JP7339780B2 - 撮像装置及びその制御方法 - Google Patents

撮像装置及びその制御方法 Download PDF

Info

Publication number
JP7339780B2
JP7339780B2 JP2019107452A JP2019107452A JP7339780B2 JP 7339780 B2 JP7339780 B2 JP 7339780B2 JP 2019107452 A JP2019107452 A JP 2019107452A JP 2019107452 A JP2019107452 A JP 2019107452A JP 7339780 B2 JP7339780 B2 JP 7339780B2
Authority
JP
Japan
Prior art keywords
pixel
counting
threshold
counting means
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019107452A
Other languages
English (en)
Other versions
JP2020202472A (ja
Inventor
知永 岩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019107452A priority Critical patent/JP7339780B2/ja
Publication of JP2020202472A publication Critical patent/JP2020202472A/ja
Application granted granted Critical
Publication of JP7339780B2 publication Critical patent/JP7339780B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、撮像装置及びその制御方法に関するものである。
各画素内にAD変換回路を備えた撮像素子が提案されている。
例えば、特許文献1ではアバランシェフォトダイオード(以下、APD)を利用した焦点検出用センサが開示されている。このセンサは、APDをガイガーモードで動作させた際に発生するアバランシェ現象(アバランシェブレークダウン)を利用する。この方式においては、フォトン1個の入射をアバランシェ増幅により観測可能なレベルの単一パルスとして検出し、比較器によってカウントすることでデジタル値として取り扱う。
また、特許文献2には、いわゆる垂直色分離型半導体素子が開示されている。この技術では、半導体基板において深さ方向に異なるスペクトル感度を有する複数の色検出層を備え、それぞれの色検出層に対して制御配線を配置することにより、電磁波の波長に応じた垂直色分離を実現している。
特開2014-81254号公報 特表2008-500768号公報
特許文献1のような画素単位でAD変換器を備える撮像素子においても、依然として電磁波の波長分離はカラーフィルタなどの透過率の異なるフィルタを用いた方式が一般的である。このいわゆるベイヤー配列では、二次元方向の異なる画素に異なる透過率特性を有するカラーフィルタを配置する必要があるため、折り返しによる微細被写体の偽色が課題となる。また、異なる色情報を備える複数の画素情報を混合させて一つの画素値を算出するため、解像感が低下するという課題がある。
一方、特許文献2においては、画素値を構成する複数の色情報が一つの画素から得られるため、前述の課題である偽色や解像感の低下を防ぐことが可能である。しかしながら、この垂直色分離型半導体素子はその感度が半導体基板の侵入長に依存するため、感度を上げにくいという課題がある。
本発明は上述した課題に鑑みてなされたものであり、その目的は、解像感の低下を抑制しつつ、感度を向上させることが可能な撮像装置を提供することである。
本発明に係わる撮像装置は、入射した光子をアバランシェフォトダイオードによって電気信号に変換する単位画素と、前記単位画素の前記アバランシェフォトダイオードにより増幅された信号をしきい値と比較し、比較結果に基づいて前記信号をカウントするカウント手段と、前記しきい値を複数の前記カウント手段ごとに異なる値に設定する設定手段と、前記しきい値が異なる値に設定された複数の前記カウント手段のカウント数に基づいて、波長の異なる光それぞれについての光子のカウント数を算出する算出手段と、を備え、1つの前記単位画素に対応して、1つの前記カウント手段が設けられているとともに、複数の前記単位画素のうちの異なる単位画素が接続スイッチにより接続されており、前記設定手段は、前記しきい値を、1つの前記単位画素の前記カウント手段ごとに異ならせることを特徴とする。
本発明によれば、解像感の低下を抑制しつつ、感度を向上させることが可能な撮像装置を提供することが可能となる。
本発明の撮像装置の第1の実施形態であるデジタルカメラの構成を示すブロック図。 第1の実施形態における撮像素子の構成図。 APDを備える画素の一般的な等価回路図。 APDのガイガーモードの遷移を説明する模式図。 半導体層の構成と電磁波の増幅距離の概念を説明する模式図。 第1の実施形態における単位画素の回路構成を示す模式図。 フォトン入射時のパルス波高とカウント数を示す模式図。 第2の実施形態におけるしきい値変更の概念を示す模式図。 第3の実施形態における各画素の回路構成を示す模式図。 第4の実施形態における各画素の回路構成を示す模式図。
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
(第1の実施形態)
図1は、本発明の撮像装置の第1の実施形態であるデジタルカメラ100の構成を示すブロック図である。
図1において、レンズ部101は、被写体の光学像を撮像素子103に結像させる。レンズ部101は、レンズ駆動回路102によって駆動される。そして、ズームレンズを駆動することによるズーム制御、フォーカスレンズを駆動することによるフォーカス制御、絞りを駆動することで入射光量や被写界深度を調整する絞り制御などが行われる。撮像素子103は、レンズ部101により結像された被写体像を光電変換して画像信号を生成する。画像処理回路104は、撮像素子105から出力される画像信号に対して、各種の補正処理、現像処理、データ圧縮処理などを行う。
タイミング発生回路105は、撮像素子103を駆動するための各種タイミング信号を生成して出力する。制御回路106は、各種演算を行うとともに、デジタルカメラ100の全体を制御する。メモリ部107は、画像データを一時的に記憶する。記録回路108は、半導体メモリ等の着脱可能な記録媒体に画像データを記録、または記録媒体から画像データを読み出す。操作回路109は、ユーザーからの命令を受け付ける。表示回路110は各種情報や撮影画像を表示する。
次に、図2を参照して本実施形態における撮像素子103について説明する。図2は、撮像素子103の概略構成を示す図である。
撮像素子103は、センサ基板201と回路基板202から成り、それらを互いに積層した積層構造を有する。なお、同様の機能を具備するならば積層構造に限らず単層構造の素子であってもよい。
センサ基板201には、複数の単位画素203が行列方向に2次元配置(複数配置)された画素アレイが形成される。この単位画素203には、入射光の集光効率を向上させるためのマイクロレンズ401(図5参照)が配置されている。ここで単位画素203の詳細な回路構成については後述する。
回路基板202は、計数部204、信号処理回路205、基板メモリ206を備えて構成される。計数部204は、センサ基板201の単位画素毎にバンプ等で電気的に接続され、単位画素203を駆動する制御信号を出力すると共に、画素からのバッファ出力を受信する。
計数部204は、対応する単位画素毎に、あるしきい値Vthによりフォトンの有無を判定する比較器304及びカウンタ305(図3参照)を備え、入射されたフォトンに応じて出力されるパルス数を計測する。計数部204により計測されたカウント値は、信号処理回路205によって各種演算処理が施され外部に出力される。
また、基板メモリ206は、DRAM等の揮発性メモリであり、計数部204からの信号を信号処理回路205で処理する際に一時的にデータを保持する目的等で用いられる。
次に、図3を用いて単位画素203の構成について説明する。図3は、センサ基板201に形成される単位画素203の等価回路図である。本実施形態では、各単位画素に、アバランシェフォトダイオードを用いるものとする。
単位画素203は、クエンチ抵抗301、アバランシェフォトダイオード(以下、APD)302、バッファ303を備えて構成される。APD302には、クエンチ抵抗を介して逆バイアス電圧HVDDが印加される。このとき電圧HVDDは、APDをガイガーモードにするための降伏電圧以上となるように設定される。バッファ303の出力である電気信号は、計数部204内の比較器304により基準電圧と比較され、比較結果がカウンタ305に入力される。
ここで、図4を用いてフォトン入射時の単位画素203の動作について説明する。図4は、APDの電流電圧特性を示している。本実施形態では、APD302のカソードは降伏電圧を超える電圧HVDDに接続され、APD302はガイガーモードとなる。
ここでAPD302にフォトンが入射すると、APD302ではアバランシェ増幅による大電流(光電流)が流れる(動作A)。この電流が流れると同時にクエンチ抵抗301によって電圧降下が発生し、APD302に印加される電圧が降伏電圧未満となり、アバランシェ増幅が止まる(動作B)。
アバランシェ増幅が止まると、APD302のカソードは再び電圧HVDDによりチャージされ、ガイガーモードに戻る(動作C)。動作A~Cによるバッファ入力端の電圧変化はバッファ303によってパルス整形され、比較器304、カウンタ305によって計測される。これを繰り返すことにより、APD302に入射したフォトンの数を計測することが可能となる。
図5は、本実施形態における電磁波の増幅距離の概念を説明する模式図である。図5は特に、半導体内部における受光領域とアバランシェ増幅を起こす高電界領域を示す断面図である。
ここで、単位画素203には、入射光の集光効率を向上させるためのマイクロレンズ401が配置されている。第1導電型領域としてのN型エピタキシャル層402(N-Epi)は、受光領域の一部として機能する。第2導電型領域としてのP型半導体領域403(P)には、コンタクト電極を介して大きな負電圧(例えば-20V)が与えられる。
第1導電型領域404(N+)は、クエンチ抵抗を介して電圧HVDD(例えば3V)による逆バイアス電圧が与えられ、P型半導体領域403との間で形成されるPN接合フォトダイオードのカソード端子として機能する。また、P型半導体領域403との間で形成される空乏化領域に入射したフォトンを光電変換した際に生じる電子に対してアバランシェ増倍を起こす機能も有する。低濃度の第1導電型領域405(N-)は第1導電型領域404よりも低濃度の第1導電型領域であり、隣接画素に対して高電界影響を緩和するガードリングとしての機能を備える。
ここで、フォトンが図5の下部から入射したとする。青色光(B)のような波長の短い電磁波は侵入長が短いため、フォトダイオードの表層部で光電変換される。一方、赤色光(R)のような波長の長い電磁波は侵入長が長いため、フォトダイオードの深層部まで侵入し光電変換が行われる。
この際、青色光(B)は、表層から高電界領域までの距離が比較的長くなるため、アバランシェ増幅率(パルス波高)が高くなるイベントが支配的になる。一方、赤色光(R)は、深層部まで侵入し、高電界領域までの距離が短いイベントが含まれるため、アバランシェ増幅率(パルス波高)が相対的に低下する。また、波長ごとにイベントの発生する頻度(感度)は、フォトダイオードの表層部で光電変換される青色光(B)に対して、フォトダイオードの深層部で光電変換される赤色光(R)の方が高くなる傾向にある。
ここで、計数部のしきい値Vthを所定値より低く設定した場合、赤色光(R)から青色光(B)までのすべての波長域でイベントが検出されうる。しかし、計数部のしきい値Vthを所定値より高く設定した場合、例えばパルス波高の高い青色光(B)の波長域のみイベントが検出されうる。
図6は、第1の実施形態における単位画素及び計数部の回路構成を示す模式図である。図6は、単位画素203及び計数部内の各ブロックの接続パターンを示している。なお、図6においても、図2、図3で説明したように、単位画素203はセンサ基板201上に配置され、計数部は回路基板202上に配置されている。
ここで、クエンチ抵抗301、APD302は図3と同様であるが、簡略化のためバッファ303は不図示としている。計数部501A,501B,501Cは、第1の画素に対応する計数部(比較器及びカウンタ)である。ここでは3つの計数部に1つの画素からの信号が接続されており、計数部501A,501B,501Cは、それぞれ異なるしきい値Vthを持つように設定される。なお、本実施形態では、1つの画素に対して3つの計数部を設けているが、これに限らず、1つの画素に対して2つあるいは4つ以上の計数部を設けてもかまわない。
続いて図7を用いて、単位画素から出力されるパルスとカウント数との関係について説明する。図7は、横軸を時間として、フォトン入射時のパルス波形と計数部でカウントされるカウント数を示す模式図である。
ここで、図7(a)は、第1の画素に光子が入射することによるイベントa,b,c,d,e,fが発生した場合を表す。また、図7(b)は、計数部501A,501B,501Cがそれぞれのしきい値Vthに対応して検出されたイベントをカウントする際のカウント値の上昇を示している。ここで、計数部501Aには、波長の長い(増幅が弱い)赤色光(R)に相当するしきい値が設定される。同様に計数部501Bには、波長の中程度の緑色光(G)に相当するしきい値が設定される。同様に計数部501Cには、波長の短い(増幅が強い)青色光(B)に相当するしきい値が設定される。それぞれのイベントでは波長に応じたアバランシェ増幅が発生し、パルスは時間分解されているものとする。
まず、計数部501Aにおいては、第1の画素に光子が入射することにより発生するイベントaからfがすべてカウントされ、この例では6カウントとして出力される。一方、計数部501Bにおいては、第1の画素に光子が入射することにより発生するイベントb,c,fがカウントされ、この例では3カウントとして出力される。同様に、計数部501Cにおいては、第1の画素に光子が入射することにより発生するイベントb,fのみがカウントされ、この例では2カウントとして出力される。
上記構成における各計数部のカウント値から、色分離された信号出力を以下のように算出する。ここでは赤色光のカウント値をR、緑色光のカウント値をG、青色光のカウント値をBと定義する。
まず、計数部501Aからは、赤色光、緑色光、青色光の全て波長の入射光により発生したイベントであるR+G+Bのカウント値が出力される。同様に計数部501Bからは、緑色光と青色光の波長の入射光により発生したイベントであるG+Bのカウント値が出力される。同様に計数部501Cからは、青色光の波長の入射光のみにより発生したイベントであるBのカウント値が出力される。
すなわち、青色光に対応する出力値は計数部501CのBがそのまま適用され、すなわち前述の例では2カウントとなる。次に、緑色光に対応する出力値は計数部501Bの出力値から計数部501Cの出力値を減算することにより、(G+B)-B=Gと求められる。すなわち前述の例では3-2=1カウントとなる。次に、赤色光に対応する出力値は計数部501Aの出力値から計数部501Bの出力値を減算することにより、(R+G+B)-(G+B)=Rと求められる。すなわち前述の例では6-3=3カウントとなる。
このように、本実施形態では、電磁波の波長に応じてしきい値を変化させて得られたカウント値から演算で各色の出力を分離することにより、一つの画素で垂直色分離を実現している。つまり、ベイヤー配列の画素を有する撮像素子に比較して解像度を向上させることができる。また、APDによるパルス増幅を行っているため、従来の垂直色分離方式に比べて感度を向上させることができる。なお、本実施形態では、赤色光、緑色光、青色光の入射光を例にとって説明したが、これに限られるものではない。すなわち、光の波長に応じてしきい値を設定することにより、任意の波長の光に応じた出力値を得ることができる。
以上説明したように、第1の実施形態によれば、画素単位でAD変換を実現する撮像素子において、単一画素で色分離とパルス増幅を実施することにより、偽色や解像感の低下を抑制しつつ、撮像素子の感度を向上させるという効果を奏することができる。
(第2の実施形態)
第1の実施形態では、一つの画素に複数の計数部を設置する必要がある。この第2の実施形態では、より画素の微細化(開口率向上)や消費電力低減を図ることができる構成について説明する。
第2の実施形態では、単位画素203の構成は、図3と同様に一つの画素に計数部を一つ備える構成とする。図8は第2の実施形態におけるしきい値変更の概念を示す模式図である。
図8は、撮影のフレームに対して計数部204のしきい値Vthを変化させていくことを示す。例えば、1フレーム目の撮影においては波長の長い(増幅が弱い)赤色光(R)に相当するしきい値が設定される。同様に2フレーム目の撮影においては波長の中程度の緑色光(G)に相当するしきい値が設定される。同様に3フレーム目の撮影においては波長の短い(増幅が強い)青色光(B)に相当するしきい値が設定される。
このように、第2の実施形態によれば、複数フレームにまたがって取得されたカウント値から第1の実施形態と同様の演算で各色を分離することにより、一つの計数部で垂直色分離を実現することができる。また、計数部を第1の実施形態に比べて減らすことにより、画素の微細化(開口率向上)や低消費電力化を図ることができる。
(第3の実施形態)
図9は、本発明の第3の実施形態における各単位画素の回路構成を示す模式図である。図9に示すように本実施形態では、センサ基板201の単位画素203を構成する第1乃至第3の単位画素の出力を混合することができる。なお、図9においても、図2、図3で説明したように、単位画素203はセンサ基板201上に配置され、計数部は回路基板202上に配置されている。
計数部601Aは、第1の画素に対応する計数部(比較器及びカウンタ)であり、計数部601B,601Cは、それぞれ第2、第3の画素に対応する計数部である。ここで、第1の画素と第2の画素との間には、それぞれの画素を接続するスイッチ602Aが設けられている。また、第2の画素と第3の画素との間には、それぞれの画素を接続するスイッチ(接続スイッチ)602Bが設けられている。ここで言うスイッチとは一般的なMOSトランジスタ等が挙げられる。
ここでスイッチ602A,602Bをオンとした状態を考える。第1の画素に光子が入射することにより発生するイベントは、計数部601Aの他に、スイッチを介して計数部601B,601Cにおいてもカウントされる。同様に、第2、第3の画素に光子が入射することにより発生するイベントは、計数部601A,601B,601Cにおいてカウントされる。
ここで、第1の実施形態と同様に、各画素の計数部ごとに異なるしきい値を設定する。つまり、計数部601Aに赤色光(R)に相当するしきい値を、計数部601Bに緑色光(G)に相当するしきい値を、計数部601Cに青色光(B)に相当するしきい値を設定する。
その結果として、計数部601Aからは、第1、第2、第3の画素の出力が混合され、かつ、赤色光、緑色光、青色光の全ての波長の入射光により発生したイベントであるR+G+Bのカウント値が出力される。同様に計数部601Bからは、第1、第2、第3の画素の出力が混合され、かつ、緑色光と青色光の波長の入射光により発生したイベントであるG+Bのカウント値が出力される。一方、計数部601Cからは、第1、第2、第3の画素の出力が混合され、かつ、青色光の波長の入射光のみにより発生したイベントであるBのカウント値が出力される。
第1の実施形態と同様に、緑色光に対応する出力値は、計数部601Bの出力値から計数部601Cの出力値を減算することにより、(G+B)-B=Gと求められる。次に、赤色光に対応する出力値は、計数部601Aの出力値から計数部601Bの出力値を減算することにより、(R+G+B)-(G+B)=Rと求められる。
このようにすることで、一つの画素に複数の計数部を設けることなく、画素混合と色分離を同時に実現することができる。
なお、本実施形態では、各画素の電圧HVDDを変えることができる構成となっている。例えば、第2の画素の電圧HVDD2を第1の画素の電圧HVDD1、第3の画素の電圧HVDD3より高くし、フォトンの検出確率を増大させるようにしてもよい。また、その際には、計数部601A,601B,601Cのしきい値の全てまたは一部を変更可能に決定できる構成としてもよい。
以上説明したように、第3の実施形態によれば、画素単位でAD変換を実現する撮像素子において、混合画素で色分離とパルス増幅を実施することにより偽色や解像感の低下を抑制しつつ、撮像素子の感度を向上させる効果を奏することができる。
(第4の実施形態)
図10は、本発明の第4の実施形態における各単位画素の回路構成を示す模式図である。図10に示すように本実施形態では、センサ基板201の単位画素203を構成する第1及び第2の画素からなる縦2画素、第3及び第4の画素からなる横2画素の出力を混合することができる。
計数部701Aは、第1の画素に対応する計数部(比較器及びカウンタ)であり、計数部701B,701C,701Dは、それぞれ第2、第3、第4の画素に対応する計数部である。ここで第1の画素と第2の画素との間には、それぞれの画素を接続するスイッチ702Aが設けられている。また、第2の画素と第3の画素との間には、それぞれの画素を接続するスイッチ702Bが設けられている。また、第3の画素と第4の画素との間には、それぞれの画素を接続するスイッチ702Cが設けられている。また、第4の画素と第1の画素との間には、それぞれの画素を接続するスイッチ702Dが設けられている。
ここで、4つのスイッチを全てオンとした状態を考える。第1の画素に光子が入射することにより発生するイベントは、計数部701Aの他に、スイッチを介して計数部701B,701C,701Dの全てでカウントされる。第2、第3、第4の画素に光子が入射することにより発生するイベントも同様である。
ここで、第1の実施形態と同様、各画素の計数部ごとに異なるしきい値を設定する。つまり、計数部701Aに赤色光(R)に相当するしきい値を、計数部701Bに緑色光(G)に相当するしきい値を、計数部701Cに青色光(B)に相当するしきい値を設定する。さらに、本実施形態では、計数部701Dに、赤色光よりさらに長波長側の赤外光(IR)に相当するしきい値を設定する。なお、計数部701Dには、緑色光(G)に相当するしきい値が設定されてもよい。
その結果として、計数部701Aからは、第1、第2、第3、第4の画素の出力が混合され、かつ、赤色光、緑色光、青色光の波長の入射光により発生したイベントであるR+G+Bのカウント値が出力される。同様に計数部701Bからは、第1、第2、第3、第4の画素の出力が混合され、かつ、緑色光と青色光の波長の入射光により発生したイベントであるG+Bのカウント値が出力される。一方、計数部701Cからは、第1、第2、第3、第4の画素の出力が混合され、かつ、青色光の波長の入射光のみにより発生したイベントであるBのカウント値が出力される。さらに、計数部701Dからは、第1、第2、第3、第4の画素の出力が混合され、かつ、赤色光、緑色光、青色光、赤外光の全ての波長の入射光により発生したイベントであるR+G+B+IRのカウント値が出力される。
第1の実施形態と同様に、緑色光に対応する出力値は、計数部701Bの出力から計数部701Cの出力を減算することにより、(G+B)-B=Gと求められる。次に、赤色光に対応する出力値は、計数部701Aの出力値から計数部701Bの出力値を減算することにより、(R+G+B)-(G+B)=Rと求められる。さらに、赤外光に対応する出力値は、計数部701Dの出力値から計数部701Aの出力値を減算することにより、(R+G+B+IR)-(R+G+B)=IRと求められる。
このようにすることで、一つの画素に複数の計数部を設けることなく画素混合と色分離を同時に実現することができる。
なお、本実施形態では、各画素を縦2画素×横2画素で混合したが、組み合わせはこれに限られるものではない。例えば、縦2画素のみ、横2画素のみといった構成も可能である。
以上説明したように、第4の実施形態によれば、画素単位でAD変換を実現する撮像素子において、混合画素で色分離とパルス増幅を実施することにより、偽色や解像感の低下を抑制しつつ、撮像素子の感度を向上させる効果を奏することができる。
(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
100:デジタルカメラ、101:レンズ部、103:撮像素子、104:画像処理回路、106:制御回路、201:センサ基板、202:回路基板、203:単位画素、204,501,601,701:計数部、301:クエンチ抵抗、302:アバランシェフォトダイオード(APD)、304:比較器、305:カウンタ

Claims (8)

  1. 入射した光子をアバランシェフォトダイオードによって電気信号に変換する単位画素と、
    前記単位画素の前記アバランシェフォトダイオードにより増幅された信号をしきい値と比較し、比較結果に基づいて前記信号をカウントするカウント手段と、
    前記しきい値を複数の前記カウント手段ごとに異なる値に設定する設定手段と、
    前記しきい値が異なる値に設定された複数の前記カウント手段のカウント数に基づいて、波長の異なる光それぞれについての光子のカウント数を算出する算出手段と、
    を備え
    1つの前記単位画素に対応して、1つの前記カウント手段が設けられているとともに、複数の前記単位画素のうちの異なる単位画素が接続スイッチにより接続されており、前記設定手段は、前記しきい値を、1つの前記単位画素の前記カウント手段ごとに異ならせることを特徴とする撮像装置。
  2. 前記単位画素が行列方向に複数配置されていることを特徴とする請求項1に記載の撮像装置。
  3. 前記設定手段は、記カウント手段のそれぞれの前記しきい値を、異なる波長の光に相当するしきい値に設定することを特徴とする請求項1または2に記載の撮像装置。
  4. 前記しきい値は、赤色光に相当する第1のしきい値と、緑色光に相当する第2のしきい値と、青色光に相当する第3のしきい値とを含むことを特徴とする請求項に記載の撮像装置。
  5. 前記しきい値は、さらに赤外光に相当する第4のしきい値を含むことを特徴とする請求項に記載の撮像装置。
  6. 前記算出手段は、前記接続スイッチを接続して得られた前記カウント手段のカウント数から他のカウント手段のカウント数を減算することにより、前記波長の異なる光それぞれについての光子のカウント数を算出することを特徴とする請求項1乃至5のいずれか1項に記載の撮像装置。
  7. 前記アバランシェフォトダイオードに印加する電圧の大きさに応じて前記しきい値を決定することを特徴とする請求項乃至のいずれか1項に記載の撮像装置。
  8. 入射した光子をアバランシェフォトダイオードによって電気信号に変換する単位画素と、前記単位画素の前記アバランシェフォトダイオードにより増幅された信号をしきい値と比較し、比較結果に基づいて前記信号をカウントするカウント手段と、を備える撮像装置を制御する方法であって、
    前記しきい値を複数の前記カウント手段ごとに異なる値に設定する設定工程と、
    前記しきい値が異なる値に設定された複数の前記カウント手段のカウント数に基づいて、波長の異なる光それぞれについての光子のカウント数を算出する算出工程と、
    を有し、
    1つの前記単位画素に対応して、1つの前記カウント手段が設けられているとともに、複数の前記単位画素のうちの異なる単位画素が接続スイッチにより接続されており、前記設定工程では、前記しきい値を、1つの前記単位画素の前記カウント手段ごとに異ならせることを特徴とする撮像装置の制御方法。
JP2019107452A 2019-06-07 2019-06-07 撮像装置及びその制御方法 Active JP7339780B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107452A JP7339780B2 (ja) 2019-06-07 2019-06-07 撮像装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107452A JP7339780B2 (ja) 2019-06-07 2019-06-07 撮像装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2020202472A JP2020202472A (ja) 2020-12-17
JP7339780B2 true JP7339780B2 (ja) 2023-09-06

Family

ID=73742178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107452A Active JP7339780B2 (ja) 2019-06-07 2019-06-07 撮像装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP7339780B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995472B (zh) * 2021-02-07 2022-11-04 河北大学 基于零光子计数的单像素成像系统和成像方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130335742A1 (en) 2010-12-14 2013-12-19 Universite D' Aix-Marseille Spectral sensitive solid-state photodetector
JP2019047486A (ja) 2017-08-31 2019-03-22 キヤノン株式会社 固体撮像素子及び撮像装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425679A (en) * 1987-07-22 1989-01-27 Hitachi Ltd Solid-state image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130335742A1 (en) 2010-12-14 2013-12-19 Universite D' Aix-Marseille Spectral sensitive solid-state photodetector
JP2019047486A (ja) 2017-08-31 2019-03-22 キヤノン株式会社 固体撮像素子及び撮像装置

Also Published As

Publication number Publication date
JP2020202472A (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
US10122951B2 (en) Imaging apparatus, imaging system, and image processing method
US10021358B2 (en) Imaging apparatus, imaging system, and signal processing method
US11297269B2 (en) Image capturing apparatus
US10594961B2 (en) Generation of pixel signal with a high dynamic range and generation of phase difference information
JP6096243B2 (ja) 画像データの処理方法およびシステム
EP1530873B1 (en) One chip, low light level color camera
US9591244B2 (en) Solid-state imaging device having plural hybrid pixels with dual storing function
US8018516B2 (en) Solid-state image sensor and signal processing method of same
EP2446474B1 (en) Gradient color filters for sub-diffraction limit sensors
US20150138366A1 (en) Imaging systems with visible light sensitive pixels and infrared light sensitive pixels
EP1903766A2 (en) Image Photographing Apparatus, Method and Medium
US11089251B2 (en) Image sensor and image capturing apparatus
JP7361506B2 (ja) 撮像素子
JP7339780B2 (ja) 撮像装置及びその制御方法
US10911703B2 (en) Image sensor and control method thereof, and image capturing apparatus with event counters and reverse bias voltages
JP2017220879A (ja) 信号処理装置、信号処理方法、及び、撮像装置
US20200304745A1 (en) Image capturing device
US20240107199A1 (en) Photoelectric conversion device, control method, and storage medium
US20240163577A1 (en) Photoelectric conversion apparatus, method for controlling photoelectric conversion apparatus, and storage medium
JP2015154188A (ja) 撮像素子及び撮像素子の駆動方法
US20230095243A1 (en) Photoelectric conversion device, imaging device, control method, and storage medium
WO2023015425A1 (en) Pixel array, image sensor, and electronic device without demosaicing and methods of operation thereof
JP2005353716A (ja) 固体撮像素子及び撮像装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230825

R151 Written notification of patent or utility model registration

Ref document number: 7339780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151