JP7344518B2 - Method for producing Vilsmeier reagent - Google Patents

Method for producing Vilsmeier reagent Download PDF

Info

Publication number
JP7344518B2
JP7344518B2 JP2020541302A JP2020541302A JP7344518B2 JP 7344518 B2 JP7344518 B2 JP 7344518B2 JP 2020541302 A JP2020541302 A JP 2020541302A JP 2020541302 A JP2020541302 A JP 2020541302A JP 7344518 B2 JP7344518 B2 JP 7344518B2
Authority
JP
Japan
Prior art keywords
reaction
group
mmol
light
vilsmeier reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020541302A
Other languages
Japanese (ja)
Other versions
JPWO2020050368A1 (en
Inventor
明彦 津田
隆 岡添
明宏 和田
信明 森
克彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kobe University NUC filed Critical Asahi Glass Co Ltd
Publication of JPWO2020050368A1 publication Critical patent/JPWO2020050368A1/en
Application granted granted Critical
Publication of JP7344518B2 publication Critical patent/JP7344518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof
    • C07B41/10Salts, halides or anhydrides of carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/12Formation or introduction of functional groups containing oxygen of carboxylic acid ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/30Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having nitrogen atoms of imino groups quaternised
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/49Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups
    • C07C205/57Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by carboxyl groups having nitro groups and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/58Preparation of carboxylic acid halides
    • C07C51/60Preparation of carboxylic acid halides by conversion of carboxylic acids or their anhydrides or esters, lactones, salts into halides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/40Acetyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/42Acyl halides of acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/38Acyl halides
    • C07C53/46Acyl halides containing halogen outside the carbonyl halide group
    • C07C53/48Halogenated acetyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/36Acyl halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/64Acyl halides
    • C07C57/66Acyl halides with only carbon-to-carbon double bonds as unsaturation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/68Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C65/00Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C65/21Compounds having carboxyl groups bound to carbon atoms of six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/18Preparation of carboxylic acid esters by conversion of a group containing nitrogen into an ester group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/04Formic acid esters
    • C07C69/06Formic acid esters of monohydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/04Formic acid esters
    • C07C69/08Formic acid esters of dihydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/333Radicals substituted by oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/80Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/22Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than halogen singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、安全かつ簡便に、低コストで実施可能なビルスマイヤー試薬の製造方法と、当該ビルスマイヤー試薬を利用して、芳香族アルデヒドまたは芳香族ケトン、カルボン酸ハロゲン化物、およびギ酸エステルを製造する方法に関するものである。 The present invention provides a method for producing a Vilsmeier reagent that can be carried out safely and easily at low cost, and the use of the Vilsmeier reagent to produce aromatic aldehydes or aromatic ketones, carboxylic acid halides, and formic acid esters. It's about how to do it.

ビルスマイヤー(Vilsmeier)試薬は求電子剤であり、電子豊富なアルケンや芳香環に付加反応を起こし、例えば、活性基を有する芳香族化合物のホルミル化やカルボキシ基のハロホルミル基への変換などに利用される。ビルスマイヤー試薬は、一般的に、ホスゲン、塩化オキザリル、三塩化リン、五塩化リン、塩化チオニルなどの塩素化剤と、アミド化合物から形成される(特許文献1)。 Vilsmeier reagent is an electrophilic agent that causes addition reactions to electron-rich alkenes and aromatic rings, and is used, for example, for the formylation of aromatic compounds with active groups and the conversion of carboxy groups to haloformyl groups. be done. Vilsmeier reagents are generally formed from a chlorinating agent such as phosgene, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, thionyl chloride, and an amide compound (Patent Document 1).

しかし、塩素化剤の多くは非常に毒性が高く、また、水との接触により有毒で腐食性を有する気体を生じるものもあるため、保存が困難であり、取扱いにも危険を伴うことがある。特に、ホスゲンは窒息性の毒ガスとして使用された歴史もあり、使用時における吸引により、死亡などの危険性を伴うものであった。ホスゲン以外の塩素化剤も腐食性を示し、例えば塩化チオニルは副生成物として二酸化硫黄と塩化水素を生じるため、これらの処理にコストを要する。 However, many chlorinating agents are highly toxic, and some produce toxic and corrosive gases upon contact with water, making them difficult to store and dangerous to handle. . In particular, phosgene has a history of being used as an asphyxiating poisonous gas, and when inhaled during use, there was a risk of death. Chlorinating agents other than phosgene are also corrosive; for example, thionyl chloride produces sulfur dioxide and hydrogen chloride as by-products, making treatment of these agents costly.

特許文献2には、塩素化剤としてより安全なフタル酸二塩化物を用いてビルスマイヤー試薬を製造する方法が開示されている。しかしフタル酸二塩化物を用いるとコストが上がる。また、この方法では無水フタル酸が副生するため、目的化合物の精製プロセスにも高コストがかかる。 Patent Document 2 discloses a method for producing a Vilsmeier reagent using safer phthalic acid dichloride as a chlorinating agent. However, the use of phthalic acid dichloride increases costs. In addition, in this method, phthalic anhydride is produced as a by-product, so the process of purifying the target compound is also costly.

ところで、本発明者らは、これまでハロゲン化炭化水素を原料とする光化学反応を種々開発している。例えば特許文献3に開示されている通り、酸素存在下、クロロホルムなどに光照射して発生した分解生成物をアミン溶液やフェノール溶液に吹き込み、尿素誘導体や炭酸エステル誘導体を製造する方法を開発している。また、特許文献4には、ハロゲン化炭化水素とアルコールを含む混合物に酸素存在下で光照射して、クロロギ酸エステルを製造する方法が開示されている。 By the way, the present inventors have so far developed various photochemical reactions using halogenated hydrocarbons as raw materials. For example, as disclosed in Patent Document 3, a method has been developed for producing urea derivatives and carbonate ester derivatives by blowing decomposition products generated by irradiating chloroform etc. with light into an amine solution or a phenol solution in the presence of oxygen. There is. Further, Patent Document 4 discloses a method for producing a chloroformate by irradiating a mixture containing a halogenated hydrocarbon and an alcohol with light in the presence of oxygen.

国際公開第2008/105464号パンフレットInternational Publication No. 2008/105464 pamphlet 特開2012-136502号公報Japanese Patent Application Publication No. 2012-136502 特開2013-181028号公報Japanese Patent Application Publication No. 2013-181028 国際公開第2015/156245号パンフレットInternational Publication No. 2015/156245 pamphlet

上述したように、ビルスマイヤー試薬は古くから知られている有用なものであるが、その製造には危険な塩素化剤が必要であり、工業的な製造や使用は困難であるか、或いは厳しい制約の下で工業的な製造や使用が行われていた。
そこで本発明は、安全かつ簡便に、低コストで実施可能なビルスマイヤー試薬の製造方法と、当該ビルスマイヤー試薬を利用して、芳香族アルデヒドまたは芳香族ケトン、カルボン酸ハロゲン化物、およびギ酸エステルを製造する方法を提供することを目的とする。
As mentioned above, the Vilsmeier reagent has been known for a long time and is useful, but its production requires a dangerous chlorinating agent, making industrial production and use difficult or difficult. Industrial production and use were carried out under restrictions.
Therefore, the present invention provides a method for producing a Vilsmeier reagent that can be carried out safely and easily at low cost, and uses the Vilsmeier reagent to produce aromatic aldehydes or aromatic ketones, carboxylic acid halides, and formic acid esters. The purpose is to provide a method for manufacturing.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、ハロゲン化炭化水素とアミド化合物を含む組成物に酸素存在下で光照射することによりビルスマイヤー試薬を製造できることを見出して、本発明を完成した。
以下、本発明を示す。
The present inventors have conducted extensive research in order to solve the above problems. As a result, the inventors discovered that a Vilsmeier reagent can be produced by irradiating a composition containing a halogenated hydrocarbon and an amide compound with light in the presence of oxygen, thereby completing the present invention.
The present invention will be described below.

[1] ビルスマイヤー試薬を製造するための方法であって、
前記ビルスマイヤー試薬が下記式(I)で表される塩であり、

Figure 0007344518000001

[式中、
1は、水素原子、C1-6アルキル基、または置換基を有していてもよいC6-12芳香族炭化水素基を示し、
2とR3は、独立して、C1-6アルキル基、または置換基を有していてもよいC6-12芳香族炭化水素基を示し、また、R2とR3は一緒になって4員以上7員以下の環構造を形成してもよく、
Xは、クロロ、ブロモおよびヨードからなる群より選択されるハロゲノ基を示し、
-はカウンターアニオンを示す。]
クロロ、ブロモおよびヨードからなる群から選択される1種以上のハロゲノ基を有するC1-4ハロゲン化炭化水素を含む組成物に酸素存在下で光照射することによりC1-4ハロゲン化炭化水素を分解する工程、および、
1-4ハロゲン化炭化水素の分解物と下記式(II)で表されるアミド化合物とを反応させる工程を含むことを特徴とする方法。
Figure 0007344518000002

[式中、R1~R3は上記と同義を示す。][1] A method for producing a Vilsmeier reagent, comprising:
The Vilsmeier reagent is a salt represented by the following formula (I),
Figure 0007344518000001

[In the formula,
R 1 represents a hydrogen atom, a C 1-6 alkyl group, or a C 6-12 aromatic hydrocarbon group which may have a substituent,
R 2 and R 3 independently represent a C 1-6 alkyl group or a C 6-12 aromatic hydrocarbon group which may have a substituent, and R 2 and R 3 together represent may form a 4- to 7-membered ring structure,
X represents a halogeno group selected from the group consisting of chloro, bromo and iodo,
Y - represents a counter anion. ]
A C 1-4 halogenated hydrocarbon is produced by irradiating a composition containing a C 1-4 halogenated hydrocarbon having one or more halide groups selected from the group consisting of chloro, bromo, and iodo in the presence of oxygen. a step of decomposing the
A method comprising the step of reacting a decomposition product of a C 1-4 halogenated hydrocarbon with an amide compound represented by the following formula (II).
Figure 0007344518000002

[In the formula, R 1 to R 3 have the same meanings as above. ]

[2] 前記光が180nm以上、280nm以下の波長の光を含む上記[1]に記載の方法。 [2] The method according to [1] above, wherein the light includes light with a wavelength of 180 nm or more and 280 nm or less.

[3] 前記C1-4ハロゲン化炭化水素としてC1-4ポリハロゲン化炭化水素を用いる上記[1]または[2]に記載の方法。[3] The method according to [1] or [2] above, wherein a C 1-4 polyhalogenated hydrocarbon is used as the C 1-4 halogenated hydrocarbon.

[4] Xがクロロであり、Y-が塩化物イオンである上記[1]~[3]のいずれかに記載の方法。[4] The method according to any one of [1] to [3] above, wherein X is chloro and Y - is a chloride ion.

[5] 前記式(II)で表されるアミド化合物としてN,N-ジメチルホルムアミドを用いる上記[1]~[4]のいずれかに記載の方法。 [5] The method according to any one of [1] to [4] above, wherein N,N-dimethylformamide is used as the amide compound represented by formula (II).

[6] 前記式(II)で表されるアミド化合物に対して5倍モル以上の前記C1-4ハロゲン化炭化水素を用いる上記[1]~[5]のいずれかに記載の方法。[6] The method according to any one of [1] to [5] above, in which the C 1-4 halogenated hydrocarbon is used in an amount of 5 times or more by mole or more relative to the amide compound represented by the formula (II).

[7] 芳香族アルデヒドまたは芳香族ケトンを製造するための方法であって、
上記[1]~[6]のいずれかに記載の方法によりビルスマイヤー試薬を製造する工程、および、
前記ビルスマイヤー試薬と活性基を有する芳香族化合物とを反応させる工程を含むことを特徴とする方法。
[7] A method for producing an aromatic aldehyde or aromatic ketone, comprising:
A step of producing a Vilsmeier reagent by the method according to any one of [1] to [6] above, and
A method comprising the step of reacting the Vilsmeier reagent with an aromatic compound having an active group.

[8] カルボン酸ハロゲン化物を製造するための方法であって、
上記[1]~[6]のいずれかに記載の方法によりビルスマイヤー試薬を製造する工程、および、
前記ビルスマイヤー試薬と下記式(III)で表されるカルボン酸化合物とを反応させることにより、前記カルボン酸化合物のカルボキシ基をハロホルミル基に変換する工程を含むことを特徴とする方法。
4-(CO2H)n (III)
[式中、R4はn価の有機基を示し、nは1以上4以下の整数を示す。]
[8] A method for producing a carboxylic acid halide, comprising:
A step of producing a Vilsmeier reagent by the method according to any one of [1] to [6] above, and
A method comprising the step of converting the carboxy group of the carboxylic acid compound into a haloformyl group by reacting the Vilsmeier reagent with a carboxylic acid compound represented by the following formula (III).
R 4 -(CO 2 H) n (III)
[In the formula, R 4 represents an n-valent organic group, and n represents an integer of 1 or more and 4 or less. ]

[9] ギ酸エステルを製造するための方法であって、
上記[1]~[6]のいずれかに記載の方法によりビルスマイヤー試薬を製造する工程、および、
前記ビルスマイヤー試薬と水酸基含有化合物とを反応させる工程を含むことを特徴とする方法。
[9] A method for producing a formic acid ester, comprising:
A step of producing a Vilsmeier reagent by the method according to any one of [1] to [6] above, and
A method comprising the step of reacting the Vilsmeier reagent with a hydroxyl group-containing compound.

本発明方法によれば、反応性が高く有用なビルスマイヤー試薬を、ホスゲンといった危険な化合物の代わりに、汎用溶媒としても使われているハロゲン化炭化水素を用い、安全かつ簡便に、低コストで製造することができる。この際に副生するのは二酸化炭素と塩化水素のみであり、それらはガスとして系外に排出することもできるため、精製は原則として必要無い。また、製造されたビルスマイヤー試薬を用い、同一系内で、芳香族アルデヒドまたは芳香族ケトン、カルボン酸ハロゲン化物、およびギ酸エステルを製造することも可能である。よって本発明は、芳香族アルデヒドまたは芳香族ケトン、カルボン酸ハロゲン化物、およびギ酸エステルの工業的な製造技術として、産業上極めて有用である。 According to the method of the present invention, the highly reactive and useful Vilsmeier reagent can be used safely, easily, and at low cost by using halogenated hydrocarbons, which are also used as general-purpose solvents, instead of dangerous compounds such as phosgene. can be manufactured. At this time, only carbon dioxide and hydrogen chloride are produced as by-products, and since they can be discharged outside the system as gases, purification is not necessary in principle. It is also possible to produce aromatic aldehydes or aromatic ketones, carboxylic acid halides, and formic acid esters in the same system using the produced Vilsmeier reagent. Therefore, the present invention is industrially extremely useful as an industrial production technique for aromatic aldehydes or aromatic ketones, carboxylic acid halides, and formic acid esters.

本発明に用いられる反応装置の構成の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of the configuration of a reaction apparatus used in the present invention.

本発明では、まず、C1-4ハロゲン化炭化水素を含む組成物に酸素存在下で光照射することにより、C1-4ハロゲン化炭化水素を分解する。In the present invention, first, a composition containing a C 1-4 halogenated hydrocarbon is irradiated with light in the presence of oxygen to decompose the C 1-4 halogenated hydrocarbon.

本発明で用いるC1-4ハロゲン化炭化水素は、炭素数が1以上4以下の炭化水素であり、クロロ、ブロモおよびヨードから必須的になる群から選択される1種以上のハロゲノ基を有する。かかるC1-4ハロゲン化炭化水素は、おそらく照射光と酸素により分解され、ハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物に変換され、アミド化合物と反応した後、更にハロゲン化物イオンの攻撃を受けてビルスマイヤー試薬が生成すると考えられる。たとえ有害なハロゲン化カルボニルが生成しても、ハロゲン化カルボニルは反応性が極めて高いためにアミド化合物と直ぐに反応し、反応液外へは漏出しないか、或いは漏出してもその漏出量は僅かであると考えられる。本発明は、C1-4ハロゲン化炭化水素を光分解することで有用な化合物を製造する技術であり、工業的にもまた環境科学的にも寄与するところは大きい。The C 1-4 halogenated hydrocarbon used in the present invention is a hydrocarbon having 1 or more and 4 or less carbon atoms, and has one or more halide groups selected from the group consisting essentially of chloro, bromo, and iodo. . Such C 1-4 halogenated hydrocarbons are probably decomposed by irradiation light and oxygen, converted to carbonyl halides or carbonyl halide-like compounds, reacted with amide compounds, and then further attacked by halide ions. It is thought that Vilsmeier's reagent is generated. Even if harmful carbonyl halides are generated, carbonyl halides are extremely reactive and will react immediately with the amide compound, and will not leak out of the reaction solution, or even if they do, the amount of leakage will be small. It is believed that there is. The present invention is a technology for producing useful compounds by photodegrading C 1-4 halogenated hydrocarbons, and it has great contributions both industrially and in environmental science.

1-4ハロゲン化炭化水素は、クロロ、ブロモおよびヨードから必須的になる群から選択される1種以上のハロゲノ基で置換された、炭素数1以上4以下のアルカン、アルケンまたはアルキンである。上述した通り、本発明においてC1-4ハロゲン化炭化水素は照射光と酸素により分解され、ハロゲン化カルボニルと同等の働きをすると考えられる。よってC1-2ハロゲン化炭化水素が好ましく、ハロゲノメタンがより好ましい。炭素数が2以上4以下である場合には、分解がより容易に進行するよう、1以上の不飽和結合を有するアルケンまたはアルキンが好ましい。また、2以上のハロゲノ基を有するC1-4ポリハロゲン化炭化水素が好ましく、C1-2ポリハロゲン化炭化水素がより好ましい。さらに、分解に伴ってハロゲノ基が転移する可能性もあるが、同一炭素に2以上のハロゲノ基を有するC1-4ハロゲン化炭化水素が好ましい。C 1-4 halogenated hydrocarbon is an alkane, alkene or alkyne having 1 to 4 carbon atoms and substituted with one or more halogeno groups selected from the group consisting essentially of chloro, bromo and iodo. . As mentioned above, in the present invention, C 1-4 halogenated hydrocarbon is decomposed by irradiation light and oxygen, and is considered to function in the same manner as carbonyl halide. Therefore, C 1-2 halogenated hydrocarbons are preferred, and halogenomethanes are more preferred. When the number of carbon atoms is 2 or more and 4 or less, an alkene or alkyne having one or more unsaturated bonds is preferable so that decomposition proceeds more easily. Moreover, C 1-4 polyhalogenated hydrocarbons having two or more halogeno groups are preferred, and C 1-2 polyhalogenated hydrocarbons are more preferred. Further, C 1-4 halogenated hydrocarbons having two or more halogeno groups on the same carbon are preferred, although there is a possibility that halogeno groups may be transferred with decomposition.

具体的なC1-4ハロゲン化炭化水素としては、例えば、ジクロロメタン、クロロホルム、ジブロモメタン、ブロモホルム、ヨードメタン、ジヨードメタン等のハロメタン;1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン等のハロエタン;1,1,1,3-テトラクロロプロパン等のハロプロパン;テトラクロロメタン、テトラブロモメタン、テトラヨードメタン、ヘキサクロロエタン、ヘキサブロモエタン等のペルハロアルカン;1,1,2,2-テトラクロロエテン、1,1,2,2-テトラブロモエテン等のペルハロエテン等を挙げることができる。Specific C 1-4 halogenated hydrocarbons include, for example, halomethanes such as dichloromethane, chloroform, dibromomethane, bromoform, iodomethane, and diiodomethane; 1,1,2-trichloroethane, 1,1,1-trichloroethane, 1, Haloethane such as 1,2,2-tetrachloroethane, 1,1,1,2-tetrachloroethane; Halopropane such as 1,1,1,3-tetrachloropropane; Tetrachloromethane, tetrabromomethane, tetraiodomethane, Examples include perhaloalkanes such as hexachloroethane and hexabromoethane; perhaloethenes such as 1,1,2,2-tetrachloroethene and 1,1,2,2-tetrabromoethene.

1-4ハロゲン化炭化水素は目的とする化学反応や所期の生成物に応じて適宜選択すればよく、また、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また、好適には、製造目的化合物に応じて、C1-4ハロゲン化炭化水素は1種のみ用いる。常圧で常温または反応温度において液状のC1-4ハロゲン化炭化水素であれば、溶媒としての役割も果たすことができる。C1-4ハロゲン化炭化水素の中でもクロロ基を有する化合物が好ましい。C 1-4 halogenated hydrocarbons may be selected as appropriate depending on the intended chemical reaction and desired product, and one type may be used alone or two or more types may be used in combination. You may. Also, preferably, only one type of C 1-4 halogenated hydrocarbon is used depending on the compound to be produced. Any C 1-4 halogenated hydrocarbon that is liquid at normal pressure and room temperature or reaction temperature can also serve as a solvent. Among C 1-4 halogenated hydrocarbons, compounds having a chloro group are preferred.

本発明方法で用いるC1-4ハロゲン化炭化水素としては、汎用溶媒としても用いられる安価なクロロホルムが最も好ましい。例えば溶媒としていったん使用したC1-4ハロゲン化炭化水素を回収し、再利用してもよい。その際、多量の不純物や水が含まれていると反応が阻害されるおそれがあり得るので、ある程度は精製することが好ましい。例えば、水洗により水や水溶性不純物を除去した後、無水硫酸ナトリウムや無水硫酸マグネシウムなどで脱水することが好ましい。但し、1容量%程度の水が含まれていても反応は進行すると考えられるので、生産性を低下させるような過剰な精製は必要ない。かかる水含量としては、0.5容量%以下がより好ましく、0.2容量%以下がさらに好ましく、0.1容量%以下がよりさらに好ましい。また、上記再利用C1-4ハロゲン化炭化水素には、C1-4ハロゲン化炭化水素の分解物などが含まれていてもよい。The C 1-4 halogenated hydrocarbon used in the method of the present invention is most preferably chloroform, which is inexpensive and can also be used as a general-purpose solvent. For example, the C 1-4 halogenated hydrocarbon once used as a solvent may be recovered and reused. At that time, if a large amount of impurities or water is contained, the reaction may be inhibited, so it is preferable to purify it to some extent. For example, after removing water and water-soluble impurities by washing with water, it is preferable to dehydrate with anhydrous sodium sulfate, anhydrous magnesium sulfate, or the like. However, it is thought that the reaction will proceed even if about 1% by volume of water is contained, so there is no need for excessive purification that would reduce productivity. The water content is more preferably 0.5% by volume or less, even more preferably 0.2% by volume or less, even more preferably 0.1% by volume or less. Further, the recycled C 1-4 halogenated hydrocarbon may contain a decomposition product of the C 1-4 halogenated hydrocarbon.

1-4ハロゲン化炭化水素の使用量は、アミド化合物をビルスマイヤー試薬へ十分に変換できる範囲で適宜決定すればよいが、例えば、アミド化合物に対して0.1倍モル以上用いればよい。C1-4ハロゲン化炭化水素の使用量の上限は特に制限されないが、例えば、アミド化合物に対して200倍モル以下とすることができる。上記使用量としては、1倍モル以上、5倍モル以上または10倍モル以上が好ましく、20倍以上がより好ましく、25倍以上がより更に好ましい。本発明者らによる実験的知見によれば、C1-4ハロゲン化炭化水素に対するアミド化合物の量が少ない方がビルスマイヤー試薬の生成効率が高い傾向が認められる。また、C1-4ハロゲン化炭化水素を溶媒として使用できる場合などには、50倍モル以上用いることもできる。上記使用量としては、150倍モル以下または100倍モル以下が好ましい。C1-4ハロゲン化炭化水素の具体的な使用量は、予備実験などで決定すればよい。The amount of the C 1-4 halogenated hydrocarbon to be used may be appropriately determined within a range that allows sufficient conversion of the amide compound into the Vilsmeier reagent, and for example, it may be used in an amount of 0.1 times the mole or more relative to the amide compound. The upper limit of the amount of the C 1-4 halogenated hydrocarbon to be used is not particularly limited, but may be, for example, 200 times the molar amount or less relative to the amide compound. The amount used is preferably at least 1 mole, at least 5 times the mole, or at least 10 times the mole, more preferably at least 20 times, even more preferably at least 25 times. According to the experimental findings of the present inventors, it is recognized that the production efficiency of the Vilsmeier reagent tends to be higher when the amount of the amide compound relative to the C 1-4 halogenated hydrocarbon is smaller. Further, in cases where a C 1-4 halogenated hydrocarbon can be used as a solvent, it can be used in a molar amount of 50 times or more. The above usage amount is preferably 150 times mole or less or 100 times mole or less. The specific amount of C 1-4 halogenated hydrocarbon to be used may be determined through preliminary experiments.

酸素源としては、酸素を含む気体であればよく、例えば、空気や、精製された酸素を用いることができる。精製された酸素は、窒素やアルゴン等の不活性ガスと混合して使用してもよい。コストや容易さの点からは空気を用いることができる。光照射によるC1-4ハロゲン化炭化水素の分解効率を高める観点からは、酸素源として用いられる気体中の酸素含有率は約15体積%以上100体積%以下であることが好ましい。また、不可避的不純物以外、実質的に酸素のみを用いることも好ましい。酸素含有率は上記C1-4ハロゲン化炭化水素などの種類によって適宜決定すればよい。例えば、上記C1-4ハロゲン化炭化水素としてジクロロメタン、クロロホルム、テトラクロロエチレン等のクロロC1-4炭化水素を用いる場合は、酸素含有率は15体積%以上100体積%以下であるのが好ましく、ジブロモメタンやブロモホルムなどのブロモC1-4炭化水素化合物を用いる場合は、酸素含有率は90体積%以上100体積%以下であるのが好ましい。なお、酸素(酸素含有率100体積%)を用いる場合であっても、反応系内への酸素流量の調節により酸素含有率を上記範囲内に制御することができる。酸素を含む気体の供給方法は特に限定されず、流量調整器を取り付けた酸素ボンベから反応系内に供給してもよく、また、酸素発生装置から反応系内に供給してもよい。The oxygen source may be any gas containing oxygen, such as air or purified oxygen. Purified oxygen may be used in combination with an inert gas such as nitrogen or argon. Air can be used in terms of cost and ease. From the viewpoint of increasing the decomposition efficiency of C 1-4 halogenated hydrocarbons by light irradiation, the oxygen content in the gas used as the oxygen source is preferably about 15% by volume or more and 100% by volume or less. Further, it is also preferable to use substantially only oxygen other than inevitable impurities. The oxygen content may be appropriately determined depending on the type of the C 1-4 halogenated hydrocarbon. For example, when using a chloroC 1-4 hydrocarbon such as dichloromethane, chloroform, or tetrachloroethylene as the C 1-4 halogenated hydrocarbon, the oxygen content is preferably 15% by volume or more and 100% by volume or less; When using a bromo C 1-4 hydrocarbon compound such as methane or bromoform, the oxygen content is preferably 90% by volume or more and 100% by volume or less. Note that even when using oxygen (oxygen content 100% by volume), the oxygen content can be controlled within the above range by adjusting the oxygen flow rate into the reaction system. The method of supplying the gas containing oxygen is not particularly limited, and it may be supplied into the reaction system from an oxygen cylinder equipped with a flow rate regulator, or may be supplied into the reaction system from an oxygen generator.

なお、「酸素存在下」とは、C1-4ハロゲン化炭化水素が酸素と接している状態か、上記組成物中に酸素が存在する状態のいずれであってもよい。従って、本発明に係る反応は、酸素を含む気体の気流下で行ってもよいが、生成物の収率を高める観点からは、酸素を含む気体はバブリングにより上記組成物中へ供給することが好ましい。Note that "in the presence of oxygen" may be a state in which the C 1-4 halogenated hydrocarbon is in contact with oxygen or a state in which oxygen is present in the composition. Therefore, the reaction according to the present invention may be carried out under a gas flow of oxygen-containing gas, but from the viewpoint of increasing the yield of the product, the oxygen-containing gas may be supplied into the composition by bubbling. preferable.

酸素を含む気体の量は、上記C1-4ハロゲン化炭化水素の量や、反応容器の形状などに応じて適宜決定すればよい。例えば、反応容器中に存在する上記C1-4ハロゲン化炭化水素に対する、反応容器へ供給する1分あたりの気体の量を、5容量倍以上とすることが好ましい。当該割合としては、25容量倍以上がより好ましく、50容量倍以上がよりさらに好ましい。当該割合の上限は特に制限されないが、500容量倍以下が好ましく、250容量倍以下がより好ましく、150容量倍以下がよりさらに好ましい。また、反応容器中に存在する上記C1-4ハロゲン化炭化水素に対する、反応容器へ供給する1分あたりの酸素の量としては、5容量倍以上25容量倍以下とすることができる。気体の流量が多過ぎる場合には、上記C1-4ハロゲン化炭化水素が揮発してしまう虞があり得る一方で、少な過ぎると反応が進行し難くなる虞があり得る。The amount of the oxygen-containing gas may be appropriately determined depending on the amount of the C 1-4 halogenated hydrocarbon, the shape of the reaction vessel, and the like. For example, it is preferable that the amount of gas supplied to the reaction vessel per minute is at least 5 times the volume of the C 1-4 halogenated hydrocarbon present in the reaction vessel. The ratio is more preferably 25 times the volume or more, even more preferably 50 times the volume or more. The upper limit of the ratio is not particularly limited, but is preferably 500 times the volume or less, more preferably 250 times the volume or less, and even more preferably 150 times the volume or less. Further, the amount of oxygen supplied to the reaction vessel per minute relative to the C 1-4 halogenated hydrocarbon present in the reaction vessel can be 5 times or more and 25 times or less by volume. If the gas flow rate is too large, there is a possibility that the C 1-4 halogenated hydrocarbon will be volatilized, while if it is too small, there is a possibility that the reaction will be difficult to proceed.

1-4ハロゲン化炭化水素を含む組成物には、溶媒を配合してもよい。特にC1-4ハロゲン化炭化水素が常温常圧で液体でない場合には、C1-4ハロゲン化炭化水素を適度に溶解でき、且つC1-4ハロゲン化炭化水素の分解を阻害しない溶媒が好ましい。かかる溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒;酢酸エチルなどのエステル系溶媒;n-ヘキサンなどの脂肪族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;アセトニトリルなどのニトリル系溶媒を挙げることができる。A solvent may be added to the composition containing the C 1-4 halogenated hydrocarbon. In particular, when the C 1-4 halogenated hydrocarbon is not liquid at room temperature and normal pressure, a solvent that can appropriately dissolve the C 1-4 halogenated hydrocarbon and does not inhibit the decomposition of the C 1-4 halogenated hydrocarbon is needed. preferable. Examples of such solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ester solvents such as ethyl acetate; aliphatic hydrocarbon solvents such as n-hexane; and ethers such as diethyl ether, tetrahydrofuran, and dioxane. Solvent: Nitrile solvents such as acetonitrile can be mentioned.

上記混合物に照射する光としては、短波長光を含む光が好ましく、紫外線を含む光がより好ましく、より詳細には180nm以上500nm以下の波長の光を含む光が好ましく、ピーク波長が180nm以上500nm以下の範囲に含まれる光がより好ましい。なお、光の波長は上記C1-4ハロゲン化炭化水素の種類に応じて適宜決定すればよいが、400nm以下がより好ましく、300nm以下がよりさらに好ましい。照射光に上記波長範囲の光が含まれている場合には、上記C1-4ハロゲン化炭化水素を効率良く酸化的光分解できる。例えば、波長280nm以上315nm以下のUV-Bおよび/または波長180nm以上280nm以下のUV-Cを含む高エネルギー光を用いることができ、波長180nm以上280nm以下のUV-Cを含む高エネルギー光を用いることが好ましい。また、ピーク波長が280nm以上315nm以下および/または180nm以上280nm以下の範囲に含まれる光が好ましく、ピーク波長が180nm以上280nm以下の範囲に含まれる光がより好ましい。The light irradiated to the above mixture is preferably light containing short wavelength light, more preferably light containing ultraviolet light, more specifically light containing light with a wavelength of 180 nm or more and 500 nm or less, with a peak wavelength of 180 nm or more and 500 nm or more. Light falling within the following ranges is more preferred. The wavelength of the light may be appropriately determined depending on the type of the C 1-4 halogenated hydrocarbon, but is more preferably 400 nm or less, and even more preferably 300 nm or less. When the irradiation light includes light in the above wavelength range, the C 1-4 halogenated hydrocarbon can be efficiently oxidatively photodecomposed. For example, high energy light including UV-B with a wavelength of 280 nm or more and 315 nm or less and/or UV-C with a wavelength of 180 nm or more and 280 nm or less can be used, and high energy light including UV-C with a wavelength of 180 nm or more and 280 nm or less can be used. It is preferable. Furthermore, light having a peak wavelength in a range of 280 nm or more and 315 nm or less and/or 180 nm or more and 280 nm or less is preferable, and light having a peak wavelength in a range of 180 nm or more and 280 nm or less is more preferable.

光照射の手段は、上記波長の光を照射できるものである限り特に限定されないが、このような波長範囲の光を波長域に含む光源としては、例えば、太陽光、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ケミカルランプ、ブラックライトランプ、メタルハライドランプ、ハロゲンランプ、白熱電球などが挙げられる。反応効率やコストの点から、低圧水銀ランプが好ましく用いられる。 The means of light irradiation is not particularly limited as long as it can irradiate light with the above-mentioned wavelengths, but examples of light sources that include light in this wavelength range include sunlight, low-pressure mercury lamps, and medium-pressure mercury lamps. lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, chemical lamps, black light lamps, metal halide lamps, halogen lamps, and incandescent lamps. From the viewpoint of reaction efficiency and cost, a low-pressure mercury lamp is preferably used.

照射光の強度や照射時間などの条件は、出発原料の種類や使用量によって適宜設定すればよいが、例えば、光源から上記組成物の最短距離位置における所望の光の強度としては10mW/cm2以上500mW/cm2以下が好ましい。また、光源とハロゲン化メタンとの最短距離としては、1m以下が好ましく、50cm以下がより好ましく、10cm以下または5cm以下がより更に好ましい。当該最短距離の下限は特に制限されないが、0cm、即ち、光源をハロゲン化メタン中に浸漬してもよい。反応容器の側面から光照射する場合には、上記最短距離を1cm以上または2cm以上とすることもできる。光の照射時間としては、0.5時間以上10時間以下が好ましく、1時間以上6時間以下がより好ましく、2時間以上4時間以下がよりさらに好ましい。光照射の態様も特に限定されず、反応開始から終了まで連続して光を照射する態様、光照射と光非照射とを交互に繰り返す態様、反応開始から所定の時間のみ光を照射する態様など、いずれの態様も採用できるが、反応開始から終了まで連続して光を照射する態様が好ましい。Conditions such as the intensity of the irradiation light and the irradiation time may be set as appropriate depending on the type of starting material and the amount used, but for example, the desired light intensity at the shortest distance of the composition from the light source is 10 mW/cm 2 More than 500 mW/cm 2 is preferable. Further, the shortest distance between the light source and the halogenated methane is preferably 1 m or less, more preferably 50 cm or less, and even more preferably 10 cm or less or 5 cm or less. The lower limit of the shortest distance is not particularly limited, but may be 0 cm, that is, the light source may be immersed in halogenated methane. When light is irradiated from the side surface of the reaction container, the shortest distance can be set to 1 cm or more or 2 cm or more. The light irradiation time is preferably 0.5 hours or more and 10 hours or less, more preferably 1 hour or more and 6 hours or less, even more preferably 2 hours or more and 4 hours or less. The mode of light irradiation is not particularly limited, and may include a mode in which light is irradiated continuously from the start of the reaction to the end, a mode in which light irradiation and non-light irradiation are alternately repeated, a mode in which light is irradiated only for a predetermined time from the start of the reaction, etc. Although any embodiment can be adopted, a mode in which light is continuously irradiated from the start to the end of the reaction is preferred.

1-4ハロゲン化炭化水素の分解時の温度も特に限定はされず、適宜調整すればよいが、例えば、-20℃以上60℃以下とすることができる。当該温度としては、-10℃以上がより好ましく、0℃以上または10℃以上がよりさらに好ましく、また、50℃以下または40℃以下がより好ましく、30℃以下がよりさらに好ましい。或いは、温度制御をすることなく常温で反応を行ってもよい。なお、反応温度が低い場合には、有害なハロゲン化合物ガスが反応系外に漏れ難いという利点がある。かかる観点からは、反応温度は10℃以下が好ましく、5℃以下がより好ましい。The temperature at which the C 1-4 halogenated hydrocarbon is decomposed is not particularly limited, and may be adjusted as appropriate, and may be, for example, −20° C. or higher and 60° C. or lower. The temperature is more preferably -10°C or higher, even more preferably 0°C or higher or 10°C or higher, more preferably 50°C or lower or 40°C or lower, even more preferably 30°C or lower. Alternatively, the reaction may be carried out at room temperature without temperature control. Note that when the reaction temperature is low, there is an advantage that harmful halogen compound gas is difficult to leak out of the reaction system. From this point of view, the reaction temperature is preferably 10°C or lower, more preferably 5°C or lower.

また、高エネルギー光の照射後、高エネルギー光を照射せず、例えば蛍光灯などの一般光の下、10℃以上60℃以下で1分間以上5時間以下程度、反応を継続してもよい。 Further, after irradiation with high-energy light, the reaction may be continued for about 1 minute to 5 hours at 10° C. to 60° C. without irradiating high-energy light, for example, under general light such as a fluorescent lamp.

本発明では、次に、C1-4ハロゲン化炭化水素の分解物と式(II)で表されるアミド化合物とを反応させる。アミド化合物との反応工程は、C1-4ハロゲン化炭化水素の分解工程と同時に実施してもよいし、C1-4ハロゲン化炭化水素の分解工程の後で行ってもよい。In the present invention, next, the decomposition product of C 1-4 halogenated hydrocarbon and the amide compound represented by formula (II) are reacted. The reaction step with the amide compound may be performed simultaneously with the decomposition step of the C 1-4 halogenated hydrocarbon, or may be performed after the decomposition step of the C 1-4 halogenated hydrocarbon.

1-4ハロゲン化炭化水素の分解工程とアミド化合物との反応工程を同時に実施する場合には、例えば、C1-4ハロゲン化炭化水素を含む組成物にアミド化合物も配合すればよい。また、C1-4ハロゲン化炭化水素を含む組成物に光照射し、光照射を継続したままアミド化合物を添加してもよい。これらの場合には、C1-4ハロゲン化炭化水素の分解物がアミド化合物と速やかに反応することができ、分解物の漏出を抑制できる。When the decomposition step of the C 1-4 halogenated hydrocarbon and the reaction step with the amide compound are carried out simultaneously, the amide compound may also be blended into the composition containing the C 1-4 halogenated hydrocarbon, for example. Alternatively, a composition containing a C 1-4 halogenated hydrocarbon may be irradiated with light, and the amide compound may be added while the irradiation is continued. In these cases, the decomposition product of the C 1-4 halogenated hydrocarbon can quickly react with the amide compound, and leakage of the decomposition product can be suppressed.

1-4ハロゲン化炭化水素の分解工程の後にアミド化合物との反応工程を実施する場合には、光照射によりC1-4ハロゲン化炭化水素を分解した後、光照射、特に高エネルギー光の照射を停止し、アミド化合物を添加すればよい。アミド化合物によりC1-4ハロゲン化炭化水素の分解が阻害される場合には、この態様によりC1-4ハロゲン化炭化水素の分解とアミド化合物との反応を効率的に行うことができる。また、C1-4ハロゲン化炭化水素の分解により副生したハロゲン化水素とアミド化合物との副反応や、アミド化合物への光照射による分解を抑制できる。よってこの態様は、特に大容量での本発明の実施に適している。When carrying out the reaction step with an amide compound after the decomposition step of C 1-4 halogenated hydrocarbons, after decomposing the C 1-4 halogenated hydrocarbons by light irradiation, light irradiation, especially high-energy light, is performed. The irradiation may be stopped and the amide compound may be added. When the decomposition of the C 1-4 halogenated hydrocarbon is inhibited by the amide compound, the decomposition of the C 1-4 halogenated hydrocarbon and the reaction with the amide compound can be efficiently carried out in this embodiment. Further, it is possible to suppress the side reaction between the amide compound and the hydrogen halide produced by the decomposition of the C 1-4 halogenated hydrocarbon, and the decomposition of the amide compound due to light irradiation. This embodiment is therefore particularly suitable for implementing the invention in large volumes.

アミド化合物としては、下記式(II)で表されるアミド化合物が好ましい。以下、式(II)で表される化合物を「アミド化合物(II)」と略記する場合がある。 As the amide compound, an amide compound represented by the following formula (II) is preferable. Hereinafter, the compound represented by formula (II) may be abbreviated as "amide compound (II)".

Figure 0007344518000003

[式中、R1は、水素原子(-H)、C1-6アルキル基、または置換基を有していてもよいC6-12芳香族炭化水素基を示し、R2とR3は、独立して、C1-6アルキル基、または置換基を有していてもよいC6-12芳香族炭化水素基を示し、また、R2とR3は一緒になって4員以上7員以下の環構造を形成してもよい。]
Figure 0007344518000003

[In the formula, R 1 represents a hydrogen atom (-H), a C 1-6 alkyl group, or a C 6-12 aromatic hydrocarbon group which may have a substituent, and R 2 and R 3 are , independently represents a C 1-6 alkyl group or a C 6-12 aromatic hydrocarbon group which may have a substituent, and R 2 and R 3 together represent a 4- or more-membered 7 A ring structure having less than one member may be formed. ]

本開示において「C1-6アルキル基」は、炭素数1以上6以下の直鎖状または分枝鎖状の一価飽和脂肪族炭化水素基をいう。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル等である。好ましくはC1-4アルキル基であり、より好ましくはC1-2アルキル基であり、最も好ましくはメチルである。In the present disclosure, "C 1-6 alkyl group" refers to a linear or branched monovalent saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms. Examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, and the like. Preferably it is a C 1-4 alkyl group, more preferably a C 1-2 alkyl group, and most preferably methyl.

「C6-12芳香族炭化水素基」とは、炭素数が6以上12以下の一価芳香族炭化水素基をいう。例えば、フェニル、ナフチル、インデニル、ビフェニル基であり、好ましくはフェニルである。C6-12芳香族炭化水素基は、置換基を有していてもよい。当該置換基は、本発明に係る反応を阻害しないものであれば特に制限されないが、例えば、C1-6アルキル基、C1-6アルコキシ基、ハロゲノ基、ニトロ基およびシアノ基からなる群より選択される1以上の置換基を挙げることができる。置換基の数は置換可能である限り特に制限されないが、例えば1以上5以下とすることができ、3以下が好ましく、2以下がより好ましく、1がより更に好ましい。置換基数が2以上である場合、置換基は互いに同一であっても異なっていてもよい。"C 6-12 aromatic hydrocarbon group" refers to a monovalent aromatic hydrocarbon group having 6 or more and 12 or less carbon atoms. For example, phenyl, naphthyl, indenyl, biphenyl groups, preferably phenyl. The C 6-12 aromatic hydrocarbon group may have a substituent. The substituent is not particularly limited as long as it does not inhibit the reaction according to the present invention, but for example, from the group consisting of a C 1-6 alkyl group, a C 1-6 alkoxy group, a halogeno group, a nitro group, and a cyano group. One or more selected substituents may be mentioned. The number of substituents is not particularly limited as long as they are substitutable, but can be, for example, 1 or more and 5 or less, preferably 3 or less, more preferably 2 or less, and even more preferably 1. When the number of substituents is two or more, the substituents may be the same or different.

「C1-6アルコキシ基」とは、炭素数1以上6以下の直鎖状または分枝鎖状の脂肪族炭化水素オキシ基をいう。例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、t-ブトキシ、n-ペントキシ、n-ヘキソキシ等であり、好ましくはC1-4アルコキシ基であり、より好ましくはC1-2アルコキシ基であり、より更に好ましくはメトキシである。"C 1-6 alkoxy group" refers to a linear or branched aliphatic hydrocarbon oxy group having 1 to 6 carbon atoms. For example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, t-butoxy, n-pentoxy, n-hexoxy, etc., preferably C 1-4 alkoxy group, more preferably C 1 -2 alkoxy group, more preferably methoxy.

6-12芳香族炭化水素基の置換基としての「ハロゲノ基」は、クロロ、ブロモ、ヨードの他、フルオロであってもよい。The "halogeno group" as a substituent of the C 6-12 aromatic hydrocarbon group may be fluoro in addition to chloro, bromo, and iodo.

2とR3が窒素原子と共に一緒になって形成される4員以上7員以下の環構造としては、例えば、ピロリジル基、ピペリジル基、モルホリノ基を挙げることができる。Examples of the 4- to 7-membered ring structure formed by R 2 and R 3 together with a nitrogen atom include a pyrrolidyl group, a piperidyl group, and a morpholino group.

具体的なアミド化合物(II)としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、N-メチル-N-フェニルホルムアミド、N-メチルピロリドン(NMP)、1,3-ジメチルイミダゾリジノン(DMI)、テトラメチル尿素、テトラエチル尿素、テトラブチル尿素などを挙げることができ、汎用性やコストなどの観点からDMFが好ましい。 Specific examples of the amide compound (II) include N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-methyl-N-phenylformamide, N-methylpyrrolidone (NMP), Examples include 1,3-dimethylimidazolidinone (DMI), tetramethylurea, tetraethylurea, and tetrabutylurea, with DMF being preferred from the viewpoint of versatility and cost.

1-4ハロゲン化炭化水素の分解工程とアミド化合物との反応工程を同時に実施する場合、C1-4ハロゲン化炭化水素とアミド化合物を含む組成物に酸素存在下で光照射する。アミド化合物(II)と組み合わせるC1-4ハロゲン化炭化水素としては、安価に入手できるクロロホルムが最も好ましい。When the decomposition step of the C 1-4 halogenated hydrocarbon and the reaction step with the amide compound are carried out simultaneously, the composition containing the C 1-4 halogenated hydrocarbon and the amide compound is irradiated with light in the presence of oxygen. The most preferred C 1-4 halogenated hydrocarbon to be combined with the amide compound (II) is chloroform, which is available at low cost.

上記C1-4ハロゲン化炭化水素とアミド化合物の混合態様は特に限定されない。例えば、反応器中、各化合物の全量を予め混合しておいてもよいし、数回に分割して添加してもよいし、任意の速度で連続的に添加してもよい。また、上記C1-4ハロゲン化炭化水素が常温常圧で液体でない場合には、これら原料化合物を適度に溶解でき、且つ本発明反応を阻害しない溶媒を用いてもよい。かかる溶媒としては、例えば、n-ヘキサンなどの脂肪族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;アセトニトリルなどのニトリル系溶媒を挙げることができる。The mixing mode of the C 1-4 halogenated hydrocarbon and the amide compound is not particularly limited. For example, the entire amount of each compound may be mixed in advance in the reactor, the compounds may be added in several portions, or they may be added continuously at any rate. Further, when the above C 1-4 halogenated hydrocarbon is not liquid at normal temperature and normal pressure, a solvent that can appropriately dissolve these raw material compounds and does not inhibit the reaction of the present invention may be used. Examples of such solvents include aliphatic hydrocarbon solvents such as n-hexane; ether solvents such as diethyl ether, tetrahydrofuran, and dioxane; and nitrile solvents such as acetonitrile.

反応時の温度も特に限定はされず、適宜調整すればよいが、例えば、-20℃以上60℃以下とすることができる。当該温度としては、-10℃以上がより好ましく、0℃以上がよりさらに好ましく、また、50℃以下または40℃以下がより好ましく、30℃以下がよりさらに好ましい。或いは、温度制御をすることなく常温で反応を行ってもよい。なお、反応温度が低い場合には、有害なハロゲン化合物ガスが反応系外に漏れ難いという利点がある。かかる観点からは、反応温度は10℃以下が好ましく、5℃以下がより好ましい。 The temperature during the reaction is also not particularly limited and may be adjusted as appropriate, for example, it can be set to -20°C or more and 60°C or less. The temperature is more preferably -10°C or higher, even more preferably 0°C or higher, more preferably 50°C or lower or 40°C or lower, even more preferably 30°C or lower. Alternatively, the reaction may be carried out at room temperature without temperature control. Note that when the reaction temperature is low, there is an advantage that harmful halogen compound gas is difficult to leak out of the reaction system. From this point of view, the reaction temperature is preferably 10°C or lower, more preferably 5°C or lower.

また、高エネルギー光の照射後、高エネルギー光を照射せず、例えば蛍光灯などの一般光の下、10℃以上60℃以下で1分間以上5時間以下程度、C1-4ハロゲン化炭化水素の分解物とアミド化合物との反応を継続してもよい。In addition, after irradiation with high-energy light, C 1-4 halogenated hydrocarbons may be exposed to C 1-4 halogenated hydrocarbons at a temperature of 10°C to 60°C for 1 minute to 5 hours without irradiating high-energy light, for example under general light such as a fluorescent lamp. The reaction between the decomposition product and the amide compound may be continued.

本発明の製造方法に使用できる反応装置としては、反応容器に光照射手段を備えたものが挙げられる。反応装置には、攪拌装置や温度制御手段が備えられていてもよい。図1に、本発明の製造方法に使用できる反応装置の一態様を示す。図1に示す反応装置は、筒状反応容器6内に光照射手段1を有するものである。筒状反応容器6内に、上記各原料化合物を添加し、当該反応容器6内に酸素を含有する気体を供給または上記混合物に酸素を含有する気体をバブリングしながら(図示せず)、光照射手段1より光を照射して反応を行う。前記光照射手段1をジャケット2等で覆う場合、該ジャケットは、前記短波長光を透過する素材であることが好ましい。また、反応容器の外側から光照射を行ってもよく、この場合、反応容器は、前記短波長光を透過する素材であることが好ましい。前記短波長光を透過する素材としては、本発明の効果を妨げない限り特に限定されないが、石英ガラス等が好ましく挙げられる。 Examples of reaction apparatuses that can be used in the production method of the present invention include those in which a reaction vessel is equipped with a light irradiation means. The reaction apparatus may be equipped with a stirring device and a temperature control means. FIG. 1 shows one embodiment of a reaction apparatus that can be used in the production method of the present invention. The reaction apparatus shown in FIG. 1 has a light irradiation means 1 inside a cylindrical reaction vessel 6. The reaction apparatus shown in FIG. The above raw material compounds are added into the cylindrical reaction vessel 6, and light irradiation is performed while supplying a gas containing oxygen into the reaction vessel 6 or bubbling the gas containing oxygen into the mixture (not shown). The reaction is carried out by irradiating light from means 1. When the light irradiation means 1 is covered with a jacket 2 or the like, the jacket is preferably made of a material that transmits the short wavelength light. Furthermore, the reaction container may be irradiated with light from outside, and in this case, the reaction container is preferably made of a material that transmits the short wavelength light. The material that transmits the short wavelength light is not particularly limited as long as it does not impede the effects of the present invention, but quartz glass and the like are preferably mentioned.

アミド化合物として上記式(II)で表される化合物を用いた場合には、生成するビルスマイヤー試薬は下記式(I)で表される塩である。 When the compound represented by the above formula (II) is used as the amide compound, the Vilsmeier reagent produced is a salt represented by the following formula (I).

Figure 0007344518000004

[式中、R1~R3は上記と同義を示し、Xは、クロロ、ブロモおよびヨードからなる群より選択されるハロゲノ基を示し、Y-はカウンターアニオンを示す。]
Figure 0007344518000004

[In the formula, R 1 to R 3 have the same meanings as above, X represents a halogeno group selected from the group consisting of chloro, bromo and iodo, and Y represents a counter anion. ]

式(I)におけるY-としては、C1-4ハロゲン化炭化水素由来の塩化物イオン、臭化物イオン、およびヨウ化物イオンが挙げられるが、特に制限されない。
式(I)で表される塩としては、入手容易性の観点から、Xがクロロであり、且つY-が塩化物イオンである化合物が好ましい。
Y - in formula (I) includes, but is not particularly limited to, chloride ions, bromide ions, and iodide ions derived from C 1-4 halogenated hydrocarbons.
From the viewpoint of easy availability, the salt represented by formula (I) is preferably a compound in which X is chloro and Y - is a chloride ion.

ビルスマイヤー試薬を含む上記反応液へ更にビルスマイヤー試薬と反応可能な化合物を添加することにより、同一系内で更なる反応を進行せしめることが可能である。例えば、ビルスマイヤー試薬により活性基を有する芳香族化合物をアルデヒド化またはケトン化できることが知られている。かかる反応はビルスマイヤー・ハック反応(Vilsmeier-Haack reaction)として知られている。また、ビルスマイヤー試薬は、カルボン酸化合物のカルボキシ基をハロホルミル基に変換することが知られている。更に、ビルスマイヤー試薬に水酸基含有化合物を反応させることにより、ギ酸エステルが得られる。 By further adding a compound capable of reacting with the Vilsmeier reagent to the above-mentioned reaction solution containing the Vilsmeier reagent, it is possible to proceed with further reactions within the same system. For example, it is known that an aromatic compound having an active group can be converted into an aldehyde or a ketone using a Vilsmeier reagent. Such a reaction is known as the Vilsmeier-Haack reaction. Furthermore, Vilsmeier's reagent is known to convert the carboxy group of a carboxylic acid compound into a haloformyl group. Furthermore, a formate ester can be obtained by reacting a Vilsmeier reagent with a hydroxyl group-containing compound.

活性基を有する芳香族化合物(以下、「活性芳香族化合物」という)は、置換基などにより活性化された芳香族化合物である。例えば、アルキル基で置換されたアルキルアミノ基を含むアミノ基や水酸基などは、芳香族化合物を強く活性化する。また、アルキルカルボニルアミノ基(-N(C=O)R)、アルキルカルボニルオキシ基(-O(C=O)R)、エーテル基(-OR)、アルキル基(-R)(Rはアルキル基を示し、C1-6アルキル基が好ましい)、および芳香族基も、芳香族化合物を活性化する。以下、これら置換基を活性化基という。また、アントラセンなどのように、芳香族環が縮合して共役系が拡張しているような化合物も活性化されており、ビルスマイヤー試薬によるアルデヒド化やケトン化を受ける。活性化されている部位のπ電子が求電子的にビルスマイヤー試薬と反応し、アルデヒド化やケトン化されると考えられる。An aromatic compound having an active group (hereinafter referred to as an "active aromatic compound") is an aromatic compound activated by a substituent or the like. For example, amino groups and hydroxyl groups containing alkylamino groups substituted with alkyl groups strongly activate aromatic compounds. Also, alkylcarbonylamino group (-N(C=O)R), alkylcarbonyloxy group (-O(C=O)R), ether group (-OR), alkyl group (-R) (R is an alkyl group C 1-6 alkyl groups are preferred), and aromatic groups also activate aromatic compounds. Hereinafter, these substituents will be referred to as activating groups. Compounds such as anthracene, in which aromatic rings are condensed to extend the conjugated system, are also activated and undergo aldehyde or ketonization using Vilsmeier reagents. It is thought that the π electrons of the activated site electrophilically react with the Vilsmeier reagent, resulting in aldehyde or ketonization.

活性芳香族化合物は、活性化されておりビルスマイヤー試薬によりアルデヒド化またはケトン化される化合物であれば特に制限されないが、例えば、上記活性化基により置換されたベンゼンやナフタレンなどのC1-10芳香族炭化水素;フェナンスレンやアントラセンなど、上記活性化基により置換されていてもよい縮合芳香族炭化水素;ピロール、イミダゾール、ピラゾール、チオフェン、フラン、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、チアジアゾール等、上記活性化基により置換されていてもよい5員環ヘテロアリール基;ピリジン、ピラジン、ピリミジン、ピリダジン等、上記活性化基により置換されていてもよい6員環ヘテロアリール;インドール、イソインドール、キノリン、イソキノリン、ベンゾフラン、イソベンゾフラン、クロメン等、上記活性化基により置換されていてもよい縮合ヘテロアリールを挙げることができる。なお、無置換のフランやチオフェンなどは、従来のビルスマイヤー・ハック反応でのアルデヒド化やケトン化の報告例は無いが、本発明方法によればヘテロ元素に隣接する炭素におけるアルデヒド化やケトン化が可能である。The active aromatic compound is not particularly limited as long as it is activated and can be aldehyded or ketonized by the Vilsmeier reagent . Aromatic hydrocarbons; fused aromatic hydrocarbons which may be substituted with the above activating groups, such as phenanthrene and anthracene; pyrrole, imidazole, pyrazole, thiophene, furan, oxazole, isoxazole, thiazole, isothiazole, thiadiazole, etc. 5-membered heteroaryl group optionally substituted with an activating group; 6-membered heteroaryl optionally substituted with the above-mentioned activating group, such as pyridine, pyrazine, pyrimidine, pyridazine; indole, isoindole, quinoline, Isoquinoline, benzofuran, isobenzofuran, chromene, and other fused heteroaryls which may be substituted with the above-mentioned activating group can be mentioned. Although there are no reports of aldehyde or ketonization of unsubstituted furan or thiophene in the conventional Vilsmeyer-Hack reaction, according to the method of the present invention, the carbon adjacent to the hetero element can be aldehyded or ketonized. is possible.

活性芳香族化合物の使用量は適宜調整すればよいが、例えば、アミド化合物に対して0.1倍モル以上1.0倍モル以下とすることができる。 The amount of the active aromatic compound to be used may be adjusted as appropriate, and may be, for example, from 0.1 times the mole to 1.0 times the mole of the amide compound.

アルデヒド化またはケトン化の反応条件は、適宜決定すればよい。例えば、薄層クロマトグラフィやNMRなどでアミド化合物の消費とビルスマイヤー試薬の生成を確認した後に活性芳香族化合物を反応溶液に添加すればよい。活性芳香族化合物は、そのまま添加してもよいし、活性芳香族化合物の溶液を添加してもよい。活性芳香族化合物溶液の溶媒としては、活性芳香族化合物を適度に溶解でき且つ反応を阻害しないものであれば特に制限されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、クロロプロパン、クロロブタン、クロロペンタン、クロロヘキサンなどのハロゲン化炭化水素溶媒;アセトンやメチルエチルケトンなどのケトン系溶媒;アセトニトリルなどのニトリル系溶媒;ベンゼン、トルエン、クロロベンゼンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒を挙げることができる。アルデヒド化またはケトン化の反応条件も適宜調整すればよいが、例えば、反応温度は、活性芳香族化合物の添加時温度も含め、-10℃以上、加熱還流条件とすることができ、反応時間は、10分間以上20時間以下とすることができる。なお、式(I)および式(II)の化合物においてR1が水素原子である場合は芳香族アルデヒドが得られ、R1がアルキル基または芳香族炭化水素基である場合は芳香族ケトンが得られる。The reaction conditions for aldehydation or ketonization may be determined as appropriate. For example, the active aromatic compound may be added to the reaction solution after confirming the consumption of the amide compound and the production of the Vilsmeier reagent by thin layer chromatography, NMR, or the like. The active aromatic compound may be added as it is, or a solution of the active aromatic compound may be added. The solvent for the active aromatic compound solution is not particularly limited as long as it can appropriately dissolve the active aromatic compound and does not inhibit the reaction, but examples include dichloromethane, chloroform, carbon tetrachloride, chloropropane, chlorobutane, chloropentane, Halogenated hydrocarbon solvents such as chlorohexane; Ketone solvents such as acetone and methyl ethyl ketone; Nitrile solvents such as acetonitrile; Aromatic hydrocarbon solvents such as benzene, toluene, and chlorobenzene; Ether solvents such as diethyl ether, tetrahydrofuran, and dioxane can be mentioned. The reaction conditions for aldehydation or ketonization may be adjusted as appropriate; for example, the reaction temperature may be -10°C or higher, including the temperature at the time of addition of the active aromatic compound, under heating reflux conditions, and the reaction time may be , the duration may be 10 minutes or more and 20 hours or less. In addition, in the compounds of formula (I) and formula (II), when R 1 is a hydrogen atom, an aromatic aldehyde is obtained, and when R 1 is an alkyl group or an aromatic hydrocarbon group, an aromatic ketone is obtained. It will be done.

反応後には、通常の後処理や精製をしてもよい。例えば、反応後の反応液に飽和炭酸ナトリウム水溶液や飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、分液し、水層を有機溶媒で抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムや無水硫酸マグネシウムで乾燥し、減圧濃縮した後、再結晶、シリカゲルカラムクロマトグラフィ、蒸留などの常法により目的化合物である芳香族アルデヒドや芳香族ケトンを精製すればよい。 After the reaction, usual post-treatments and purification may be carried out. For example, after the reaction, add a saturated aqueous sodium carbonate solution or a saturated aqueous sodium bicarbonate solution to the reaction solution to stop the reaction, separate the layers, extract the aqueous layer with an organic solvent, combine the organic layer and the extract, and add anhydrous sodium sulfate to the reaction solution. After drying over magnesium sulfate or anhydrous magnesium sulfate and concentrating under reduced pressure, the desired aromatic aldehyde or aromatic ketone may be purified by a conventional method such as recrystallization, silica gel column chromatography, or distillation.

ビルスマイヤー試薬によりカルボン酸化合物のカルボキシ基をハロホルミル基に変換する場合には、カルボン酸化合物を上記C1-4ハロゲン化炭化水素とアミド化合物を含む組成物へ光照射前に添加してもよいし、光照射前から光照射中を経て光照射後にかけてカルボン酸化合物を断続的または連続的に適時添加してよいし、光照射後にカルボン酸化合物を添加してもよい。即ち、ビルスマイヤー試薬の製造工程の後にカルボン酸化合物を添加してカルボキシ基をハロホルミル基に変換する工程を行ってもよいし、両工程を同時に行ってもよい。When converting the carboxy group of a carboxylic acid compound into a haloformyl group using a Vilsmeier reagent, the carboxylic acid compound may be added to the composition containing the C 1-4 halogenated hydrocarbon and amide compound before irradiation with light. However, the carboxylic acid compound may be added intermittently or continuously from before the light irradiation to after the light irradiation, or the carboxylic acid compound may be added after the light irradiation. That is, a step of adding a carboxylic acid compound to convert a carboxy group into a haloformyl group may be performed after the Vilsmeier reagent manufacturing step, or both steps may be performed simultaneously.

カルボキシ基をハロホルミル基に変換するカルボン酸化合物としては、例えば、下記式(III)で表される化合物を挙げることができる。
4-(CO2H)n (III)
[式中、R4はn価の有機基を示し、nは1以上4以下の整数を示す。]
Examples of the carboxylic acid compound that converts a carboxy group into a haloformyl group include a compound represented by the following formula (III).
R 4 -(CO 2 H) n (III)
[In the formula, R 4 represents an n-valent organic group, and n represents an integer of 1 or more and 4 or less. ]

有機基は、反応を阻害しない限り特に制限されないが、例えば、置換基を有していてもよいC1-18炭化水素基および置換基を有していてもよい上記ヘテロアリール基を挙げることができる。置換基としては、C1-6アルキル基、C1-6アルコキシ基、ハロゲノ基、ニトロ基およびシアノ基からなる群より選択される1以上の置換基を挙げることができる。また、C1-18炭化水素基としては、例えば、1価のC1-18アルキル基、C2-18アルケニル基、C2-18アルキニル基、C6-18芳香族炭化水素基、および2価以上4価以下のこれらに対応する炭化水素基を挙げることができる。また、C1-18アルキル基、C2-18アルケニル基、C2-18アルキニル基においては、1以上の炭素原子が-O-、-S-、-NR5-(R5は水素原子またはC1-6アルキル基などのアルキル基を示す)などのヘテロ原子で置換されていてもよい。The organic group is not particularly limited as long as it does not inhibit the reaction, but examples include a C 1-18 hydrocarbon group that may have a substituent and the above heteroaryl group that may have a substituent. can. Examples of the substituent include one or more substituents selected from the group consisting of a C 1-6 alkyl group, a C 1-6 alkoxy group, a halogeno group, a nitro group, and a cyano group. Further, examples of the C 1-18 hydrocarbon group include a monovalent C 1-18 alkyl group, a C 2-18 alkenyl group, a C 2-18 alkynyl group, a C 6-18 aromatic hydrocarbon group, and a C 1-18 aromatic hydrocarbon group. Corresponding hydrocarbon groups having a valence of more than or equal to 4 and less than or equal to 4 can be mentioned. Furthermore, in the C 1-18 alkyl group, C 2-18 alkenyl group, and C 2-18 alkynyl group, one or more carbon atoms are -O-, -S-, -NR 5 - (R 5 is a hydrogen atom or (representing an alkyl group such as a C 1-6 alkyl group) may be substituted with a heteroatom such as a C 1-6 alkyl group.

カルボン酸化合物は、そのまま添加してもよいし、カルボン酸化合物の溶液を添加してもよい。カルボン酸化合物溶媒の溶媒としては、カルボン酸化合物を適度に溶解でき且つ反応を阻害しないものであれば特に制限されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、クロロプロパン、クロロブタン、クロロペンタン、クロロヘキサンなどのハロゲン化炭化水素溶媒;ベンゼン、トルエン、クロロベンゼンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒を挙げることができる。 The carboxylic acid compound may be added as it is, or a solution of the carboxylic acid compound may be added. The solvent for the carboxylic acid compound solvent is not particularly limited as long as it can appropriately dissolve the carboxylic acid compound and does not inhibit the reaction, but examples include dichloromethane, chloroform, carbon tetrachloride, chloropropane, chlorobutane, chloropentane, and chlorohexane. Examples include halogenated hydrocarbon solvents such as; aromatic hydrocarbon solvents such as benzene, toluene, and chlorobenzene; and ether solvents such as diethyl ether, tetrahydrofuran, and dioxane.

カルボン酸化合物の使用量は適宜調整すればよいが、例えば、アミド化合物に対して0.1倍モル以上3.0倍モル以下とすることができる。 The amount of the carboxylic acid compound to be used may be adjusted as appropriate, and may be, for example, 0.1 to 3.0 times the mole of the amide compound.

カルボキシ基をハロホルミル基に変換する反応の条件は、適宜決定すればよい。例えば、反応温度を0℃以上50℃以下、反応時間を10分間以上20時間以下とすることができる。 The reaction conditions for converting a carboxy group into a haloformyl group may be determined as appropriate. For example, the reaction temperature can be 0° C. or more and 50° C. or less, and the reaction time can be 10 minutes or more and 20 hours or less.

カルボン酸ハロゲン化物は反応性が高く不安定である場合が多いため、単離は難しいことがある。よって、ビルスマイヤー試薬とカルボン酸化合物との反応後、アルコール化合物やアミン化合物など、カルボン酸ハロゲン化物と反応させるべき化合物を反応液に添加することが好ましい。当該反応後は通常の後処理を行ってもよく、目的化合物を常法により精製してもよい。 Isolation of carboxylic acid halides can be difficult because they are often highly reactive and unstable. Therefore, after the Vilsmeier reagent reacts with the carboxylic acid compound, it is preferable to add a compound to be reacted with the carboxylic acid halide, such as an alcohol compound or an amine compound, to the reaction solution. After the reaction, usual post-treatments may be performed, and the target compound may be purified by conventional methods.

ビルスマイヤー試薬と水酸基含有化合物を反応させてギ酸エステルを得る場合には、水酸基含有化合物を上記C1-4ハロゲン化炭化水素とアミド化合物を含む組成物へ光照射前に添加してもよいし、光照射前から光照射中を経て光照射後にかけて水酸基含有化合物を断続的または連続的に適時添加してよいし、光照射後に水酸基含有化合物を添加してもよい。即ち、ビルスマイヤー試薬の製造工程の後に水酸基含有化合物を添加する工程を行ってもよいし、両工程を同時に行ってもよい。水酸基含有化合物は、そのまま添加してもよいし、水酸基含有化合物の溶液を添加してもよい。水酸基含有化合物溶液の溶媒としては、水酸基含有化合物を適度に溶解でき且つ反応を阻害しないものであれば特に制限されないが、例えば、ジクロロメタン、クロロホルム、四塩化炭素、クロロプロパン、クロロブタン、クロロペンタン、クロロヘキサンなどのハロゲン化炭化水素溶媒;アセトニトリルなどのニトリル系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒を挙げることができる。When a formic acid ester is obtained by reacting a Vilsmeier reagent with a hydroxyl group-containing compound, the hydroxyl group-containing compound may be added to the composition containing the C 1-4 halogenated hydrocarbon and an amide compound before irradiation with light. The hydroxyl group-containing compound may be added intermittently or continuously from before the light irradiation to after the light irradiation, or the hydroxyl group-containing compound may be added after the light irradiation. That is, the step of adding the hydroxyl group-containing compound may be performed after the Vilsmeier reagent manufacturing step, or both steps may be performed simultaneously. The hydroxyl group-containing compound may be added as is, or a solution of the hydroxyl group-containing compound may be added. The solvent for the hydroxyl group-containing compound solution is not particularly limited as long as it can appropriately dissolve the hydroxyl group-containing compound and does not inhibit the reaction, but examples include dichloromethane, chloroform, carbon tetrachloride, chloropropane, chlorobutane, chloropentane, and chlorohexane. Examples include halogenated hydrocarbon solvents such as; nitrile solvents such as acetonitrile; and ether solvents such as diethyl ether, tetrahydrofuran, and dioxane.

水酸基含有化合物は、反応性水酸基を1以上有する化合物であれば特に制限されず、例えば、アルコール化合物とフェノール化合物を挙げることができる。 The hydroxyl group-containing compound is not particularly limited as long as it has one or more reactive hydroxyl groups, and examples include alcohol compounds and phenol compounds.

アルコール化合物としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、s-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノールなどのC1-20アルコール;トリフルオロメタノール、2-フルオロエタノール、2-クロロエタノール、2-ブロモエタノール、2-ヨードエタノール、2,2,2-フルオロエタノールなどのC1-20ハロゲノアルコール;エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールなどのジオール化合物;グリセリンなどのトリオール化合物;ペンタエリスリトールなどのテトラオール化合物などを挙げることができる。Examples of alcohol compounds include C 1-20 alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, n-pentanol, and isopentanol; trifluoro C 1-20 halogeno alcohols such as methanol, 2-fluoroethanol, 2-chloroethanol, 2-bromoethanol, 2-iodoethanol, 2,2,2-fluoroethanol; ethylene glycol, propylene glycol, 1,4-butane Examples include diol compounds such as diol and 1,6-hexanediol; triol compounds such as glycerin; and tetraol compounds such as pentaerythritol.

フェノール化合物としては、例えば、フェノール、ナフトール、クレゾール、ブチルフェノール、アミルフェノール、クロロフェノール、ブロモフェノールなどの1価フェノール化合物;カテコール、ビスフェノールA~G、ビスフェノールM、ビスフェノールS、ビスフェノールP、ビスフェノールZなどの2価フェノール化合物;トリヒドロキシベンゼンなどの3価フェノール化合物を挙げることができる。 Examples of phenolic compounds include monohydric phenol compounds such as phenol, naphthol, cresol, butylphenol, amylphenol, chlorophenol, and bromophenol; catechol, bisphenol A to G, bisphenol M, bisphenol S, bisphenol P, and bisphenol Z. Dihydric phenol compounds; trihydric phenol compounds such as trihydroxybenzene can be mentioned.

水酸基含有化合物の使用量は適宜調整すればよいが、例えば、水酸基を1個有する水酸基含有化合物の使用量は、アミド化合物に対して0.1倍モル以上3.0倍モル以下とすることができる。水酸基をm個有する水酸基含有化合物の使用量は、1個有する水酸基含有化合物の使用量の1/mを目安として調整すればよい。 The amount of the hydroxyl group-containing compound to be used may be adjusted as appropriate, but for example, the amount of the hydroxyl group-containing compound having one hydroxyl group may be 0.1 to 3.0 times the mole of the amide compound. can. The amount of the hydroxyl group-containing compound having m hydroxyl groups may be adjusted to 1/m of the amount of the hydroxyl group-containing compound having one hydroxyl group.

ビルスマイヤー試薬と水酸基含有化合物との反応条件は、適宜決定すればよい。例えば、水酸基含有化合物の添加後、反応温度を-10℃以上50℃以下、反応時間を10分間以上20時間以下とすることができる。 The conditions for the reaction between the Vilsmeier reagent and the hydroxyl group-containing compound may be determined as appropriate. For example, after adding the hydroxyl group-containing compound, the reaction temperature can be set to -10°C or more and 50°C or less, and the reaction time can be set to 10 minutes or more and 20 hours or less.

反応後には、通常の後処理や精製をしてもよい。例えば、反応後の反応液に飽和炭酸ナトリウム水溶液や飽和炭酸水素ナトリウム水溶液を加えて反応を停止させ、分液し、水層を有機溶媒で抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムや無水硫酸マグネシウムで乾燥し、減圧濃縮した後、再結晶、シリカゲルカラムクロマトグラフィ、蒸留などの常法により目的化合物であるギ酸エステルを精製すればよい。 After the reaction, usual post-treatments and purification may be carried out. For example, after the reaction, add a saturated aqueous sodium carbonate solution or a saturated aqueous sodium bicarbonate solution to the reaction solution to stop the reaction, separate the layers, extract the aqueous layer with an organic solvent, combine the organic layer and the extract, and add anhydrous sodium sulfate to the reaction solution. After drying over magnesium sulfate or anhydrous magnesium sulfate and concentrating under reduced pressure, the target compound, the formate, may be purified by conventional methods such as recrystallization, silica gel column chromatography, and distillation.

本願は、2018年9月6日に出願された日本国特許出願第2018-167032号に基づく優先権の利益を主張するものである。2018年9月6日に出願された日本国特許出願第2018-167032号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2018-167032 filed on September 6, 2018. The entire contents of the specification of Japanese Patent Application No. 2018-167032 filed on September 6, 2018 are incorporated by reference into this application.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the Examples below, and modifications may be made as appropriate within the scope of the spirit of the preceding and following. Of course, other implementations are also possible, and all of them are included within the technical scope of the present invention.

実施例1: ビルスマイヤー試薬の製造
中央に直径30mmの石英ガラスジャケットを装着した筒状反応容器(直径42mm)を用意し、石英ガラスジャケットに低圧水銀ランプ(SEN Light社製、UVL20PH-6、20W、φ24×120mm)を入れ、反応容器内に精製クロロホルム(20mL,248mmol)とDMF(1.55mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、温度30℃で2時間反応を行った。続いて、酸素ガスの供給と光照射を中止し、50℃で1.5時間反応液を攪拌した。その後、攪拌を中止したところ、反応液は二層に分離していた。
各層を1H-NMRで分析したところ、下層にはビルスマイヤー試薬のピークはほとんど見られなかった。一方、上層にはビルスマイヤー試薬である(クロロメチレン)ジメチルイミニウムクロリドのピークが認められた。また、上層における残留DMFとビルスマイヤー試薬との比(DMF:ビルスマイヤー試薬)は、ピーク強度より約1:4であり、最大で16mmolのビルスマイヤー試薬が生成していると見積もられた。
Example 1: Production of Vilsmeyer reagent A cylindrical reaction vessel (diameter 42 mm) equipped with a quartz glass jacket with a diameter of 30 mm in the center was prepared, and a low-pressure mercury lamp (manufactured by SEN Light, UVL20PH-6, 20 W) was attached to the quartz glass jacket. , φ24×120 mm), and purified chloroform (20 mL, 248 mmol) and DMF (1.55 mL, 20 mmol) were added into the reaction vessel. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at a temperature of 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the supply of oxygen gas and the light irradiation were stopped, and the reaction solution was stirred at 50° C. for 1.5 hours. Thereafter, when stirring was stopped, the reaction solution was separated into two layers.
When each layer was analyzed by 1 H-NMR, almost no Vilsmeier reagent peak was observed in the lower layer. On the other hand, a peak of (chloromethylene) dimethyliminium chloride, which is a Vilsmeier reagent, was observed in the upper layer. Furthermore, the ratio of residual DMF to Vilsmeier reagent (DMF: Vilsmeier reagent) in the upper layer was about 1:4 based on the peak intensity, and it was estimated that 16 mmol of Vilsmeier reagent was produced at maximum.

実施例2: ピロール-2-カルボキシアルデヒドの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、反応温度を50℃に上げ、泡が発生しなくなるまで攪拌した。その後、反応容器をアイスバスに浸漬し、ピロール(0.74mL,10mmol)を加え、30分間加熱還流した。次いで、飽和炭酸ナトリウム水溶液(30mL)を加え、15分間攪拌した。二層に分離した反応液を分液し、水層をジエチルエーテルで抽出した。有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、目的化合物であるピロール-2-カルボキシアルデヒドの生成を確認することができた(収率:82%)。
Example 2: Production of pyrrole-2-carboxaldehyde Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50°C, and the mixture was stirred until no bubbles were generated. Thereafter, the reaction container was immersed in an ice bath, pyrrole (0.74 mL, 10 mmol) was added, and the mixture was heated under reflux for 30 minutes. Then, saturated aqueous sodium carbonate solution (30 mL) was added and stirred for 15 minutes. The reaction solution was separated into two layers, and the aqueous layer was extracted with diethyl ether. The organic layer and extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that the target compound, pyrrole-2-carboxaldehyde, was produced (yield: 82%).

実施例3: 1-メチル-2-ピロールカルボキシアルデヒドの製造
実施例2において、ピロールの代わりに1-メチルピロール(0.74mL,10mmol)のクロロホルム(5mL)溶液を用い、水層をジクロロメタンで抽出した以外は同様にして濃縮物を得た。濃縮物を1H-NMRで分析したところ、目的化合物である1-メチル-2-ピロールカルボキシアルデヒドの生成を確認することができた(収率>99%)。
Example 3: Production of 1-methyl-2-pyrrole carboxaldehyde In Example 2, a solution of 1-methylpyrrole (0.74 mL, 10 mmol) in chloroform (5 mL) was used instead of pyrrole, and the aqueous layer was extracted with dichloromethane. A concentrate was obtained in the same manner except that. Analysis of the concentrate by 1 H-NMR confirmed the production of the target compound, 1-methyl-2-pyrrolecarboxaldehyde (yield >99%).

実施例4: 2-ホルミルフランの製造
実施例2において、ピロールの代わりにフラン(0.73mL,10mmol)を用い、フランを添加してから0℃で30分間、続いて常温で2時間反応させ、水層をジクロロメタンで抽出した以外は同様にして濃縮物を得た。濃縮物を1H-NMRで分析したところ、目的化合物である2-ホルミルフランの生成を確認することができた(収率:60%)。このように、これまでビルスマイヤー試薬による無置換フランのホルミル化は報告されていないが、本発明によれば無置換フランのホルミル化が可能であることが実証された。
Example 4: Production of 2-formylfuran In Example 2, furan (0.73 mL, 10 mmol) was used instead of pyrrole, and after adding furan, the reaction was carried out at 0°C for 30 minutes, and then at room temperature for 2 hours. A concentrate was obtained in the same manner except that the aqueous layer was extracted with dichloromethane. When the concentrate was analyzed by 1 H-NMR, it was confirmed that the target compound, 2-formylfuran, had been produced (yield: 60%). Thus, although formylation of unsubstituted furan using a Vilsmeier reagent has not been reported so far, it has been demonstrated that formylation of unsubstituted furan is possible according to the present invention.

実施例5: 5-メチルフルフラールの製造
中央に直径30mmの石英ガラスジャケットを装着した筒状反応容器(直径42mm)を用意し、石英ガラスジャケットに低圧水銀ランプ(SEN Light社製、UVL20PH-6、20W、φ24×120mm)を入れ、反応容器内に精製クロロホルム(20mL,248mmol)とDMF(3.5mL,45mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で3時間反応を行った。続いて、反応温度を50℃に上げ、泡が発生しなくなるまで攪拌した。その後、反応容器を氷浴に浸漬し、2-メチルフラン(0.9mL,10mmol)を加え、0℃で1時間攪拌した。次いで、飽和炭酸ナトリウム水溶液(30mL)を加え、15分間攪拌した。二層に分離した反応液を分液し、水層を酢酸エチルで抽出した。有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、目的化合物である5-メチルフルフラールの生成を確認することができた(収率:80%)。
Example 5: Production of 5-methylfurfural A cylindrical reaction vessel (42 mm in diameter) equipped with a quartz glass jacket with a diameter of 30 mm in the center was prepared, and a low-pressure mercury lamp (manufactured by SEN Light, UVL20PH-6, Purified chloroform (20 mL, 248 mmol) and DMF (3.5 mL, 45 mmol) were added to the reaction vessel. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 3 hours while irradiating with light from the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50°C, and the mixture was stirred until no bubbles were generated. Thereafter, the reaction vessel was immersed in an ice bath, 2-methylfuran (0.9 mL, 10 mmol) was added, and the mixture was stirred at 0° C. for 1 hour. Then, saturated aqueous sodium carbonate solution (30 mL) was added and stirred for 15 minutes. The reaction solution was separated into two layers, and the aqueous layer was extracted with ethyl acetate. The organic layer and extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that the target compound, 5-methylfurfural, was produced (yield: 80%).

実施例6: 2-ホルミルチオフェンの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(1.2mL,15mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、30分間攪拌した。その後、常温でチオフェン(0.74mL,10mmol)を滴下し、6時間加熱還流した。次いで、反応液を0℃の飽和炭酸ナトリウム水溶液(30mL)に加え、30分間攪拌した。反応液にクロロホルムを加え、二層に分離した反応液を分液し、水層をクロロホルムで抽出した。有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、目的化合物である2-ホルミルチオフェンの生成を確認することができた(収率:61%)。このように、これまでビルスマイヤー試薬による無置換チオフェンのホルミル化は報告されていないが、本発明によれば無置換チオフェンのホルミル化が可能であることが実証された。
Example 6: Production of 2-formylthiophene Purified chloroform (20 mL, 248 mmol) and DMF (1.2 mL, 15 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 30 minutes. Thereafter, thiophene (0.74 mL, 10 mmol) was added dropwise at room temperature, and the mixture was heated under reflux for 6 hours. Next, the reaction solution was added to a saturated aqueous sodium carbonate solution (30 mL) at 0°C, and stirred for 30 minutes. Chloroform was added to the reaction solution, the reaction solution was separated into two layers, and the aqueous layer was extracted with chloroform. The organic layer and extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that the target compound, 2-formylthiophene, was produced (yield: 61%). Thus, although formylation of unsubstituted thiophene using a Vilsmeier reagent has not been reported so far, it has been demonstrated that formylation of unsubstituted thiophene is possible according to the present invention.

実施例7: 5-メチル-2-ホルミルチオフェンの製造
実施例2において、ピロールの代わりに2-メチルチオフェン(0.97mL,10mmol)を用いた以外は同様にして濃縮物を得た。濃縮物を1H-NMRで分析したところ、目的化合物である5-メチル-2-ホルミルチオフェンの生成を確認することができた(収率:56%)。
Example 7: Production of 5-methyl-2-formylthiophene A concentrate was obtained in the same manner as in Example 2, except that 2-methylthiophene (0.97 mL, 10 mmol) was used instead of pyrrole. Analysis of the concentrate by 1 H-NMR confirmed the production of the target compound, 5-methyl-2-formylthiophene (yield: 56%).

実施例8: 2-ホルミル-3-メチルチオフェンまたは2-ホルミル-4-メチルチオフェンの製造
実施例2において、ピロールの代わりに3-メチルチオフェン(0.97mL,10mmol)を用い、3-メチルチオフェンを滴下した後の加熱還流時間を2時間にした以外は同様にして濃縮物を得た。濃縮物を1H-NMRで分析したところ、2-ホルミル-3-メチルチオフェンの収率は74%、2-ホルミル-4-メチルチオフェンの収率は16%であった。
Example 8: Production of 2-formyl-3-methylthiophene or 2-formyl-4-methylthiophene In Example 2, 3-methylthiophene (0.97 mL, 10 mmol) was used instead of pyrrole, and 3-methylthiophene A concentrate was obtained in the same manner except that the heating reflux time after dropping was changed to 2 hours. When the concentrate was analyzed by 1 H-NMR, the yield of 2-formyl-3-methylthiophene was 74% and the yield of 2-formyl-4-methylthiophene was 16%.

実施例9: 2-ホルミル-3-メチルチオフェンまたは2-ホルミル-4-メチルチオフェンの製造
実施例8において、DMFの代わりに1-ピロリジンカルボキシアルデヒド(1.98mL,20mmol)を用いた以外は同様にして濃縮物を得た。濃縮物を1H-NMRで分析したところ、2-ホルミル-3-メチルチオフェンの収率は11%、2-ホルミル-4-メチルチオフェンの収率は4%であった。
Example 9: Production of 2-formyl-3-methylthiophene or 2-formyl-4-methylthiophene Same as in Example 8 except that 1-pyrrolidinecarboxaldehyde (1.98 mL, 20 mmol) was used instead of DMF. A concentrate was obtained. When the concentrate was analyzed by 1 H-NMR, the yield of 2-formyl-3-methylthiophene was 11% and the yield of 2-formyl-4-methylthiophene was 4%.

実施例10: 3-ホルミルインドールの製造
実施例2と同様にして、ビルスマイヤー試薬を含む反応液を調製した。当該反応液に、インドール(1.17g,10mmol)のDMF(10mL)溶液を加え、常温で2時間攪拌した。更に、7.5mol/L水酸化ナトリウム水溶液(20mL)を加え、0℃で15分間攪拌した。二層に分離した反応液を分液し、水層をジエチルエーテルで抽出した。有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物をシリカゲルクロマトグラフィ(溶離液:酢酸エチル/ジクロロエタン=3/7)に付し、目的化合物である3-ホルミルインドールを得た(収率:70%)。
Example 10: Production of 3-formylindole In the same manner as in Example 2, a reaction solution containing Vilsmeier's reagent was prepared. A solution of indole (1.17 g, 10 mmol) in DMF (10 mL) was added to the reaction solution, and the mixture was stirred at room temperature for 2 hours. Furthermore, 7.5 mol/L aqueous sodium hydroxide solution (20 mL) was added, and the mixture was stirred at 0°C for 15 minutes. The reaction solution was separated into two layers, and the aqueous layer was extracted with diethyl ether. The organic layer and extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The concentrate was subjected to silica gel chromatography (eluent: ethyl acetate/dichloroethane = 3/7) to obtain the target compound, 3-formylindole (yield: 70%).

実施例11: ビピロール誘導体の光ホルミル化反応

Figure 0007344518000005

実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(0.56mL,7.23mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、30分間攪拌した。その後、反応液を氷冷しつつ、上記ビピロール誘導体(580mg,1.81mmol)をクロロホルム(20mL)に溶解した溶液を添加し、30分間加熱還流した。次いで、反応液に飽和炭酸ナトリウム水溶液(30mL)を加え、15分間攪拌した。反応液にクロロホルムを加え、二層に分離した反応液を分液し、有機層を無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。ジクロロメタンのメタノールの混合液を用いて再結晶することにより、ホルミル化されたビピロール誘導体を得た(収率:66%)。Example 11: Photoformylation reaction of bipyrrole derivatives
Figure 0007344518000005

Purified chloroform (20 mL, 248 mmol) and DMF (0.56 mL, 7.23 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 30 minutes. Thereafter, a solution of the bipyrrole derivative (580 mg, 1.81 mmol) dissolved in chloroform (20 mL) was added to the reaction solution while cooling it on ice, and the mixture was heated under reflux for 30 minutes. Then, a saturated aqueous sodium carbonate solution (30 mL) was added to the reaction solution, and the mixture was stirred for 15 minutes. Chloroform was added to the reaction solution, the reaction solution was separated into two layers, the organic layer was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. A formylated bipyrrole derivative was obtained by recrystallization using a mixture of dichloromethane and methanol (yield: 66%).

実施例12: ビス(ピロール-2-カルボキシアルデヒド)の製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(1.15mL,14.9mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、10℃で6時間反応を行った。続いて、反応温度を50℃に上げ、30分間攪拌した。その後、反応容器をアイスバスに浸漬し、ビピロール(420mg,3.18mmol)を加え、30分間加熱還流した。次いで、飽和炭酸ナトリウム水溶液(50mL)を加え、15分間攪拌した。二層に分離した反応液を分液し、有機層を無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。残渣をメタノールで洗浄し、1H-NMRで分析したところ、目的化合物であるビス(ピロール-2-カルボキシアルデヒド)の生成を確認することができた(収量:210mg,収率:73%)。
Example 12: Production of bis(pyrrole-2-carboxaldehyde) Purified chloroform (20 mL, 248 mmol) and DMF (1.15 mL, 14.9 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the mixture was reacted at 10° C. for 6 hours while being irradiated with light from the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50° C. and stirred for 30 minutes. Thereafter, the reaction container was immersed in an ice bath, bipyrrole (420 mg, 3.18 mmol) was added, and the mixture was heated under reflux for 30 minutes. Then, saturated aqueous sodium carbonate solution (50 mL) was added and stirred for 15 minutes. The reaction solution was separated into two layers, the organic layer was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The residue was washed with methanol and analyzed by 1 H-NMR, and it was confirmed that the target compound, bis(pyrrole-2-carboxaldehyde), was produced (yield: 210 mg, yield: 73%).

実施例13: ベンゾフランのホルミル化反応
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、0℃で5時間反応を行った。続いて、反応温度を室温まで上げ、ベンゾフラン(1.0mL,9mmol)を加え、70℃で30分間攪拌し、更に20時間加熱還流した。次いで、飽和炭酸ナトリウム水溶液(20mL)を加え、15分間攪拌した。ジエチルエーテル(10mL)を加え、二層に分離した反応液を分液し、水層をジエチルエーテルで抽出した。有機層を抽出液と合わせ、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液、および水で洗浄し、無水硫酸ナトリウムで乾燥した。不溶物を濾別し、濾液を減圧濃縮した。残渣をクロマトグラフィー(溶離液:ヘキサン/ジクロロメタン=1/1(容量比))に付し、目的化合物である2-ホルミルベンゾフランを得た(収量:394mg,収率:30%)。
Example 13: Formylation reaction of benzofuran Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the mixture was reacted at 0° C. for 5 hours while being irradiated with light from the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to room temperature, benzofuran (1.0 mL, 9 mmol) was added, stirred at 70° C. for 30 minutes, and further heated under reflux for 20 hours. Then, saturated aqueous sodium carbonate solution (20 mL) was added and stirred for 15 minutes. Diethyl ether (10 mL) was added, the reaction solution was separated into two layers, and the aqueous layer was extracted with diethyl ether. The organic layer was combined with the extract, washed with a saturated aqueous sodium bicarbonate solution, a saturated aqueous sodium chloride solution, and water, and dried over anhydrous sodium sulfate. Insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure. The residue was subjected to chromatography (eluent: hexane/dichloromethane = 1/1 (volume ratio)) to obtain the target compound, 2-formylbenzofuran (yield: 394 mg, yield: 30%).

実施例14: フェニルピロリルケトンの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とN,N-ジメチルベンズアミド(3g,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で3時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、30分間攪拌した。その後、ピロール(0.7mL,10mmol)を加え、30分間加熱還流した。次いで、反応液に飽和炭酸ナトリウム水溶液を加え、30分間攪拌した。反応液にクロロホルムを加え、二層に分離した反応液を分液し、水層をクロロホルムで抽出した。有機層と抽出液を合わせて150℃で減圧濃縮した後、シリカゲルカラムクロマトグラフィ(溶離液:ジクロロメタン/酢酸エチル)で精製することにより、目的化合物を得た(収量:0.32g,収率:9.3%)。
Example 14: Production of phenylpyrrolyl ketone Purified chloroform (20 mL, 248 mmol) and N,N-dimethylbenzamide (3 g, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 3 hours while irradiating with light from the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 30 minutes. Then, pyrrole (0.7 mL, 10 mmol) was added, and the mixture was heated under reflux for 30 minutes. Then, a saturated aqueous sodium carbonate solution was added to the reaction solution, and the mixture was stirred for 30 minutes. Chloroform was added to the reaction solution, the reaction solution was separated into two layers, and the aqueous layer was extracted with chloroform. The organic layer and extract were combined and concentrated under reduced pressure at 150°C, and then purified by silica gel column chromatography (eluent: dichloromethane/ethyl acetate) to obtain the target compound (yield: 0.32 g, yield: 9 .3%).

実施例15: 2-アセチルピロールの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とN,N-ジメチルアセトアミド(1.7g,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で3時間反応を行った。続いて、光照射を停止し、30℃で30分間攪拌した。その後、ピロール(0.7mL,10mmol)を加え、一晩攪拌した。次いで、生じた不溶性塩を吸引濾過により除去し、濾液を減圧濃縮することにより、目的化合物を得た(収量:0.39g,収率:36.0%)。
Example 15: Production of 2-acetylpyrrole Purified chloroform (20 mL, 248 mmol) and N,N-dimethylacetamide (1.7 g, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 3 hours while irradiating with light from the low-pressure mercury lamp. Subsequently, light irradiation was stopped, and the mixture was stirred at 30° C. for 30 minutes. Then, pyrrole (0.7 mL, 10 mmol) was added and stirred overnight. Next, the resulting insoluble salt was removed by suction filtration, and the filtrate was concentrated under reduced pressure to obtain the target compound (yield: 0.39 g, yield: 36.0%).

比較例1
実施例1の反応容器内に精製クロロホルム(30mL,372mmol)と安息香酸(1.22g,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、10℃で3時間反応を行った。1H-NMRにより反応液を分析したが、反応はまったく進行していなかった。反応が進行しなかった理由は、おそらく、アミド化合物を用いなかったためにビルスマイヤー試薬が生成しなかったことによると考えられる。
Comparative example 1
Purified chloroform (30 mL, 372 mmol) and benzoic acid (1.22 g, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 10° C. for 3 hours while irradiating with light from the low-pressure mercury lamp. The reaction solution was analyzed by 1 H-NMR, but the reaction did not proceed at all. The reason why the reaction did not proceed is probably that the Vilsmeier reagent was not produced because no amide compound was used.

実施例16: 塩化ベンゾイルの製造とそのアミド化
実施例1の反応容器内に精製クロロホルム(30mL,372mmol)、DMF(0.4mL,5mmol)および安息香酸(1.22g,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、10℃で3時間反応を行った。1H-NMRにより反応液を分析したところ、塩化ベンゾイルが95%の収率で生成していた。
上記反応液に常温でアニリン(3.65mL,40mmol)を加え、常温で1時間攪拌した後、反応液を濾過した。濾液に5%塩酸を加え、ジクロロメタンで抽出した。抽出液を水で洗浄した後、無水硫酸ナトリウムで乾燥し、濾過し、減圧濃縮した。得られた黄褐色濃縮物をアセトン/n-ヘキサン混合溶媒を使って再結晶することにより、ベンズアニリドを得た(単離収率:61%)。
Example 16: Production of benzoyl chloride and its amidation Purified chloroform (30 mL, 372 mmol), DMF (0.4 mL, 5 mmol), and benzoic acid (1.22 g, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 10° C. for 3 hours while irradiating with light from the low-pressure mercury lamp. Analysis of the reaction solution by 1 H-NMR revealed that benzoyl chloride was produced in a yield of 95%.
Aniline (3.65 mL, 40 mmol) was added to the above reaction solution at room temperature, and after stirring at room temperature for 1 hour, the reaction solution was filtered. 5% hydrochloric acid was added to the filtrate, and the mixture was extracted with dichloromethane. The extract was washed with water, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The obtained yellow-brown concentrate was recrystallized using an acetone/n-hexane mixed solvent to obtain benzanilide (isolated yield: 61%).

実施例17: 塩化ベンゾイルの製造
実施例1の反応容器内に精製クロロホルム(30mL,372mmol)、DMF(0.4mL,5mmol)および安息香酸(1.22g,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。1H-NMRにより反応液を分析したところ、塩化ベンゾイルが定量的に生成していた。
Example 17: Production of benzoyl chloride Purified chloroform (30 mL, 372 mmol), DMF (0.4 mL, 5 mmol), and benzoic acid (1.22 g, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Analysis of the reaction solution by 1 H-NMR revealed that benzoyl chloride was quantitatively produced.

実施例18: 塩化ベンゾイルの製造
実施例1の反応容器内にテトラクロロエチレン(30mL,293mmol)、DMF(0.4mL,5mmol)および安息香酸(1.22g,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。1H-NMRにより反応液を分析したところ、塩化ベンゾイルが収率8.5%で生成していた。
Example 18: Production of benzoyl chloride Tetrachloroethylene (30 mL, 293 mmol), DMF (0.4 mL, 5 mmol), and benzoic acid (1.22 g, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Analysis of the reaction solution by 1 H-NMR revealed that benzoyl chloride was produced in a yield of 8.5%.

実施例19: 塩化アセチルの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(0.4mL,5mmol)および酢酸(0.57mL,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で3時間反応を行った。1H-NMRにより反応液を分析したところ、塩化アセチルが収率90%で生成していた。
Example 19: Production of acetyl chloride Purified chloroform (20 mL, 248 mmol), DMF (0.4 mL, 5 mmol), and acetic acid (0.57 mL, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 3 hours while irradiating with light from the low-pressure mercury lamp. Analysis of the reaction solution by 1 H-NMR revealed that acetyl chloride was produced in a yield of 90%.

実施例20: 塩化プロピオニルの製造
実施例19において、酢酸の代わりにプロピオン酸(0.67mL,10mmol)を用いた以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、塩化プロピオニルの生成を確認することができた(収率:90%)。
Example 20: Production of propionyl chloride The reaction was carried out in the same manner as in Example 19 except that propionic acid (0.67 mL, 10 mmol) was used instead of acetic acid. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that propionyl chloride was produced (yield: 90%).

実施例21: ジクロロ塩化アセチルの製造
実施例19において、酢酸の代わりにジクロロ酢酸(0.82mL,10mmol)を用い、反応時間を2時間とした以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、ジクロロ塩化アセチルが定量的に生成していることを確認できた。
Example 21: Production of dichloroacetyl chloride The reaction was carried out in the same manner as in Example 19 except that dichloroacetic acid (0.82 mL, 10 mmol) was used instead of acetic acid and the reaction time was 2 hours. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that dichloroacetyl chloride was quantitatively produced.

実施例22: 塩化アクリロイルの製造
実施例19において、酢酸の代わりにアクリル酢酸(0.69mL,10mmol)を用い、反応時間を2時間とした以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、塩化アクリロイルの生成を確認することができた(収率:14%)。
Example 22: Production of acryloyl chloride The reaction was carried out in the same manner as in Example 19, except that acrylic acetic acid (0.69 mL, 10 mmol) was used instead of acetic acid and the reaction time was changed to 2 hours. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that acryloyl chloride was produced (yield: 14%).

実施例23: 塩化マロイルの製造
実施例19において、酢酸の代わりにマロン酸(1.04g,10mmol)を用い、DMFを2mL(25mmol)用いた以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、塩化マロイルの生成を確認することができた(収率:82%)。
Example 23: Production of maloyl chloride The reaction was carried out in the same manner as in Example 19, except that malonic acid (1.04 g, 10 mmol) was used instead of acetic acid and 2 mL (25 mmol) of DMF was used. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that maloyl chloride was produced (yield: 82%).

実施例24: 4-ニトロベンゾイルクロリドの製造
実施例19において、酢酸の代わりに4-ニトロ安息香酸(1.04mL,10mmol)を用いた以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、4-ニトロベンゾイルクロリドの生成を確認することができた(収率:83%)。
Example 24: Production of 4-nitrobenzoyl chloride The reaction was carried out in the same manner as in Example 19 except that 4-nitrobenzoic acid (1.04 mL, 10 mmol) was used instead of acetic acid. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that 4-nitrobenzoyl chloride was produced (yield: 83%).

実施例25: 4-メトキシベンゾイルクロリドの製造
実施例19において、酢酸の代わりに4-メトキシ安息香酸(1.52g,10mmol)を用い、DMFを3.2mL(46mmol)用いた以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、4-メトキシベンゾイルクロリドの生成を確認することができた(収率:89%)。
Example 25: Production of 4-methoxybenzoyl chloride In the same manner as in Example 19, except that 4-methoxybenzoic acid (1.52 g, 10 mmol) was used instead of acetic acid and 3.2 mL (46 mmol) of DMF was used. The reaction was carried out. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that 4-methoxybenzoyl chloride was produced (yield: 89%).

実施例26: 2-チオフェンカルボニルクロリドの製造
実施例19において、酢酸の代わりに2-チオフェンカルボン酢酸(1.28g,10mmol)を用い、DMFを2mL(25mmol)用い、反応時間を2時間とした以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、2-チオフェンカルボニルクロリドの生成を確認することができた(収率:93%)。
Example 26: Production of 2-thiophenecarbonyl chloride In Example 19, 2-thiophenecarboxylic acid (1.28 g, 10 mmol) was used instead of acetic acid, 2 mL (25 mmol) of DMF was used, and the reaction time was 2 hours. The reaction was carried out in the same manner except for the following. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that 2-thiophenecarbonyl chloride was produced (yield: 93%).

実施例27: 2-フランカルボニルクロリドの製造
実施例19において、酢酸の代わりに2-フランカルボン酢酸(1.12g,10mmol)を用い、反応時間を2時間とした以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、2-フランカルボニルクロリドが定量的に生成していることを確認できた。
Example 27: Production of 2-furancarbonyl chloride The reaction was carried out in the same manner as in Example 19, except that 2-furancarboxylic acid (1.12 g, 10 mmol) was used instead of acetic acid and the reaction time was 2 hours. Ta. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that 2-furancarbonyl chloride was quantitatively produced.

実施例28: テレフタル酸ジアニリドの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(2.4mL,30mmol)およびテレフタル酸(0.41g,2.5mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、反応温度を50℃に上げ、泡が発生しなくなるまで攪拌した。反応液を1H-NMRにより分析し、テレフタル酸ジクロリドの生成を確認した。
上記反応液に常温でアニリン(3.56mL,40mmol)を加え、常温で10時間攪拌した後、0℃でメタノールを添加した。生じた白色沈殿を濾別し、白色粉末であるテレフタル酸ジアニリドを得た(単離収率:24%)。
Example 28: Production of terephthalic acid dianilide Purified chloroform (20 mL, 248 mmol), DMF (2.4 mL, 30 mmol), and terephthalic acid (0.41 g, 2.5 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50°C, and the mixture was stirred until no bubbles were generated. The reaction solution was analyzed by 1 H-NMR to confirm the production of terephthalic acid dichloride.
Aniline (3.56 mL, 40 mmol) was added to the above reaction solution at room temperature, and after stirring at room temperature for 10 hours, methanol was added at 0°C. The resulting white precipitate was filtered off to obtain terephthalic acid dianilide as a white powder (isolated yield: 24%).

実施例29: 無水フタル酸の製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(0.8mL,10mmol)およびフタル酸(1.66g,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。反応液を1H-NMRにより分析し、無水フタル酸の生成を確認した。なお、上記反応では、フタル酸からフタル酸ジクロリドがいったん生成し、更にフタル酸ジクロリドがDMFと反応して無水フタル酸が生成したと考えられる。
Example 29: Production of phthalic anhydride Purified chloroform (20 mL, 248 mmol), DMF (0.8 mL, 10 mmol), and phthalic acid (1.66 g, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. The reaction solution was analyzed by 1 H-NMR to confirm the production of phthalic anhydride. It is believed that in the above reaction, phthalic acid dichloride was once produced from phthalic acid, and then phthalic acid dichloride was further reacted with DMF to produce phthalic anhydride.

実施例30: 2,2,2-トリフルオロプロピオン酸クロリドの製造
実施例19において、酢酸の代わりに2,2,2-トリフルオロプロピオン酸(0.87mL,10mmol)を用い、DMFを0.3mL(4mmol)用い、反応温度を20℃とし、反応時間を2時間とした以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、2,2,2-トリフルオロプロピオン酸クロリドが定量的に生成していることを確認できた。
Example 30: Production of 2,2,2-trifluoropropionic acid chloride In Example 19, 2,2,2-trifluoropropionic acid (0.87 mL, 10 mmol) was used instead of acetic acid, and DMF was changed to 0. The reaction was carried out in the same manner except that 3 mL (4 mmol) was used, the reaction temperature was 20° C., and the reaction time was 2 hours. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that 2,2,2-trifluoropropionic acid chloride was quantitatively produced.

実施例31: 4-フルオロ安息香酸クロリドの製造
実施例19において、酢酸の代わりに4-フルオロ安息香酸(715mg,5mmol)を用い、DMFを0.9mL(11.6mmol)用い、反応温度を20℃とし、反応時間を2時間とした以外は同様にして反応を行った。反応液を1H-NMRで分析したところ、4-フルオロ安息香酸クロリドが定量的に生成していることを確認できた。
Example 31: Production of 4-fluorobenzoic acid chloride In Example 19, 4-fluorobenzoic acid (715 mg, 5 mmol) was used instead of acetic acid, 0.9 mL (11.6 mmol) of DMF was used, and the reaction temperature was changed to 20 The reaction was carried out in the same manner except that the temperature was 0.degree. C. and the reaction time was 2 hours. When the reaction solution was analyzed by 1 H-NMR, it was confirmed that 4-fluorobenzoic acid chloride was quantitatively produced.

実施例32: ペンタフルオロ安息香酸アニリドの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(0.4mL,5mmol)およびペンタフルオロ安息香酸(1.06g,5mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、反応温度を50℃に上げ、泡が発生しなくなるまで攪拌した。
上記反応液にアニリン(0.46mL,5mmol)を加え、常温で3時間攪拌した。次いで、飽和炭酸水素ナトリウム水溶液を加え、分液し、有機層を飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。得られた濃縮物をシリカゲルカラムクロマトグラフィ(溶離液:酢酸エチル/n-ヘキサン=1/3(v/v)の混合溶媒)に付し、ペンタフルオロ安息香酸アニリドを得た(単離収率:33%)。
Example 32: Production of pentafluorobenzoic acid anilide Purified chloroform (20 mL, 248 mmol), DMF (0.4 mL, 5 mmol), and pentafluorobenzoic acid (1.06 g, 5 mmol) were added to the reaction vessel of Example 1. . While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50°C, and the mixture was stirred until no bubbles were generated.
Aniline (0.46 mL, 5 mmol) was added to the above reaction solution, and the mixture was stirred at room temperature for 3 hours. Then, a saturated aqueous sodium bicarbonate solution was added, the layers were separated, and the organic layer was washed with a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The obtained concentrate was subjected to silica gel column chromatography (eluent: mixed solvent of ethyl acetate/n-hexane = 1/3 (v/v)) to obtain pentafluorobenzoic acid anilide (isolated yield: 33%).

実施例33: ギ酸メチルの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、30分間攪拌した。
上記反応液を0℃に冷却し、メタノール(0.81mL,10mmol)を加え、常温で30分間攪拌した。次いで、反応液を氷冷した飽和炭酸水素ナトリウム水溶液に加え、分液した。水層をクロロホルムで抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、ギ酸メチルの生成を確認することができた(収率:53%)。
Example 33: Production of methyl formate Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 30 minutes.
The reaction solution was cooled to 0° C., methanol (0.81 mL, 10 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. Next, the reaction solution was added to an ice-cooled saturated aqueous sodium hydrogen carbonate solution, and the layers were separated. The aqueous layer was extracted with chloroform, the organic layer and the extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. Analysis of the concentrate by 1 H-NMR confirmed the production of methyl formate (yield: 53%).

実施例34: ギ酸エチルの製造
メタノールの代わりにエタノール(0.79mL,10mmol)を用いた以外は実施例33と同様にして、ギ酸エチルを得た(収率:88%)。
Example 34: Production of ethyl formate Ethyl formate was obtained in the same manner as in Example 33, except that ethanol (0.79 mL, 10 mmol) was used instead of methanol (yield: 88%).

実施例35: ギ酸イソプロピルの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、15分間攪拌した。
上記反応液を0℃に冷却し、イソプロパノール(0.77mL,10mmol)を加え、常温で12時間攪拌した。次いで、反応液を氷冷した飽和炭酸水素ナトリウム水溶液に加え、30分間撹拌した。反応液を分液し、水層をクロロホルムで抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、ギ酸イソプロピルの生成を確認することができた(収率:28%)。
Example 35: Production of isopropyl formate Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 15 minutes.
The reaction solution was cooled to 0° C., isopropanol (0.77 mL, 10 mmol) was added, and the mixture was stirred at room temperature for 12 hours. Then, the reaction solution was added to an ice-cooled saturated aqueous sodium hydrogen carbonate solution and stirred for 30 minutes. The reaction solution was separated, the aqueous layer was extracted with chloroform, the organic layer and the extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. Analysis of the concentrate by 1 H-NMR confirmed the production of isopropyl formate (yield: 28%).

実施例36: ギ酸イソプロピルの製造
イソプロパノールに加えてピリジン(1.6mL,20mmol)を0℃で滴下した以外は実施例35と同様にして、ギ酸イソプロピルを得た(収率:51%)。
Example 36: Production of isopropyl formate Isopropyl formate was obtained in the same manner as in Example 35, except that pyridine (1.6 mL, 20 mmol) was added dropwise at 0° C. in addition to isopropanol (yield: 51%).

実施例37: ギ酸フェニルの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、15分間攪拌した。
上記反応液を0℃に冷却し、フェノール(0.94g,10mmol)を滴下し、常温で6時間攪拌した。次いで、反応液を氷冷した飽和炭酸水素ナトリウム水溶液に加え、30分間撹拌した。反応液を分液し、水層をクロロホルムで抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、ギ酸フェニルの生成を確認することができた(収率:82%)。
Example 37: Production of phenyl formate Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 15 minutes.
The reaction solution was cooled to 0° C., phenol (0.94 g, 10 mmol) was added dropwise, and the mixture was stirred at room temperature for 6 hours. Then, the reaction solution was added to an ice-cooled saturated aqueous sodium hydrogen carbonate solution and stirred for 30 minutes. The reaction solution was separated, the aqueous layer was extracted with chloroform, the organic layer and the extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. Analysis of the concentrate by 1 H-NMR confirmed the formation of phenyl formate (yield: 82%).

実施例38: ギ酸2,2,2-トリフルオロエタノールの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、30分間攪拌した。
上記反応液を0℃に冷却し、2,2,2-トリフルオロエタノール(0.94g,10mmol)を滴下し、常温で12時間攪拌した。次いで、反応液を氷冷した飽和炭酸水素ナトリウム水溶液に加え、30分間撹拌した。反応液を分液し、水層をクロロホルムで抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、ギ酸2,2,2-トリフルオロエタノールの生成を確認することができた(収率:67%)。
Example 38: Production of 2,2,2-trifluoroethanol formic acid Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 30 minutes.
The reaction solution was cooled to 0° C., 2,2,2-trifluoroethanol (0.94 g, 10 mmol) was added dropwise, and the mixture was stirred at room temperature for 12 hours. Then, the reaction solution was added to an ice-cooled saturated aqueous sodium hydrogen carbonate solution and stirred for 30 minutes. The reaction solution was separated, the aqueous layer was extracted with chloroform, the organic layer and the extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that formic acid 2,2,2-trifluoroethanol was produced (yield: 67%).

実施例39: 1,6-ヘキサンジオールジホルメートの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)、DMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、30℃で2時間反応を行った。続いて、光照射を停止し、反応温度を50℃に上げ、15分間攪拌した。
上記反応液を0℃に冷却し、1,6-ヘキサンジオール(0.59g,5mmol)を滴下し、常温で1時間攪拌した。次いで、反応液を氷冷した飽和炭酸水素ナトリウム水溶液に加え、30分間撹拌した。反応液を分液し、水層をクロロホルムで抽出し、有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、1,6-ヘキサンジオールジホルメートの生成を確認することができた(収率:52%)。
Example 39: Production of 1,6-hexanediol diformate Purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution and bubbling oxygen gas at a rate of 0.5 L/min, the reaction was carried out at 30° C. for 2 hours while irradiating light with the low-pressure mercury lamp. Subsequently, the light irradiation was stopped, the reaction temperature was raised to 50° C., and the mixture was stirred for 15 minutes.
The above reaction solution was cooled to 0° C., 1,6-hexanediol (0.59 g, 5 mmol) was added dropwise, and the mixture was stirred at room temperature for 1 hour. Then, the reaction solution was added to an ice-cooled saturated aqueous sodium hydrogen carbonate solution and stirred for 30 minutes. The reaction solution was separated, the aqueous layer was extracted with chloroform, the organic layer and the extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that 1,6-hexanediol diformate was produced (yield: 52%).

実施例40: 反応温度の検討
ビルスマイヤー試薬の調製時における反応温度を検討した。具体的には、実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(1.56mL,20mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、0~30℃の範囲で温度を調整しつつ、6時間反応を行った。その後、攪拌を中止したところ、反応液は二層に分離した。上層を1H-NMRで分析し、ピーク強度から、DMFからビルスマイヤー試薬への転化率を求めた。結果を表1に示す。
Example 40: Investigation of reaction temperature The reaction temperature during the preparation of the Vilsmeier reagent was investigated. Specifically, purified chloroform (20 mL, 248 mmol) and DMF (1.56 mL, 20 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution, the reaction was carried out for 6 hours while bubbling oxygen gas at a rate of 0.5 L/min, irradiating light with the low-pressure mercury lamp, and adjusting the temperature in the range of 0 to 30°C. Thereafter, stirring was stopped, and the reaction solution was separated into two layers. The upper layer was analyzed by 1 H-NMR, and the conversion rate of DMF to Vilsmeier reagent was determined from the peak intensity. The results are shown in Table 1.

Figure 0007344518000006
Figure 0007344518000006

実施例41: アミド化合物の量の検討
ビルスマイヤー試薬の調製時におけるアミド化合物の最適量を検討した。具体的には、実施例1の反応容器内に精製クロロホルム(20mL,248mmol)と、0.78~4.68mL(10~60mmol)の範囲のDMFを加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、0~30℃の範囲で温度を調整しつつ、5~27時間反応を行った。その後、攪拌を中止したところ、反応液は二層に分離した。上層を1H-NMRで分析し、ピーク強度から、DMFからビルスマイヤー試薬への転化率を求めた。結果を表2に示す。
Example 41: Examination of the amount of amide compound The optimal amount of the amide compound when preparing the Vilsmeier reagent was examined. Specifically, purified chloroform (20 mL, 248 mmol) and DMF in the range of 0.78 to 4.68 mL (10 to 60 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution, the reaction was carried out for 5 to 27 hours while bubbling oxygen gas at a rate of 0.5 L/min, irradiating light with the low-pressure mercury lamp, and adjusting the temperature in the range of 0 to 30 ° C. . Thereafter, stirring was stopped, and the reaction solution was separated into two layers. The upper layer was analyzed by 1 H-NMR, and the conversion rate of DMF to Vilsmeier reagent was determined from the peak intensity. The results are shown in Table 2.

Figure 0007344518000007
Figure 0007344518000007

表1,2に示す結果の通り、クロロホルムに対するDMFの量を低減し、また、反応温度を比較的低く設定することにより、ビルスマイヤー試薬の生成効率が高まる傾向が認められた。また、反応温度が低い場合には、有害なハロゲン化合物ガスが反応系外に漏れ難い傾向が認められた。 As shown in Tables 1 and 2, it was observed that the production efficiency of the Vilsmeier reagent tended to increase by reducing the amount of DMF relative to chloroform and by setting the reaction temperature relatively low. Furthermore, when the reaction temperature was low, it was observed that harmful halogen compound gas tended to be difficult to leak out of the reaction system.

実施例42: 2-ホルミルフランの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(0.78mL,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、0℃で6時間反応を行った。続いて、反応温度を50℃に上げ、1時間攪拌した。その後、反応容器をアイスバスに浸漬し、アセトン(3mL)に溶解させたフラン(0.73mL,10mmol)を滴下し、20℃で2時間撹拌した。次いで、飽和炭酸ナトリウム水溶液(15mL)を加え、15分間攪拌した。二層に分離した反応液を分液し、水層を酢酸エチルで抽出した。有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、溶媒を用いても目的化合物である2-ホルミルフランの生成を確認することができた(収率:30%)。
Example 42: Production of 2-formylfuran Purified chloroform (20 mL, 248 mmol) and DMF (0.78 mL, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution, the reaction was carried out at 0° C. for 6 hours while bubbling oxygen gas at a rate of 0.5 L/min and irradiating light with the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50°C and stirred for 1 hour. Thereafter, the reaction container was immersed in an ice bath, furan (0.73 mL, 10 mmol) dissolved in acetone (3 mL) was added dropwise, and the mixture was stirred at 20° C. for 2 hours. Then, saturated aqueous sodium carbonate solution (15 mL) was added and stirred for 15 minutes. The reaction solution was separated into two layers, and the aqueous layer was extracted with ethyl acetate. The organic layer and extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that the target compound, 2-formylfuran, was produced even though a solvent was used (yield: 30%).

実施例43: 2-ホルミルフランの製造
実施例1の反応容器内に精製クロロホルム(20mL,248mmol)とDMF(0.78mL,10mmol)を加えた。混合溶液の攪拌下、酸素ガスを0.5L/分でバブリングさせつつ、前記低圧水銀ランプにより光照射しながら、0℃で6時間反応を行った。続いて、反応温度を50℃に上げ、1時間攪拌した。その後、反応容器をアイスバスに浸漬し、アセトニトリル(3mL)に溶解させたフラン(0.73mL,10mmol)を滴下し、20℃で2時間撹拌した。次いで、飽和炭酸ナトリウム水溶液(15mL)を加え、15分間攪拌した。二層に分離した反応液を分液し、水層を酢酸エチルで抽出した。有機層と抽出液を合わせて無水硫酸ナトリウムで乾燥し、濾過し、濾液を減圧濃縮した。濃縮物を1H-NMRで分析したところ、溶媒としてアセトニトリルを用いても、目的化合物である2-ホルミルフランの生成を確認することができた(収率:48%)。
Example 43: Production of 2-formylfuran Purified chloroform (20 mL, 248 mmol) and DMF (0.78 mL, 10 mmol) were added to the reaction vessel of Example 1. While stirring the mixed solution, the reaction was carried out at 0° C. for 6 hours while bubbling oxygen gas at a rate of 0.5 L/min and irradiating light with the low-pressure mercury lamp. Subsequently, the reaction temperature was raised to 50°C and stirred for 1 hour. Thereafter, the reaction vessel was immersed in an ice bath, furan (0.73 mL, 10 mmol) dissolved in acetonitrile (3 mL) was added dropwise, and the mixture was stirred at 20° C. for 2 hours. Then, saturated aqueous sodium carbonate solution (15 mL) was added and stirred for 15 minutes. The reaction solution was separated into two layers, and the aqueous layer was extracted with ethyl acetate. The organic layer and extract were combined, dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. When the concentrate was analyzed by 1 H-NMR, it was confirmed that the target compound, 2-formylfuran, was produced even when acetonitrile was used as a solvent (yield: 48%).

1: 光照射手段, 2: ジャケット, 3: ウォーターバス
4: 撹拌子, 5: 熱媒または冷媒, 6: 筒状反応容器
1: Light irradiation means, 2: Jacket, 3: Water bath 4: Stirrer, 5: Heat medium or coolant, 6: Cylindrical reaction vessel

Claims (9)

ビルスマイヤー試薬を製造するための方法であって、
前記ビルスマイヤー試薬が下記式(I)で表される塩であり、
Figure 0007344518000008
[式中、
1は、水素原子、C1-6アルキル基、または置換基を有していてもよいC6-12芳香族炭化水素基を示し、
2とR3は、独立して、C1-6アルキル基、または置換基を有していてもよいC6-12芳香族炭化水素基を示し、また、R2とR3は一緒になって4員以上7員以下の環構造を形成してもよく、
はクロを示し、
-塩化物イオンを示す。]
クロロ基を有するC1-4ハロゲン化炭化水素を含む組成物に酸素存在下で光照射することによりC1-4ハロゲン化炭化水素を分解する工程、および、
1-4ハロゲン化炭化水素の分解物と下記式(II)で表されるアミド化合物とを反応させる工程を含むことを特徴とする方法。
Figure 0007344518000009
[式中、R1~R3は上記と同義を示す。]
A method for producing a Vilsmeier reagent, the method comprising:
The Vilsmeier reagent is a salt represented by the following formula (I),
Figure 0007344518000008
[In the formula,
R 1 represents a hydrogen atom, a C 1-6 alkyl group, or a C 6-12 aromatic hydrocarbon group which may have a substituent,
R 2 and R 3 independently represent a C 1-6 alkyl group or a C 6-12 aromatic hydrocarbon group which may have a substituent, and R 2 and R 3 together represent may form a 4- to 7-membered ring structure,
X represents chloro ;
Y - represents a chloride ion . ]
A step of decomposing the C 1-4 halogenated hydrocarbon by irradiating a composition containing the C 1-4 halogenated hydrocarbon having a chloro group with light in the presence of oxygen, and
A method comprising the step of reacting a decomposition product of a C 1-4 halogenated hydrocarbon with an amide compound represented by the following formula (II).
Figure 0007344518000009
[In the formula, R 1 to R 3 have the same meanings as above. ]
前記光が180nm以上、280nm以下の波長の光を含む請求項1に記載の方法。 The method according to claim 1, wherein the light includes light with a wavelength of 180 nm or more and 280 nm or less. 前記C1-4ハロゲン化炭化水素として、2以上のクロロ基を有する1-4ポリハロゲン化炭化水素を用いる請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein a C 1-4 polyhalogenated hydrocarbon having two or more chloro groups is used as the C 1-4 halogenated hydrocarbon. 1-4 ハロゲン化炭化水素とアミド化合物を含む組成物に酸素存在下で光照射し、C 1-4 ハロゲン化炭化水素の分解工程とアミド化合物との反応工程を同時に実施する請求項1~3のいずれかに記載の方法。 Claims 1 to 3, wherein a composition containing a C 1-4 halogenated hydrocarbon and an amide compound is irradiated with light in the presence of oxygen, and a step of decomposing the C 1-4 halogenated hydrocarbon and a step of reacting with the amide compound are carried out simultaneously. 3. The method described in any one of 3. 前記式(II)で表されるアミド化合物としてN,N-ジメチルホルムアミドを用いる請求項1~4のいずれかに記載の方法。 5. The method according to claim 1, wherein N,N-dimethylformamide is used as the amide compound represented by formula (II). 前記式(II)で表されるアミド化合物に対して5倍モル以上の前記C1-4ハロゲン化炭化水素を用いる請求項1~5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the C 1-4 halogenated hydrocarbon is used in an amount of at least 5 times the molar amount of the amide compound represented by formula (II). 芳香族アルデヒドまたは芳香族ケトンを製造するための方法であって、
請求項1~6のいずれかに記載の方法によりビルスマイヤー試薬を製造する工程、および、
前記ビルスマイヤー試薬と活性基を有する芳香族化合物とを反応させる工程を含むことを特徴とする方法。
A method for producing aromatic aldehydes or aromatic ketones, the method comprising:
A step of producing a Vilsmeier reagent by the method according to any one of claims 1 to 6, and
A method comprising the step of reacting the Vilsmeier reagent with an aromatic compound having an active group.
カルボン酸ハロゲン化物を製造するための方法であって、
請求項1~6のいずれかに記載の方法によりビルスマイヤー試薬を製造する工程、および、
前記ビルスマイヤー試薬と下記式(III)で表されるカルボン酸化合物とを反応させることにより、前記カルボン酸化合物のカルボキシ基をハロホルミル基に変換する工程を含むことを特徴とする方法。
4-(CO2H)n (III)
[式中、R4はn価の有機基を示し、nは1以上4以下の整数を示す。]
A method for producing a carboxylic acid halide, the method comprising:
A step of producing a Vilsmeier reagent by the method according to any one of claims 1 to 6, and
A method comprising the step of converting the carboxy group of the carboxylic acid compound into a haloformyl group by reacting the Vilsmeier reagent with a carboxylic acid compound represented by the following formula (III).
R 4 -(CO 2 H) n (III)
[In the formula, R 4 represents an n-valent organic group, and n represents an integer of 1 or more and 4 or less. ]
ギ酸エステルを製造するための方法であって、
請求項1~6のいずれかに記載の方法によりビルスマイヤー試薬を製造する工程、および、
前記ビルスマイヤー試薬と水酸基含有化合物とを反応させる工程を含むことを特徴とする方法。
A method for producing a formic acid ester, the method comprising:
A step of producing a Vilsmeier reagent by the method according to any one of claims 1 to 6, and
A method comprising the step of reacting the Vilsmeier reagent with a hydroxyl group-containing compound.
JP2020541302A 2018-09-06 2019-09-05 Method for producing Vilsmeier reagent Active JP7344518B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018167032 2018-09-06
JP2018167032 2018-09-06
PCT/JP2019/035031 WO2020050368A1 (en) 2018-09-06 2019-09-05 Method for preparing vilsmeier reagent

Publications (2)

Publication Number Publication Date
JPWO2020050368A1 JPWO2020050368A1 (en) 2021-08-30
JP7344518B2 true JP7344518B2 (en) 2023-09-14

Family

ID=69721924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020541302A Active JP7344518B2 (en) 2018-09-06 2019-09-05 Method for producing Vilsmeier reagent

Country Status (2)

Country Link
JP (1) JP7344518B2 (en)
WO (1) WO2020050368A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022172745A1 (en) * 2021-02-12 2022-08-18
WO2022172744A1 (en) * 2021-02-12 2022-08-18 国立大学法人神戸大学 Method for producing carbonyl halide
CN117964512B (en) * 2024-04-01 2024-06-04 山东惟普控股有限公司 Synthesis method of N, N-dimethyl-3-methoxy propionamide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105464A1 (en) 2007-03-01 2008-09-04 Mitsui Chemicals, Inc. Process for producing carboxylic acid chloride
JP2012136502A (en) 2010-12-10 2012-07-19 Ihara Nikkei Kagaku Kogyo Kk Method for producing imidoyl chloride compound, and method for producing various compounds by using the same
JP2013181028A (en) 2012-03-05 2013-09-12 Kobe Univ Use of mixture obtained by irradiating halogenated hydrocarbon with light
JP2013541533A (en) 2010-09-30 2013-11-14 アーウーテー グループ Apparatus and method for continuous phosgenation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105464A1 (en) 2007-03-01 2008-09-04 Mitsui Chemicals, Inc. Process for producing carboxylic acid chloride
JP2013541533A (en) 2010-09-30 2013-11-14 アーウーテー グループ Apparatus and method for continuous phosgenation
JP2012136502A (en) 2010-12-10 2012-07-19 Ihara Nikkei Kagaku Kogyo Kk Method for producing imidoyl chloride compound, and method for producing various compounds by using the same
JP2013181028A (en) 2012-03-05 2013-09-12 Kobe Univ Use of mixture obtained by irradiating halogenated hydrocarbon with light

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMPHOTOCHEM,2018年,Vol. 2, No. 8,pp. 720-724
The Journal of Organic Chemistry,1998年,Vol. 63, No. 18,pp. 6273-6280

Also Published As

Publication number Publication date
JPWO2020050368A1 (en) 2021-08-30
WO2020050368A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP7344518B2 (en) Method for producing Vilsmeier reagent
CN107141248B (en) A kind of method of visible light catalytic synthesis three ketene compound of 3- sulfuryl loop coil
JP6057449B2 (en) Method for producing halogenated formate
WO2009040367A1 (en) Process for the preparation of fluorine containing organic compound
JP6585024B2 (en) Method for producing fluorine-containing compound
Thomoson et al. Carbomethoxydifluoromethylation of enol acetates with methyl (chlorosulfonyl) difluoroacetate using visible-light photoredox catalysis. Synthesis of 2, 2-difluoro-γ-ketoesters
CN107337663B (en) A kind of preparation method of thio three ketene compound of loop coil of visible light-inducing 3-
Kim et al. A new convenient method for the generation of alkoxy radicals from N-alkoxydithiocarbamates
Miranda et al. Potassium fluoride: A convenient, non-covalent support for the immobilization of organocatalysts through strong hydrogen bonds
JP4269902B2 (en) Method for producing aromatic unsaturated compound
CN109608413B (en) 2-perfluoroalkyl benzothiazole compound and preparation method thereof
RU2282633C9 (en) Method for preparing 1,11-dialkyl-3,5-dihydrofuro-[2',3':3,4]-cyclohepta[c]isochromens
Wu et al. CuLi2Cl4 catalysed cross-coupling strategy for the formal synthesis of the diterpenoid (+)-subersic acid from (–)-sclareol
JP2009073739A (en) Method for producing highly pure optically active 1-aryl-1,3-propanediol acceptable as medicine intermediate
JP2014208604A (en) Method for manufacturing an aromatic acyl compound
KR20060136357A (en) Method for producing aromatic unsaturated compound
Soleimani et al. Direct synthesis of xanthenes from benzyl alcohols using choline peroxydisulfate ionic liquid as a reagent under otherwise solvent-free conditions
JP3814839B2 (en) Method for producing aromatic dialdehyde
JP2012144508A (en) Method of producing triphenylenes
WO2017154948A1 (en) Method for producing fluorinated compound
JP3259893B2 (en) Method for producing 3,3-dichloro-1,1,1-trifluoropropan-2-one
Tariq Chiral Hypervalent Iodine Mediated Enantioselective Phenol and Naphthol Dearomatisation: A Rapid Access to Oxazoline Based Spirocycles
JP2004026778A (en) Method for production of 1-adamantanols
KR20230128318A (en) Method for producing halogenated carbonyl
JP3257371B2 (en) Method for producing 5-phthalimido-4-oxopentenoic acid or its pyridine salt

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230825

R150 Certificate of patent or registration of utility model

Ref document number: 7344518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150