JP7340473B2 - Method for manufacturing hot rolled steel sheets - Google Patents

Method for manufacturing hot rolled steel sheets Download PDF

Info

Publication number
JP7340473B2
JP7340473B2 JP2020022763A JP2020022763A JP7340473B2 JP 7340473 B2 JP7340473 B2 JP 7340473B2 JP 2020022763 A JP2020022763 A JP 2020022763A JP 2020022763 A JP2020022763 A JP 2020022763A JP 7340473 B2 JP7340473 B2 JP 7340473B2
Authority
JP
Japan
Prior art keywords
coil
unevenness
hot
rolled steel
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020022763A
Other languages
Japanese (ja)
Other versions
JP2021126678A (en
Inventor
正宜 小林
健之 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020022763A priority Critical patent/JP7340473B2/en
Publication of JP2021126678A publication Critical patent/JP2021126678A/en
Application granted granted Critical
Publication of JP7340473B2 publication Critical patent/JP7340473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、熱延鋼板の製造方法に関する。 The present invention relates to a method for manufacturing hot rolled steel sheets.

熱延鋼板は、熱間圧延された帯状鋼材をコイル状に巻き取り、巻き取られたコイルを常温程度まで冷却して製造される。この熱延鋼板は、再度帯状に繰り出して酸洗及び冷間圧延を施され、冷延鋼板となる。この冷延鋼板の製造上の問題点として、通板時における鋼材の破断が挙げられる。鋼材に破断が生じると、通板ラインを停止して復旧作業を行うことを要し、復旧のためのコストが嵩むと共に、生産効率が低下する。また、鋼材の破断は、設備故障の原因ともなる。 A hot-rolled steel plate is manufactured by winding a hot-rolled steel strip into a coil and cooling the wound coil to about room temperature. This hot-rolled steel sheet is fed out again into a strip, pickled and cold-rolled to become a cold-rolled steel sheet. A problem in manufacturing this cold-rolled steel sheet is that the steel material breaks during threading. When a break occurs in the steel material, it is necessary to stop the threading line and perform restoration work, which increases the cost for restoration and reduces production efficiency. Furthermore, breakage of steel materials can also cause equipment failure.

特開2000-131048号公報Japanese Patent Application Publication No. 2000-131048 特開2002-148037号公報Japanese Patent Application Publication No. 2002-148037

焼き入れ性の高い鋼材の冷間圧延時の破断の原因のひとつとして、鋼材の端部の亀裂が挙げられる。冷間圧延中の鋼材の端部に亀裂が生じていると、通板時にこの亀裂部分に応力が集中し、亀裂が成長し、鋼材の破断へとつながりやすい。 One of the causes of breakage of highly hardenable steel materials during cold rolling is cracks at the ends of the steel materials. If a crack occurs at the end of a steel material during cold rolling, stress is concentrated at the cracked portion during sheet rolling, causing the crack to grow and easily lead to breakage of the steel material.

この亀裂の原因として、熱間圧延されたコイルの巻き取り形状の不良が挙げられる。つまり、熱間圧延後のコイルに巻き取り不良があると、コイルの端面の凹凸が大きくなる。コイル端面に大きな凸部があると、凸部がフィンの機能を果たすことでコイルの冷却時に凸部の冷却速度が速くなる。これにより、コイルの冷却時にフェライト等の軟質の相にベイナイトやマルテンサイト等の硬質の相が混在しやすくなる。その結果、鋼材の冷間圧延時にボイドが発生し、かつこのボイドが成長することで、端部の亀裂を招来しやすくなる。 This crack may be caused by a defect in the winding shape of the hot-rolled coil. In other words, if there is a winding defect in the coil after hot rolling, the unevenness of the end face of the coil becomes large. If there is a large convex portion on the end face of the coil, the convex portion functions as a fin, which increases the cooling rate of the convex portion during cooling of the coil. This makes it easier for hard phases such as bainite and martensite to coexist with soft phases such as ferrite when the coil is cooled. As a result, voids are generated during cold rolling of the steel material, and these voids grow, making it easy to cause cracks at the ends.

このような観点から、本発明者らは、鋼材の破断を抑制するためには、鋼材の端部の亀裂を抑制することが重要であり、ひいてはコイル端面の凹凸を一定以下に制御することが重要であることを見出した。 From this point of view, the present inventors believe that in order to suppress the breakage of steel materials, it is important to suppress cracks at the ends of the steel materials, and furthermore, it is important to control the unevenness of the coil end surfaces to below a certain level. found it to be important.

なお、特許文献1には、コイルの巻形状がテレスコープ状に乱れていると、クレーン等によりコイルを次工程の設備に搬送ないし装入する際に支障をきたしたり、コイルの落下、転倒等の原因となることが記載されている。特許文献1には、このような不都合を解決すべく圧延終端部の被走査位置の板幅を測定し、この板幅測定結果をコイル端面の凹凸計測結果に援用してテレスコープの有無を判定することが記載されている。しかしながら、特許文献1では、コイル端面の凹凸とコイル端部の亀裂との関係については検討されていない。 In addition, Patent Document 1 states that if the winding shape of the coil is disordered in a telescopic shape, it may cause problems when the coil is transported or inserted into equipment for the next process using a crane, etc., and the coil may fall or overturn. It is stated that it causes In order to solve this problem, Patent Document 1 discloses that the strip width at the scanned position at the end of rolling is measured, and the strip width measurement result is used as the unevenness measurement result of the coil end face to determine the presence or absence of a telescope. It is stated that However, Patent Document 1 does not consider the relationship between unevenness on the coil end face and cracks on the coil end.

また、特許文献2には、コイル内直径両端の最内巻金属板同士の測定距離の差、又はコイル外直径両端の最外巻金属板同士の測定距離の差がそれぞれ閾値を超えるコイルは、金属板のコイルエンドのタング形状部を測定していると判定することが記載されている。しかしながら、特許文献2でも、コイル端面の凹凸とコイル端部の亀裂との関係については検討されていない。 Further, Patent Document 2 states that a coil in which the difference in measured distance between the innermost metal plates at both ends of the coil's inner diameter or the difference in the measured distance between the outermost metal plates at both ends of the coil's outer diameter exceeds a threshold value, It is described that it is determined that the tongue-shaped portion of the coil end of the metal plate is being measured. However, even in Patent Document 2, the relationship between unevenness on the end face of the coil and cracks at the end of the coil is not studied.

本発明は、上述のような事情に基づいてなされたものであり、通板時における鋼材の破断を抑制することができる熱延鋼板の製造方法の提供を課題とする。 The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a hot-rolled steel sheet that can suppress breakage of a steel material during sheet passing.

上記課題を解決するためになされた発明は、熱間圧延された帯状鋼材をコイル状に巻き取る工程と、上記巻取工程で巻き取られたコイルの端面を変位計で走査し、上記端面の凹凸の大きさを上記コイルの半径に亘って測定する工程と、上記測定工程で測定した凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、上記巻取工程よりも後工程における上記コイルのエッジ割れの有無を予測する工程とを備える熱延鋼板の製造方法である。 The invention made to solve the above problems involves a process of winding a hot-rolled steel strip into a coil, and scanning the end face of the coil wound in the winding process with a displacement meter. A step in which the size of the unevenness is measured over the radius of the coil, and the size of the unevenness measured in the above measurement step is set based on the size of the unevenness of other coils where edge cracks have occurred in the past. The method of manufacturing a hot rolled steel sheet includes a step of comparing the method with a threshold value and predicting the presence or absence of edge cracking of the coil in a step subsequent to the winding step.

当該熱延鋼板の製造方法は、上記予測工程で、上記測定工程で測定した上記コイルの端面の凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、上記巻取工程よりも後工程における上記コイルのエッジ割れの有無を予測するので、上記予測工程における予測結果を参照することで、上記巻取工程よりも後工程における上記コイルのエッジ割れを抑制することができ、ひいては通板時における鋼材の破断を抑制することができる。 The method for manufacturing the hot rolled steel sheet includes, in the prediction step, setting the size of the unevenness on the end face of the coil measured in the measuring step based on the size of the unevenness of other coils in which edge cracks have occurred in the past. Since the presence or absence of edge cracking of the coil in a process subsequent to the winding process is predicted by comparing it with the threshold value determined, by referring to the prediction result in the prediction process, It is possible to suppress edge cracking of the coil, and in turn, it is possible to suppress breakage of the steel material during sheet threading.

上記測定工程で、測定値の中央値を基準として上記凹凸の大きさを求めるとよい。このように、上記測定工程で、測定値の中央値を基準として上記凹凸の大きさを求めることによって、上記巻取工程よりも後工程における上記コイルのエッジ割れの有無を予測しやすい。 In the measurement step, the size of the unevenness may be determined using the median value of the measured values as a reference. In this manner, by determining the size of the unevenness in the measuring step using the median value of the measured values as a reference, it is easier to predict whether the coil will have edge cracks in the subsequent step than in the winding step.

当該熱延鋼板の製造方法は、上記予測工程でエッジ割れが有りと予測された場合に、上記コイルの上記閾値を超える位置を含む領域を除去する工程をさらに備えるとよい。当該厚鋼板の製造方法は、上記予測工程でエッジ割れが有りと予測された場合に、上記コイルの上記閾値を超える位置を含む領域を除去する工程をさらに備えることによって、帯状鋼材におけるエッジ割れが生じ難い部分を有効に使用しつつ、後工程におけるエッジ割れを事前に回避することができる。 The hot-rolled steel sheet manufacturing method may further include a step of removing a region of the coil including a position exceeding the threshold value when edge cracking is predicted in the prediction step. The method for manufacturing a thick steel plate further includes a step of removing an area including a position of the coil exceeding the threshold value when edge cracking is predicted in the prediction step, thereby preventing edge cracking in the steel strip. It is possible to prevent edge cracks in post-processing while effectively using areas where they are unlikely to occur.

上記除去工程で、上記帯状鋼材を幅方向に亘って切断するとよい。このように、上記除去工程で、上記帯状鋼材を幅方向に亘って切断することによって、帯状鋼材の利用効率を高めつつ、後工程におけるエッジ割れを事前に回避することができる。 In the removal step, it is preferable to cut the strip steel material in the width direction. In this way, by cutting the steel strip in the width direction in the removal step, it is possible to increase the utilization efficiency of the steel strip and prevent edge cracks in the subsequent process.

以上説明したように、本発明に係る熱延鋼板の製造方法は、通板時における鋼材の破断を抑制することができる。 As explained above, the method for manufacturing a hot rolled steel sheet according to the present invention can suppress breakage of the steel material during sheet passing.

図1は、本発明の一実施形態に係る熱延鋼板の製造方法を示すフロー図である。FIG. 1 is a flow diagram showing a method for manufacturing a hot rolled steel sheet according to an embodiment of the present invention. 図2は、図1の熱延鋼板の製造方法で用いる熱延鋼板の製造設備を示す模式図である。FIG. 2 is a schematic diagram showing hot-rolled steel sheet manufacturing equipment used in the hot-rolled steel sheet manufacturing method of FIG. 1. 図3は、図1の熱延鋼板の製造方法におけるコイルの端面の走査位置を示す模式図である。FIG. 3 is a schematic diagram showing the scanning position of the end face of the coil in the method for manufacturing the hot-rolled steel sheet of FIG. 1. 図4は、図1の熱延鋼板の製造方法とは異なる実施形態に係る熱延鋼板の製造方法を示すフロー図である。FIG. 4 is a flow diagram showing a method for manufacturing a hot-rolled steel sheet according to an embodiment different from the method for manufacturing a hot-rolled steel sheet in FIG. 図5は、図4の熱延鋼板の製造方法で用いる熱延鋼板の製造設備を示す模式図である。FIG. 5 is a schematic diagram showing hot-rolled steel sheet manufacturing equipment used in the hot-rolled steel sheet manufacturing method of FIG. 4. 図6は、測定工程で測定されたコイルの外周側の端面の凹凸の大きさを示すグラフである。FIG. 6 is a graph showing the size of the unevenness on the end face on the outer peripheral side of the coil measured in the measurement process.

以下、本発明の実施の形態について適宜図面を参照しつつ詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[第一実施形態]
<熱延鋼板の製造方法>
図1の熱延鋼板の製造方法は、熱間圧延された帯状鋼材をコイル状に巻き取る工程(巻取工程S1)と、巻取工程S1で巻き取られたコイルの端面を変位計で走査し、上記端面の凹凸の大きさを上記コイルの半径に亘って測定する工程(測定工程S2)と、測定工程S2で測定した凹凸の大きさを、過去にエッジ割れ(端部割れ)が生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、巻取工程S1よりも後工程における上記コイルのエッジ割れの有無を予測する工程(予測工程S3)とを備える。また、当該熱延鋼板の製造方法は、巻取工程S1で巻き取られたコイルを空冷する工程(空冷工程S4)を備える。さらに、当該熱延鋼板の製造方法は、空冷工程S4による空冷後のコイルを帯状に繰り出しつつ冷間圧延する工程(冷間圧延工程)及び上記冷間圧延工程による冷間圧延後の鋼材を焼鈍する工程(焼鈍工程)を備えていてもよい。なお、「コイル状」とは、軸方向視において渦巻き状であることをいう。「コイルの端面」とは、コイルにおける中心軸と垂直な面をいう。すなわち、「コイルの端面」とは、帯状鋼材の幅方向の端によって形成される面をいう。「コイルのエッジ割れ」とは、コイル自体の割れの他、コイルを展開した鋼材の割れを含む。
[First embodiment]
<Manufacturing method of hot rolled steel plate>
The manufacturing method of the hot-rolled steel sheet shown in Fig. 1 includes a step of winding a hot-rolled steel strip into a coil shape (winding step S1), and scanning the end face of the coil wound in the winding step S1 with a displacement meter. The step of measuring the size of the unevenness on the end face over the radius of the coil (measuring step S2) and the size of the unevenness measured in the measuring step S2 are performed based on the results of the step of measuring the size of the unevenness on the end face over the radius of the coil. and a step (prediction step S3) of predicting the presence or absence of edge cracking of the coil in a step subsequent to the winding step S1 by comparing the method with a threshold value set based on the size of the unevenness of other coils. Moreover, the method for manufacturing the hot-rolled steel sheet includes a step of air cooling the coil wound up in the winding step S1 (air cooling step S4). Furthermore, the method for manufacturing the hot rolled steel sheet includes a step of cold rolling the coil after air cooling in the air cooling step S4 while unwinding it into a strip (cold rolling step), and annealing the steel material after cold rolling in the above cold rolling step. It may also include a step (annealing step). Note that "coiled" refers to a spiral shape when viewed in the axial direction. The term "end face of the coil" refers to a face perpendicular to the central axis of the coil. That is, the "end surface of the coil" refers to a surface formed by the widthwise end of the steel strip. The term "coil edge cracks" includes cracks in the coil itself as well as cracks in the steel material from which the coil is developed.

当該熱延鋼板の製造方法について説明するにあたり、まず図2を参照して当該熱延鋼板の製造方法を実施可能な熱延鋼板の製造設備1(以下、単に「製造設備1」ともいう)について説明する。 In explaining the method for manufacturing the hot-rolled steel sheet, first, with reference to FIG. 2, we will explain the hot-rolled steel sheet manufacturing equipment 1 (hereinafter also simply referred to as "manufacturing equipment 1") that can carry out the method for manufacturing the hot-rolled steel sheet. explain.

〔熱延鋼板の製造設備〕
図2の製造設備1は、複数対の圧延ロール2a及びこれらの圧延ロール2aによって熱間圧延された帯状鋼材Xをコイル状に巻き取る巻取機2bを有し、熱間圧延ラインを構成する熱間圧延装置2と、巻取機2bで巻き取られたコイルX1の端面の凹凸の大きさをコイルX1の半径に亘って測定する測定ラインを構成する測定装置3と、測定装置3で測定された凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、上記熱間圧延ラインよりも後のラインにおけるコイルX1のエッジ割れの有無を予測する予測装置4とを備える。また、当該製造設備1は、上記測定ライン通過後のコイルX1を空冷する空冷装置5を備える。当該製造設備1は、空冷装置5による空冷後のコイルX1を冷間圧延する冷間圧延装置、上記冷間圧延装置による冷間圧延後の帯状鋼材を焼鈍する焼鈍装置等をさらに備えていてもよい。
[Hot-rolled steel sheet manufacturing equipment]
The manufacturing equipment 1 in FIG. 2 includes a plurality of pairs of rolling rolls 2a and a winding machine 2b that winds up a strip steel material X hot-rolled by these rolling rolls 2a into a coil shape, and constitutes a hot rolling line. Measurement is carried out by the hot rolling device 2, the measuring device 3 that constitutes a measuring line that measures the size of the unevenness on the end face of the coil X1 wound by the winding machine 2b over the radius of the coil X1, and the measuring device 3. The size of the unevenness thus obtained is compared with a threshold value set based on the size of unevenness of other coils in which edge cracking has occurred in the past, and edge cracking of coil X1 on a line subsequent to the above hot rolling line is determined. and a prediction device 4 that predicts the presence or absence of. Further, the manufacturing equipment 1 includes an air cooling device 5 that air cools the coil X1 after passing through the measurement line. The manufacturing equipment 1 may further include a cold rolling device that cold-rolls the coil X1 after being air-cooled by the air-cooling device 5, an annealing device that anneals the steel strip after cold rolling by the cold rolling device, etc. good.

熱間圧延装置2は、加熱炉(不図示)で加熱された厚鋼板に粗圧延及び仕上圧延を施したうえで、圧延後の帯状鋼材Xを巻取機2bでコイル状に巻き取る。 The hot rolling apparatus 2 performs rough rolling and finish rolling on a thick steel plate heated in a heating furnace (not shown), and then winds up the rolled steel strip X into a coil shape with a winding machine 2b.

測定装置3は、巻取機2bで巻き取られたコイルX1を搬送するコンベア3aと、コンベア3a上を搬送されているコイルX1の端面を走査し、この端面の凹凸の大きさを測定する変位計3bとを有する。図3に示すように、変位計3bは、コイルX1の端面Eの凹凸の大きさをコイルX1の半径に亘って測定し、より好ましくは直径に亘って測定する。変位計3bとしては、例えばレーザー変位計が用いられる。変位計3bは、コイルX1の端面Eにレーザー光を照射するレーザー照射部と、端面Eで反射された光線の一部を受光する受光素子とを有する。変位計3bは、上記レーザー照射部から端面Eに照射されたレーザー光の反射光を上記受光素子によって読み取る。変位計3bは、三角測距方式によってコイルX1の端面Eの凹凸の大きさを測定可能に構成される。 The measuring device 3 scans the conveyor 3a that conveys the coil X1 wound up by the winder 2b, and the end surface of the coil X1 being conveyed on the conveyor 3a, and measures the size of the unevenness of this end surface. It has a total of 3b. As shown in FIG. 3, the displacement meter 3b measures the size of the unevenness on the end surface E of the coil X1 over the radius of the coil X1, and more preferably over the diameter. For example, a laser displacement meter is used as the displacement meter 3b. The displacement meter 3b includes a laser irradiation unit that irradiates the end surface E of the coil X1 with a laser beam, and a light receiving element that receives a portion of the light beam reflected by the end surface E. The displacement meter 3b uses the light receiving element to read the reflected light of the laser beam irradiated onto the end surface E from the laser irradiation section. The displacement meter 3b is configured to be able to measure the size of the unevenness on the end surface E of the coil X1 using a triangulation method.

予測装置4は、例えばコンピュータから構成される。予測装置4は、過去にエッジ割れが生じたコイルX1の端面Eの凹凸の大きさのデータと、過去にエッジ割れが生じなかったコイルX1の端面Eの凹凸の大きさのデータとを格納するデータベースを有する。予測装置4は、例えば過去にエッジ割れが生じたコイルX1の端面Eの凹凸の大きさよりも低い値を閾値として設定する。予測装置4は、測定装置3で測定されたコイルX1の端面Eの凹凸の大きさが上記閾値よりも大きい場合に、後工程においてコイルX1のエッジ割れのおそれが有ると予測する。一方、上記予測装置4は、測定装置3で測定されたコイルX1の端面Eの凹凸の大きさが上記閾値以下である場合、後工程においてコイルX1のエッジ割れのおそれは無いと予測する。予測装置4は、帯状鋼材Xの組成に対応する複数の閾値を保有していてもよい。 The prediction device 4 is composed of, for example, a computer. The prediction device 4 stores data on the size of unevenness on the end face E of the coil X1 where edge cracks have occurred in the past, and data on the size of unevenness on the end face E of the coil X1 where edge cracks have not occurred in the past. Has a database. For example, the prediction device 4 sets a value lower than the size of the unevenness of the end face E of the coil X1 where edge cracking has occurred in the past as the threshold value. The prediction device 4 predicts that there is a risk of edge cracking of the coil X1 in a subsequent process when the size of the unevenness of the end surface E of the coil X1 measured by the measurement device 3 is larger than the above threshold value. On the other hand, the prediction device 4 predicts that there is no risk of edge cracking of the coil X1 in a subsequent process if the size of the unevenness on the end surface E of the coil X1 measured by the measurement device 3 is equal to or less than the threshold value. The prediction device 4 may have a plurality of threshold values corresponding to the composition of the strip steel material X.

空冷装置5は、測定装置3で端面Eの凹凸の大きさを測定された後のコイルX1を空冷する。当該製造設備1では、巻取機2bによる巻き取り後のコイルX1は500℃程度又はそれ以上に加熱されている。空冷装置5は、この加熱されたコイルX1を常温まで空冷する。当該製造設備1は、巻取機2bで巻き取られたコイルX1を空冷するため、コイルX1の端面Eに大きな突出部分が存在すると、この突出部分の冷却速度が他の部分よりも速くなりやすい。 The air cooling device 5 air-cools the coil X1 after the size of the unevenness of the end surface E has been measured by the measuring device 3. In the manufacturing equipment 1, the coil X1 after being wound by the winding machine 2b is heated to about 500° C. or higher. The air cooling device 5 air cools the heated coil X1 to room temperature. Since the manufacturing equipment 1 air-cools the coil X1 wound by the winder 2b, if a large protrusion exists on the end surface E of the coil X1, the cooling rate of this protrusion tends to be faster than other parts. .

〔帯状鋼材〕
帯状鋼材Xは、スラブを加熱し、熱間圧延することで形成される。帯状鋼材Xの組成としては、特に限定されないが、例えば炭素、ケイ素、マンガン、リン、硫黄、クロム、ニッケル、モリブデン及び銅、並びに残部が鉄及び不可避的不純物である組成を有する。帯状鋼材Xに冷間圧延を施す場合、巻取工程S1における巻取温度は、帯状鋼材XのMs(マルテンサイト変態開始温度)以上であることが好ましい。
[Strip steel material]
The strip steel material X is formed by heating and hot rolling a slab. The composition of the strip steel material X is not particularly limited, but for example, it has a composition of carbon, silicon, manganese, phosphorus, sulfur, chromium, nickel, molybdenum, and copper, with the balance being iron and inevitable impurities. When cold rolling the steel strip X, the winding temperature in the winding step S1 is preferably equal to or higher than Ms (martensitic transformation start temperature) of the steel strip X.

帯状鋼材Xの下記式(1)で表される炭素当量Ceqの上限としては、0.75%が好ましく、0.70%がより好ましい。帯状鋼材Xの炭素当量Ceqが上記上限を超えると、空冷工程S4において冷却速度が大きい場合にマルテンサイトの相が生成するおそれが高くなる。一方、上記炭素当量Ceqの下限としては、特に限定されないが、例えば0.55%とすることができる。上記炭素当量Ceqが上記下限に満たない場合、概ね巻取工程S1までに変態が完了するため、マルテンサイトの相は生成され難く、後工程でコイルX1にエッジ割れを生じるおそれが低い。そのため、予測工程S3による予測の必要性が低い。
Ceq[%]=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(1)
但し、[C]、[Si]、[Mn]、[Ni]、[Cr]、[Mo]及び[V]は、それぞれC、Si、Mn、Ni、Cr、Mo及びVの含有量(質量%)を示す。
The upper limit of the carbon equivalent Ceq expressed by the following formula (1) of the steel strip X is preferably 0.75%, more preferably 0.70%. When the carbon equivalent Ceq of the strip steel material X exceeds the above upper limit, there is a high possibility that a martensite phase will be generated when the cooling rate is high in the air cooling step S4. On the other hand, the lower limit of the carbon equivalent Ceq is not particularly limited, but may be, for example, 0.55%. When the carbon equivalent Ceq is less than the lower limit, the transformation is almost completed by the winding step S1, so a martensite phase is difficult to generate, and there is a low possibility that edge cracking will occur in the coil X1 in a subsequent step. Therefore, the need for prediction by the prediction step S3 is low.
Ceq [%] = [C] + [Si] / 24 + [Mn] / 6 + [Ni] / 40 + [Cr] / 5 + [Mo] / 4 + [V] / 14... (1)
However, [C], [Si], [Mn], [Ni], [Cr], [Mo] and [V] are the contents (mass) of C, Si, Mn, Ni, Cr, Mo and V, respectively. %).

(巻取工程)
巻取工程S1では、複数対の圧延ロール2aによって熱間圧延された帯状鋼材Xを高温下で巻取機2bによってコイル状に巻き取る。巻取工程S1における巻取温度は、マルテンサイトの相の生成を防ぐ観点から、帯状鋼材XのMs温度以上であることが好ましい。上記巻取温度の下限としては、400℃が好ましく、500℃がより好ましく、560℃がさらに好ましい。一方、上記巻取温度の上限としては、700℃が好ましく、670℃がより好ましい。上記巻取温度が上記下限に満たないと、帯状鋼材Xの強度が大きくなり過ぎて、冷間圧延工程等の後工程において装置への負荷が大きくなるおそれがある。逆に、上記巻取温度が上記上限を超えると、帯状鋼材X表面のスケール厚みが大きくなるおそれがある。なお、「巻取温度」とは、巻き取り直前の帯状鋼材Xの表面温度をいう。
(winding process)
In the winding step S1, the strip steel material X hot-rolled by the plurality of pairs of rolling rolls 2a is wound into a coil shape by the winding machine 2b at a high temperature. The winding temperature in the winding step S1 is preferably equal to or higher than the Ms temperature of the steel strip X from the viewpoint of preventing the formation of a martensite phase. The lower limit of the winding temperature is preferably 400°C, more preferably 500°C, and even more preferably 560°C. On the other hand, the upper limit of the winding temperature is preferably 700°C, more preferably 670°C. If the coiling temperature is less than the lower limit, the strength of the steel strip X will become too high, and there is a risk that the load on the equipment will increase in subsequent processes such as the cold rolling process. On the other hand, if the coiling temperature exceeds the upper limit, the scale thickness on the surface of the steel strip X may increase. In addition, "winding temperature" refers to the surface temperature of the strip steel material X immediately before winding.

(測定工程)
測定工程S2では、コンベア3a上を搬送されるコイルX1の端面Eを変位計3bによって走査し、端面Eの凹凸の大きさをコイルX1の半径に亘って測定し、より好ましくは直径に亘って測定する。測定工程S2では、測定値の中央値を基準として端面Eの凹凸の大きさを求めることが好ましい。具体的には、測定工程S2では、変位計3bによってコイルX1の端面Eを半径に亘って連続計測し、複数の計測値の中央値を基準として端面Eの凹凸の大きさを求めることが好ましい。当該熱延鋼板の製造方法では、コイルX1の外周側及び/又は内周側の端部に巻きずれに起因する大きな突出部分(テレスコープ)が形成される場合がある。この点、当該熱延鋼板の製造方法は、上記中央値を基準として端面Eの凹凸の大きさを求めることで、部分的に大きな突出部分が存在する場合でも、コイルX1全体の凹凸の大きさを適切に測定することができ、後工程におけるコイルX1のエッジ割れの有無を予測しやすい。
(Measurement process)
In the measurement step S2, the end surface E of the coil X1 conveyed on the conveyor 3a is scanned by the displacement meter 3b, and the size of the unevenness of the end surface E is measured over the radius of the coil X1, more preferably over the diameter. Measure. In the measurement step S2, it is preferable to determine the size of the unevenness on the end surface E using the median value of the measured values as a reference. Specifically, in the measurement step S2, it is preferable that the displacement meter 3b continuously measure the end surface E of the coil X1 over the radius, and determine the size of the unevenness of the end surface E based on the median value of the plurality of measured values. . In the hot-rolled steel sheet manufacturing method, a large protrusion (telescope) may be formed at the outer and/or inner end of the coil X1 due to winding misalignment. In this regard, the hot-rolled steel sheet manufacturing method calculates the size of the unevenness of the end face E based on the above median value, so that even if there is a partially large protrusion, the size of the unevenness of the entire coil X1 can be determined. can be appropriately measured, and it is easy to predict the presence or absence of edge cracking of the coil X1 in the subsequent process.

(予測工程)
予測工程S3は、予測装置4によって実施される。予測工程S3では、変位計3bで測定されたコイルX1の端面Eの凹凸の大きさを予め設定された閾値と比較する。予測工程S3では、変位計3bで測定されたコイルX1の端面Eの凹凸の大きさが上記閾値よりも大きい場合に、後工程においてコイルX1のエッジ割れのおそれが有ると予測する。一方、予測工程S3では、変位計3bで測定されたコイルX1の端面Eの凹凸の大きさが上記閾値以下である場合、後工程においてコイルX1のエッジ割れのおそれは無いと予測する。上記閾値としては、例えば過去にエッジ割れが生じたコイルX1の端面Eの凹凸の大きさよりも低い値が設定される。上記閾値は、過去にエッジ割れが生じたコイルX1におけるエッジ割れが生じた部分の凹凸の最小値に基づいて設定されることが好ましい。この場合、上記閾値としては、過去にエッジ割れが生じたコイルX1におけるエッジ割れが生じた部分の凹凸の最小値よりも小さい値が設定されることが好ましい。この閾値は、帯状鋼材Xの組成に対応して設けられてもよい。
(Prediction process)
The prediction step S3 is performed by the prediction device 4. In the prediction step S3, the magnitude of the unevenness on the end surface E of the coil X1 measured by the displacement meter 3b is compared with a preset threshold value. In the prediction step S3, if the size of the unevenness on the end surface E of the coil X1 measured by the displacement meter 3b is larger than the above threshold value, it is predicted that there is a risk of edge cracking of the coil X1 in a subsequent step. On the other hand, in the prediction step S3, if the size of the unevenness on the end surface E of the coil X1 measured by the displacement meter 3b is less than or equal to the above threshold value, it is predicted that there is no risk of edge cracking of the coil X1 in the subsequent step. The threshold value is set, for example, to a value lower than the size of the unevenness on the end surface E of the coil X1 where edge cracking occurred in the past. It is preferable that the threshold value is set based on the minimum value of the unevenness of the portion where edge cracking occurred in the coil X1 where edge cracking occurred in the past. In this case, it is preferable that the threshold is set to a value smaller than the minimum value of the unevenness of the portion of the coil X1 where edge cracks have occurred in the past. This threshold value may be set corresponding to the composition of the strip steel material X.

(空冷工程)
空冷工程S4では、コンベア3a上を搬送されたコイルX1を常温まで空冷する。空冷工程S4では、コイルX1の端面Eに大きな突出部分が存在すると、この突出部分の冷却速度が速くなりやすい。コイルX1に冷却速度の速い部分が存在すると、この部分にマルテンサイトの相が生じやすくなり、例えば冷間圧延工程等の後工程でエッジ割れを生じやすくなる。
(air cooling process)
In the air cooling step S4, the coil X1 conveyed on the conveyor 3a is air cooled to room temperature. In the air cooling process S4, if a large protruding portion exists on the end surface E of the coil X1, the cooling rate of this protruding portion tends to become faster. If a portion where the cooling rate is high is present in the coil X1, a martensite phase is likely to occur in this portion, and edge cracks are likely to occur in a subsequent process such as a cold rolling process.

なお、当該熱延鋼板の製造方法では、予測工程S3でエッジ割れのおそれ有りと予測されたコイルX1については、エッジ割れを生じなくするための処理を施してもよく、製造ラインから除いてもよい。 In addition, in the hot-rolled steel sheet manufacturing method, the coil X1 predicted to have a risk of edge cracking in the prediction step S3 may be treated to prevent edge cracking, or may be removed from the production line. good.

<利点>
当該熱延鋼板の製造方法は、予測工程S3で、測定工程S2で測定したコイルX1の端面Eの凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、巻取工程S1よりも後工程におけるコイルX1のエッジ割れの有無を予測するので、予測工程S3における予測結果を参照することで、巻取工程S1よりも後工程におけるコイルX1のエッジ割れを抑制することができ、ひいては通板時における鋼材の破断を抑制することができる。
<Advantages>
In the method for manufacturing the hot-rolled steel sheet, in a prediction step S3, the size of the unevenness on the end face E of the coil X1 measured in the measuring step S2 is based on the size of the unevenness of other coils in which edge cracks have occurred in the past. The presence or absence of edge cracking of the coil Edge cracking of the coil X1 can be suppressed, and in turn, breakage of the steel material during sheet passing can be suppressed.

[第二実施形態]
<熱延鋼板の製造方法>
図4の熱延鋼板の製造方法は、熱間圧延された帯状鋼材をコイル状に巻き取る工程(巻取工程S1)と、巻取工程S1で巻き取られたコイルの端面を変位計で走査し、上記端面の凹凸の大きさを上記コイルの半径に亘って測定する工程(測定工程S2)と、測定工程S2で測定した凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、巻取工程S1よりも後工程における上記コイルのエッジ割れの有無を予測する工程(予測工程S3)と、予測工程S3でエッジ割れが有りと予測された場合に、上記コイルの上記閾値を超える位置を含む領域を除去する工程(除去工程S5)とを備える。また、当該熱延鋼板の製造方法は、巻取工程S1で巻き取られたコイルを空冷する工程(空冷工程S4)を備える。さらに、当該熱延鋼板の製造方法は、空冷工程S4による空冷後のコイルを帯状に繰り出しつつ冷間圧延する工程(冷間圧延工程)及び上記冷間圧延工程による冷間圧延後の鋼材を焼鈍する工程(焼鈍工程)を備えていてもよい。当該熱延鋼板の製造方法が上記冷間圧延工程を備える場合、除去工程S5は、空冷工程S4後、かつ上記冷間圧延工程前に実施することができる。なお、当該熱延鋼板の製造方法における除去工程S5以外の各工程は、図1の熱延鋼板の製造方法と同様の手順で行うことができる。
[Second embodiment]
<Manufacturing method of hot rolled steel plate>
The manufacturing method of the hot-rolled steel sheet shown in Fig. 4 includes a step of winding a hot-rolled steel strip into a coil shape (winding step S1), and scanning the end face of the coil wound in the winding step S1 with a displacement meter. Then, there is a step of measuring the size of the unevenness on the end face over the radius of the coil (measuring step S2), and the size of the unevenness measured in the measuring step S2 is compared with that of other coils in which edge cracks have occurred in the past. A step (prediction step S3) of predicting the presence or absence of edge cracking of the coil in a process subsequent to the winding step S1 by comparing it with a threshold value set based on the size of the unevenness, and a step of predicting the presence or absence of edge cracking in the coil in a step subsequent to the winding step S1. and a step of removing a region of the coil that includes a position exceeding the threshold value (removal step S5). Moreover, the method for manufacturing the hot-rolled steel sheet includes a step of air cooling the coil wound up in the winding step S1 (air cooling step S4). Furthermore, the method for manufacturing the hot rolled steel sheet includes a step of cold rolling the coil after air cooling in the air cooling step S4 while unwinding it into a strip (cold rolling step), and annealing the steel material after cold rolling in the above cold rolling step. It may also include a step (annealing step). When the method for manufacturing the hot-rolled steel sheet includes the cold rolling process, the removal process S5 can be performed after the air cooling process S4 and before the cold rolling process. In addition, each process other than the removal process S5 in the manufacturing method of the said hot rolled steel sheet can be performed by the same procedure as the manufacturing method of the hot rolled steel sheet of FIG.

〔熱延鋼板の製造設備〕
当該熱延鋼板の製造方法は、図5の熱延鋼板の製造設備11(以下、単に「製造設備11」ともいう)を用いて実施することができる。図5の製造設備11は、複数対の圧延ロール2a及びこれらの圧延ロール2aによって熱間圧延された帯状鋼材Xをコイル状に巻き取る巻取機2bを有し、熱間圧延ラインを構成する熱間圧延装置2と、巻取機2bで巻き取られたコイルX1の端面の凹凸の大きさをコイルX1の半径に亘って測定する測定ラインを構成する測定装置3と、測定装置3で測定された凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、上記熱間圧延ラインよりも後のラインにおけるコイルX1のエッジ割れの有無を予測する予測装置4と、上記測定ライン通過後のコイルX1を空冷する空冷装置5と、空冷装置5による空冷後のコイルX1を帯状に繰り出しつつ、上記閾値を超える位置を含む領域を除去する除去装置6とを備える。当該製造設備11における除去装置6以外の各部の構成は、図2の製造設備1と同様とすることができる。
[Hot-rolled steel sheet production equipment]
The hot-rolled steel sheet manufacturing method can be carried out using hot-rolled steel sheet manufacturing equipment 11 (hereinafter also simply referred to as "manufacturing equipment 11") shown in FIG. The manufacturing equipment 11 in FIG. 5 includes a plurality of pairs of rolling rolls 2a and a winding machine 2b that winds up a strip steel material X hot-rolled by these rolling rolls 2a into a coil shape, and constitutes a hot rolling line. Measurement is carried out by the hot rolling device 2, the measuring device 3 that constitutes a measuring line that measures the size of the unevenness on the end face of the coil X1 wound by the winding machine 2b over the radius of the coil X1, and the measuring device 3. The size of the unevenness thus obtained is compared with a threshold value set based on the size of unevenness of other coils in which edge cracking has occurred in the past, and edge cracking of coil X1 on a line subsequent to the above hot rolling line is determined. a prediction device 4 that predicts the presence or absence of the coil X1; an air cooling device 5 that air-cools the coil and a removal device 6 for removal. The configuration of each part of the manufacturing equipment 11 other than the removal device 6 can be the same as that of the manufacturing equipment 1 of FIG. 2.

除去装置6は、コイルX1を帯状に繰り出す繰出リール6aと、繰出リール6aから繰り出された帯状鋼材X2を部分的に除去する剪断機6bと、剪断機6bによる除去後の帯状鋼材X2をコイル状に巻き取る巻取リール6cとを有する。 The removal device 6 includes a feeding reel 6a that feeds out the coil X1 in the form of a strip, a shearing machine 6b that partially removes the steel strip X2 fed out from the feeding reel 6a, and a shearing machine 6b that cuts the steel strip X2 into a coil after being removed by the shearing machine 6b. It has a take-up reel 6c that takes up the winding.

(除去工程)
除去工程S5は、空冷工程S4による空冷後のコイルX1を部分的に除去する。当該熱延鋼板の製造方法は、コイルX1の端面Eに大きな突出部分が存在すると、この突出部分の冷却速度が速くなり、この冷却速度の速い部分にマルテンサイトの相が生じやすくなる。そのため、除去工程S5では、このマルテンサイトの相が生じやすい部分を選択的に除去することで、冷間圧延工程等の後工程におけるエッジ割れのおそれを回避する。
(Removal process)
The removal step S5 partially removes the coil X1 after being air-cooled in the air-cooling step S4. In the hot-rolled steel sheet manufacturing method, when a large protruding portion exists on the end surface E of the coil X1, the cooling rate of this protruding portion becomes faster, and a martensite phase is likely to occur in the portion where the cooling rate is faster. Therefore, in the removal step S5, the portion where this martensite phase is likely to occur is selectively removed, thereby avoiding the possibility of edge cracking in subsequent steps such as the cold rolling step.

除去工程S5では、帯状鋼材X2を幅方向に亘って切断することが好ましい。つまり、除去工程S5では、繰出リール6aから繰り出された帯状鋼材X2を幅方向(搬送方向と垂直な方向)にシャーカットすることが好ましい。コイルX1は、外周側及び/又は内周側の端部に予測工程S3で設定された閾値を超える大きな凹凸が形成されやすい。そのため、当該熱延鋼板の製造方法は、除去工程S5によって帯状鋼材X2を幅方向に亘って切断することで、大きな凹凸が形成された帯状鋼材X2の長手方向における端部領域を選択的に除去することができ、帯状鋼材X2の利用効率を高めつつ、後工程におけるエッジ割れを容易に回避することができる。 In the removal step S5, it is preferable to cut the strip steel material X2 across the width direction. That is, in the removal step S5, it is preferable to shear-cut the strip steel material X2 fed out from the feeding reel 6a in the width direction (direction perpendicular to the conveyance direction). In the coil X1, large irregularities exceeding the threshold set in the prediction step S3 are likely to be formed on the outer circumferential side and/or the inner circumferential side end. Therefore, in the method for manufacturing the hot-rolled steel sheet, the strip steel material X2 is cut across the width in the removal step S5, thereby selectively removing the end region in the longitudinal direction of the strip steel material X2 in which large irregularities are formed. Therefore, it is possible to easily avoid edge cracking in the subsequent process while increasing the utilization efficiency of the strip steel material X2.

<利点>
当該熱延鋼板の製造方法は、予測工程S3でエッジ割れが有りと予測された場合に、コイルX1の上記閾値を超える位置を含む領域を除去する工程をさらに備えるので、帯状鋼材X2におけるエッジ割れが生じ難い部分を有効に使用しつつ、後工程におけるエッジ割れを事前に回避することができる。
<Advantages>
The hot-rolled steel sheet manufacturing method further includes a step of removing an area including a position exceeding the above-mentioned threshold value of the coil X1 when edge cracking is predicted in the prediction step S3. Edge cracks in subsequent processes can be avoided in advance while making effective use of areas that are less likely to cause cracks.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other embodiments]
The above embodiments do not limit the configuration of the present invention. Therefore, in the above embodiment, it is possible to omit, replace, or add components of each part of the above embodiment based on the description of this specification and common general technical knowledge, and all of these are interpreted as falling within the scope of the present invention. Should.

例えば当該熱延鋼板の製造方法は、上述の空冷工程を備えていなくてもよい。また、当該熱延鋼板の製造方法は、上記空冷工程を備える場合でも、この空冷工程の前に上述の除去工程を行うことも可能である。 For example, the method for manufacturing the hot rolled steel sheet does not need to include the above-mentioned air cooling step. Moreover, even when the method for manufacturing the hot-rolled steel sheet includes the above-mentioned air-cooling step, it is also possible to perform the above-mentioned removal step before this air-cooling step.

上記除去工程では、上記帯状鋼材の幅方向の両端部分を長手方向に亘って除去することも可能である。但し、得られる熱延鋼板が規定の規格値を満足するよう、上記除去工程では、上記帯状鋼材を幅方向に亘って切断することが好ましい。 In the removal step, it is also possible to remove both widthwise end portions of the strip steel material in the longitudinal direction. However, in the removal step, it is preferable to cut the strip steel material in the width direction so that the resulting hot rolled steel sheet satisfies specified standard values.

当該熱延鋼板の製造方法は、上記除去工程に代えて、上記予測工程でエッジ割れ有りと予測された場合に上記帯状鋼材を焼鈍する工程を備えていてもよい。当該熱延鋼板の製造方法は、エッジ割れ有りと予測されたコイルを冷間圧延前に焼鈍することによっても、コイルのエッジ割れを回避することができる。 The method for producing a hot rolled steel sheet may include, instead of the removal step, a step of annealing the strip steel material when it is predicted that edge cracking will occur in the prediction step. In the method for manufacturing a hot-rolled steel sheet, edge cracking of the coil can also be avoided by annealing the coil predicted to have edge cracking before cold rolling.

上記測定工程では、上記コイルの端面の凹凸の平均値、最頻値等を基にこの端面の凹凸の大きさを求めることも可能である。但し、上述のように、上記測定工程では、テレスコープ等の大きな突出部分が存在する場合でも、上記コイルの全体の凹凸の大きさを適切に測定することができる観点から、測定値の中央値を基準として上記コイルの端面の凹凸の大きさを求めることが好ましい。 In the measurement step, it is also possible to determine the size of the unevenness on the end face of the coil based on the average value, mode, etc. of the unevenness on the end face of the coil. However, as mentioned above, in the measurement process, even if there is a large protruding part such as a telescope, the median value of the measured value is It is preferable to determine the size of the unevenness on the end face of the coil using as a reference.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.

[製造例]
[No.1]
図5に示す製造設備11を用いて鋼板を製造した。本実施例では、図5の除去装置6の下流側に、冷間圧延装置を備える製造設備を用いて鋼板を製造した。この製造例における後述の空冷工程後の板厚は2.08mm、この空冷工程後の板幅は1011mm、冷間圧延後の板厚は1.1mmであり、帯状鋼材の巻取温度は650℃であった。また、この帯状鋼材の、上述の式(1)で求められる炭素当量Ceqは0.6642[%]であり、下記式(2)で求められるMs温度は374℃であった。
Ms[℃]=539-423×[C]-30.4×[Mn]-17.7×[Ni]-12.1×[Cr]-7.5×[Mo]・・・(2)
但し、[C]、[Mn]、[Ni]、[Cr]及び[Mo]は、それぞれC、Mn、Ni、Cr及びMoの含有量(質量%)を示す。
[Manufacturing example]
[No. 1]
A steel plate was manufactured using manufacturing equipment 11 shown in FIG. In this example, a steel plate was manufactured using a manufacturing facility equipped with a cold rolling device downstream of the removing device 6 in FIG. 5. In this production example, the plate thickness after the air cooling process described below is 2.08 mm, the plate width after this air cooling process is 1011 mm, the plate thickness after cold rolling is 1.1 mm, and the coiling temperature of the steel strip is 650 ° C. Met. Further, the carbon equivalent Ceq of this steel strip obtained from the above equation (1) was 0.6642 [%], and the Ms temperature obtained from the following equation (2) was 374°C.
Ms[℃]=539-423×[C]-30.4×[Mn]-17.7×[Ni]-12.1×[Cr]-7.5×[Mo]...(2)
However, [C], [Mn], [Ni], [Cr], and [Mo] indicate the content (mass%) of C, Mn, Ni, Cr, and Mo, respectively.

No.1では、上述の巻取工程によって巻き取られたコイルの端面の凹凸の大きさを上述の測定工程によって測定し、この測定工程の後、上述の空冷工程によって常温まで空冷した。さらに、この空冷工程後に、上述の除去工程によって、コイルの外周側の端部から長手方向に51mまでの領域を帯状鋼材の幅方向に亘って切断した。続いて、この切断後の帯状鋼材を冷間圧延機にて冷間圧延した。なお、上記測定工程では、測定値の中央値を基準として凹凸の大きさを求めた。No.1における帯状鋼材の品質、上記巻取工程における巻取温度[℃]、上記除去工程によるコイルの外周側の端部を基準とする長手方向における除去長さ[m]、冷間圧延後におけるエッジ割れの有無を表1に示す。また、上記測定工程で測定されたコイルの外周側の端面の凹凸の大きさを図6に示す。なお、図6では、コイルのコンベアとは反対側の端面がコンベアから離間する方向に突出している場合をプラス、コンベア側に凹んでいる場合をマイナスとして示している。 No. In No. 1, the size of the unevenness on the end face of the coil wound up in the above-described winding process was measured by the above-mentioned measurement process, and after this measurement process, the coil was air-cooled to room temperature by the above-described air cooling process. Further, after this air cooling step, the strip steel material was cut in a region extending 51 m in the longitudinal direction from the outer circumferential end of the coil across the width direction by the above-mentioned removal step. Subsequently, the cut steel strip was cold rolled in a cold rolling mill. In the measurement step, the size of the unevenness was determined based on the median value of the measured values. No. The quality of the steel strip in step 1, the winding temperature [°C] in the above-mentioned winding process, the removed length [m] in the longitudinal direction based on the outer peripheral end of the coil in the above-mentioned removal process, and the edge after cold rolling. Table 1 shows the presence or absence of cracks. Further, FIG. 6 shows the size of the unevenness on the end face on the outer peripheral side of the coil measured in the above measurement process. In FIG. 6, the case where the end face of the coil opposite to the conveyor projects in a direction away from the conveyor is shown as a plus, and the case where it is recessed toward the conveyor is shown as a minus.

[No.2]
No.1と同様の組成を有する鋼材を用いてNo.1と同様の手順で鋼板を製造した。No.2における帯状鋼材の品質、上記巻取工程における巻取温度[℃]、上記除去工程によるコイルの外周側の端部を基準とする長手方向における除去長さ[m]、冷間圧延後におけるエッジ割れの有無を表1に示す。また、上記測定工程で測定されたコイルの外周側の端面の凹凸の大きさを図6に示す。
[No. 2]
No. No. 1 was prepared using steel having the same composition as No. 1. A steel plate was manufactured in the same manner as in Step 1. No. The quality of the steel strip in 2, the winding temperature [°C] in the above-mentioned winding process, the removed length [m] in the longitudinal direction based on the outer peripheral end of the coil in the above-mentioned removal process, and the edge after cold rolling. Table 1 shows the presence or absence of cracks. Further, FIG. 6 shows the size of the unevenness on the end face on the outer peripheral side of the coil measured in the above measurement process.

[No.3]
No.1と同様の組成を有する鋼材を用いてNo.1と同様の手順で鋼板を製造した。No.3における帯状鋼材の品質、上記巻取工程における巻取温度[℃]、上記除去工程によるコイルの外周側の端部を基準とする長手方向における除去長さ[m]、冷間圧延後におけるエッジ割れの有無を表1に示す。また、上記測定工程で測定されたコイルの外周側の端面の凹凸の大きさを図6に示す。なお、No.3では、冷間圧延後の帯状鋼材にエッジ割れが生じている。コイルの外周側の端部からこの端部から最も離れた位置においてエッジ割れが生じた部分までの熱間圧延後のコイルの長さに換算した距離を表1に示す。また、図6に、コイルにエッジ割れが生じた部分のうちで、コイルの端面の凹凸が最も小さかった部分を示す。図6に示すように、No.3では、凹凸の大きさが15mm(図6上では-15mm)の位置でエッジ割れが生じている一方、凹凸の大きさが15mm未満の位置ではエッジ割れは生じていない。
[No. 3]
No. No. 1 was prepared using steel having the same composition as No. 1. A steel plate was manufactured in the same manner as in Step 1. No. The quality of the steel strip in step 3, the winding temperature [°C] in the above-mentioned winding process, the removed length [m] in the longitudinal direction based on the outer peripheral end of the coil in the above-mentioned removal process, and the edge after cold rolling. Table 1 shows the presence or absence of cracks. Further, FIG. 6 shows the size of the unevenness on the end face on the outer peripheral side of the coil measured in the above measurement process. In addition, No. In No. 3, edge cracks have occurred in the steel strip after cold rolling. Table 1 shows the distance from the outer peripheral end of the coil to the part where edge cracking occurred at the position farthest from this end, converted into the length of the coil after hot rolling. Moreover, FIG. 6 shows a portion where the unevenness of the end face of the coil was the smallest among the portions where edge cracking occurred in the coil. As shown in FIG. In No. 3, edge cracks occur at positions where the size of the unevenness is 15 mm (-15 mm in FIG. 6), while edge cracks do not occur at positions where the size of the unevenness is less than 15 mm.

[No.4]
No.1と同様の組成を有する鋼材を用いてNo.1と同様の手順で鋼板を製造した。No.4における帯状鋼材の品質、上記巻取工程における巻取温度[℃]、上記除去工程によるコイルの外周側の端部を基準とする長手方向における除去長さ[m]、冷間圧延後におけるエッジ割れの有無を表1に示す。また、上記測定工程で測定されたコイルの外周側の端面の凹凸の大きさを図6に示す。なお、No.4では、冷間圧延後の帯状鋼材にエッジ割れが生じている。コイルの外周側の端部からこの端部から最も離れた位置においてエッジ割れが生じた部分までの熱間圧延後のコイルの長さに換算した距離を表1に示す。また、図6に、コイルにエッジ割れが生じた部分のうちで、コイルの端面の凹凸が最も小さかった部分を示す。図6に示すように、No.4では、凹凸の大きさが43mm(図6上では-43mm)の位置でエッジ割れが生じている一方、凹凸の大きさが43mm未満の位置ではエッジ割れは生じていない。
[No. 4]
No. No. 1 was prepared using steel having the same composition as No. 1. A steel plate was manufactured in the same manner as in Step 1. No. The quality of the steel strip in step 4, the winding temperature [°C] in the above-mentioned winding process, the removed length [m] in the longitudinal direction based on the outer peripheral end of the coil in the above-mentioned removal process, and the edge after cold rolling. Table 1 shows the presence or absence of cracks. Further, FIG. 6 shows the size of the unevenness on the end face on the outer peripheral side of the coil measured in the above measurement process. In addition, No. In No. 4, edge cracks have occurred in the steel strip after cold rolling. Table 1 shows the distance from the outer peripheral end of the coil to the part where edge cracking occurred at the position farthest from this end, converted into the length of the coil after hot rolling. Moreover, FIG. 6 shows a portion where the unevenness of the end face of the coil was the smallest among the portions where edge cracking occurred in the coil. As shown in FIG. In No. 4, edge cracking occurs at a position where the size of the unevenness is 43 mm (−43 mm in FIG. 6), while no edge cracking occurs at a position where the size of the unevenness is less than 43 mm.

Figure 0007340473000001
Figure 0007340473000001

表1及び図6に示すように、帯状鋼材の品質が同じであっても、コイルの端面の凹凸の大小に応じて後工程におけるエッジ割れの有無に違いが生じている。一方、図6に示すように、No.1~No.4の製造例によると、例えばコイルの端面の凹凸の大きさが10mm以上となる位置を含む領域を除去しておけば、後工程におけるエッジ割れを防止できていたことが分かる。すなわち、No.1~No.4の製造例から、上述の予測工程で閾値を10mmに設定し、上述の除去工程によってこの閾値を超える位置を含む領域を除去することでコイルのエッジ割れを回避できることが分かる。 As shown in Table 1 and FIG. 6, even if the quality of the steel strips is the same, there is a difference in the presence or absence of edge cracking in the subsequent process depending on the size of the unevenness on the end face of the coil. On the other hand, as shown in FIG. 1~No. According to the manufacturing example No. 4, it can be seen that, for example, if the area including the position where the size of the unevenness on the end face of the coil was 10 mm or more was removed, edge cracking in the subsequent process could be prevented. That is, No. 1~No. From the manufacturing example No. 4, it can be seen that edge cracking of the coil can be avoided by setting the threshold value to 10 mm in the above-mentioned prediction process and removing a region including a position exceeding this threshold value in the above-mentioned removal process.

以上説明したように、本発明の熱延鋼板の製造方法は、後工程におけるコイルのエッジ割れを抑制することで通板時における鋼材の破断を抑止することができる。 As explained above, the method for manufacturing a hot rolled steel sheet of the present invention can suppress breakage of the steel material during sheet passing by suppressing edge cracking of the coil in the post-process.

1、11 熱延鋼板の製造設備
2 熱間圧延装置
2a 圧延ロール
2b 巻取機
3 測定装置
3a コンベア
3b 変位計
4 予測装置
5 空冷装置
6 除去装置
6a 繰出リール
6b 剪断機
6c 巻取リール
X、X2 帯状鋼材
X1 コイル
E 端面
1, 11 Hot rolled steel sheet manufacturing equipment 2 Hot rolling device 2a Roll roll 2b Winding machine 3 Measuring device 3a Conveyor 3b Displacement meter 4 Prediction device 5 Air cooling device 6 Removal device 6a Payout reel 6b Shearing machine 6c Take-up reel X, X2 Steel strip X1 Coil E End face

Claims (4)

熱間圧延された帯状鋼材をコイル状に巻き取る工程と、
上記巻取工程で巻き取られたコイルの端面を変位計で走査し、上記端面の凹凸の大きさを上記コイルの半径に亘って測定する工程と、
上記測定工程で測定した凹凸の大きさを、過去にエッジ割れが生じた他のコイルの凹凸の大きさに基づいて設定された閾値と比較し、上記巻取工程よりも後工程における上記コイルのエッジ割れの有無を予測する工程と
を備える熱延鋼板の製造方法。
A process of winding hot rolled steel strip into a coil,
scanning the end face of the coil wound up in the winding process with a displacement meter and measuring the size of the unevenness of the end face over the radius of the coil;
The size of the unevenness measured in the above measurement process is compared with a threshold value set based on the size of the unevenness of other coils in which edge cracks have occurred in the past, and A method for producing a hot-rolled steel sheet, comprising: a step of predicting the presence or absence of edge cracking.
上記測定工程で、測定値の中央値を基準として上記凹凸の大きさを求める請求項1に記載の熱延鋼板の製造方法。 The method for manufacturing a hot-rolled steel sheet according to claim 1, wherein in the measuring step, the size of the unevenness is determined based on a median value of the measured values. 上記予測工程でエッジ割れが有りと予測された場合に、上記コイルの上記閾値を超える位置を含む領域を除去する工程をさらに備える請求項1又は請求項2に記載の熱延鋼板の製造方法。 The method for manufacturing a hot-rolled steel sheet according to claim 1 or 2, further comprising a step of removing a region of the coil including a position exceeding the threshold value when edge cracking is predicted to be present in the prediction step. 上記除去工程で、上記帯状鋼材を幅方向に亘って切断する請求項3に記載の熱延鋼板の製造方法。 The method for manufacturing a hot rolled steel sheet according to claim 3, wherein in the removing step, the strip steel material is cut across the width direction.
JP2020022763A 2020-02-13 2020-02-13 Method for manufacturing hot rolled steel sheets Active JP7340473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022763A JP7340473B2 (en) 2020-02-13 2020-02-13 Method for manufacturing hot rolled steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022763A JP7340473B2 (en) 2020-02-13 2020-02-13 Method for manufacturing hot rolled steel sheets

Publications (2)

Publication Number Publication Date
JP2021126678A JP2021126678A (en) 2021-09-02
JP7340473B2 true JP7340473B2 (en) 2023-09-07

Family

ID=77487474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022763A Active JP7340473B2 (en) 2020-02-13 2020-02-13 Method for manufacturing hot rolled steel sheets

Country Status (1)

Country Link
JP (1) JP7340473B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171411A (en) 1998-12-04 2000-06-23 Nkk Corp Automatic treatment method for edge crack part in strip body
JP2017144483A (en) 2016-02-16 2017-08-24 株式会社神戸製鋼所 Cold Rolling Method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171411A (en) 1998-12-04 2000-06-23 Nkk Corp Automatic treatment method for edge crack part in strip body
JP2017144483A (en) 2016-02-16 2017-08-24 株式会社神戸製鋼所 Cold Rolling Method

Also Published As

Publication number Publication date
JP2021126678A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6575592B2 (en) Oriented electrical steel sheet
JP5229432B1 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
JP7008532B2 (en) Cold rolling method
JP7340473B2 (en) Method for manufacturing hot rolled steel sheets
KR101709877B1 (en) Directional electromagnetic steel plate and method for manufacturing directional electromagnetic steel plate
JP7303435B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2016130334A (en) Hot rolled steel strip, cold rolled steel strip, and production method of hot rolled steel strip
WO2022201565A1 (en) Method for producing hot-rolled steel sheet, method for predicting temperature history of hot-rolled steel sheet, and method for predicting hardened section of hot-rolled steel sheet
JP4299394B2 (en) High-strength hot-rolled steel sheet having a good shape after cutting and its manufacturing method
JP6948565B2 (en) Manufacturing method of martensitic stainless steel strip
JP2021025128A (en) Grain oriented electrical steel sheet
JP4277923B2 (en) Hot rolling method for hat-shaped steel sheet piles
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
JP4395961B2 (en) Manufacturing method of cold rolled steel strip for 3-piece can
JP2020059050A (en) Rolling equipment and rolling method of steel plate
JP2020015947A (en) Method for manufacturing hot-rolled coil and method for manufacturing non-oriented electromagnetic steel sheet
JP7448468B2 (en) Manufacturing method of cold rolled steel plate
JP7255287B2 (en) Manufacturing method of carbon tool steel strip
JP2012170960A (en) Method of preventing winding deviation of steel strip
JP5233902B2 (en) Fracture suppression method for steel strip weld seam in the manufacture of ERW welded steel pipe
JP3359566B2 (en) Method for preventing coil winding deviation, band, and steel strip
JPS6147884B2 (en)
JP6177159B2 (en) Method for cooling hot-rolled coil material and method for producing hot-rolled coil material
JP6131553B2 (en) Manufacturing method of hot-rolled steel strip
JP2006150400A (en) Continuously cast slab and producing method therefor, and method for producing hot rolled steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7340473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150