JP7340783B1 - Manufacturing method and electrode material for ozone generation electrode material - Google Patents

Manufacturing method and electrode material for ozone generation electrode material Download PDF

Info

Publication number
JP7340783B1
JP7340783B1 JP2022117327A JP2022117327A JP7340783B1 JP 7340783 B1 JP7340783 B1 JP 7340783B1 JP 2022117327 A JP2022117327 A JP 2022117327A JP 2022117327 A JP2022117327 A JP 2022117327A JP 7340783 B1 JP7340783 B1 JP 7340783B1
Authority
JP
Japan
Prior art keywords
particles
electrode material
bdd
diamond
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022117327A
Other languages
Japanese (ja)
Other versions
JP2024014476A (en
Inventor
仁 諏訪部
聡 藤野
洋基 藤川
博 山中
ひろみ 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomei Diamond Co Ltd
Kanazawa Institute of Technology (KIT)
Original Assignee
Tomei Diamond Co Ltd
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomei Diamond Co Ltd, Kanazawa Institute of Technology (KIT) filed Critical Tomei Diamond Co Ltd
Priority to JP2022117327A priority Critical patent/JP7340783B1/en
Application granted granted Critical
Publication of JP7340783B1 publication Critical patent/JP7340783B1/en
Publication of JP2024014476A publication Critical patent/JP2024014476A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】過酷な環境で使用可能な化学的・物理的耐久性を有し、安定した性能を長期間発揮可能な電極素材の製法、特に様々な形状・寸法の電極素材の製作に適用可能な方法、及び製造された電極素材を提供すること。【解決手段】BDD粒子固着電極素材の製造方法であって、ホウ素含有ダイヤモンド(BDD)粒子が金属基体上に固着され、かつ全体的に導電性が確立される電極素材の製造方法において、金属基体の表面にレーザー光を走査照射して表面の基体材を局部的かつ瞬間的に加熱して表層を溶融すると共に、該部分の流動状態時にBDD粒子を供給配置し、該部分の冷却後ダイヤモンド粒子が凝固金属によって保持された複合体として回収する。特にこれらの一連の操作をアルゴン雰囲気中で実施するのが有効である。【選択図】図1[Problem] A method for manufacturing an electrode material that has chemical and physical durability that can be used in harsh environments and that can demonstrate stable performance over a long period of time, especially applicable to the production of electrode materials of various shapes and dimensions. A method and a manufactured electrode material are provided. [Solution] A method for manufacturing an electrode material with BDD particles fixed thereto, in which boron-containing diamond (BDD) particles are fixed on a metal substrate and conductivity is established as a whole. A laser beam is scanned and irradiated onto the surface of the surface to locally and instantaneously heat the base material on the surface to melt the surface layer, and BDD particles are supplied and arranged while the part is in a fluid state, and after cooling the part, the diamond particles are is recovered as a composite held by solidified metal. It is particularly effective to carry out this series of operations in an argon atmosphere. [Selection diagram] Figure 1

Description

本発明はオゾン発生用電極素材、特にオゾン水発生や様々な規模における汚染水の浄化を目的とし、水処理設備用に適する導電性のダイヤモンド粒子を用いた、固有の製法に由来する固有の構造を有する電極素材、並びに製造方法に関する。 The present invention is an electrode material for ozone generation, especially for the purpose of ozone water generation and purification of contaminated water on various scales, and has a unique structure derived from a unique manufacturing method using conductive diamond particles suitable for water treatment equipment. The present invention relates to an electrode material having the following, and a manufacturing method.

産業分野の汚水処理において、オゾンを水電解によって発生させ、その化学的特性を利用する処理工程が広く行われている。このような環境で使用される電極は過酷環境に耐える耐性、及びかかる環境下で継続して十分な機能を発揮しなければならない、という厳しい条件が求められる。化学的耐性の高い電極材を構成する一策として、シリコンまたはニオブ、タンタルなどの金属を基体材とし、その表面に導電性付与のためにホウ素(B)を含有させたダイヤモンド膜を気相合成法(CVD)によって形成する方式が広く用いられている。 BACKGROUND ART In industrial wastewater treatment, a treatment process that generates ozone through water electrolysis and utilizes its chemical properties is widely used. Electrodes used in such environments are required to meet severe conditions, such as being able to withstand harsh environments and continuously exhibiting sufficient functionality under such environments. One way to construct electrode materials with high chemical resistance is to use silicon, niobium, tantalum, or other metals as a base material, and vapor-phase synthesize a diamond film containing boron (B) on the surface to impart conductivity. The method of forming by CVD (CVD) is widely used.

電解用の電極を構成するための別の方法として、金属電極基板上に導電性のダイヤモンド粒子を分布・固定する方法も確立されている。例えば特許文献1には導電性ダイヤモンド粒子を導電性ろう材を用いて導電性基板上に接合し、ダイヤモンド粒子間の隙間を絶縁材料で埋める構成が記載されている。 Another established method for constructing electrodes for electrolysis is to distribute and fix conductive diamond particles on a metal electrode substrate. For example, Patent Document 1 describes a configuration in which conductive diamond particles are bonded onto a conductive substrate using a conductive brazing material, and gaps between the diamond particles are filled with an insulating material.

或いは特許文献2では超高圧技術を用いて、Tiなどの遷移金属板上に、遷移金属炭化物を介してBDD粒子を固着接合する技術が示されており、また特許文献3ではTiまたはSUS製網上にBDD粉末を担持した水電解用の電極材料が開示されている。 Alternatively, Patent Document 2 discloses a technique for firmly bonding BDD particles onto a transition metal plate such as Ti via a transition metal carbide using ultra-high pressure technology, and Patent Document 3 discloses a technique in which BDD particles are firmly bonded to a transition metal plate such as Ti via a transition metal carbide. An electrode material for water electrolysis having BDD powder supported thereon is disclosed.

一方、ダイヤモンド粒子を砥粒として用いる工具の製作において、切削等用途の工具製作分野では、台金の表面に高エネルギー線 (例えばレーザー光) を照射して、台金の溶融箇所に研削材としてのダイヤモンド砥粒を供給、固着することは公知である(例えば特許文献4)。
また非特許文献1にはこのような用途のレーザー光照射に特にファイバーレーザー光を用い、金属材料上に研削砥粒としてのダイヤモンド粒子を固着する手法が開示されている。工具の台金にレーザー光を照射、局所加熱によって部分溶融した金属の微小箇所に、ダイヤモンド粒子をアルゴンガスに載せて供給、埋め込んで固着するものである。
On the other hand, in the production of tools that use diamond particles as abrasive grains, in the field of manufacturing tools for cutting and other purposes, the surface of the base metal is irradiated with high-energy rays (e.g. laser light), and diamond particles are used as abrasive particles at the melted parts of the base metal. It is known to supply and fix diamond abrasive grains (for example, Patent Document 4).
Further, Non-Patent Document 1 discloses a method of fixing diamond particles as grinding abrasive grains on a metal material by using fiber laser light in particular for laser light irradiation for such applications. Laser light is irradiated onto the base metal of the tool, and diamond particles are placed on argon gas and supplied to tiny spots in the partially melted metal, which is then embedded and fixed.

この技術では各微小箇所での処理が極めて短時間で完結するので、レーザー光照射を台金上で走査することにより、大きな工具面積を有するダイヤモンド工具製作におけるダイヤモンド粒子固着への適用可能性が期待できる。この手法で用いるレーザー照射による加熱は3000℃を超える高熱を発するにも拘わらず、照射所要時間はごく短時間で処理できることから、ダイヤモンド砥粒のグラファイト化・劣化を伴わない効果的な手法と考えられる。 With this technology, processing at each minute location can be completed in an extremely short time, so by scanning laser light irradiation on the base metal, it is expected to be applicable to diamond particle fixation in the production of diamond tools with large tool areas. can. Although the heating by laser irradiation used in this method generates high heat exceeding 3000℃, the irradiation time required is very short, so it is considered to be an effective method that does not involve graphitization or deterioration of diamond abrasive grains. It will be done.

特開2005-325417号公報Japanese Patent Application Publication No. 2005-325417 特開2022-069974 公報JP2022-069974 Publication 特許第7010529号公報(再表WO2020/171238号公報)Patent No. 7010529 (restated WO2020/171238) 特開2020-040138号(特許第7012276号)公報JP 2020-040138 (Patent No. 7012276) Publication

砥粒加工学会誌 vol.66 No.5 pp.263-268 (2022)Journal of the Abrasive Processing Society vol.66 No.5 pp.263-268 (2022)

基板上にホウ素(B)含有ダイヤモンド粒子を固着した電極構成では、素材の製造に際して一般に、電極面に配置されるダイヤモンド粒子の充填密度を可能な限り高くし、同時にダイヤモンド粒子の脱落防止のために粒子と基体表面との間には化学結合に基づく強固な結合が要求されてきた。 In an electrode configuration in which boron (B)-containing diamond particles are fixed on a substrate, in general, when manufacturing the material, the packing density of the diamond particles arranged on the electrode surface is made as high as possible, and at the same time, in order to prevent the diamond particles from falling off. Strong bonds based on chemical bonds have been required between the particles and the substrate surface.

この理由は、電極としての性能を最大限発揮すると共に、電極面に露出している基体金属に由来する金属酸化物膜による電極性能低下の防止、ならびにダイヤモンド粒子の配置が実質的に単層であるため、基体金属の表面とダイヤモンドの結晶面との間に強力な接合力が要求されることに由来する。 The reason for this is to maximize the performance of the electrode, prevent deterioration in electrode performance due to the metal oxide film derived from the base metal exposed on the electrode surface, and ensure that the arrangement of diamond particles is essentially a single layer. This is because a strong bonding force is required between the surface of the base metal and the diamond crystal plane.

しかし本発明者らは、基体金属酸化物は電解時の還元領域に曝すことで実質的に除去可能であること、基体からダイヤモンド粒子へは通電経路の確保が要件で、強固な化学結合は必須要件ではないことを知見した。 However, the present inventors found that the base metal oxide can be substantially removed by exposing it to a reducing region during electrolysis, that a current-carrying path must be secured from the base to the diamond particles, and that a strong chemical bond is essential. I found out that this is not a requirement.

電極としての性能を十分に発揮させる見地から、電極の全面にホウ素含有ダイヤモンドが配置されていることが望まれる。例えばチタン基板等の基体上にCVD法で形成したホウ素含有ダイヤモンド膜は、密集したダイヤモンド結晶による多結晶質集合体で構成されていることから、基板表面がオゾンを含む強力な酸化雰囲気に曝される確率は低く、長時間の運転に耐えると理解される。 From the viewpoint of fully exhibiting the performance as an electrode, it is desirable that boron-containing diamond be disposed over the entire surface of the electrode. For example, a boron-containing diamond film formed by the CVD method on a substrate such as a titanium substrate is composed of a polycrystalline aggregate of densely packed diamond crystals, so the substrate surface is exposed to a strong oxidizing atmosphere containing ozone. It is understood that the probability of this occurring is low and that it can withstand long-term operation.

一方ホウ素含有ダイヤモンド粒子を基体上に配置する電極構成では、ダイヤモンド粒子間々隙をダイヤモンド粒子で埋め尽くすことは実質的に不可能であり、陽極において基体表面が酸化雰囲気に曝されることは避けられない。 On the other hand, with an electrode configuration in which boron-containing diamond particles are arranged on a substrate, it is virtually impossible to fill the gaps between diamond particles with diamond particles, and it is impossible to avoid exposing the substrate surface to an oxidizing atmosphere at the anode. do not have.

ところがダイヤモンド粒子表面が金属酸化物で覆われた電極を陰極として用いた電解工程では、金属酸化物による障害(電気抵抗の増大現象)が除かれることが判明し、さらにこのような同じ構成の電極をプロトン伝導性膜(例えばナフィオン(登録商標)膜)を介して対向配置し、一定時間、例えば1~5分間ごとに極性を反転させた場合には、長時間の電解操作に耐えることを知見した。 However, in an electrolytic process that uses an electrode whose surface is covered with a metal oxide as a cathode, it has been found that the interference caused by the metal oxide (the phenomenon of increased electrical resistance) is eliminated, and furthermore, an electrode with the same structure It has been found that if the membranes are placed facing each other through a proton-conducting membrane (for example, Nafion (registered trademark) membrane) and the polarity is reversed every certain period of time, for example, every 1 to 5 minutes, it can withstand long-term electrolysis operations. did.

本発明の課題は過酷な環境で使用可能な化学的・物理的耐久性を有し、安定した性能を長期間発揮可能な電極素材の製法、特に様々な形状・寸法の電極素材の製作に適用可能な方法、及び製造された電極素材を提供することである。
本発明者等は上記各知見を様々な事例について研究を進め、その結果として本発明を完成するに至った。
The subject of the present invention is a method for producing electrode materials that have chemical and physical durability that can be used in harsh environments and that can demonstrate stable performance over a long period of time, and is particularly applicable to the production of electrode materials of various shapes and dimensions. An object of the present invention is to provide a possible method and a manufactured electrode material.
The present inventors have conducted research on various cases based on the above-mentioned findings, and have completed the present invention as a result.

本発明の要旨とするところは、ホウ素含有ダイヤモンド(BDD)粒子が金属基体上に固着され、かつ全体的に導電性が確立される電極素材の製造方法において、金属基体の表面にレーザー光を走査照射して表面の基体材を局部的かつ瞬間的に加熱して表層を溶融すると共に、該部分の流動状態時にBDD粒子を供給配置し、該部分の冷却後ダイヤモンド粒子が凝固金属によって保持された複合体として回収するが、特にこれらの一連の操作を、アルゴン雰囲気中で実施することを特徴とする、BDD粒子固着電極素材の製造方法にある。 The gist of the present invention is to provide a method for manufacturing an electrode material in which boron-containing diamond (BDD) particles are fixed on a metal substrate and conductivity is established as a whole, in which a laser beam is scanned on the surface of the metal substrate. Irradiation was applied to locally and instantaneously heat the base material on the surface to melt the surface layer, and while the part was in a fluid state, BDD particles were supplied and arranged, and after the part was cooled, the diamond particles were held by the solidified metal. The present invention provides a method for producing a BDD particle-fixed electrode material, which is recovered as a composite, and is characterized in that a series of these operations is performed in an argon atmosphere.

本発明の要旨はまた、上記方法で作製されたダイヤモンド電極素材、特に金属基体の表面の一部分が加工後の部分溶融履歴を示し、かつ該溶融履歴部分にホウ素含有ダイヤモンド(BDD)粒子が一体化固着され、ダイヤモンド粒子の側面(基板の厚さに垂直な方向の面)が基体材金属の一部で保持されている、請求項1に記載の方法で製造された電極素材に存する。 The gist of the present invention is also that a part of the surface of the diamond electrode material produced by the above method, particularly the metal base, shows a partial melting history after processing, and boron-containing diamond (BDD) particles are integrated in the melting history part. The electrode material is produced by the method according to claim 1, wherein the diamond particles are fixed and the side surfaces (the surfaces in the direction perpendicular to the thickness of the substrate) of the diamond particles are held by a part of the base metal.

本発明においては導電電極素材の製作に際して、レーザー照射に基づく瞬間加熱により、実質的にダイヤモンドのグラファイト化を来すことなく、広範な材料上に導電性ダイヤモンド粒子を固着できるので、性能の安定した多様な電極素材を短時間で製作することが可能である。 In the present invention, when producing a conductive electrode material, conductive diamond particles can be fixed on a wide range of materials by instantaneous heating based on laser irradiation, without substantially turning the diamond into graphite, resulting in stable performance. It is possible to manufacture various electrode materials in a short time.

本発明の電極素材において、金属基体材は融点2000℃以下の金属を主成分とする広範な金属材から選択利用できる。このような金属としては特に周期律表四、五、六族遷移金属並びに鉄族金属、好ましくはTi、Zr、Si、Fe、Ni、Co、Crから選ばれる1種、を含有することができる。 In the electrode material of the present invention, the metal base material can be selected from a wide range of metal materials whose main component is a metal with a melting point of 2000° C. or less. Such metals may particularly include transition metals of groups 4, 5, and 6 of the periodic table as well as metals of the iron group, preferably one selected from Ti, Zr, Si, Fe, Ni, Co, and Cr. .

本発明では金属基体の加熱溶融手段として特に、局部加熱が可能なファイバーレーザーを用いることができるので、溶融部分の熱は速やかに周囲へ拡散されることから、ダイヤモンド粒子固着のための反応時間は最長でも数秒と極度に短いのが特徴である。 このためダイヤモンドのグラファイト化が始まる誘導時間内に工程が完結する。 In the present invention, a fiber laser capable of local heating can be particularly used as a means for heating and melting the metal substrate, so the heat of the melted part is quickly diffused to the surroundings, so the reaction time for fixing the diamond particles is shortened. It is characterized by being extremely short, only a few seconds at most. Therefore, the process is completed within the induction time when diamond begins to graphitize.

一方、上記金属種であっても融点が2000℃を超える金属 (例えばニオブ)は、ファイバーレーザーを用いた微小部分の加熱法において溶融に比較的長時間を要することになり、ダイヤモンド粒子が高温に曝される時間も延びてグラファイト化が避けられなくなることから、本発明には適さない。 On the other hand, metals with melting points exceeding 2000℃ (such as niobium), even among the metals listed above, require a relatively long time to melt when heating microscopic parts using a fiber laser, and the diamond particles are exposed to high temperatures. It is not suitable for the present invention because the exposure time is extended and graphitization becomes unavoidable.

本発明者等の経験によれば、ダイヤモンドのグラファイト化は、酸素の存在によって著しく促進されるので、ダイヤモンド粒子の高温加熱は無酸素雰囲気中で実施する必要がある。酸素遮断法としては、保護ガスの吹き付けではなく、障壁で囲まれた作業域を確立して不活性ガス、特に外気よりも比重の大きなアルゴンガスを満たし、不活性ガス雰囲気の作業空間でレーザー加熱によるダイヤモンド固着を行うのが好ましい。 According to the experience of the present inventors, graphitization of diamond is significantly promoted by the presence of oxygen, and therefore, it is necessary to heat the diamond particles at high temperature in an oxygen-free atmosphere. Oxygen barrier methods include establishing a work area surrounded by a barrier and filling it with inert gas, especially argon gas, which has a higher specific gravity than outside air, rather than spraying with a protective gas, and laser heating in the work space with an inert gas atmosphere. It is preferable to perform diamond fixing by.

作業空間を外気から遮断し不活性(中性)ガス雰囲気とする方法として、一般に雰囲気ガスを加工箇所に向けて噴射する方式が用いられている。しかし噴射方式では周囲空気の巻き込みリスクを完全に避けることは不可能である。レーザー加工のための無酸素作業空間(領域)の確立には電極基体材表面から一定高さの堰堤による包囲および比重の大きな不活性ガスの充填が有効である。堰堤の高さは電極素材基体の大きさにもよるが、基体から10mm以上の高さが必要で全周囲360°を包囲する。充填するガスとしてはアルゴンであれば空気に対する比重が1.4であり、好適である。 As a method of isolating a work space from outside air and creating an inert (neutral) gas atmosphere, a method is generally used in which atmospheric gas is injected toward the processing location. However, with the injection method, it is impossible to completely avoid the risk of entrainment of surrounding air. To establish an oxygen-free working space (area) for laser processing, it is effective to surround it with a dam at a certain height from the surface of the electrode substrate material and to fill it with an inert gas with a high specific gravity. The height of the dam depends on the size of the electrode material base, but it needs to be at least 10 mm above the base and surround the entire 360° circumference. As the filling gas, argon is preferable since its specific gravity relative to air is 1.4.

また本発明の電極素材で使用するBDD粒子の粒度はD50平均粒度が10~300μmの広い範囲の、市販の整粒された粒子が利用可能である。10μm以下の微粒子ではアルゴンガスで運ばれる粒子の溶融箇所周辺への飛散量の増加によるロスが目立ち、300μmを超える粗大粒子になると、ダイヤモンド粒子とプロトン電導性膜と水との三成分が会合する電極作用点の数の減少による電解性能の低下が顕著になるので好ましくない。より好ましい粒度は20~100μmの範囲内である。 Furthermore, as for the particle size of the BDD particles used in the electrode material of the present invention, commercially available sized particles with a D50 average particle size in a wide range of 10 to 300 μm can be used. For fine particles of 10 μm or less, there is noticeable loss due to an increase in the amount of particles carried by argon gas scattering around the melting point, and for coarse particles exceeding 300 μm, the three components of diamond particles, proton conductive membrane, and water come together. This is not preferable because the electrolytic performance deteriorates significantly due to a decrease in the number of electrode working points. A more preferred particle size is within the range of 20-100 μm.

前記本発明において走査照射は50~350Wの熱入力によって行う。使用するレーザー加熱装置としては所望微小部分へのピンポイント照射機能を備えていれば、ファイバーレーザーに限らず、その他各種の装置が利用可能である。 In the present invention, scanning irradiation is performed with a heat input of 50 to 350W. The laser heating device to be used is not limited to a fiber laser, and various other devices can be used as long as it has a function of pinpoint irradiation to a desired minute portion.

既述のように、導電性ダイヤモンド粒子を固着した電極素材においては、使用中に粒子表面に基体金属の酸化物が付着することがあるが、このような状態においても両極に同じ構成の導電性電極を用い、電極対の極性を自動的に切り替えることにより、酸化物被膜による影響を低減乃至排除することが可能である。 As mentioned above, in electrode materials with conductive diamond particles fixed to them, oxides of the base metal may adhere to the surface of the particles during use, but even in such conditions, conductive diamond particles of the same composition are attached to both electrodes. By using electrodes and automatically switching the polarity of the electrode pair, it is possible to reduce or eliminate the influence of the oxide film.

本発明方法によるホウ素含有ダイヤモンド粒子の固定は、レーザー加熱によって溶融した基板金属のプール中へ落下した粒子が、冷却固化し、収縮した金属成分によって周囲から締め付けられた状態で保持されている。固定状態は粒子表面積の1/2以上が金属成分に接していれば電極用途としては十分であり、通電経路の確保も達成される。 In fixing boron-containing diamond particles by the method of the present invention, the particles fall into a pool of substrate metal melted by laser heating, are cooled and solidified, and are held in a state where they are tightened from the surroundings by the contracted metal component. In a fixed state, if at least 1/2 of the particle surface area is in contact with the metal component, it is sufficient for electrode use, and a current-carrying path can be secured.

本発明に従って作製された電極素材表面の状態を示す写真(実施例1)。A photograph (Example 1) showing the state of the surface of an electrode material produced according to the present invention. 本発明に従って作製された電極素材について行ったラマン分析の結果(実施例1)。The results of Raman analysis conducted on the electrode material produced according to the present invention (Example 1).

直径80mm、厚さ1mmのチタン板上にファイバーレーザー溶着によって#270/325のボロンドープダイヤモンド(BDD)砥粒(FACT社製:平均粒径約50μm)の固着を行った。加工には(株)村谷機械製作所製ALP-DI-4Axis-450レーザー加工機を用いた。この装置は3本のレーザー光を1点に集光する構造になっており、走査におけるレーザー光の送りは試料台の移動速度で制御した。 #270/325 boron-doped diamond (BDD) abrasive grains (manufactured by FACT Inc., average grain size approximately 50 μm) were fixed on a titanium plate with a diameter of 80 mm and a thickness of 1 mm by fiber laser welding. For processing, an ALP-DI-4Axis-450 laser processing machine manufactured by Muratani Machinery Co., Ltd. was used. This device has a structure that focuses three laser beams onto one point, and the sending of the laser beams during scanning was controlled by the moving speed of the sample stage.

ダイヤモンド粒子はチタン板上に、試料台上方のホッパーからアルゴンガスと共にレーザー光の集光部へ供給され、この操作例においては毎分約20mgの一定速度で連続して供給した。照射はレーザー光出力50W、レーザーヘッド送り速度2.5mm/s、 照射ピッチ0.25mmの条件で40列走査し、10mm×13mmの領域にダイヤモンド粒子を固着した。 Diamond particles were supplied onto a titanium plate from a hopper above the sample stage together with argon gas to a laser beam focusing section, and in this operation example, they were continuously supplied at a constant rate of about 20 mg per minute. The irradiation was performed under the conditions of a laser light output of 50 W, a laser head feed rate of 2.5 mm/s, and an irradiation pitch of 0.25 mm, scanning 40 rows and fixing diamond particles in an area of 10 mm x 13 mm.

照射領域は内径100mm、高さ15mmの堰堤で包囲して、予めアルゴンガスを満たしておくと共に別の回路を用いてアルゴンガスを送入、空気の侵入を防止した。こうして形成されたアルゴンプール中で作業を行い、チタン板上に約0.2mmの幅で固定されたダイヤモンド粒子層を得た。固着操作に要した時間は約4分間であった。 The irradiation area was surrounded by a dam with an inner diameter of 100 mm and a height of 15 mm, which was filled with argon gas in advance and a separate circuit was used to supply argon gas to prevent air from entering. The work was carried out in the argon pool thus formed to obtain a diamond particle layer fixed on the titanium plate with a width of approximately 0.2 mm. The time required for the fixing operation was about 4 minutes.

得られたBDD固着チタン板からワイヤーカットにより8mm×8mmの電極素材のサンプルを切り出した。このサンプルについてラマン分析を行い、ダイヤモンドに帰属する1333cm-1の鋭いピークを得た(図2)。一方グラファイト帰属の1580cm-1付近のピークは弱く、レーザー加熱によるダイヤモンドのグラファイト化は無視できるレベルであることが認められた。 An 8 mm x 8 mm electrode material sample was cut out from the obtained BDD-fixed titanium plate by wire cutting. Raman analysis was performed on this sample, and a sharp peak at 1333 cm -1 attributed to diamond was obtained (Figure 2). On the other hand, the peak at around 1580 cm -1 attributed to graphite was weak, indicating that graphitization of diamond due to laser heating was at a negligible level.

この電極素材を陽極側とし、陰極側にはCVD法でニオブ板上にボロンドープダイヤモンドを析出させた電極素材(CVD電極)を用い、ナフィオン(登録商標)膜(厚さ0.18mm)を介して電極面を対向固定した電極セットを製作した。得られた電極セットを600mLの脱イオン水を入れた1Lビーカー内に取り付け、電源装置を1ppmのオゾン発生を目指した0.2Aの定電流に設定し、脱イオン水を補給しながら連続運転を行って電圧の変化を観察した。運転開始時に8.16Vであった付加電圧は、140時間経過後10.6V、258時間後には17.3Vに上昇した。 This electrode material was used as the anode side, and an electrode material (CVD electrode) in which boron-doped diamond was deposited on a niobium plate by the CVD method was used for the cathode side. An electrode set with fixed electrode surfaces facing each other was manufactured. The obtained electrode set was installed in a 1L beaker containing 600mL of deionized water, the power supply was set to a constant current of 0.2A aiming to generate 1ppm ozone, and continuous operation was performed while replenishing deionized water. The changes in voltage were observed. The additional voltage, which was 8.16V at the start of operation, increased to 10.6V after 140 hours and 17.3V after 258 hours.

通電開始直後の発生オゾン濃度は1.10ppmであり、通電終了直前では0.98ppmであって、運転中を通じて1ppmを維持した。なお発生するオゾン濃度は20分間の通電で水中に溶け込んだオゾン量をパックテストで求める方法で測定し、約24時間毎に実施した。 The ozone concentration generated immediately after the start of energization was 1.10 ppm, 0.98 ppm just before the end of energization, and remained at 1 ppm throughout the operation. The ozone concentration generated was measured by using a pack test to determine the amount of ozone dissolved in water after 20 minutes of electricity, which was conducted approximately every 24 hours.

取り出したBDD電極面にはダイヤモンド粒子間に白色粉末が付着しており、X線回折によってTiO組成の酸化チタンが同定された。この白色粉末は砥粒の脱落を伴わないで歯ブラシで除去することが可能であり、除去後の付加電圧は9.33Vに低下し、発生オゾン濃度は1.15ppmに向上した。 White powder was found adhering between the diamond particles on the surface of the BDD electrode taken out, and titanium oxide with a TiO composition was identified by X-ray diffraction. This white powder could be removed with a toothbrush without causing the abrasive grains to fall off, and the applied voltage after removal was reduced to 9.33V, and the generated ozone concentration increased to 1.15ppm.

酸化チタンの生成を抑制する試みとして実施例1の電極セットにおいて逆電圧を付加し、同様の操作を繰り返した。
BDD電極を陽極として通電開始し、0.2Aの電流を流すのに20.3Vの電圧付加が必要になった時点で極性の反転を行い、BDD電極を陰極側に、CVDダイヤモンド被覆電極を陽極として0.2Aの電流を通したところ、通電開始後1分で付加電圧は11.0Vに低下し、5分後には10.2Vで定常状態になった。
In an attempt to suppress the production of titanium oxide, a reverse voltage was applied to the electrode set of Example 1, and the same operation was repeated.
The current is started using the BDD electrode as the anode, and when a voltage of 20.3V is required to flow a current of 0.2A, the polarity is reversed, with the BDD electrode as the cathode and the CVD diamond-coated electrode as the anode. When a current of A was applied, the applied voltage decreased to 11.0V 1 minute after starting the current flow, and reached a steady state of 10.2V after 5 minutes.

さらにBDD電極を陽極に、CVD電極を陰極に戻して付加電圧が15Vに上昇するまで通電を続け、再び極性を反転したところ約10Vで定常状態になり再現性が確認され、長時間の連続運転の可能性が確保された。 Furthermore, we returned the BDD electrode to the anode and the CVD electrode to the cathode, continued energization until the additional voltage rose to 15V, and then reversed the polarity again, which resulted in a steady state at approximately 10V, confirming reproducibility and long-term continuous operation. The possibility of

電極基板材料として、直径70mm, 厚さ1mmの SUS304、SUS430の2種類の鋼板を使用し、上記実施例の操作を反復した。レーザー光出力を250Wとした他は実施例1と同じ条件とした。
出力を上げたのにも拘わらず、レーザー加熱によるダイヤモンドのグラファイト化は無視できるレベルであった。
Two types of steel plates, SUS304 and SUS430, each having a diameter of 70 mm and a thickness of 1 mm were used as electrode substrate materials, and the operations in the above example were repeated. The conditions were the same as in Example 1 except that the laser light output was 250W.
Despite the increased output, the graphitization of diamond due to laser heating was negligible.

得られたBDD溶着SUS基板から10mm×10mmの部分をワイヤーカットで切り出し、電極素材とした。SUS基板電極を陽極側、CVD電極を陰極側とした電極セットを構成して通電し、電解操作を行った。10V、0.2Aの通電により、SUS304基板の場合0.93ppm、SUS430基板の場合1.12ppmの発生オゾン濃度が得られ、両鋼種共にオゾン発生電極として機能することが確かめられた。同時に10分間の通電で酸化膜の出現による5Vの電圧上昇が認められた。 A 10 mm x 10 mm section was cut out from the obtained BDD welded SUS substrate using a wire cut and used as an electrode material. An electrode set was constructed with the SUS substrate electrode on the anode side and the CVD electrode on the cathode side, and electricity was applied to perform electrolysis. By applying a current of 10 V and 0.2 A, ozone concentrations of 0.93 ppm for the SUS304 substrate and 1.12 ppm for the SUS430 substrate were obtained, confirming that both steel types function as ozone generating electrodes. At the same time, a voltage increase of 5V due to the appearance of an oxide film was observed after 10 minutes of energization.

上記で用いた2種類のSUS基板電極を、ナフィオン膜を介して対向配置して電極セットを構成した。この電極セットを15Vの定電圧電源に接続し、1分毎に極性を反転させて連続運転を行った。一昼夜の連続運転の間電流値が0.2A~0.3Aの範囲内に収まったことで、長時間運転の見通しが得られた。 The two types of SUS substrate electrodes used above were arranged facing each other with a Nafion membrane interposed between them to form an electrode set. This electrode set was connected to a 15V constant voltage power source, and continuous operation was performed by reversing the polarity every minute. During continuous operation all day and night, the current value remained within the range of 0.2A to 0.3A, giving the prospect of long-term operation.

Claims (8)

ホウ素含有ダイヤモンド(BDD)粒子が金属基体上に固着され、かつ全体的に導電性が確立される電極素材の製造方法において、金属基体表面にレーザー光を走査照射して基体材の表面を局部的かつ瞬間的に加熱して表層を溶融すると共に、該部分の流動状態時にBDD粒子を供給配置し、該部分の冷却後ダイヤモンド粒子が凝固金属によって保持された複合体として回収する一連の操作を、周囲から隔離されたアルゴン雰囲気中で実施することを特徴とする、BDD粒子固着電極素材の製造方法。 In a manufacturing method for an electrode material in which boron-containing diamond (BDD) particles are fixed on a metal substrate and conductivity is established as a whole, the surface of the metal substrate is scanned and irradiated with laser light to locally improve the surface of the substrate material. Then, a series of operations are carried out in which the surface layer is melted by instantaneous heating, BDD particles are supplied and arranged while the part is in a fluid state, and after the part is cooled, the diamond particles are recovered as a composite held by solidified metal. A method for manufacturing a BDD particle-fixed electrode material, the method being carried out in an argon atmosphere isolated from the surroundings. 前記金属基体材が主成分として周期律表四、五、六族遷移金属並びに鉄族金属種から選ばれる1種を含有する、請求項1に記載の方法。 2. The method according to claim 1, wherein the metal substrate material contains as a main component one selected from transition metals of groups 4, 5, and 6 of the periodic table and iron group metals. 前記基体材が主成分として融点2000℃以下の金属種を含有する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the base material contains a metal species having a melting point of 2000°C or less as a main component. 前記基体材が主成分としてTi、Zr、Si並びに鉄族金属から選ばれる1種を含有する請求項1に記載の方法。 2. The method according to claim 1, wherein the base material contains one selected from Ti, Zr, Si, and iron group metals as a main component. 前記基体材が主成分としてFe、Ni、Co、Crから選ばれる1種を含有する請求項1に記載の方法。 2. The method according to claim 1, wherein the base material contains one selected from Fe, Ni, Co, and Cr as a main component. 前記ダイヤモンド粒子がD50平均粒度10~300μmの整粒された粒子である請求項1に記載の方法。 The method according to claim 1, wherein the diamond particles are sized particles having a D 50 average particle size of 10 to 300 μm. 前記レーザー光照射をファイバーレーザーによって行う請求項1に記載の方法。 The method according to claim 1, wherein the laser light irradiation is performed by a fiber laser. 前記レーザー光照射を出力50~350Wのファイバーレーザーによって行う請求項1に記載の方法。 The method according to claim 1, wherein the laser light irradiation is performed by a fiber laser with an output of 50 to 350W.
JP2022117327A 2022-07-22 2022-07-22 Manufacturing method and electrode material for ozone generation electrode material Active JP7340783B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022117327A JP7340783B1 (en) 2022-07-22 2022-07-22 Manufacturing method and electrode material for ozone generation electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022117327A JP7340783B1 (en) 2022-07-22 2022-07-22 Manufacturing method and electrode material for ozone generation electrode material

Publications (2)

Publication Number Publication Date
JP7340783B1 true JP7340783B1 (en) 2023-09-08
JP2024014476A JP2024014476A (en) 2024-02-01

Family

ID=87886967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022117327A Active JP7340783B1 (en) 2022-07-22 2022-07-22 Manufacturing method and electrode material for ozone generation electrode material

Country Status (1)

Country Link
JP (1) JP7340783B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532472A (en) 2002-07-08 2005-10-27 プロ アクア ディアマントエレクトローデン プロドゥクツィオーン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートエアヴェルプスゲゼルシャフト Diamond electrode and manufacturing method thereof
JP2005325417A (en) 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd Diamond electrode and production method therefor
US20100086702A1 (en) 2008-10-06 2010-04-08 Lincoln Global, Inc. Methods and materials for laser cladding
JP2014502312A (en) 2010-12-03 2014-01-30 エレクトロリティック、オゾン、インコーポレイテッド Electrolyzer for ozone generation
CN107312958A (en) 2017-06-07 2017-11-03 北京科技大学 A kind of diamond valve metal combination electrode material and preparation method thereof
JP2020040138A (en) 2018-09-07 2020-03-19 石川県 Tool with abrasive grain, manufacturing method of tool with abrasive grain and abrasive grain sticking method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532472A (en) 2002-07-08 2005-10-27 プロ アクア ディアマントエレクトローデン プロドゥクツィオーン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートエアヴェルプスゲゼルシャフト Diamond electrode and manufacturing method thereof
JP2005325417A (en) 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd Diamond electrode and production method therefor
US20100086702A1 (en) 2008-10-06 2010-04-08 Lincoln Global, Inc. Methods and materials for laser cladding
JP2014502312A (en) 2010-12-03 2014-01-30 エレクトロリティック、オゾン、インコーポレイテッド Electrolyzer for ozone generation
CN107312958A (en) 2017-06-07 2017-11-03 北京科技大学 A kind of diamond valve metal combination electrode material and preparation method thereof
JP2020040138A (en) 2018-09-07 2020-03-19 石川県 Tool with abrasive grain, manufacturing method of tool with abrasive grain and abrasive grain sticking method

Also Published As

Publication number Publication date
JP2024014476A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
CN105033373B (en) The ultrasonic electric combined cutting device and cutting method of SiC single crystal piece
JP7340783B1 (en) Manufacturing method and electrode material for ozone generation electrode material
CN105034180A (en) Micro-arc discharging micro-fine cutting device and method for SiC single crystal wafer
KR20160009816A (en) Silicon wafer slicing device using wire electric discharge machining
Dongre et al. Response surface analysis of slicing of silicon ingots with focus on photovoltaic application
KR100790657B1 (en) Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
Singh et al. Identification of wire electrical discharge machinability of SiC sintered using rapid hot pressing technique
RU2418074C1 (en) Procedure for strengthening items out of metal materials for production of nano structured surface layers
EP0799680A2 (en) Method and apparatus for cutting diamond
JPWO2009096543A1 (en) Discharge surface treatment method and discharge surface treatment coating block
Nagatsuka et al. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing
JP2005325417A (en) Diamond electrode and production method therefor
TWM545684U (en) Cutting apparatus
Singh et al. Design and development of electro-discharge drilling process
RU2427666C1 (en) Procedure for strengthening surface of items of titanium alloys
KR20060037259A (en) Device for electrical discharge coating and method for electrical discharge coating
Valer Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys
JPS6154908A (en) Method of processing ceramics
Krastev et al. Surface modification of steels by electrical discharge treatment in electrolyte
CN111267244A (en) Crystal bar slicing device
JP5368114B2 (en) Pt / Rh electrode for plasma generation, plasma generation apparatus, and plasma processing apparatus
JP4757470B2 (en) Electric discharge machining apparatus and method
Singh et al. An experimental investigation on electrochemical discharge peripheral surface grinding process
Ying et al. Experimental investigation of fabricating diamond abrasive layers by EDM
JP2008240067A (en) Discharge surface treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230815

R150 Certificate of patent or registration of utility model

Ref document number: 7340783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150