JP7340627B2 - Manufacturing method of 7Ni steel plate for LNG storage tank - Google Patents
Manufacturing method of 7Ni steel plate for LNG storage tank Download PDFInfo
- Publication number
- JP7340627B2 JP7340627B2 JP2021569882A JP2021569882A JP7340627B2 JP 7340627 B2 JP7340627 B2 JP 7340627B2 JP 2021569882 A JP2021569882 A JP 2021569882A JP 2021569882 A JP2021569882 A JP 2021569882A JP 7340627 B2 JP7340627 B2 JP 7340627B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel plate
- rolled
- air
- tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、鋼鉄製錬の技術分野に属し、特にLNG貯蔵タンク用7Ni鋼板及び製造方法に関する。 The present invention belongs to the technical field of steel smelting, and particularly relates to a 7Ni steel plate for LNG storage tanks and a manufacturing method.
経済の発展に伴い、環境や資源の問題が各国の発展の最優先事項になりつつあり、クリーンで汚染のない高熱量のエネルギー源として、LNGは徐々にエネルギー使用のより大きな割合を占め、天然ガスの利用範囲を拡大することは、私の国がエネルギー構造を最適化し、生態学的環境を保護するための重要な手段になっている。現在、国内外のLNG貯蔵・輸送工具に広く使用されている鋼板は9Ni鋼であり、中国はNiの乏しい国として、コストを節約するために、パフォーマンスを確保することに基づいてNi含有量を減らすことは重要な方法の1つである。ニッケル節約7Ni鋼に関する関連研究はまだ始まったばかりであり、現在、7Ni鋼板に関する特許がいくつかあり、特許文献1(中国特許出願番号201711306269.2)の「超低温環境向けのニッケル節約7Ni鋼及びその熱処理プロセス」は、超低温環境向けのニッケル節約7Ni鋼の熱処理プロセスを開示し、7Ni鋼の組成は、Ni:7.00%~7.60%、C:0.02%~0.06%、Si:0.03%~0.80%、Mn:0.10%~0.90%、Cr:0.30%~0.60%であり、残部はFe及び不可避的不純物であり、QLT熱処理された7Ni鋼は、良好な可塑性組合せと優れた低温強靭性を有し、その性能は9Ni鋼のレベルに達した。特許文献2(中国特許出願番号201310285597.4)の「超低温圧力容器用高ニッケル鋼及びその製造方法」に係る鋼のNi質量分率は7.00%~7.50%であり、2回の焼入れ+焼き戻しプロセスによって得られた7Ni鋼板は、9Ni鋼の代わりにLNG貯蔵タンクの製造に使用される。特許文献3(中国特許出願番号201310494688.9)の「-196℃で使用できる低Ni高Mnの経済的な低温鋼及びその製造方法」に係る鋼のMn質量分率は1.00%~1.50%であり、Ni質量分率は7.00%~8.00%であり、2回の焼入れ+焼き戻しプロセスによって得られたNi鋼は-196℃で優れた強靭性を有する。特許文献4(中国特許出願番号201410369201.9)の「低コスト超低温ニッケル鋼及びその製造方法」では、正規圧延+焼入れ+焼き戻しプロセスによって得られたNi鋼は-196°Cで優れた強靭性を有する。また、オフライン焼入れプロセスの代わりに、UFC+TMCPプロセスによって、圧延直後、鋼板をマルテンサイト遷移温度以下まで急冷して、熱処理プロセスを簡略化する方法は、7Ni鋼板の低温強靭性を向上させる。 With economic development, environmental and resource issues are becoming the top priority for the development of countries, and as a clean, non-polluting, high-calorific energy source, LNG will gradually occupy a larger proportion of energy use, and natural Expanding the scope of gas utilization has become an important means for my country to optimize its energy structure and protect the ecological environment. Currently, the steel plate widely used for LNG storage and transportation tools at home and abroad is 9Ni steel.As a Ni-poor country, China has reduced the Ni content based on ensuring performance in order to save costs. Reducing it is one of the important methods. Related research on nickel-saving 7Ni steel has just begun, and there are currently several patents on 7Ni steel sheets, including ``Nickel-saving 7Ni steel for ultra-low temperature environments and its heat treatment'' in Patent Document 1 (China Patent Application No. 201711306269.2). discloses a heat treatment process for nickel-saving 7Ni steel for ultra-low temperature environments, the composition of 7Ni steel is Ni: 7.00% to 7.60%, C: 0.02% to 0.06%, Si : 0.03% to 0.80%, Mn: 0.10% to 0.90%, Cr: 0.30% to 0.60%, the remainder being Fe and inevitable impurities, and was not subjected to QLT heat treatment. The 7Ni steel had a good plasticity combination and excellent low-temperature toughness, and its performance reached the level of 9Ni steel. The Ni mass fraction of the steel according to "High nickel steel for ultra-low temperature pressure vessels and its manufacturing method" of Patent Document 2 (China Patent Application No. 201310285597.4) is 7.00% to 7.50%, and the Ni mass fraction is 7.00% to 7.50%. The 7Ni steel plate obtained by the quenching + tempering process is used in the production of LNG storage tanks instead of 9Ni steel. The Mn mass fraction of the steel according to Patent Document 3 (China Patent Application No. 201310494688.9) "Low Ni, high Mn, economical low temperature steel that can be used at -196°C and its manufacturing method" is 1.00% to 1. .50%, the Ni mass fraction is 7.00% to 8.00%, and the Ni steel obtained by the two-time quenching + tempering process has excellent toughness at -196°C. Patent Document 4 (China Patent Application No. 201410369201.9) "Low-cost ultra-low temperature nickel steel and its manufacturing method" states that Ni steel obtained by normal rolling + quenching + tempering process has excellent toughness at -196°C. has. In addition, a method of simplifying the heat treatment process by rapidly cooling the steel plate to below the martensitic transition temperature immediately after rolling by the UFC+TMCP process instead of the offline quenching process improves the low-temperature toughness of the 7Ni steel plate.
本発明は、上記の技術的問題を考慮して、従来技術の欠点を克服するLNG貯蔵タンク用7Ni鋼板及び製造方法を提供し、LNG貯蔵及び輸送用鋼の性能を保証するという前提下で、Ni含有量を可能な限り低減し、経済的で実行可能な調製方法を提供する。 Considering the above technical problems, the present invention provides a 7Ni steel plate and manufacturing method for LNG storage tanks that overcomes the shortcomings of the prior art, and under the premise of ensuring the performance of LNG storage and transportation steel, To reduce the Ni content as much as possible and provide an economical and viable preparation method.
上記の技術的問題を解決するために、本発明によって提供されるLNG貯蔵タンク用7Ni鋼板は、その化学組成及び質量パーセントは、C:0.02%~0.06%、Si:0.20%~0.35%、Ni:4.0%~8.0%、Mn:0.3%~0.7%、P≦0.005%、S≦0.005%、Al:0.03%~0.05%、Nb:0.02%~0.05%、Cr:0.2%~0.4%であり、残部はFe及び不可避的不純物である。 In order to solve the above technical problem, the 7Ni steel plate for LNG storage tank provided by the present invention has a chemical composition and mass percentage of C: 0.02% to 0.06%, Si: 0.20 %~0.35%, Ni: 4.0%~8.0%, Mn: 0.3%~0.7%, P≦0.005%, S≦0.005%, Al: 0.03 % to 0.05%, Nb: 0.02% to 0.05%, Cr: 0.2% to 0.4%, and the remainder is Fe and inevitable impurities.
本発明はNb・CrマイクロアロイドNi節約型合金の設計によって、正規圧延+二相焼入れ+焼き戻し製造方法を革新し、圧延後の急冷プロセスを省略し、エネルギーを節約するだけでなく、その後の焼入れプロセスをスムーズに実行するための良好なプレート形状を提供し、最終的に優れた機械的特性を有するLNG貯蔵タンク鋼を取得する。 The present invention innovates the regular rolling + two-phase quenching + tempering manufacturing method by designing a Nb-Cr microalloy Ni-saving alloy, which eliminates the quenching process after rolling, which not only saves energy, but also Provide a good plate shape for the quenching process to run smoothly, and finally obtain LNG storage tank steel with excellent mechanical properties.
本発明のさらなる技術的解決策は、
さらに、厚さは8~30mmである。
Further technical solutions of the present invention are:
Furthermore, the thickness is between 8 and 30 mm.
本発明のもう1つの目的は、LNG貯蔵タンク用7Ni鋼板の製造方法を提供することであり、この製造方法は、
鋳造ビレットの調製:化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
正規圧延:鋳造ビレットを1150~1250℃で2~3時間保温し、鋳造ビレットを2段階圧延し、粗圧延の圧延開始温度は1000~1100℃であり、総圧縮比は40%~60%であり、仕上げ圧延の圧延開始温度は850~900℃であり、総圧縮比は40%~70%であり、圧延終了温度は750~850℃であり、そして空冷するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を600~700℃で300℃以下に焼入れ、500~580℃で焼き戻し、焼き戻し速度は5~20℃/sであり、0.5~2時間保温し、空冷するステップと、を含む。
Another object of the present invention is to provide a method for manufacturing a 7Ni steel plate for LNG storage tanks, which method includes:
Preparation of casting billet: preparing the smelting raw material according to the chemical composition, smelting it in a vacuum smelting furnace and casting it into an ingot, then forging the ingot into a square casting billet and air cooling in a leeward place;
Regular rolling: The cast billet is kept warm at 1150 to 1250 °C for 2 to 3 hours, and the cast billet is rolled in two stages.The rolling start temperature of rough rolling is 1000 to 1100 °C, and the total compression ratio is 40% to 60%. The rolling start temperature of finish rolling is 850 to 900°C, the total compression ratio is 40% to 70%, the rolling end temperature is 750 to 850°C, and an air cooling step;
Two-phase quenching + tempering: The rolled steel plate is quenched at 600-700℃ to below 300℃, tempered at 500-580℃, the tempering speed is 5-20℃/s, 0.5-2 hours. The method includes steps of keeping warm and cooling with air.
上記のLNG貯蔵タンク用7Ni鋼板の製造方法では、鋼板の化学組成及び質量パーセントは、C:0.05%、Si:0.25%、Mn:0.60%、Ni:7.2%、P:0.0045%、S:0.0030%、Al:0.038%、Cr:0.28%、Nb:0.043%であり、残部はFe及び不可避的不純物であり、
鋳造ビレットの調製:化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
正規圧延:鋳造ビレットを加熱炉に入れ、1156℃まで加熱して2.6時間保温し、取り出して圧延を行い、鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は63%であり、圧延終了温度は790℃であり、そして空冷して厚さ12mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻し速度は10℃/sであり、1時間保温してから空冷するステップと、を含む。
In the above method for manufacturing a 7Ni steel plate for an LNG storage tank, the chemical composition and mass percentage of the steel plate are C: 0.05%, Si: 0.25%, Mn: 0.60%, Ni: 7.2%, P: 0.0045%, S: 0.0030%, Al: 0.038%, Cr: 0.28%, Nb: 0.043%, the remainder being Fe and inevitable impurities,
Preparation of casting billet: The step of preparing the smelting raw material according to the chemical composition, smelting it in a vacuum smelting furnace, and casting it into an ingot, then forging the ingot into a square casting billet with a thickness of 80 mm and air cooling in a leeward place. and,
Regular rolling: The cast billet is placed in a heating furnace, heated to 1156°C, kept warm for 2.6 hours, taken out and rolled, the cast billet is rolled in two stages, and the rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 63%, and the rolling end temperature is 790° C. and air cooling to form a 12 mm thick hot rolled steel plate;
Two-phase quenching + tempering: The rolled steel plate is quenched at 660°C to 300°C or less, tempered at 560°C, the tempering speed is 10°C/s, and includes the steps of keeping warm for 1 hour and then air cooling. .
上記のLNG貯蔵タンク用7Ni鋼板の製造方法、鋼板の化学組成及び質量パーセントは、C:0.06%、Si:0.23%、Mn:0.55%、Ni:7.3%、P:0.0043%、S:0.0031%、Al:0.035%、Cr:0.25%、Nb:0.040%、残部はFe及び不可避的不純物であり、
鋳造ビレットの調製:化学組成で製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
正規圧延:鋳造ビレットを加熱炉に入れ、1239℃まで加熱して2.1時間保温し、取り出して圧延を行い、鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は45%であり、圧延終了温度は790℃であり、そして空冷して厚さ18mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻し速度は10℃/sであり、1時間保温し、空冷するステップと、を含む。
The manufacturing method of the above 7Ni steel plate for LNG storage tank, the chemical composition and mass percentage of the steel plate are C: 0.06%, Si: 0.23%, Mn: 0.55%, Ni: 7.3%, P : 0.0043%, S: 0.0031%, Al: 0.035%, Cr: 0.25%, Nb: 0.040%, the remainder is Fe and inevitable impurities,
Preparation of casting billet: The step of preparing smelting raw materials with chemical composition, smelting them in a vacuum smelting furnace, and casting them into ingots, then forging the ingots into square casting billets with a thickness of 80 mm, and air-cooling them in a leeward place. and,
Regular rolling: The cast billet is placed in a heating furnace, heated to 1239°C, kept warm for 2.1 hours, taken out and rolled, the cast billet is rolled in two stages, and the rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 45%, and the rolling end temperature is 790° C. and air cooling to form a hot rolled steel sheet having a thickness of 18 mm;
Two-phase quenching + tempering: A rolled steel plate is quenched at 660°C to 300°C or less, tempered at 560°C, the tempering rate is 10°C/s, and includes the steps of keeping warm for 1 hour and cooling in air.
本発明は以下の有益な効果を有する。
(1)本発明のニッケルはγ相領域を拡大することができる非カーバイド形成元素であって、オーステナイト形成及び安定化元素であり、強度を低下させることなく低温強靭性を向上させ、ニッケルは鋼のCCT曲線を右側にシフトさせ、臨界焼入れ速度を低下させ、硬化性を改善し、ニッケルは、また、低温強靭性を向上させ、靭性-脆性遷移温度を低下させる重要な役割を果たしているため、Niは本発明の最も主な合金化元素である。
(2)本発明において、炭素はソリューション強化元素であって、強力なオーステナイト安定化元素であり、鋼板の強度に積極的な影響を与えるが、靭性、可塑性及び溶接性に悪影響を及ぼすため、良好な耐衝撃性と溶接性能を有する低温鋼板を製造するために、炭素の含有量を低範囲に制御する必要がある。
(3)本発明において、マンガンは主にソリューション強化の役割を果たし、炭素含有量の減少によって引き起こされる強度の低下を補う同時に、ニッケルと同様に、マンガンは鋼の相転移温度を低下させ、Mn/C及びMn/Sを適切に増加させると強靭性の改善につながるため、本発明ではMnは主な合金元素の1つである。
(4)本発明において、ケイ素はソリューション強化元素及び脱酸元素であり、鋼の強度を向上させ、練鋼プロセス中の有害元素である酸素の含有量を低減することができ、ケイ素は、マンガン偏析を抑制するためにマンガンと一定の割合で鋼に存在し、粒界でのリンの偏析を抑制することができるが、ケイ素は鋼の溶接熱影響領域の低温強靭性を低下させるために、ケイ素の含有量を0.15~0.3%に制御する。
(5)本発明において、クロムの添加により、鋼板の硬化性や強度を高め、一定のNb/Si範囲で少量のNbを添加すると、強度及び可塑性に無害であるだけでなく、幅広い板の溶接性能の改善にも役たち、SとPとは鋼の有害元素であり、偏析を引き起こしやすく、鋼の低温強靭性を低下させ、溶接時の熱亀裂感度を低下させるため、鋼のP、Sの含有量を厳しく制御する必要がある。
(6)本発明の断面構造として、フェライトマトリックスにマルテンサイトと回転オーステナイトとが分布され、機械的性能の指標について、降伏強度が590~700MPaであり、引張強度が690~790MPaであり、伸長率が24%以上であり、-196℃での横衝撃エネルギーが100J以上である。
The present invention has the following beneficial effects.
(1) The nickel of the present invention is a non-carbide-forming element that can expand the γ phase region, and is an austenite-forming and stabilizing element, improving low-temperature toughness without reducing strength. Because nickel plays an important role in shifting the CCT curve to the right, reducing the critical quenching rate, and improving hardenability, nickel also improves low-temperature toughness and lowers the toughness-brittle transition temperature. Ni is the main alloying element of the present invention.
(2) In the present invention, carbon is a solution-strengthening element and a strong austenite-stabilizing element, which positively affects the strength of steel sheets, but has a negative effect on toughness, plasticity, and weldability. In order to produce low-temperature steel sheets with good impact resistance and welding performance, it is necessary to control the carbon content within a low range.
(3) In the present invention, manganese mainly plays the role of solution strengthening, compensating for the decrease in strength caused by the decrease in carbon content, and at the same time, similar to nickel, manganese lowers the phase transition temperature of steel, and Mn In the present invention, Mn is one of the main alloying elements because an appropriate increase in /C and Mn/S leads to improved toughness.
(4) In the present invention, silicon is a solution strengthening element and a deoxidizing element, which can improve the strength of steel and reduce the content of oxygen, which is a harmful element during the steel drawing process, and silicon is a solution strengthening element and a deoxidizing element. It exists in steel in a certain proportion with manganese to suppress segregation, and can suppress the segregation of phosphorus at grain boundaries, but silicon reduces the low-temperature toughness of the weld heat affected zone of steel. The silicon content is controlled at 0.15-0.3%.
(5) In the present invention, the addition of chromium increases the hardenability and strength of the steel plate, and adding a small amount of Nb within a certain Nb/Si range not only has no effect on strength and plasticity, but also enables welding of a wide range of plates. S and P are harmful elements in steel, which tend to cause segregation, reduce the low-temperature toughness of steel, and reduce thermal crack sensitivity during welding. It is necessary to strictly control the content of
(6) As the cross-sectional structure of the present invention, martensite and rotated austenite are distributed in the ferrite matrix, and the mechanical performance indicators include yield strength of 590 to 700 MPa, tensile strength of 690 to 790 MPa, and elongation rate. is 24% or more, and the lateral impact energy at -196°C is 100J or more.
(実施例1)
本実施例によって提供されるLNG貯蔵タンク用7Ni鋼板及び製造方法では、鋼板の化学組成及び質量パーセントは、C:0.05%、Si:0.25%、Mn:0.60%、Ni:7.2%、P:0.0045%、S:0.0030%、Al:0.038%、Cr:0.28%、Nb:0.043%であり、残部はFe及び不可避的不純物である。
(Example 1)
In the 7Ni steel plate for LNG storage tank and the manufacturing method provided by this example, the chemical composition and mass percentage of the steel plate are C: 0.05%, Si: 0.25%, Mn: 0.60%, Ni: 7.2%, P: 0.0045%, S: 0.0030%, Al: 0.038%, Cr: 0.28%, Nb: 0.043%, and the remainder is Fe and inevitable impurities. be.
鋳造ビレットの調製:化学組成で製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷する。 Preparation of casting billet: Prepare the smelting raw material with chemical composition, smelt it in a vacuum smelting furnace, and cast it into an ingot, then forge the ingot into a square casting billet with a thickness of 80 mm, and air-cool it in a leeward place.
正規圧延:鋳造ビレットを加熱炉に入れ、1156℃まで加熱して2.6時間保温し、取り出して圧延を行い、鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は63%であり、圧延終了温度は790℃であり、そして空冷して厚さ12mmの熱間圧延鋼板を形成する。 Regular rolling: The cast billet is placed in a heating furnace, heated to 1156°C, kept warm for 2.6 hours, taken out and rolled, the cast billet is rolled in two stages, and the rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 63%, and the rolling end temperature is 790° C. and air-cooled to form a 12 mm thick hot rolled steel plate.
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻し速度は10℃/sであり、1時間保温してから空冷する。 Two-phase quenching + tempering: A rolled steel plate is quenched at 660°C below 300°C, tempered at 560°C, the tempering rate is 10°C/s, kept warm for 1 hour, and then air cooled.
本実施例によって得られた低温鋼板を国家規格に従って検出し、検出結果を表1に示す。 The low-temperature steel plate obtained in this example was detected according to national standards, and the detection results are shown in Table 1.
(実施例2)
本実施例によって提供されるLNG貯蔵タンク用7Ni鋼板及び製造方法では、鋼板の化学組成及び質量パーセントは、C:0.06%、Si:0.23%、Mn:0.55%、Ni:7.3%、P:0.0043%、S:0.0031%、Al:0.035%、Cr:0.25%、Nb:0.040%であり、残部はFe及び不可避的不純物である。
(Example 2)
In the 7Ni steel plate for LNG storage tank and the manufacturing method provided by this example, the chemical composition and mass percentage of the steel plate are C: 0.06%, Si: 0.23%, Mn: 0.55%, Ni: 7.3%, P: 0.0043%, S: 0.0031%, Al: 0.035%, Cr: 0.25%, Nb: 0.040%, and the remainder is Fe and inevitable impurities. be.
鋳造ビレットの調製:化学組成で製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷する。 Preparation of casting billet: Prepare the smelting raw material with chemical composition, smelt it in a vacuum smelting furnace, and cast it into an ingot, then forge the ingot into a square casting billet with a thickness of 80 mm, and air-cool it in a leeward place.
正規圧延:鋳造ビレットを加熱炉に入れ、1239℃まで加熱して2.1時間保温し、取り出して圧延を行い、鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は45%であり、圧延終了温度は790℃であり、そして空冷して厚さ18mmの熱間圧延鋼板を形成する。 Regular rolling: The cast billet is placed in a heating furnace, heated to 1239°C, kept warm for 2.1 hours, taken out and rolled, the cast billet is rolled in two stages, and the rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 45%, and the rolling end temperature is 790° C. and air-cooled to form a hot rolled steel plate with a thickness of 18 mm.
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻し速度は10℃/sであり、1時間保温し、空冷する。 Two-phase quenching + tempering: A rolled steel plate is quenched at 660°C below 300°C, tempered at 560°C, the tempering rate is 10°C/s, kept warm for 1 hour, and air cooled.
本実施例によって得られた低温鋼板を国家規格に従って検出し、検出結果を表2に示す。 The low-temperature steel plate obtained in this example was detected according to national standards, and the detection results are shown in Table 2.
従来技術と比較すると、本発明はニッケル節約型合金を設計し、正規圧延+二相焼入れ+焼き戻しの製造方法を採用することで、性能がGB 3531-2014における低温圧力容器用鋼の9Ni規格に完全に達し、生産コストを大幅に削減する。 Compared with the prior art, the present invention designs a nickel-saving alloy and adopts the manufacturing method of normal rolling + two-phase quenching + tempering, so that the performance meets the 9Ni standard for low temperature pressure vessel steel in GB 3531-2014. fully reached, significantly reducing production costs.
上記の実施例に加えて、本発明はまた、他の形態で実施することができる。同等置換や同等変形などによって形成される技術的解決策はすべて本発明の保護範囲に含まれるべきである。 In addition to the embodiments described above, the invention can also be implemented in other forms. All technical solutions formed by equivalent substitution, equivalent transformation, etc. should fall within the protection scope of the present invention.
(付記)
(付記1)
化学組成及び質量パーセントは、C:0.02%~0.06%、Si:0.20%~0.35%、Ni:4.0%~8.0%、Mn:0.3%~0.7%、P≦0.005%、S≦0.005%、Al:0.03%~0.05%、Nb:0.02%~0.05%、Cr:0.2%~0.4%であり、残部はFe及び不可避的不純物である、
ことを特徴とするLNG貯蔵タンク用7Ni鋼板。
(Additional note)
(Additional note 1)
Chemical composition and mass percentage are C: 0.02% to 0.06%, Si: 0.20% to 0.35%, Ni: 4.0% to 8.0%, Mn: 0.3% to 0.7%, P≦0.005%, S≦0.005%, Al: 0.03% to 0.05%, Nb: 0.02% to 0.05%, Cr: 0.2% to 0.4%, the remainder being Fe and unavoidable impurities.
A 7Ni steel plate for LNG storage tanks characterized by the following.
(付記2)
厚さは8~30mmである、
ことを特徴とする付記1に記載のLNG貯蔵タンク用7Ni鋼板。
(Additional note 2)
The thickness is 8-30mm.
7Ni steel plate for LNG storage tank according to appendix 1, characterized in that:
(付記3)
鋳造ビレットの調製:化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
正規圧延:鋳造ビレットを1150~1250℃で2~3時間保温し、鋳造ビレットを2段階圧延し、粗圧延の圧延開始温度は1000~1100℃であり、総圧縮比は40%~60%であり、仕上げ圧延の圧延開始温度は850~900℃であり、総圧縮比は40%~70%であり、圧延終了温度は750~850℃であり、そして空冷するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を600~700℃で300℃以下に焼入れ、500~580℃で焼き戻し、焼き戻し速度は5~20℃/sであり、0.5~2時間保温し、空冷するステップと、を含む、
ことを特徴とするLNG貯蔵タンク用7Ni鋼板の製造方法。
(Additional note 3)
Preparation of casting billet: preparing the smelting raw material according to the chemical composition, smelting it in a vacuum smelting furnace and casting it into an ingot, then forging the ingot into a square casting billet and air cooling in a leeward place;
Regular rolling: The cast billet is kept warm at 1150 to 1250 °C for 2 to 3 hours, and the cast billet is rolled in two stages.The rolling start temperature of rough rolling is 1000 to 1100 °C, and the total compression ratio is 40% to 60%. The rolling start temperature of finish rolling is 850 to 900°C, the total compression ratio is 40% to 70%, the rolling end temperature is 750 to 850°C, and an air cooling step;
Two-phase quenching + tempering: The rolled steel plate is quenched at 600-700℃ to below 300℃, tempered at 500-580℃, the tempering speed is 5-20℃/s, 0.5-2 hours. Insulating and air cooling steps;
A method for manufacturing a 7Ni steel plate for an LNG storage tank, characterized in that:
(付記4)
鋼板の化学組成及び質量パーセントは、C:0.05%、Si:0.25%、Mn:0.60%、Ni:7.2%、P:0.0045%、S:0.0030%、Al:0.038%、Cr:0.28%、Nb:0.043%であり、残部はFe及び不可避的不純物であり、
鋳造ビレットの調製:化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
正規圧延:鋳造ビレットを加熱炉に入れ、1156℃まで加熱して2.6時間保温し、取り出して圧延を行い、鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は63%であり、圧延終了温度は790℃であり、そして空冷して厚さ12mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻し速度は10℃/sであり、1時間保温してから空冷するステップと、を含む、
ことを特徴とする付記3に記載のLNG貯蔵タンク用7Ni鋼板の製造方法。
(Additional note 4)
The chemical composition and mass percentage of the steel plate are C: 0.05%, Si: 0.25%, Mn: 0.60%, Ni: 7.2%, P: 0.0045%, S: 0.0030%. , Al: 0.038%, Cr: 0.28%, Nb: 0.043%, the remainder being Fe and inevitable impurities,
Preparation of casting billet: The step of preparing the smelting raw material according to the chemical composition, smelting it in a vacuum smelting furnace, and casting it into an ingot, then forging the ingot into a square casting billet with a thickness of 80 mm and air cooling in a leeward place. and,
Regular rolling: The cast billet is placed in a heating furnace, heated to 1156°C, kept warm for 2.6 hours, taken out and rolled, the cast billet is rolled in two stages, and the rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 63%, and the rolling end temperature is 790° C. and air cooling to form a 12 mm thick hot rolled steel plate;
Two-phase quenching + tempering: The rolled steel plate is quenched at 660°C to 300°C or less, tempered at 560°C, the tempering speed is 10°C/s, and includes the steps of keeping warm for 1 hour and then air cooling. ,
The method for manufacturing a 7Ni steel plate for an LNG storage tank according to appendix 3, characterized in that:
(付記5)
鋼板の化学組成及び質量パーセントは、C:0.06%、Si:0.23%、Mn:0.55%、Ni:7.3%、P:0.0043%、S:0.0031%、Al:0.035%、Cr:0.25%、Nb:0.040%であり、残部はFe及び不可避的不純物であり、
鋳造ビレットの調製:化学組成で製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
正規圧延:鋳造ビレットを加熱炉に入れ、1239℃まで加熱して2.1時間保温し、取り出して圧延を行い、鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は45%であり、圧延終了温度は790℃であり、そして空冷して厚さ18mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻し速度は10℃/sであり、1時間保温し、空冷するステップと、を含む、
ことを特徴とする付記3に記載のLNG貯蔵タンク用7Ni鋼板の製造方法。
(Appendix 5)
The chemical composition and mass percentage of the steel plate are C: 0.06%, Si: 0.23%, Mn: 0.55%, Ni: 7.3%, P: 0.0043%, S: 0.0031%. , Al: 0.035%, Cr: 0.25%, Nb: 0.040%, the remainder being Fe and inevitable impurities,
Preparation of casting billet: The step of preparing smelting raw materials with chemical composition, smelting them in a vacuum smelting furnace, and casting them into ingots, then forging the ingots into square casting billets with a thickness of 80 mm, and air-cooling them in a leeward place. and,
Regular rolling: The cast billet is placed in a heating furnace, heated to 1239°C, kept warm for 2.1 hours, taken out and rolled, the cast billet is rolled in two stages, and the rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 45%, and the rolling end temperature is 790° C. and air cooling to form a hot rolled steel sheet having a thickness of 18 mm;
Two-phase quenching + tempering: The rolled steel plate is quenched at 660 °C to 300 °C or less, tempered at 560 °C, the tempering rate is 10 °C / s, and includes the steps of keeping warm for 1 hour and cooling in air.
The method for manufacturing a 7Ni steel plate for an LNG storage tank according to appendix 3, characterized in that:
Claims (4)
鋳造ビレットの調製:前記化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、前記インゴットを正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
圧延:前記鋳造ビレットを1150~1250℃で2~3時間保温し、前記鋳造ビレットを2段階圧延し、粗圧延の圧延開始温度は1000~1100℃であり、総圧縮比は40%~60%であり、仕上げ圧延の圧延開始温度は850~900℃であり、総圧縮比は40%~70%であり、圧延終了温度は750~850℃であり、そして空冷して厚さ8~30mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を600~700℃で300℃以下に焼入れ、500~580℃で焼き戻し、焼き戻しの昇温速度は5~20℃/sであり、0.5~2時間保温し、空冷するステップと、を含む、
ことを特徴とするLNG貯蔵タンク用7Ni鋼板の製造方法。 The chemical composition and mass percentage of the steel plate are C: 0.02% to 0.06%, Si: 0.20% to 0.35%, Mn: 0.3% to 0.7%, Ni: 4.0 % to 8.0%, P≦0.005%, S≦0.005%, Al: 0.03% to 0.05%, Cr: 0.2% to 0.4%, Nb: 0.02 % to 0.05%, the remainder being Fe and unavoidable impurities,
Preparation of casting billet: preparing the smelting raw material according to the chemical composition, smelting it in a vacuum smelting furnace and casting it into an ingot, and then forging the ingot into a square casting billet and air-cooling it in a leeward location;
Rolling : The cast billet is kept warm at 1150 to 1250 °C for 2 to 3 hours, and the cast billet is rolled in two stages, the rolling start temperature of rough rolling is 1000 to 1100 °C, and the total compression ratio is 40% to 60. %, the rolling start temperature of finish rolling is 850-900°C, the total compression ratio is 40%-70%, the rolling end temperature is 750-850°C, and the thickness is 8-30mm by air cooling. forming a hot rolled steel sheet ;
Two-phase quenching + tempering: The rolled steel plate is quenched at 600 to 700 °C to below 300 °C, tempered at 500 to 580 °C, and the tempering temperature increase rate is 5 to 20 °C/s, 0.5 Insulating for ~2 hours and cooling in air,
A method for manufacturing a 7Ni steel plate for an LNG storage tank, characterized in that:
鋳造ビレットの調製:前記化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、前記インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
圧延:前記鋳造ビレットを加熱炉に入れ、1156℃まで加熱して2.6時間保温し、取り出して圧延を行い、前記鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は63%であり、圧延終了温度は790℃であり、そして空冷して厚さ12mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻しの昇温速度は10℃/sであり、1時間保温してから空冷するステップと、を含む、
ことを特徴とする請求項1に記載のLNG貯蔵タンク用7Ni鋼板の製造方法。 The chemical composition and mass percentage of the steel plate are C: 0.05%, Si: 0.25%, Mn: 0.60%, Ni: 7.2%, P: 0.0045%, S: 0.0030%. , Al: 0.038%, Cr: 0.28%, Nb: 0.043%, the remainder being Fe and inevitable impurities,
Preparation of casting billet: Prepare the smelting raw material according to the chemical composition, smelt it in a vacuum smelting furnace, cast it into an ingot, then forge the ingot into a square casting billet with a thickness of 80 mm, and air-cool it in a leeward place. the step of
Rolling : The cast billet is placed in a heating furnace, heated to 1156°C, kept warm for 2.6 hours, taken out and rolled, the cast billet is rolled in two stages, and rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 63%, and the rolling end the temperature is 790° C. and air cooling to form a hot rolled steel sheet with a thickness of 12 mm;
Two-phase quenching + tempering: The rolled steel plate is quenched at 660°C to 300°C or less, tempered at 560°C, the temperature increase rate of tempering is 10°C/s, and the step is to keep it warm for 1 hour and then air cool it. ,including,
The method for manufacturing a 7Ni steel plate for an LNG storage tank according to claim 1 .
鋳造ビレットの調製:前記化学組成で製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、前記インゴットを厚さ80mmの正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、
圧延:前記鋳造ビレットを加熱炉に入れ、1239℃まで加熱して2.1時間保温し、取り出して圧延を行い、前記鋳造ビレットを2段階圧延し、粗圧延はオーステナイト完全再結晶ゾーンで圧延し、圧延開始温度は1100℃であり、圧縮量は60%であり、仕上げ圧延はオーステナイト非再結晶ゾーンで圧延し、圧延開始温度は900℃であり、圧縮量は45%であり、圧延終了温度は790℃であり、そして空冷して厚さ18mmの熱間圧延鋼板を形成するステップと、
二相焼入れ+焼き戻し:圧延された鋼板を660℃で300℃以下焼入れ、560℃で焼き戻し、焼き戻しの昇温速度は10℃/sであり、1時間保温し、空冷するステップと、を含む、
ことを特徴とする請求項1に記載のLNG貯蔵タンク用7Ni鋼板の製造方法。 The chemical composition and mass percentage of the steel plate are C: 0.06%, Si: 0.23%, Mn: 0.55%, Ni: 7.3%, P: 0.0043%, S: 0.0031%. , Al: 0.035%, Cr: 0.25%, Nb: 0.040%, the remainder being Fe and inevitable impurities,
Preparation of casting billet: Prepare the smelting raw material with the above chemical composition, smelt it in a vacuum smelting furnace, and cast it into an ingot . Then, the ingot is forged into a square casting billet with a thickness of 80 mm, and air-cooled in a leeward place. the step of
Rolling : The cast billet is placed in a heating furnace, heated to 1239°C, kept warm for 2.1 hours, taken out and rolled, the cast billet is rolled in two stages, and rough rolling is rolled in an austenite complete recrystallization zone. The rolling start temperature is 1100°C, the compression amount is 60%, the finish rolling is performed in an austenite non-recrystallization zone, the rolling start temperature is 900°C, the compression amount is 45%, and the rolling end is the temperature is 790° C. and air cooling to form a hot rolled steel sheet with a thickness of 18 mm;
Two-phase quenching + tempering: The rolled steel plate is quenched at 660 °C to 300 °C or less, tempered at 560 °C, the temperature increase rate of tempering is 10 °C/s, kept warm for 1 hour, and air-cooled; including,
The method for manufacturing a 7Ni steel plate for an LNG storage tank according to claim 1 .
鋳造ビレットの調製:前記化学組成に従って製錬原料を用意し、真空製錬炉で製錬し、インゴットに鋳造した後、前記インゴットを正方形の鋳造ビレットに鍛造し、風下場所で空冷するステップと、 Preparation of casting billet: preparing the smelting raw material according to the chemical composition, smelting it in a vacuum smelting furnace and casting it into an ingot, and then forging the ingot into a square casting billet and air-cooling it in a leeward location;
圧延:前記鋳造ビレットを1150~1250℃で2~3時間保温し、前記鋳造ビレットを2段階圧延し、粗圧延の圧延開始温度は1000~1100℃であり、総圧縮比は40%~60%であり、仕上げ圧延の圧延開始温度は850~900℃であり、総圧縮比は40%~70%であり、圧延終了温度は750~850℃であり、そして空冷するステップと、 Rolling: The cast billet is kept warm at 1150 to 1250 °C for 2 to 3 hours, and the cast billet is rolled in two stages, the rolling start temperature of rough rolling is 1000 to 1100 °C, and the total compression ratio is 40% to 60%. The rolling start temperature of finish rolling is 850 to 900°C, the total compression ratio is 40% to 70%, the rolling end temperature is 750 to 850°C, and an air cooling step,
二相焼入れ+焼き戻し:圧延された鋼板を600~700℃で300℃以下に焼入れ、500~580℃で焼き戻し、焼き戻しの昇温速度は5~20℃/sであり、0.5~2時間保温し、空冷するステップと、を含む、 Two-phase quenching + tempering: The rolled steel plate is quenched at 600 to 700 °C to below 300 °C, tempered at 500 to 580 °C, and the tempering temperature increase rate is 5 to 20 °C/s, 0.5 Insulating for ~2 hours and cooling in air,
ことを特徴とするLNG貯蔵タンク用7Ni鋼板の製造方法。 A method for manufacturing a 7Ni steel plate for an LNG storage tank, characterized in that:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910445403.X | 2019-05-27 | ||
CN201910445403.XA CN110129676A (en) | 2019-05-27 | 2019-05-27 | A kind of LNG storage tank 7Ni steel plate and production technology |
PCT/CN2019/111410 WO2020237975A1 (en) | 2019-05-27 | 2019-10-16 | 7ni steel plate for lng storage tank and production process |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022534079A JP2022534079A (en) | 2022-07-27 |
JP7340627B2 true JP7340627B2 (en) | 2023-09-07 |
Family
ID=67581951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021569882A Active JP7340627B2 (en) | 2019-05-27 | 2019-10-16 | Manufacturing method of 7Ni steel plate for LNG storage tank |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7340627B2 (en) |
KR (1) | KR20220004220A (en) |
CN (1) | CN110129676A (en) |
WO (1) | WO2020237975A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110129676A (en) * | 2019-05-27 | 2019-08-16 | 南京钢铁股份有限公司 | A kind of LNG storage tank 7Ni steel plate and production technology |
CN110541110B (en) * | 2019-08-24 | 2021-02-26 | 江阴兴澄特种钢铁有限公司 | 9Ni steel plate for high-strength low-yield-ratio ship LNG storage tank and manufacturing method thereof |
CN112941405B (en) * | 2021-01-26 | 2022-04-19 | 南京钢铁股份有限公司 | High-toughness heat-resistant flat-bulb steel for ships and preparation method thereof |
CN114525389A (en) * | 2022-02-16 | 2022-05-24 | 南京钢铁股份有限公司 | Method for controlling surface quality of nickel-based steel plate |
CN114737111A (en) * | 2022-03-24 | 2022-07-12 | 南京钢铁股份有限公司 | Steel for 5Ni and production method thereof |
CN114686760A (en) * | 2022-03-24 | 2022-07-01 | 南京钢铁股份有限公司 | Steel for 7Ni and production method thereof |
WO2023223694A1 (en) * | 2022-05-19 | 2023-11-23 | Jfeスチール株式会社 | Steel sheet and method for producing same |
JP7367896B1 (en) * | 2022-05-19 | 2023-10-24 | Jfeスチール株式会社 | Steel plate and its manufacturing method |
CN115747652B (en) * | 2022-11-15 | 2023-06-23 | 北京科技大学 | Nb7 Ni-containing ultralow-temperature steel for nickel-saving LNG storage tank and heat treatment process thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014019936A (en) | 2012-07-23 | 2014-02-03 | Jfe Steel Corp | Ni-CONTAINING THICK STEEL PLATE HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS |
JP5561442B1 (en) | 2013-06-19 | 2014-07-30 | 新日鐵住金株式会社 | Steel plate and LNG tank |
CN105543694A (en) | 2015-12-29 | 2016-05-04 | 东北大学 | Preparation method of 7Ni steel plate for liquefied natural gas storage tank |
CN107937824A (en) | 2017-12-11 | 2018-04-20 | 中国科学院金属研究所 | A kind of nickel-saving type 7Ni steel and its heat treatment process for ultra-low temperature surroundings |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4957556B2 (en) * | 2006-01-13 | 2012-06-20 | 住友金属工業株式会社 | Cryogenic steel |
CN102586696A (en) * | 2012-03-14 | 2012-07-18 | 江苏省沙钢钢铁研究院有限公司 | 7Ni steel applied to cryogenic environment and preparation process thereof |
JP5880344B2 (en) * | 2012-08-09 | 2016-03-09 | 新日鐵住金株式会社 | Cryogenic steel plate and its manufacturing method |
EP2933347A4 (en) * | 2012-12-13 | 2016-07-27 | Kobe Steel Ltd | Thick steel plate having excellent cryogenic toughness |
CN103556051A (en) * | 2013-10-14 | 2014-02-05 | 唐山学院 | Low-temperature steel realizing toughening based on C and Ni combined effect and preparation method thereof |
CN104674110B (en) * | 2015-02-09 | 2016-08-24 | 北京科技大学 | A kind of pressure vessel low-temperature steel plate and production method thereof |
JP6693185B2 (en) * | 2016-03-11 | 2020-05-13 | 日本製鉄株式会社 | Method for manufacturing low temperature nickel steel sheet |
CN109280848A (en) * | 2018-10-17 | 2019-01-29 | 东北大学 | A kind of low-nickel type LNG tank steel plate and preparation method thereof |
CN110129676A (en) * | 2019-05-27 | 2019-08-16 | 南京钢铁股份有限公司 | A kind of LNG storage tank 7Ni steel plate and production technology |
-
2019
- 2019-05-27 CN CN201910445403.XA patent/CN110129676A/en active Pending
- 2019-10-16 WO PCT/CN2019/111410 patent/WO2020237975A1/en active Application Filing
- 2019-10-16 JP JP2021569882A patent/JP7340627B2/en active Active
- 2019-10-16 KR KR1020217040526A patent/KR20220004220A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014019936A (en) | 2012-07-23 | 2014-02-03 | Jfe Steel Corp | Ni-CONTAINING THICK STEEL PLATE HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS |
JP5561442B1 (en) | 2013-06-19 | 2014-07-30 | 新日鐵住金株式会社 | Steel plate and LNG tank |
CN105543694A (en) | 2015-12-29 | 2016-05-04 | 东北大学 | Preparation method of 7Ni steel plate for liquefied natural gas storage tank |
CN107937824A (en) | 2017-12-11 | 2018-04-20 | 中国科学院金属研究所 | A kind of nickel-saving type 7Ni steel and its heat treatment process for ultra-low temperature surroundings |
Also Published As
Publication number | Publication date |
---|---|
WO2020237975A1 (en) | 2020-12-03 |
CN110129676A (en) | 2019-08-16 |
KR20220004220A (en) | 2022-01-11 |
JP2022534079A (en) | 2022-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7340627B2 (en) | Manufacturing method of 7Ni steel plate for LNG storage tank | |
CN113106338B (en) | Preparation method of ultrahigh-strength high-plasticity hot stamping formed steel | |
CN103014554B (en) | Low-yield-ratio high-tenacity steel plate and manufacture method thereof | |
WO2015197007A1 (en) | Carburized alloy steel, method for preparing same, and use thereof | |
CN104674110B (en) | A kind of pressure vessel low-temperature steel plate and production method thereof | |
CN105039865B (en) | High-strength high-toughness steel plate and manufacturing method thereof | |
CN111500917A (en) | High-strength and high-toughness medium-entropy high-temperature alloy and preparation method thereof | |
WO2020087653A1 (en) | Austenite low temperature steel and preparation method therefor | |
JP7267430B2 (en) | Steel plate preparation method | |
CN102400036B (en) | Twin crystal induced plasticity steel with high elongation and high hole expansion rate and manufacturing method thereof | |
CN101928876A (en) | TRIP/TWIP high-strength plastic automobile steel with excellent processability and preparation method thereof | |
CN109112423A (en) | Special thick alloy-steel plate of a kind of superior low-temperature toughness and preparation method thereof | |
CN103409690B (en) | Low activation steel and preparation method thereof | |
KR20230037040A (en) | Thick plate for high-strength container with excellent core toughness and manufacturing method | |
CN103540859B (en) | High heat-resistant stainless steel coffee pot material and preparation method thereof | |
CN109182669B (en) | High-hardness high-toughness easy-welding pre-hardened plastic die steel and preparation method thereof | |
CN112281066A (en) | High-manganese medium plate for high-yield-strength LNG storage tank and preparation method thereof | |
CN114517254A (en) | Low-temperature-resistant flat bulb steel for ships and preparation method thereof | |
CN101812634B (en) | Low-carbon low-welding crack-sensitive high-strength steel and steel plate and manufacture method thereof | |
CN104342600B (en) | Medium-thickness steel plate for non-normalized bridge and preparation method thereof | |
CN107988549A (en) | Low-yield-ratio welding bottle steel and manufacturing method thereof | |
CN102586696A (en) | 7Ni steel applied to cryogenic environment and preparation process thereof | |
CN106167881A (en) | Microalloyed steel for forging waste heat quenching | |
CN102220465B (en) | Heat treatment process of steel in low-alloy, high-strength and weather-proof structure | |
CN102162071B (en) | Limit mandrel steel material for rolled tubes and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7340627 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |