数表記法によって、書き換え可能である。式中、既に(1)によって表現されるように、AはコンダクタンスGijの行列であり、Iは既知のベクトル-bであり、電圧Vのベクトルは線形系Ax=bを解く。
演算では、上に述べられるように、コンダクタンスGijの値が構成され、第1の回路200は所定の電流値Iによって供給される。
演算増幅器AOは、対応する第1の入力端子INi(反転端子)にすることで、出力端子OUiにおける、アースへの行導体Li、ひいては電圧Vi全てによって、関係(4)によって表現されるように、最終値が想定される。
高利得演算増幅器OAiを選択することによって、仮想接地に非常に迅速に達することが可能になり、電圧はまた、判断される値Viに迅速に収束することが分かる。とりわけ、この実施形態、及び他の実施形態に対して、105を上回る公称利得を有する演算増幅器が選択可能である。
第1系の解法回路200において達した電圧値Vi(具体的には、V、V、及びV)を測定することによって、ベクトルxの要素を得ることができ、その結果として、方程式系(1)を解くことが可能になる。
図2の第1系の解法回路200は、正の要素のみを含有する係数行列Aを指す。正の要素及び負の要素両方を含有する係数行列Aを考慮することによって、方程式系の解
x=b (1a)
は、係数行列Aが寸法N=3を有する具体的な例において、正方方程式系300を解くための第2の回路の例を示す、図3における実施形態によって得られ得る。
第2系の解法回路300は、行列Aが、両方が正の要素のみを含有する第1の行列A+と第2の行列A-との間の差として表され得ると考えることにより構成される。
=A+-A- (5)
とりわけ、第2の行列A-は、行列Aの負の要素の絶対値を含有する。
数式(5)によると、第2系の解法回路300は、図2の行列Mに類似した第1の交点行列MG+を含み、この抵抗メモリは、第1の行列A+の要素に対応するコンダクタンスGij+を有し、及び(構造的に第1の交点行列と類似した)第2の交点行列MG-を含み、この抵抗メモリは、第2の行列A-の要素に対応するコンダクタンスGij-を有する。
2つの交点行列は、同じ列導体Cjを有し、これらのそれぞれに沿って、(抵抗メモリGij+と抵抗メモリGij-との間に)電圧の符号をこの入力からこの出力まで反転させるように構成され、かつ関係(5)によって指示される差に対応する、対応する反転デバイスInv1(示される例では、Inv1、Inv2、Inv3)が介在している。
第1の交点行列M+はN=3の行導体Li+(L1+、L2+、L3+)を含み、これらのそれぞれは、対応する電流発生器Iに接続される対応する供給ノードN(N、N、N)に接続される端部を有する。
例の第2の交点行列M-はN=3の行導体Li-(L1-、L2-、L3-)を含み、これらのそれぞれは、供給ノードN(N、N、N)のうちの1つに接続される端部を有する。
とりわけ、第2系の解法回路300の演算増幅器OAは、仮想接地に対して上述されるように動作し、かつ、とりわけ、供給ノードN、N、及びNで、ひいては仮想接地ノードとして動作する、それぞれの行導体Li+及びLi-に接続される対応する反転入力端子In1iを有する。
既知の電流(I、I、及びI)のそれぞれは、供給ノードN、N、及びNのうちの1つにおいて2つの項、すなわちIi+及びIi-に分けられる。
=Ii++Ii- (6)
第1の交点行列MG+に関して、式:
Σij+=-Ii+ (7)
は有効である。式中、Vjは電圧ベクトルV、V、Vを指示する。
第2の交点行列M-に関して、以下の式:
-Σij-=-I- (8)
は有効である。
式(7)及び(8)をそれぞれ合計すると、
Σ(Gij+-Gij-=-Ii+-Ii-=-I (9)
が得られる。
関係(5)に基づいて、
(Gij+-Gij-)=(A-A)= (10)
が得られる。
従って、以下のように(8)を書き換えることが可能である。
(A-A)x=Ax=-I=b (11)
電流Iを既知のベクトルbの値に変更することによって、電圧Vjを測定することによって、負の要素及び正の要素を含む、係数行列Aに対する方程式系(1a)も解くことが可能になる。
正方行列の反転
さらに、問題解法回路100は、図2及び図3の実施形態においても、正方行列を反転させるために、換言すれば、行列Aの反転行列A-1を算出するために使用可能であることが分かる。
反転行列A-1は関係:
AA-1=U (12)
を満たす。ここで、Uは単位行列であり、この要素は、1に等しい対角線の要素以外は、全てゼロである。
反転行列A-1を判断するために、以下の方程式系:
AA -1=U (13)
を解くことが必要とされることが分かる。ここで、
-A -1は反転行列A-1のi番目の列であり、
-Uは単位行列Uのi番目の列である。
行列Aの寸法がN×Nである場合、(13)に従ってNの系を解くことが必要とされる。この場合、方程式系を解くための第1の回路200は、方程式系(13)のうちの1つに関して構成可能であり、それによって、
-交点行列Mは反転される行列Aの値に等しいコンダクタンスGijを有し、
-電流Iは単位行列Uのi番目の列の値Uになる。
このような条件の下で、図2に関して指示されるのと同じやり方で、電圧Vjの値は反転行列A-1の列A -1を表す。
図3に関して説明されるモードを使用することによって、負の要素及び正の要素も含有する行列を反転させることが可能である。
固有ベクトルの算出
上で論じられるように、回路100は、例えば、第1の固有ベクトル算出回路400を示す図4に示されるように、固有ベクトルを算出するために使用可能である。
解かれるべき問題は、関係:
Ax=λx (14)
によって表され得る。ここで、
-Aは既知の要素のN×N行列であり、
-xは未知である、行列Aの固有ベクトルであり、
-λは既知である、行列Aの(スカラー)固有値である。
第1の固有ベクトル算出回路400では、演算増幅器AOiは、トランスインピーダンス構成を有し、とりわけ、第1の入力端子IN1i(反転するものは「-」)は、λGに等しいコンダクタンスを有する対応する帰還抵抗によってそれぞれの演算増幅器OAiの出力端子OUiに接続され、ここで、Gは、既知の値であり、かつ基準コンダクタンスである。
とりわけ、(抵抗メモリによって実装可能な)それぞれの帰還抵抗λGは、それぞれの演算増幅器OAiの反転端子にそれぞれ接続される、出力端子OUiと入力ノードINi(例では、IN、IN、IN)との間で接続される。
演算増幅器AOiの出力端子OUiは、閉ループ構成を得るために各インバータINV1I、INV2、及びINV3によって行導体Lに接続される。
図4の例は、正の要素のみを含有する行列Aに対するN=3の事例を指す。
対応する演算増幅器の入力ノードINiに流れる電流I、I、及びIは、
I1=V1G11+V2G12+V3G13
I2=V1G21+V2G22+V3G23
I3=V1G31+V2G32+V3G33 (15)
によって表され得る。
一般的な値Nについて、系(15)は以下のやり方:
Ii=ΣjVjGij (16)
または、行列表記法によって、以下のやり方:
I=GV (17)
で書き換え可能である。
電流Iのベクトルは、電圧ベクトルVに、トランスインピーダンス構成を有する演算増幅器OAiによって変換される。
V=I/GTIA (18)
関係(18)によって表される変換は、トランスインピーダンス増幅器として動作するそれぞれの演算増幅器OAiによって、及び対応するインバータINViによって可能にされる。
ここで、GTIAは、帰還抵抗のコンダクタンスである。
TIA=λG (19)
式中、λは固有値であり、Gは基準コンダクタンスである。
従って、
GV=GλV (20)
を書き込むことが可能である。
式(20)と関係Ax=λxとの比較によって、
A=G/G、x=V (21)
を得ることが可能になる。
従って、図4の回路400において、交点行列Mの抵抗メモリのコンダクタンスGijは、基準コンダクタンスGの値で乗算された行列Aの要素のものに等しい値を有する。
帰還抵抗GTIAは、固有値λ及び基準コンダクタンスGの積によって与えられる。電圧V(V、V、及びV)の測定された値は、要求された固有ベクトルxに相当する。固有ベクトルxの完全集合は、固有値、換言すれば、帰還抵抗GTIAの値を修正することによって得られることが分かる。
第1の固有ベクトル算出回路400の可能な応用がランキングアルゴリズムの(例えば、Googleの)リンク行列において見出され、ここで、固有値はそれぞれのページの重要性スコアを表現していることが分かる。従って、説明した解法は、インターネットページのランキングを加速させ、かつ一般的に「ビッグデータ」を解析するのに極めて有利であると思われる。
第1の固有ベクトル算出回路400はまた、微分方程式の近似数値解に適用可能である。微分方程式が有限微分方程式に変換される時、再び行列形式Ax=λxになる。例えば、シュレーディンガー方程式がこのような形式を取り、ここで、Aは準対角行列であり、λはエネルギーの固有値であり、xは問題の固有関数の解である。
固有ベクトルが求められる行列Aが正の要素及び負の要素両方を含有する場合、問題は、(依然N=3として)図5に例として示される第2の固有ベクトル算出回路500によって解かれ得る。
第2の固有ベクトル算出回路500は、それぞれ、表記法に従って正の要素を含有する行列G+及びG-に対応する、第1の交点行列M+及び第2の交点行列M-を含む。
A=(G+-G-)/G (22)
2つの交点行列は、同じ列導体Cjを有し、これらのそれぞれに沿って、(抵抗メモリGij+と抵抗メモリGij-との間に)電圧の符号をこの入力からこの出力まで反転させるように構成される、対応する反転デバイスInvj(Inv4、Inv5、Inv6)が介在している。
第1の交点行列M+はN=3の行導体Li+(L1+、L2+、L3+)を含み、これらのそれぞれは、対応する接続ノードNiA(N1A、N2A、N3A)に接続される端部を有する。例の第2の交点行列M-はN=3の行導体Li-(L1-、L2-、L3-)を含み、これらのそれぞれは、接続ノードNiA(N1A、N2A、N3A)のうちの1つに接続される端部を有する。
とりわけ、第2系の解法回路300の演算増幅器OAiは、仮想接地に対して上記のように動作し、かつ、とりわけ、コンタクトノードN1A、N2A、及びN3Aで、それぞれの行導体Li+及びLi-に接続される対応する入力ノードINiを有するため、仮想接地ノードとして動作する。
図5における回路について、第1の交点行列M+の行導体にある電流Ii+(I1+、I2+、I3+)に関して、コンパクトな形式の以下の式が有効である。
i+=Σij+ (23)
第2の交点行列M-の行導体において流れる電流Ii+(I1+、I2+、I3+)に関して、コンパクトな形式の以下の式が有効である。
i-=-Σij- (24)
電流Ii+及びIi-は、
Ii=Ii++Ii (25)
を得るために、キルヒホッフの法則に従って、各接続ノードN1A、N2A、及びN3Aにおいてそれぞれを合計する。
その結果、電流ベクトルIは、
I=GV (26)、
ここで、
Gij=Gij+ - Gij- (27)
として代数表記法によって表現できる。
電流ベクトルIはトランスインピーダンス演算増幅器OAiによって、及び対応するインバータInviによって電圧ベクトルVにおいて変換される。
V=I/GTIA (28)
ここで、図4の上述される回路に関して、GTIAは帰還抵抗のコンダクタンスである。
TIA=λG (29)
関係Ax=λxを考慮すること、及びこの関係を関係(29)と比較することによって、図4における回路の式(21)と類似した、
A=G/G、x=V (30)
が得られる。
第1の固有ベクトル算出回路400のそれぞれの演算増幅器AOiはこれ自体の正の供給源及び負の供給源を有する能動回路であることが分かる。第1の固有ベクトル算出回路400の行導体及び列導体において、電流/電圧は、問題の解法を判断するオームの法則及びキルヒホッフの法則を満たすように生成される。他で示される図の回路にも類似の検討が有効である。
さらなる実施形態
上述した回路全てのコンダクタンス値Gijは、抵抗メモリ(換言すれば、メモリスタ)を使用することによってだけでなく、必要とされるコンダクタンスGijのそれぞれの値に対して、例えば、電界効果トランジスタ、フローティングゲートトランジスタ、フラッシュメモリ、電荷トラップメモリなどの3つ以上の端子を有する抵抗素子(好ましくは、再構成可能なもの)を使用することによって、得られ得ることが分かる。例えば、電荷トラップメモリとして、metal-oxide-nitride-oxide-semiconductor(MONOS)構造を有するデバイスが使用可能である。
この目的で、図6は、図2に関して上述される正方方程式系を解くための第1の回路200の第1の実施形態(200A)を示す。ここで、コンダクタンスGijは対応するMONOS型デバイスDijによって得られる。
それぞれのデバイスDijのゲート電圧Vg、ijは、(示されない)各張力発生器によって制御され、かつ、例えば、列または行のゲート端子全てを電圧発生器自体に接続することによって、接続数を限定するために部分的に互いに短絡可能である。図6における同じ回路は、フローティングゲートトランジスタで、簡易な電界効果トランジスタで、または他のタイプの三端子素子で使用可能である。
さらに、三端子抵抗素子はまた、二端子素子(例えば、メモリスタ)及び三端子素子の適した組合せを含むことができることが分かる。図7は、正方方程式系を解くための第1の回路200の第2の実施形態(200B)を例示的に示し、ここで、それぞれのコンダクタンスGijは、トランジスタデバイスTRij及びメモリスタデバイスMRijを含む三端子素子を適当に構成することによって得られる。
コンダクタンス値Gijを得るために使用可能である可能な抵抗素子に関して説明されるものは、第1の固有ベクトル算出回路400に関して説明されるコンダクタンス値G0に依然有効であることが分かることは、有用である。
さらに、説明した実施形態全ては一定のコンダクタンス抵抗素子、換言すれば、非再構成可能素子を使用することによって動作可能であることが分かる。
ここで、上述される種々の実施形態における演算増幅器OAiの閉ループ構成を参照する。さらなる実施形態によると、演算増幅器OAiのうちの1つが、出力端子OUiが列導体Ciに接続されない開ループ構成であることも企図される。
例えば、図8は、第1の固有ベクトル算出回路400の異なる実施形態(400B)を示す。ここで、演算増幅器OA1の出力端子OU1は、第1の列導体C1に接続されないため、(求められる固有ベクトルVの要素として)測定される電圧V1’は、演算増幅器OA1によって(対応する反転デバイスInv1によって)駆動される端子TOU1で利用可能である。図8の例によると、第1の列C1は、電圧発生器GENによって発生させる電圧V1によって供給される。また、交点行列M内の他の点で、図8に示されるものの代替策としてまたはこれに加えて、第1の列導体C1が開放される可能性がある。
既に述べたように、数理問題解法回路100及びこの上述される実施形態の応用は、ビッグデータを解析する、例えば、ウェブページのランクページを算出することから成ることが分かる。他の応用は、例えば、シュレーディンガー方程式、及び他の気象学、金融、生物学問題など、微分方程式の近似解を含む。
数理問題解法回路100及びこの上述される実施形態は、近似解を伝えるが、これは、抵抗メモリの構成可能な値について一部不確定であるからである。このような近似は、回路自体の応用のより大きい部分には許容できる。
数理問題解法回路100及びこの上述される実施形態は、計算が簡易であるという利点を有し、計算は、乗算及び加算を必要とせずに1つのクロックだけで行われる。従って、説明した回路は代数的計算アクセラレータとして動作する。
図9は、線形回帰アクセラレータ回路1000として数理問題解法回路の別の例に触れている。
線形回帰アクセラレータ回路1000は、第2の回路700(または出力回路)に接続される第1の回路600(または入力回路)を含む。第1の回路600は、複数のアナログ抵抗メモリがGijの代わりに参照記号Xijによって指示されること以外、図1に説明される数理問題解法回路100に類似している。第2の入力回路700はまた、図1に説明される数理問題解法回路100に類似している。
より詳細には、第1の回路600の演算増幅器OAiは、トランスインピーダンス構成を有し、具体的には、第1の入力端子IN1i(反転するものは「-」)は、Gに等しいコンダクタンスを有する対応する帰還抵抗によってそれぞれの演算増幅器OAiの出力端子OUiに接続され、ここで、Gは、既知の値であり、かつ基準コンダクタンスである。
それぞれの演算増幅器OAiの出力端子OUiは、出力交点行列MGouを含む第2の回路700に接続される。出力交点行列MGouは、交点行列Mと同じ寸法を有し、かつ第1の回路600の交点行列Mのものと同一の値及び回路位置を有するアナログ抵抗メモリXijを含む。
図9の例において、交点行列M及び出力交点行列MGouは矩形行列である。とりわけ、列数は行数より(例えば、単位として)少ない。
第1の回路600のそれぞれの演算増幅器OAiの出力端子OUiは、出力交点行列MGouの対応する行導体Liに接続される。出力交点行列MGouのそれぞれの列導体Coujは対応する出力演算増幅器OAouiに接続される。それぞれの出力演算増幅器OAouiは、対応する列導体Coujに接続される対応する非反転入力端子「+」、及び、アースGRに接続される対応する反転入力端子「-」を有する。
それぞれの出力演算増幅器OAouiは、第1の回路600の交点行列Mの対応する列導体Cjに接続される対応する出力端子OUPjを備える。それぞれの出力演算増幅器OAouiは閉ループ回路1000において接続される。
また、線形回帰アクセラレータ回路1000は、この例において、それぞれが、交点行列Mの行導体Liに接続され、かつコンダクタンスGが接続される対応する端子における電圧-yiを有する電圧発生器VGiによって供給される。それぞれの演算増幅器AOiの出力端子OUiにおける電圧は、参照記号Viで指示される。出力演算増幅器OAouiの出力端子OUPjにおける電圧は、記号wj(例では、w1及びw2)によって指示される。
線形回帰問題に関して、回帰が、無限の仮説母集団から抽出されるサンプリング日に基づいて測定される変数の間の関数関係の問題を正式なものにしかつ解くことに留意されたい。例えば、これは、mの点(入力/出力の対が考慮される)であり、それぞれがnの入力変数:
(x、x、…、x) (31)
を有し、出力座標はyである。
i番目の入力/出力の対に対して、線形回帰関係がある。
=w+w +w +…+w +ε (32)
ここで、iは1からmまでの整数全てを包含する。
行列形式において全体を表現することによって、
y=X・w+ε (33)
が得られる。式中、Wは(判断される)係数の行列であり、εは近似誤差である。
Figure 0007345859000001
近似誤差εを最小化するために、ベクトルεのノルムは最小化されるため、
Figure 0007345859000002
によって表される。
最低ノルムは、変数wに対して数式(34)の導関数をゼロに設定することによって判断可能である。
Figure 0007345859000003
従って、
×w=Xy (35)
になる。
従って、係数行列wは、
w=(XX)-1y (36)
によって示され、式中、(XX)-1は行列Xの疑似逆である。
再び、線形回帰回路1000に言及すると、数式(36)を解くことによって二次誤差(34)を最小化するのに有用である。
実際には、(トランスインピーダンス構成において動作させる)演算増幅器OAiの出力電圧Vi(ベクトルV)は以下の関係によって表現できる。
V=-(X・w-Gy)/G (37)
式中、Xはコンダクタンスの行列Xijであり、Gは前に定められたものである。
演算増幅器OAiに関して説明されるものと類似した出力演算増幅器OAoujは、対応する非反転入力端子を仮想接地に接続するように構成されるため、以下になる。
・V=-X・(X・w-Gy)/G=0 (38)
行列Gはコンダクタンスの行列Xに対する単位であるため、数式(38)は、
X・w-Xy=0 (39)
の形式を取る。これは数式(36)と同等である。
既知の値に基づいて回路1000を正確に寸法合わせした後、電圧発生器VGiによって供給電圧が印加されると、回路1000は、出力演算増幅器OAoujの出力端子が(数式(36)からのように)求めた解を表す対応する電圧wjを有するように動作することになる。先の実施形態に対して行われたものと類似して、線形回帰アクセラレータ回路1000に対しても、計算は乗算及び加算を必要とすることなく1つのクロックのみで行われる。従って、説明した線形回帰回路1000は代数的計算アクセラレータとして動作する。
前述される線形回帰アクセラレータ回路1000の配置はまた、ロジスティック回帰アクセラレータとして使用されるように適応可能である。知られているように、ロジスティック回帰は、y依存変数が、2つの値(例えば、真または偽)のみにできる変数全てのように、低値(例えば、-1)及び高値(例えば、+1)に関係している二値型である事例に関する特定の事例である。
ロジスティック回帰アクセラレータを実装するために、(低値として)-1及び(高値として)1の二値を表す電圧(または電流)供給発生器を有する図9の回路1000のレイアウトを修正することが企図される。得られたベクトルwは、高い及び低いyを有する点の2つのクラスを線形に分けることを可能にする式(32)の係数を特定する。
また、線形回帰アクセラレータ回路1000は、ニューラルネットワークの係数wjを算出するために使用可能であり、これによって、例えば、逆伝搬法に従って、反復トレーニングを行うことが防止される。
例えば、図10は、入口層801、隠れ層802、及び出口層803を含むニューラルネットワーク800を概略的に示す。
図10の例では、入口層はN=14×14=196のニューロンを含み、隠れ層はN=784のニューロンを含み、最後に、出力または分類層はN=10のニューロンを含む。
入力層801に関連しているニューラルネットワーク800の重みは、行列W(1)(例えば、寸法N×N=196×784のW(1))によって表され得、隠れ層804に関連している重みは行列W(2)(例えば、寸法N×N=784×10のW(2))によって表され得る。
ニューラルネットワーク800は、例えば、入力量を承認する/分類するのに使用可能である。特定の例によると、上述したもののようなネットワークは、手書きの数字(0から9まで)を承認するために使用可能である。例えば、Nの入力値(画素)の行列において表されるMNISTデータセット標準における1桁の数字は、シナプス荷重の値を設定するためにネットワーク800を適当にトレーニングすることによって0から9までの数字としてニューラルネットワークによって分類可能である。
ニューラルネットワーク800をトレーニングする演算はロジスティック回帰演算であり、この場合、重みは、ニューロンの二値出力をより良く線形に分離する係数を表すことが分かる。
結果として、ネットワークは、先述されるロジスティック回帰アルゴリズムに従って動作させる、図9における線形回帰回路1000によってトレーニング可能である。この目的で、第1のニューロン層801と隠れニューロン層802との間のシナプス荷重W(1)は、例えば、重みのランダムな分布に従って、任意に設定される。また、第1の層801のニューロンに提示されるNの入力値の集合の判断された数Mによって形成されるトレーニングデータセットが使用される。回路1000内で使用される行列Xは、さらにまた、種々のMの提示で隠れネットワークの出力値によって形成されることになる。
M*Nの提示される入力値全てを含有する行列Iを定めることによって、行列Iは例えば、
X=sigmoid(I*W(1)) (40)
として得られる。ここで、シグモイド関数は、一般的なニューロンに関連している可能な非線形関数である。行列は寸法M*Nを有することが分かる。図9におけるベクトルyは、それとは逆に、(iが1からNまで変化するとして)i番目の分類ニューロンを指す、ラベルの行列(「真」というラベルが+1、「偽」というラベルが-1)として得られる。i番目のニューロンを指すシナプス荷重は従って、線形回帰:
(2)=(XX)-1y (41)
によって得られる。
従って、隠れ層802の重みW(2)の値は、行列表現(41)が上で論じた行列表現(36)に類似していることが分かることで、線形回帰アクセラレータ回路1000を使用することによって得られ得る。動作はN回、それぞれの分類ニューロンにつき1回、繰り返されなければならないことが分かる。それぞれの動作によって、i番目の出力ニューロンを指すNのシナプス荷重を得ることが可能になる。このように、繰り返し演算によって、隠れ層と出力層との間のN×Nのシナプス荷重W(2)全てを得ることが可能になる。
線形回帰アクセラレータ1000及びこの上述した特定の実施形態は、データサイエンスにおいて非常に有用であり、かつ、例えば、経済、金融、生物学、物理学、自動トレーニング、ロボット工学などにおける種々の科学及び工学分野において可能な応用を見出すことが分かる。

Claims (15)

  1. 数理問題解法回路(100;1000)であって、
    複数の行導体(L)、複数の列導体(Cj;ouj)、及びそれぞれが行導体と列導体との間で接続される複数の抵抗素子(Gij;Xij)を含む、交点行列(M;Mou)と、
    複数の演算増幅器(OAi;OAouj)であって、それぞれは、対応する行導体(L)に接続される第1の入力端子(IN1i;「+」)、アース端子(GR)に接続される第2の入力端子(IN2i;「-」)、及び対応する行導体に対応する抵抗素子を介して接続される列導体(C;Couj)に、直接的に又は間接的に接続される出力端子(OUi;OUPj)を有し、閉ループを構成し、対応する前記第1の入力端子(IN1i;「+」)を仮想接地に向けるようにする、複数の演算増幅器(OAi;OAouj)と、を備え、
    前記複数の抵抗素子は、対応するコンダクタンス値(Gij;Xij)によって、数理問題の第1の複数の既知の値を表し、
    前記数理問題の少なくとも1つの第2の既知の値を表す少なくとも1つの構成可能な電気量(Ii;λG0;Go)は前記回路と関連付けられ、
    前記複数の演算増幅器(OAi;OAouj)は、対応する出力端子(OUi;OUPj)から、前記数理問題の複数の解の値を代表する複数の出力電圧(V;wi)を定め
    前記回路は、前記第1の入力端子(IN1i;「+」)が仮想接地を想定するときに、複数の解の値を表す複数の出力電圧(Vi;wi)が想定されるように構成される、数理問題解法回路(100;1000)。
  2. 前記複数の抵抗素子は、抵抗メモリ、三端子抵抗素子(Dij、TRij)、抵抗メモリ(MRij)及び三端子抵抗素子(TRij)の組合せのグループに属する少なくとも1つのデバイスである、請求項1に記載の回路(100)。
  3. 前記少なくとも1つの第2の既知の値は第2の複数の既知の値を含み、前記回路は、それぞれが、前記複数の行導体の行導体(L)に接続され、かつ前記第2の複数の既知の値の既知の値に対応する電流を発生させるように構成される複数の電流発生器(I)をさらに備える、請求項1に記載の回路(100、200)。
  4. それぞれの演算増幅器(OAi)の前記第1の入力端子(IN1i)は反転端子であり、それぞれの演算増幅器(OAi)の前記第2の入力端子(IN2i)は非反転端子である、請求項1~3のうちいずれか一項に記載の回路。
  5. 行列形式で表現できる正方方程式系、実正方行列の反転、固有ベクトルの算出、微分方程式の解のグループに属する数理問題を解くように構成される、請求項に記載の回路。
  6. 前記交点行列(MG+)の前記複数の抵抗素子は、前記対応するコンダクタンス値(Gij+)によって、前記第1の複数の既知の値を表すように構成され、このような前記第1の複数の既知の値は正の値である、請求項1~5のうちいずれか一項に記載の回路(200;300、500)。
  7. さらなる複数の行導体(Li-)、それぞれが、前記さらなる複数の行導体の行導体(Li-)と前記複数の列導体(Cj)の対応する列導体との間で接続されるさらなる複数の抵抗素子(Gij-)を含む、さらなる交点行列(MG-)であって、前記対応するコンダクタンス値(Gij-)によって、前記数理問題に関する第2の複数の既知の負の値の絶対値を表すように構成される、さらなる交点行列(MG-)と、
    それぞれが、対応する列導体(C)上に配設され、かつ前記交点行列と前記さらなる交点行列との間に介在している複数の電圧インバータ(Inv1、Inv2、Inv3)と、をさらに含み、
    前記さらなる複数の行導体(Li-)のそれぞれの行導体は、前記仮想接地を想定するために対応する演算増幅器(OAi)の前記第1の入力端子(IN1i)に接続される、請求項6に記載の回路(300、500)。
  8. 前記演算増幅器(OAi)はトランスインピーダンス構成を有し、それぞれは、前記対応する出力端子(OUi)と前記第1の入力端子(INi)との間に配設される帰還抵抗(λG)を含み、前記帰還抵抗は前記少なくとも1つの第2の既知の値に関連しているコンダクタンス値を有する、請求項1に記載の回路(400、500)。
  9. 前記回路は、以下の行列形式:
    Ax=b
    によって表現できる正方方程式系を解くように構成され、
    式中、
    Aは既知の要素の行列であり、前記交点行列(M)の前記コンダクタンス値は前記行列Aの前記既知の要素に関連しており、
    bは既知の要素のベクトルであり、前記複数の電流発生器(I)は、それぞれの電流発生器が前記ベクトルbの既知の要素に対応する電流を発生させるように構成され、
    xは未知の要素のベクトルであり、前記複数の出力電圧(Vi)は前記未知の要素を表す、請求項3または5に記載の回路。
  10. 前記回路は、方程式系:
    AA-1=U
    に従って、反転させる正方行列Aの反転行列A-1を判断するように構成され、
    前記反転させる正方行列Aは既知の要素を含有し、前記交点行列(M)の前記コンダクタンス値は前記既知の要素に関連しており、
    Uは単位行列であり、前記複数の電流発生器(I)は前記単位行列Uのベクトルの値に対応する値の電流を発生させるように構成され、
    前記反転行列A-1は未知の要素の複数のベクトルを含み、前記複数の出力電圧(Vi)は前記反転行列A-1の未知の要素の前記ベクトルのうちの1つを表す、請求項5に記載の回路。
  11. 前記回路は、関係:
    Ax=λx
    によって表現できる正方行列の固有ベクトル及び固有値問題を解くように構成され、
    Aは、各既知の要素を含有する正方行列であり、前記交点行列(M)の前記コンダクタンス値は前記正方行列Aの前記既知の要素に関連しており、
    λは、前記帰還抵抗(λG)の前記コンダクタンス値に関連している既知の固有値であり、
    xは、未知の固有ベクトルであり、複数の出力電圧(Vi)は前記未知の固有ベクトルを表す、請求項8に記載の回路。
  12. 前記回路は定電流またはパルス電流によって供給されるように構成される、請求項1~11のうちいずれか一項に記載の回路。
  13. 前記回路は前記複数の出力電圧(Vi)を測定するための少なくとも1つのデバイスを含む、請求項1~12のうちいずれか一項に記載の回路。
  14. 入力計算回路(600)及び出力計算回路(700)を備え、
    前記入力計算回路(600)は、
    複数の入力行導体(L)、複数の入力列導体(C)、及びそれぞれが入力行導体と入力列導体との間で接続される複数の入力抵抗素子(Xij)を含む、入力交点行列(M)と、
    それぞれがトランスインピーダンス構成である複数の入力演算増幅器(OA)であって、それぞれは、対応する行導体(L)に接続される第1の入力端子(IN1i)、アース端子(GR)に接続される第2の入力端子(IN2i)、及び出力端子(OUi;OUPj)を有し、対応する前記第1の入力端子(IN1i)を仮想接地に向けるようにする、複数の入力演算増幅器(OA)と、を備え、
    前記出力計算回路(700)は、
    出力交点行列(M Gou )及び複数の出力演算増幅器(OAouj)を備え、
    それぞれの入力演算増幅器(OA )は、前記交点行列(MGou)の対応する行導体に接続される出力端子(OUi)を有し、
    それぞれの出力演算増幅器(OAouj)は、前記出力交点行列(MGou)の対応する列導体(Couj)に接続される第1の入力端子(「+」)及び前記入力交点行列(M)の対応する入力列導体(Cj)に接続される出力端子(OUPj)を有する、請求項1に記載の回路(1000)。
  15. 前記回路は、以下のモード:線形回帰アクセラレータ、ロジスティック回帰アクセラレータのうちの1つに従って動作するように構成される、請求項1または14に記載の回路(1000)。
JP2020517172A 2017-09-27 2018-09-27 抵抗素子を含む数理問題解法回路 Active JP7345859B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102017000108281 2017-09-27
IT102017000108281A IT201700108281A1 (it) 2017-09-27 2017-09-27 "circuito di risoluzione di problemi matematici comprendente elementi resistivi."
PCT/IB2018/057487 WO2019064215A1 (en) 2017-09-27 2018-09-27 MATHEMATICAL PROBLEM SOLVING CIRCUIT COMPRISING RESISTIVE ELEMENTS

Publications (2)

Publication Number Publication Date
JP2020537219A JP2020537219A (ja) 2020-12-17
JP7345859B2 true JP7345859B2 (ja) 2023-09-19

Family

ID=61187624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020517172A Active JP7345859B2 (ja) 2017-09-27 2018-09-27 抵抗素子を含む数理問題解法回路

Country Status (7)

Country Link
US (1) US11314843B2 (ja)
EP (1) EP3688622B1 (ja)
JP (1) JP7345859B2 (ja)
KR (1) KR102685742B1 (ja)
CN (1) CN111133431B (ja)
IT (1) IT201700108281A1 (ja)
WO (1) WO2019064215A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366876B2 (en) * 2020-06-24 2022-06-21 International Business Machines Corporation Eigenvalue decomposition with stochastic optimization
KR20230012882A (ko) 2021-07-16 2023-01-26 삼성전자주식회사 자기 저항체를 포함하는 프로세싱 장치
CN114925641B (zh) * 2022-04-21 2024-07-26 深圳市比昂芯科技有限公司 一种基于谐波平衡的电路仿真方法、装置及存储介质
CN115628761B (zh) * 2022-09-30 2023-10-13 华南理工大学 一种低功耗抗扰动的电阻式传感器及可穿戴设备
CN118504501B (zh) * 2024-07-18 2024-09-17 南京师范大学 一种动力学系统的流形电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068953A1 (en) 2014-10-30 2016-05-06 Hewlett Packard Enterprise Development Lp Double bias memristive dot product engine for vector processing
US20170040054A1 (en) 2015-08-05 2017-02-09 University Of Rochester Resistive memory accelerator
WO2017052598A1 (en) 2015-09-25 2017-03-30 Hewlett Packard Enterprise Development Lp Crossbar arrays for calculating matrix multiplication

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2244230A1 (en) * 1973-09-13 1975-04-11 Labo Electronique Physique Resistance coupled matrix circuits - operational amplifier sampling circuits suppress parasitic currents
JP2005032227A (ja) * 2003-05-22 2005-02-03 Kinoshita Harumi 電気信号線路の波形計算法、電気信号線路疑似回路、電気信号線路の測定方法、電気信号線の製造方法、マトリクス型電子デバイス装置の波形解析方法、マトリクス型電子デバイス装置の駆動方法、マトリクス型表示装置の駆動方法、マトリクス型表示装置、マトリクス型デバイスの測定方法、マトリクス型表示装置の測定方法
CN102789811B (zh) * 2012-06-15 2015-02-18 中国人民解放军国防科学技术大学 面向纳米交叉杆结构的多值忆阻器自适应编程电路及方法
WO2014121138A2 (en) * 2013-01-31 2014-08-07 The Regents Of The University Of California Method and apparatus for solving an optimization problem using an analog circuit
KR20170074234A (ko) * 2014-10-23 2017-06-29 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 내적을 결정하기 위한 멤리스티브 크로스바 어레이
CN107533862B (zh) * 2015-08-07 2021-04-13 慧与发展有限责任合伙企业 交叉阵列、图像处理器及计算设备
JP6702596B2 (ja) * 2016-01-18 2020-06-03 華為技術有限公司Huawei Technologies Co.,Ltd. 多層rramクロスバー・アレイに基づくメモリデバイス、およびデータ処理方法
US10621267B2 (en) * 2016-01-28 2020-04-14 Hewlett Packard Enterprise Development Lp Memristor crossbar array for performing a fourier transformation
US10664271B2 (en) * 2016-01-30 2020-05-26 Hewlett Packard Enterprise Development Lp Dot product engine with negation indicator
US10529418B2 (en) * 2016-02-19 2020-01-07 Hewlett Packard Enterprise Development Lp Linear transformation accelerators
US9910827B2 (en) * 2016-07-01 2018-03-06 Hewlett Packard Enterprise Development Lp Vector-matrix multiplications involving negative values
US10878317B2 (en) * 2017-09-11 2020-12-29 Samsung Electronics Co., Ltd. Method and system for performing analog complex vector-matrix multiplication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068953A1 (en) 2014-10-30 2016-05-06 Hewlett Packard Enterprise Development Lp Double bias memristive dot product engine for vector processing
US20170040054A1 (en) 2015-08-05 2017-02-09 University Of Rochester Resistive memory accelerator
WO2017052598A1 (en) 2015-09-25 2017-03-30 Hewlett Packard Enterprise Development Lp Crossbar arrays for calculating matrix multiplication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
村野 靖,『オペアンプ回路の「しくみ」と「基本」』,第1版,株式会社技術評論社 片岡 巌,2012年12月10日,第117頁

Also Published As

Publication number Publication date
US20200233922A1 (en) 2020-07-23
CN111133431A (zh) 2020-05-08
EP3688622B1 (en) 2022-08-10
JP2020537219A (ja) 2020-12-17
EP3688622A1 (en) 2020-08-05
IT201700108281A1 (it) 2019-03-27
CN111133431B (zh) 2023-12-12
WO2019064215A1 (en) 2019-04-04
US11314843B2 (en) 2022-04-26
KR20200062278A (ko) 2020-06-03
KR102685742B1 (ko) 2024-07-16

Similar Documents

Publication Publication Date Title
JP7345859B2 (ja) 抵抗素子を含む数理問題解法回路
Sun et al. Solving matrix equations in one step with cross-point resistive arrays
Sun et al. One-step regression and classification with cross-point resistive memory arrays
Li et al. Long short-term memory networks in memristor crossbar arrays
Chen et al. Multiply accumulate operations in memristor crossbar arrays for analog computing
US11087204B2 (en) Resistive processing unit with multiple weight readers
Ascoli et al. A class of versatile circuits, made up of standard electrical components, are memristors
Barrios et al. Analog simulator of integro-differential equations with classical memristors
US12050997B2 (en) Row-by-row convolutional neural network mapping for analog artificial intelligence network training
Dong et al. Hybrid dual‐complementary metal–oxide–semiconductor/memristor synapse‐based neural network with its applications in image super‐resolution
Jaiswal et al. On robustness of spin-orbit-torque based stochastic sigmoid neurons for spiking neural networks
Onen et al. Design and characterization of superconducting nanowire-based processors for acceleration of deep neural network training
Corinto et al. Cellular nonlinear networks with memristor synapses
Lawrence et al. Matrix multiplication by neuromorphic computing
Cao et al. Parasitic-aware modelling for neural networks implemented with memristor crossbar array
Bettayeb et al. Memristor-Based In-Memory Computing
Tarkov Crossbar-based hamming associative memory with binary memristors
Kotov et al. Generation of the conductivity matrix
Morozov et al. Issues of implementing neural network algorithms on memristor crossbars
Ravikumar et al. Memristor based object detection using neural network
Chen et al. Spintronic memristor synapse and its RWC learning algorithm
Zhu et al. Solution to alleviate the impact of line resistance on the crossbar array
Kotov et al. Data representation in all-resistor systems
Cai et al. A low-computation-complexity, energy-efficient, and high-performance linear program solver based on primal–dual interior point method using memristor crossbars
Halawani et al. A re-configurable memristor array structure for in-memory computing applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7345859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150