JP7335842B2 - Pile head processing method - Google Patents
Pile head processing method Download PDFInfo
- Publication number
- JP7335842B2 JP7335842B2 JP2020040623A JP2020040623A JP7335842B2 JP 7335842 B2 JP7335842 B2 JP 7335842B2 JP 2020040623 A JP2020040623 A JP 2020040623A JP 2020040623 A JP2020040623 A JP 2020040623A JP 7335842 B2 JP7335842 B2 JP 7335842B2
- Authority
- JP
- Japan
- Prior art keywords
- horizontal
- pile
- pile head
- holes
- oblique
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Piles And Underground Anchors (AREA)
Description
本発明は、場所打ちコンクリート杭の杭頭処理を行う杭頭処理工法に関する。 TECHNICAL FIELD The present invention relates to a pile head treatment method for performing pile head treatment on cast-in-place concrete piles.
場所打ちコンクリート杭の杭頭を破砕処理する方法として、杭頭余盛部を所定位置において動的破砕剤により水平破断し、あらかじめ取り付けた吊り元により、破断された杭頭余盛部を一体として揚重移動する工法が公知である(特許文献1参照)。その際、各主筋に鉄筋カバーやボイド材を取り付けることにより、鉄筋とコンクリートの縁を切っておくことが必要である。実際には杭頭余盛部は、通常、直径が1mを超え、高さも80~100cm程度であることから、それを小割せずにそのまま搬出する場合は、相応規模の揚重機が所要範囲に設置可能であれば十分であるが、通常は、水平破断後の杭頭余盛部を場内で15~2cm大程度に小割した上で搬出している。水平破断後の杭頭余盛部を小割破砕する方法はたとえば特許文献2,3で提案されている。 As a method of crushing the pile head of cast-in-place concrete piles, the pile head reinforcement is horizontally fractured at a predetermined position with a dynamic crushing agent, and the fractured pile head reinforcement is integrated with the pre-installed suspension base. A method of lifting and moving is known (see Patent Document 1). At that time, it is necessary to cut the edges of the reinforcing bars and concrete by attaching reinforcing bar covers and void materials to each main bar. In reality, the pile head surplus is usually more than 1m in diameter and about 80 to 100cm in height. It is sufficient if it can be installed on the ground, but usually, after the horizontal break, the pile head surplus is cut into pieces of about 15 to 2 cm in size before being transported out. Patent documents 2 and 3, for example, propose a method of splitting and crushing the pile head reinforcement after horizontal breaking.
上述のように、従来、杭頭余盛部を水平破断してから、水平破断後の杭頭余盛部を小割破砕していたが、この方法であると、破砕回数が増え、杭頭処理の全工程が長期化し、また、破砕時の他作業員の避難時間も長くなってしまい、全工期に悪影響を与えてしまう。そこで、杭頭余盛部の水平破断と、杭頭余盛部の小割破砕と、をほぼ同時に行うことができれば、破砕回数が1回で済むので、上記問題を解決できる。 As described above, conventionally, after the pile head reinforcement portion is horizontally broken, the pile head reinforcement portion after the horizontal break is crushed into small pieces. The entire process of processing is lengthened, and the evacuation time of other workers at the time of crushing is also lengthened, which adversely affects the entire construction period. Therefore, if the horizontal breaking of the pile head reinforcement portion and the breaking of the pile head reinforcement portion into small pieces can be performed almost simultaneously, the number of times of crushing is only one, and the above problem can be solved.
動的破砕剤の装薬孔を造作する方法および杭頭余盛部の水平破断と小割の方法に着目し、従来の杭頭処理の各種工法について、前施工、後施工を取り合わせて、以下、検討する。
(1)はつり工法
杭頭余盛部を手動式の破砕機を用いて人力によりはつり、発生したコンクリートガラを処理する工法で、作業時間に制限があるなどして時間を要するばかりでなく、騒音・振動が著しく、周辺環境に大きく影響する。また、作業中に、杭頭の鉄筋を傷めるなど、工法的な問題もある。
Focusing on the method of creating the charge hole for the dynamic crushing agent and the method of horizontal breaking and splitting of the pile head reinforcement part, the various conventional pile head processing methods, including pre-construction and post-construction, are described below. ,think about.
(1) Chipping method This method uses a manual crusher to manually chip off the excess pile head and dispose of the generated concrete debris.・The vibration is remarkable, and it greatly affects the surrounding environment. There are also construction problems, such as damage to the reinforcing bars of pile heads during work.
(2)せり矢工法
杭径が1,200~1,600mmの中形の杭に、比較的有効とされているが、破砕ラインに8箇所程度、先行削孔し、その後、各削孔箇所にせり矢を打ち、亀裂を杭全周に派生させることにより、杭頭余盛部を水平破断する工法である。ある程度の手間と時間を要するが、単純な工法の割に、確実性は比較的高い。しかし、杭径が2,000mmを超える領域では、先行削孔箇所が多くなり、切断の確度は著しく低下する。また、杭頭余盛部を現地で小割する場合は、結局、上記はつり工法を適用せざるを得ない。
(2) Seriyama method This method is relatively effective for medium-sized piles with a pile diameter of 1,200 to 1,600 mm. This is a construction method that horizontally fractures the pile head reinforcement by driving the cracks around the entire circumference of the pile. It requires a certain amount of labor and time, but the certainty is relatively high for a simple construction method. However, in areas where the pile diameter exceeds 2,000 mm, the number of pre-drilled points increases, and the cutting accuracy drops significantly. In addition, when the pile head reinforcement portion is to be divided into small pieces on site, the above-mentioned chipping method must be applied after all.
(3)静的破砕剤による破砕工法
あらかじめ杭頭に設置したシース管などに挿入した破砕剤の膨張作用により、杭頭のコンクリートを小割にし処理する工法である。本工法については、前施工の準備工としてシース管の配置・固定があり、後施工として静的破砕剤の投入があるため、全般的に破砕剤が杭頭全体に適度に作用させることが難しく、また、水平面が適度に形成され難いため、結果的に人力による仕上げはつりの量が多くなる傾向にある。
(3) Crushing method using static crushing agent This is a construction method in which the concrete at the pile head is broken into small pieces by the expanding action of a crushing agent inserted into a sheath pipe or the like installed at the pile head in advance. In this construction method, the preparatory work for the pre-construction is the arrangement and fixing of the sheath pipe, and the static crushing agent is added as the post-construction. In addition, since it is difficult to form a suitable horizontal surface, there is a tendency for a large amount of manual finishing to be carried out.
(4)竪管方式水平フィン付装薬ホルダー方式による動的破砕適用の水平・鉛直破断工法
杭筋組立て時に、竪管(断面:山形鋼突合せ)方式の水平フィン(平鋼2枚重ね)付装薬ホルダー4本を杭外周の杭主筋内側に配置し、密閉状態とし、杭工事、掘削工事以降における杭頭表出後に、動的破砕剤を装薬ホルダーに挿入し、遠隔操作にて動的破砕により杭頭余盛部が水平破断されると同時に、竪管突合せ部からガス圧が鉛直方向・放射状に噴出し、鉛直に4分割される。この方法についても、特に時間や手間を要するような作業はないが、杭施工前に関連機器材を装着する必要があり、装薬ホルダーの固定が難しいなど、(3)と同様の短所が指摘される。また、ホルダー上部を速硬モルタルで閉塞する必要があり、約1時間の硬化時間を要する。加えて、竪管方式の装薬ホルダーが高価であり、杭頭処理工法としては、最も費用が高い。加えて、鉛直方向の破砕力は、外周側に向かうため、杭主筋が外側に開くなど、杭本体への影響が解消されていない。
(4) Horizontal and vertical breaking method for dynamic crushing by vertical pipe type horizontal fins and charge holder method Vertical pipe (cross section: angle steel butt) type horizontal fins (flat steel 2 layers) are attached during pile reinforcement assembly Four charge holders are placed inside the main reinforcement of the pile on the outer circumference of the pile and sealed. At the same time as the pile head reinforcement is horizontally broken by mechanical crushing, gas pressure is ejected vertically and radially from the vertical pipe joint, and the pile is vertically divided into four parts. Although this method does not require any particular time or effort, it has the same drawbacks as (3), such as the need to install related equipment before pile construction, and the difficulty of fixing the charge holder. be done. In addition, it is necessary to close the upper part of the holder with fast-hardening mortar, which requires about one hour of hardening time. In addition, the vertical tube type charge holder is expensive, and it is the most expensive pile head processing method. In addition, since the crushing force in the vertical direction is directed toward the outer circumference, the influence on the pile body is not eliminated, such as the main reinforcing bars of the pile opening outward.
(5)動的破砕剤による水平破断+小割破砕工法
本工法は、あと施工となる横孔方式により動的破砕剤を装薬し、杭頭余盛部を水平破断した後、当該余盛部に斜め方向孔(上下)を設け、杭頭余盛部をさらに細分する方法である。所要作業が水平破断、小割破砕(斜め方向上下)に分割されることから、装薬孔削工、各所装薬に時間を要するため、大幅な改良が必要とされる。
(5) Horizontal breaking with dynamic crushing agent + small split crushing method In this construction method, a dynamic crushing agent is charged by the horizontal hole method, which is a post-construction method, and after horizontal breaking of the pile head excess banking, the additional banking In this method, oblique direction holes (upper and lower) are provided in the part to further subdivide the pile head reinforcement part. Since the required work is divided into horizontal breaking and breaking into small pieces (diagonally up and down), it takes time to drill holes and charges in various places, so significant improvements are required.
(6)杭頭余盛部一括破砕工法
本工法は、まず杭頭余盛部の境界面を非火薬破砕剤で水平に切断し、微小な時間差(0.03秒)をおいて杭頭余盛部のコンクリートを少量の爆薬(導爆線)で人頭大のガラに破砕する。水平破断に用いる破砕剤は、衝撃波は生じないため、杭本体に損傷を与えることはないが、水平破断された杭頭余盛部の小割に用いる導爆線は衝撃波を生じるため高い破砕力を有することから、外周部を拘束する必要がある。なお、小割用の爆薬は、竪管(φ22mm)と螺旋形のCD管(φ22mm)を用いて装薬するとされているが、いずれも前施工での取付けであり、閉塞、変形などの不具合が懸念される。
(6) Batch crushing method for pile head excess reinforcement A small amount of explosive (explosive cord) crushes the concrete into human-head-sized pieces. The crushing agent used for horizontal breaking does not generate shock waves, so it does not damage the pile itself. Therefore, it is necessary to constrain the outer periphery. In addition, the explosives for small splitting are said to be charged using a vertical pipe (φ22mm) and a spiral CD pipe (φ22mm), but both are installed in the previous construction, and problems such as clogging and deformation occur. is concerned.
市街地での杭頭処理工事は、発生する騒音や振動が規定値以内であることはもとより、近隣周辺へ不安や不快感を与えないよう極力低減する必要がある。そのためには、破砕機によるはつり作業を極力回避することが望ましく、したがって、破砕時にわずかに発生音がある静的破砕剤、または、高レベルだが瞬時の発生音に止まる動的破砕剤の適用が前提条件となる。一方で、静的破砕剤による破砕工法は、上述のように、破砕剤挿入が後行作業となり、先行作業であるシース管取付けやコンクリート打設による損傷・変形・ずれなどの影響も大きいことなどから、破砕の確度が必ずしも高いとは言えなく、環境面、施工性の観点から動的破砕の方が有効性は高いと判断できる。 Pile head treatment work in urban areas must not only keep noise and vibrations within specified limits, but also reduce them as much as possible so as not to cause anxiety or discomfort to the surrounding area. For that reason, it is desirable to avoid chipping work with a crusher as much as possible. Therefore, the application of a static crushing agent that makes a slight noise when crushing, or a dynamic crushing agent that is high level but only makes an instantaneous noise is applied. It is a prerequisite. On the other hand, in the crushing method using static crushing agents, as mentioned above, inserting the crushing agent is a follow-up work, and the preceding work, such as sheath pipe installation and concrete placement, is greatly affected by damage, deformation, and displacement. Therefore, it cannot be said that the accuracy of crushing is necessarily high, and it can be judged that dynamic crushing is more effective from the viewpoint of environment and workability.
動的破砕を適用する現行工法としては、竪管(断面:山形鋼突合せ)方式の水平フィン(平鋼2枚重ね)付装薬ホルダー×4本ないし6本を杭外周の杭主筋内側に均等に配置し、杭工事、掘削工事以降における杭頭表出後に、動的破砕剤を装薬ホルダー内に挿入し、遠隔操作にて杭頭余盛部を動的破砕により水平・鉛直同時破断させる方法がある。しかし、装薬準備の大部分が杭鉄筋組立て時となるため、杭頭が表出するまでの施工により装薬用機器材が損傷を受けたり、杭鉄筋が曲がったりして、破砕後に杭頭余盛部が揚重できないなど、様々な支障が発生している。また、装薬孔が鉛直方向である場合、装薬した破砕剤が有効に機能するためには、その上端を固化体で拘束する必要があり、従来は速硬性の無収縮モルタルを使用していたが、硬化までに1時間前後を要していたため、1日の施工量がこれにより限定されていた。 As a current construction method that applies dynamic crushing, 4 to 6 charge holders with horizontal fins (two layers of flat steel) of the vertical pipe (cross section: butt steel angle steel) method are evenly placed inside the main reinforcement of the pile around the circumference of the pile. After the pile head is exposed after the pile construction and excavation work, the dynamic crushing agent is inserted into the charge holder, and the pile head reinforcement is simultaneously broken horizontally and vertically by dynamic crushing by remote control. There is a way. However, since most of the preparation for the charge is done during the assembling of the pile rebar, the work until the pile head is exposed may damage the equipment for the charge, bend the pile rebar, and cause the pile head to be left after crushing. Various obstacles have occurred, such as the pile cannot be lifted. In addition, when the charging hole is vertical, it is necessary to restrain the upper end of the charged crushing agent with a solidifying material in order to function effectively. However, since it took about one hour to harden, the amount of work per day was limited.
装薬準備を杭頭が表出してから行う後施工方式を基本とし、時間を要さない簡易な方法により装薬準備を行い、しかも杭頭余盛部を動的破砕により確実に水平破断でき、さらに杭頭余盛部を細分する工法として上述の横孔方式による水平破断+斜め孔(上下)による鉛直破砕工法があるが、これも杭頭余盛部の水平破断と破断後の杭頭余盛部の細分割は別々の工程となり、動的破砕が2回に渡り行われるため、倍近い時間を要することになる。 Based on the post-construction method where the charge preparation is performed after the pile head is exposed, the charge preparation is performed by a simple method that does not require time, and the pile head excess reinforcement can be broken horizontally reliably by dynamic crushing. Furthermore, as a method of subdividing the pile head reinforcement part, there is a vertical crushing method by horizontal fracture + diagonal hole (upper and lower) by the above-mentioned horizontal hole method, but this is also a horizontal fracture of the pile head reinforcement part and the pile head after fracture The subdivision of the reinforcement portion is a separate process, and the dynamic crushing is performed twice, which takes nearly twice as long.
本発明は、上述のような従来技術の問題に鑑み、動的破砕剤により杭頭余盛部の水平破断と小割破砕とをほぼ同時にかつ確実に実施可能な杭頭処理工法を提供することを目的とする。 In view of the problems of the prior art as described above, the present invention provides a pile head processing method that can reliably perform horizontal breaking and small splitting of the pile head reinforcement portion almost simultaneously using a dynamic crushing agent. With the goal.
上記目的を達成するための杭頭処理工法は、場所打ちコンクリート杭の杭頭処理を行う杭頭処理工法であって、
コンクリート杭の杭鉄筋の組み立て時に複数の水平さや管を杭軸方向に直交しかつ杭天端に関連する高さ位置が同一となるように配置する工程と、前記組み立て時に複数の斜めさや管を同一の前記高さ位置であって杭頭外周面に相当する位置から杭軸直交方向に対し斜め上方に向けて配置する工程と、前記杭鉄筋が設置された所定位置においてコンクリートを打設する工程と、前記コンクリート杭において前記複数の水平さや管により水平方向に形成された複数の水平装薬孔および前記複数の斜めさや管により水平方向に対し斜め上方に形成された複数の斜め装薬孔にそれぞれ装薬材を装填する工程と、前記装填された装薬材内の動的破砕剤により前記杭頭部の杭頭余盛部を水平破断しかつ小割破砕する工程と、を含み、
前記複数の斜めさや管は、それぞれの水平投影位置が前記複数の水平さや管の各水平位置と重複するように前記複数の水平さや管と同数設けられる。
A pile head treatment method for achieving the above object is a pile head treatment method for performing pile head treatment on cast-in-place concrete piles,
A step of arranging a plurality of horizontal sheath pipes perpendicular to the pile axis direction and having the same height position relative to the top of the pile when assembling the pile reinforcing bars of the concrete pile; A step of arranging obliquely upward with respect to the perpendicular direction to the pile axis from a position corresponding to the outer peripheral surface of the pile head at the height position, and a step of placing concrete at a predetermined position where the pile reinforcing bar is installed; In the concrete pile, a plurality of horizontal charge holes formed in the horizontal direction by the plurality of horizontal sheath tubes and a plurality of oblique charge holes formed obliquely upward with respect to the horizontal direction by the plurality of oblique sheath tubes are charged respectively. A step of charging a chemical material, and a step of horizontally breaking and splitting the pile head surplus portion of the pile head by a dynamic crushing agent in the charged charging material,
The plurality of oblique sheath tubes are provided in the same number as the plurality of horizontal sheath tubes so that each horizontal projected position overlaps each horizontal position of the plurality of horizontal sheath tubes.
この杭頭処理工法によれば、杭頭部において水平方向に形成された複数の水平装薬孔と水平方向に対し斜め上方に形成された複数の斜め装薬孔とにそれぞれ装薬材を装填してから、たとえば、装薬材の点火具から延伸する脚線が複数の水平装薬孔、斜め装薬孔でそれぞれ直列に接がれ、水平方向から斜め方向の順に電導するように配線しておくことで、複数の水平装薬孔内の装薬材で杭頭余盛部を水平破断した後、その瞬時後に複数の斜め装薬孔内の装薬材で杭頭余盛部を小割破砕することができる。このように、動的破砕により杭頭余盛部を水平破断から小割破砕へとほぼ同時にかつ確実に破断し破砕することができる。 According to this pile head treatment method, a charge material is charged into each of a plurality of horizontal charge holes formed horizontally in the pile head and a plurality of oblique charge holes formed diagonally upward with respect to the horizontal direction. After that, for example, the leg wires extending from the igniter of the charge material are connected in series with a plurality of horizontal charge holes and diagonal charge holes, respectively, and wired so that electric conduction is performed in order from the horizontal direction to the diagonal direction. By doing so, after the pile head reinforcement is horizontally fractured by the charging material in the multiple horizontal charging holes, the pile head reinforcement is reduced by the charging material in the multiple diagonal charging holes immediately after that. Can be split and crushed. In this way, by dynamic crushing, it is possible to break and crush the pile head surplus portion from horizontal breakage to small split breakage almost simultaneously and reliably.
上記杭頭処理工法において前記杭頭外周面において前記複数の水平装薬孔の各開口と前記複数の斜め装薬孔の各開口とが共通することが好ましい。これにより、共通の開口から水平装薬孔内および斜め装薬孔内に装薬材を装填することができる。 In the above pile head processing method, it is preferable that the plurality of horizontal charge holes and the plurality of oblique charge holes have the same openings on the outer peripheral surface of the pile head. This allows charging material into the horizontal and oblique charge holes from a common opening.
また、前記水平さや管と前記斜めさや管とは予め一体に形成されていることが好ましい。これにより水平さや管と斜めさや管との配置工程を容易に行うことができる。 Moreover, it is preferable that the horizontal sheath tube and the oblique sheath tube are integrally formed in advance. This facilitates the process of arranging the horizontal sheath tube and the oblique sheath tube.
また、前記複数の水平装薬孔の一部が杭中心の放射状配置の一部をなすように形成され、前記放射状配置の残りをなす複数の前記水平装薬孔と少なくとも同数の前記水平装薬孔が所定の杭直径方向に関して線対称に形成されることが好ましい。 Also, a portion of the plurality of horizontal charging holes are formed to form a portion of the radial arrangement of the pile center, and at least the same number of horizontal charging holes as the plurality of horizontal charging holes forming the remainder of the radial arrangement. It is preferable that the holes are formed symmetrically with respect to a predetermined pile diameter direction.
また、前記複数の水平装薬孔が杭中心の放射状配置をなすように形成されるようにしてもよい。 Also, the plurality of horizontal charge holes may be formed in a radial arrangement around the center of the pile.
また、前記複数の斜め装薬孔での小割破砕が前記複数の水平装薬孔での水平破断よりもわずかに遅れるようにすることが好ましい。かかるわずかな遅延は、たとえば、各装薬材の点火具から延伸している脚線を、まず複数の水平装薬孔の分を直列に接ぎ、次に複数の斜め装薬孔の分を直列に接いだ脚線と連結し、全体を直列とし、発破母線からの電流が水平装薬孔から斜め装薬孔へと向かうように配線しておくことで実現できる。なお、前記水平さや管および前記斜めさや管が前記コンクリート打設工程で杭中心に配置されるトレミー管と干渉しないように前記水平さや管および前記斜めさや管の長さを調整することが好ましい。 Further, it is preferable that the breaking into small pieces at the plurality of oblique charging holes is slightly delayed from the horizontal breaking at the plurality of horizontal charging holes. Such a slight delay can be achieved, for example, by connecting the legs extending from the igniter of each charge in series first for a plurality of horizontal charge holes and then for a plurality of oblique charge holes in series. It can be realized by connecting with the leg wire connected to the blasting bus, making the whole in series, and wiring so that the current from the blasting bus is directed from the horizontal charging hole to the diagonal charging hole. In addition, it is preferable to adjust the length of the horizontal sheath pipe and the diagonal sheath pipe so that the horizontal sheath pipe and the diagonal sheath pipe do not interfere with the tremie pipe arranged at the center of the pile in the concrete placing step.
本発明によれば、動的破砕により杭頭余盛部の水平破断と小割破砕とをほぼ同時にかつ確実に実施可能な杭頭処理工法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the pile head processing construction method which can implement the horizontal fracture|rupture and subdivision crushing of a pile head reinforcement part substantially simultaneously and reliably by dynamic crushing can be provided.
以下、本発明を実施するための形態について図面を用いて説明する。図1は本実施形態におけるコンクリート杭の杭頭余盛部を説明するために杭鉄筋と杭頭部を上部から透視した要部平面図(a)、図1(a)の杭頭部を方向Zから透視した要部側面図(b)である。図2は、図1(a)のII-II線方向に切断して見た要部立断面図である。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated using drawing. FIG. 1 is a plan view (a) of the main part of the pile reinforcement and the pile head seen through from above to explain the pile head reinforcement portion of the concrete pile in this embodiment, and the pile head of FIG. It is the principal part side view (b) seen through from Z. FIG. FIG. 2 is an elevational cross-sectional view of the essential part taken along line II-II in FIG. 1(a).
まず、本実施形態における場所打ちコンクリート杭および杭鉄筋について図1を参照して説明する。図1(a)(b)のように、場所打ちのコンクリート杭10を施工するための杭鉄筋は、コンクリート杭10の杭軸方向に延びる所定数の杭主筋11が上面から見て円周上に等間隔に配置されるとともに、所定数の杭主筋11を包囲するようにリング状のせん断補強筋12が配置されることで、組み立てられる。所定数のせん断補強筋12は、図1(b)のように、コンクリート杭10の杭軸方向に等間隔に配置される。
First, the cast-in-place concrete pile and pile reinforcing bars in this embodiment will be described with reference to FIG. As shown in FIGS. 1(a) and 1(b), the pile reinforcing bars for constructing the cast-in-place
図1(a)(b)のように、コンクリート杭10は、杭鉄筋が所定位置に設置されてから、コンクリート打設により形成され、その杭頭部20において杭頭余盛部21が杭天端22上に位置する。
As shown in FIGS. 1(a) and 1(b), the
次に、本実施形態による杭頭処理工法においてコンクリート杭10の杭頭余盛部21を横孔方式の水平破断工法により水平破断するための水平装薬孔および斜め孔方式の小割破砕工法により小割破砕するための斜め装薬孔について説明する。
Next, in the pile head processing method according to this embodiment, the pile
図1(a)(b)では杭頭余盛部21の水平破断のための水平装薬孔の総数を9本とし杭頭余盛部21の小割破砕のための斜め装薬孔の総数を同数の9本としている。複数の水平装薬孔31~39が杭軸方向に直交しかつ杭天端22に関連する高さ位置が同一となるように設けられている。
In FIGS. 1(a) and 1(b), the total number of horizontal charge holes for horizontal breaking of the pile
図1(a)のように、水平装薬孔31,36,37が杭中心Pの放射状配置とされ、水平装薬孔32~35,38,39が非放射状配置とされている。水平装薬孔31と36との中間位置には、水平装薬孔31,36よりも短い複数の水平装薬孔37,38,39が位置する。水平装薬孔37は、水平装薬孔31と36との中間位置であって、所定の杭直径方向軸r上に位置する。水平装薬孔32~35,38,39は、水平装薬孔31,36とそれぞれ平行に設けられている。
As shown in FIG. 1(a), the horizontal charging holes 31, 36, 37 are arranged radially around the pile center P, and the horizontal charging holes 32-35, 38, 39 are arranged non-radially. A plurality of horizontal charging holes 37 , 38 , 39 shorter than the horizontal charging holes 31 , 36 are located at intermediate positions between the horizontal charging holes 31 , 36 . The
すなわち、水平装薬孔32と33とが平行であり、水平装薬孔31にほぼ平行であり、同様に、水平装薬孔34と35とが平行であり、水平装薬孔36にほぼ平行である。また、水平装薬孔33,32,38と34,35,39とは、所定の杭直径方向軸rに関して互いに線対称になっている。また、水平装薬孔32,33の最奥部および水平装薬孔34,35の最奥部が杭中心Pから外れるように配置されている。また、水平装薬孔31,36に対応する各水平さや管の長さは、コンクリート打設の際に使用されるトレミー管Tと干渉しないように調整されている。
That is, horizontal charging holes 32 and 33 are parallel and substantially parallel to
本例における水平装薬孔31~39、斜め装薬孔41~49の具体的な位置および長さ・径の設定について説明する。 Specific positions, lengths and diameters of the horizontal charging holes 31 to 39 and the oblique charging holes 41 to 49 in this example will be described.
水平装薬孔38,31,32,33の杭外周面において、水平装薬孔38と31との間の杭周長と、水平装薬孔31と32との間の杭周長と、水平装薬孔32と33との間の杭周長とがほぼ同じになるように水平装薬孔38,31,32,33の杭外周面位置が設定される。水平装薬孔39,36,35,34についても同様に杭外周面位置が設定される。このため、水平装薬孔38と31との間の間隔と、水平装薬孔31と32との間の間隔と、水平装薬孔32と33との間の間隔とがほぼ同じになっている。水平装薬孔39,36,35,34についても同様に各間隔がほぼ同じになっている。
On the outer peripheral surface of the piles of the horizontal charging holes 38, 31, 32, 33, the pile circumference between the horizontal charging holes 38 and 31, the pile circumference between the horizontal charging holes 31 and 32, and the horizontal The positions of the pile outer peripheral surfaces of the horizontal charging holes 38, 31, 32, and 33 are set so that the peripheral length of the pile between the charging
図1(a)の破線で示すように、杭平面の水平断面積を杭直径方向軸rに関し複数の領域C,D,E,F,G,H,Iに分割する。領域CとI,DとH,EとGは、それぞれ杭直径方向軸rに関し対称な形状となっており、また、領域Fは、領域C~E,G~Iの残余部分である。領域C~Eに水平装薬孔33,32,31が対応し、領域G~Iに水平装薬孔36,35,34が対応し、領域Fに水平装薬孔37~39が対応する。各領域C,D,E,F,G,H,Iは、装薬孔と隣接する装薬孔との中間位置の破線で示す区画線と所定の杭直径方向軸rと杭の外周とにより画定される。 As indicated by broken lines in FIG. 1(a), the horizontal cross-sectional area of the pile plane is divided into a plurality of regions C, D, E, F, G, H, and I with respect to the pile diametrical axis r. Regions C and I, D and H, E and G are each symmetrical about the pile diameter axis r, and region F is the remainder of regions C-E and G-I. Regions C to E correspond to horizontal charging holes 33, 32 and 31, regions G to I correspond to horizontal charging holes 36, 35 and 34, and region F corresponds to horizontal charging holes 37 to 39. Each of the regions C, D, E, F, G, H, and I is defined by the division line indicated by the dashed line at the intermediate position between the charge hole and the adjacent charge hole, the predetermined pile diametrical axis r, and the outer circumference of the pile. defined.
領域Dの水平装薬孔32は、領域Dを画定する両側の破線で示す区画線に対しほぼ中央でかつ平行に形成される。領域Eの水平装薬孔31は、領域Eを画定する両側の破線で示す区画線に対しほぼ中央でかつ平行に形成される。領域Cの水平装薬孔33は領域Cを確定する破線で示す区画線に対しほぼ平行に、かつ、コンクリート杭10の杭天端22(図1(b))での水平破断時にコンクリートに損傷が生じないような位置に配置される。水平装薬孔35,36,34も同様にして配置される。領域Fの水平装薬孔37は、上述のように、杭直径方向軸r上に配置され、装薬孔38,39は、水平装薬孔31,36と略平行に配置される。
The horizontal charging holes 32 in region D are formed substantially centrally and parallel to the dashed demarcation lines on both sides defining region D. As shown in FIG. The horizontal charging holes 31 in the region E are formed substantially in the center and parallel to the dashed demarcation lines defining the region E on both sides. The
図1(a)において、水平装薬孔33,32,31が杭の水平破断の一部をそれぞれ分担し、領域C,D,Eの各面積が各分担破断面積である。同様に、水平装薬孔34,35,36が杭の水平破断の一部をそれぞれ分担し、領域I,H,Gの各面積が各分担破断面積である。また、水平装薬孔37~39が杭の水平破断の一部をそれぞれ分担し、領域Fの面積が分担破断面積である。 In FIG. 1(a), the horizontal charge holes 33, 32, 31 each share a portion of the horizontal fracture of the pile, and the areas of regions C, D, and E are the shared fracture cross-sectional areas. Similarly, the horizontal charge holes 34, 35, 36 each share a portion of the horizontal breakage of the pile, and the areas of regions I, H, G are the respective share breakage areas. Also, the horizontal charging holes 37 to 39 each share a portion of the horizontal fracture of the pile, and the area of region F is the shared fracture area.
各領域C,D,E,F,G,H,Iの面積を算出し、かかる面積に応じて動的破砕剤の装薬量が定まるので、各水平装薬孔33,32,31,38,37,39,36,35,34の長さをその装薬量に対応した長さに設定する。このように、各領域C~Iの各分担破断面積から各装薬孔に必要な動的破砕剤の装薬量が定まるので、動的破砕剤の必要装薬量を収めることができるように各装薬孔の長さおよび径の少なくとも一方を調整する。 The areas of each of the regions C, D, E, F, G, H, and I are calculated, and the charging amount of the dynamic crushing agent is determined according to the calculated area. , 37, 39, 36, 35 and 34 are set to lengths corresponding to the charge amount. In this way, since the charging amount of the dynamic crushing agent required for each charging hole is determined from the shared fracture area of each of the regions C to I, the required charging amount of the dynamic crushing agent can be accommodated. At least one of the length and diameter of each charge hole is adjusted.
また、図1(a)(b),図2のように、各斜め装薬孔41~49が各水平装薬孔31~39と同一の高さ位置であって杭頭外周面に相当する位置から杭軸直交方向に対し斜め上方に向けて設けられている。各斜め装薬孔41~49は、その各水平投影位置が水平装薬孔31~39の各水平位置と重複するように形成される。杭頭外周面20aにおける水平装薬孔31~39の各開口と斜め装薬孔41~49の各開口とは共通している。
Also, as shown in FIGS. 1(a), 1(b) and 2, the oblique charge holes 41 to 49 are positioned at the same height as the horizontal charge holes 31 to 39 and correspond to the outer peripheral surface of the pile head. It is provided diagonally upward from the position with respect to the direction orthogonal to the pile axis. Each of the oblique charging holes 41-49 is formed so that its horizontal projection position overlaps with each horizontal position of the horizontal charging holes 31-39. The openings of the horizontal charging holes 31 to 39 and the openings of the oblique charging holes 41 to 49 in the pile head outer
複数の水平装薬孔31~39および複数の斜め装薬孔41~49は、それぞれ水平さや管・斜めさや管を杭頭部20に配置し、コンクリートに埋設することで形成される。水平装薬孔31~39の各水平さや管と斜め装薬孔41~49の各斜めさや管とは、それらの開口が共通するようにたとえばプラスチック管から一体的に形成されている。すなわち、図2のように、水平装薬孔31の水平さや管と斜め装薬孔41の斜めさや管とは共通の開口59を有するように一体に構成され、斜め装薬孔41の斜めさや管は水平装薬孔31の水平さや管に対して角度θだけ傾斜している。角度θは、杭径と全杭頭余盛部高さの関係で定められる。すなわち、斜め装薬孔41の上方端部が杭頭余盛部に少なくとも50mm埋設されるように角度θを定める。開口59は、コンクリート打設後、杭頭外周面20aに表出し、装薬材の挿入が可能となる。なお、他の水平装薬孔の水平さや管と他の斜め装薬孔の斜めさや管とは図2と同様にそれぞれ共通の開口を有するように一体に構成される。
The plurality of horizontal charging holes 31-39 and the plurality of diagonal charging holes 41-49 are formed by arranging horizontal sheath pipes and diagonal sheath pipes in the
図2の水平装薬孔31の水平さや管の長さL1と、斜め装薬孔41の斜めさや管の長さL2とは、次の関係にある。
L1=L2cosθ
なお、斜め装薬孔41と水平装薬孔31とのなす角度θは、たとえば、30°に設定できるが、これに限定されず、斜め装薬孔の上端部が少なくとも杭頭余盛部に50mm以上埋設されるのであれば、他の角度に設定してもよい。
The horizontal sheath tube length L1 of the
L1 = L2 cos θ
The angle θ between the oblique charging
図3は本実施形態による杭頭処理工法に用いる装薬材を概略的に示す立断面図である。図3のように、装薬材60内には動的破砕剤61と点火具62とが配置されている。すなわち、装薬材60は、可撓性のあるビニル管63内に、粒状の動的破砕剤61と点火具62とが収容されており、ビニル管63の両端は、プラスチック製の栓65a,65bがはめ込まれてからシール材66a,66bにより止水され密閉されている。また、点火具62から脚線64が外部へと延びている。
FIG. 3 is a cross-sectional elevational view schematically showing the charging material used in the pile head processing method according to this embodiment. As shown in FIG. 3, a dynamic crushing
なお、動的破砕剤61は、公知の各種破砕剤を使用でき、たとえば、酸化第2銅、アルミニウム、硫酸マグネシウム7水和物を主成分としたものを使用でき、点火すると、テルミット反応による激しい還元反応とともに高温・高圧の水蒸気が発生し、この発生した膨張圧を破砕力として利用する。また、臭素酸塩等のガス発生剤を主剤とした薬筒と点火具が一体となったものも使用でき、密閉状態で点火すると、高温・高圧ガスを発生する。
As the dynamic crushing
また、水平装薬孔31~39に使用される動的破砕剤61の装薬量は、水平破断する杭の水平断面積に対し各水平装薬孔31~39が分担する分担破断面積に基づいて設定される。すなわち、各水平装薬孔31~39に装填される装薬材60は、その中の動的破砕剤41の装薬量に応じて杭の水平破断に関与し杭の水平破断の一部を分担するが、この水平装薬孔毎の分担破断面積がたとえば等しくなるように装薬材60内の動的破砕剤61の装薬量を設定することで、効率的な杭の水平破断を実施できる。装薬材60内の動的破砕剤61の必要な装薬量に基づいて各水平装薬孔31~39の長さおよび径の少なくとも一方を調整する。図1では各水平装薬孔31~39の径を一定とし、長さを調整することで動的破砕剤61の必要な装薬量を調整している。なお、水平装薬孔37~39には、図3と構成は同様であるが、他の水平装薬孔に挿入される装薬材60よりも動的破砕剤61が短く設定された装薬材が挿入される。
In addition, the charging amount of the dynamic crushing
また、斜め装薬孔41~49に使用される小割破砕のための動的破砕剤61の装薬量は、小割破砕する杭頭余盛部21の垂直断面積に対し各斜め装薬孔41~49が分担する分担破断面積に基づいて設定される。装薬材60内の動的破砕剤61の必要な装薬量に基づいて各斜め装薬孔41~49の長さおよび径の少なくとも一方を調整する。図1では各斜め装薬孔41~49の径を一定とし、長さを調整することで動的破砕剤61の必要な装薬量を調整している。
In addition, the amount of charge of the dynamic crushing
上述のように、各水平装薬孔31~39および各斜め装薬孔41~49の分担面積で装薬量を設定することで安定した破砕が期待できる。この場合の装薬量の対象となる破断面は、図1(a)(b)において、水平破断面1面[π・(杭径/2 )2]と、鉛直破断面4面[(π×(杭径/2)2×(1/cos2θ))×4]であり、斜め破断面の面積は、[π×(杭径/2)2×(1/cos2θ)]となる。 As described above, stable crushing can be expected by setting the amount of charge based on the shared area of each of the horizontal charge holes 31-39 and each of the oblique charge holes 41-49. In this case , the target fracture surfaces for the amount of charge are, in FIGS. × (pile diameter/2) 2 × (1/cos 2 θ)) × 4], and the area of the oblique fracture surface is [π × (pile diameter/2) 2 × (1/cos 2 θ)]. Become.
次に、本実施形態による場所打ちコンクリート杭の杭頭処理工法の主要な工程S01~S13について図4のフローチャートを参照して説明する。まず、図1(a)(b)のように所定数の杭主筋11と所定数のせん断補強筋12とから杭鉄筋を組み立てる(S01)。
Next, main steps S01 to S13 of the pile head treatment method for cast-in-place concrete piles according to the present embodiment will be described with reference to the flowchart of FIG. First, as shown in FIGS. 1(a) and 1(b), pile reinforcing bars are assembled from a predetermined number of pile
図1(a)(b)、図2の水平装薬孔31~39および斜め装薬孔41~49のための各水平さや管・各斜めさや管を作製し準備する(S02)。両さや管は図2のように水平装薬孔31と斜め装薬孔41との一体型のプラスチック管からなる。
Horizontal sheath tubes and oblique sheath tubes for horizontal charging holes 31 to 39 and diagonal charging holes 41 to 49 in FIGS. 1(a) and 1(b) and FIG. 2 are prepared (S02). Both sheath tubes consist of an integrated plastic tube with a
上記杭鉄筋の組立の際の前施工として図1(a)(b)のように、一対の軽量鋼材51,52をそれぞれ配置し、図2のような一体型のプラスチック管からなる各さや管を軽量鋼材51,52により支持するようにして配置する(S03)。各さや管は、それぞれ一対の軽量鋼材51,52により固定され安定した支持状態となっている。
As shown in FIGS. 1(a) and 1(b), a pair of
次に、杭鉄筋を杭設置位置に建て込み、さや管による水平装薬孔31~39および斜め装薬孔41~49の位置を調整してから、トレミー管Tを通して杭鉄筋内へコンクリートを打設し杭施工を行う(S04)。 Next, the pile reinforcing bars are erected at the pile installation position, and after adjusting the positions of the horizontal charging holes 31 to 39 and the oblique charging holes 41 to 49 with sheath tubes, concrete is poured into the pile reinforcing bars through the tremie tubes T. Then, pile construction is performed (S04).
次に、土工事・掘削を行い(S05)、図1(b)のコンクリート杭10の杭頭部20を表出させ、コンクリート杭10の杭頭部20の外周面20aにおいて各さや管の開口(たとえば、図2の開口59)を表出させる(S06)。各さや管が水平装薬孔31~39および斜め装薬孔41~49となり、それらの共通の各開口が装薬材挿入口となる。
Next, earthwork and excavation are performed (S05), the
次に、図3のようにビニル管63内に動的破砕剤61と点火具62を詰めて密閉した装薬材60を用意し、装薬材60を水平装薬孔31~39内、斜め装薬孔41~49内に各開口から各奥端部に達するように挿入する(S07)。
Next, as shown in FIG. 3, the dynamic crushing
次に、装薬材60の点火具62に接続した各脚線64を水平装薬孔31~39,斜め装薬孔41~49の外部に取り出した後、砂等からなる込め物を残りの間隙に充填し各開口(たとえば図2の開口59)を封閉する(S08)。
Next, after each
次に、斜め装薬孔41~49内から外部に取り出した各装薬材60の点火具62の各脚線64を直列に連結するように配線し、また、水平装薬孔31~39内から外部に取り出した各装薬材60の点火具62の各脚線64を直列に連結するように配線する(S09)。
Next, the
次に、図1(a)(b)の杭頭余盛部21の全体を防爆シート(図示省略)で包むように巻き付けることで防爆養生をする(S10)。杭頭余盛部21の小割破砕のための斜め装薬孔41~49は、杭頭余盛部21内に収まっており、それらの端部が外部に露出していないので、従来のような装薬ホルダーの上部を速硬モルタルなどの硬化材料で拘束する上方への噴出し防止手段が不要であり、防爆シートによる防爆養生で充分である。
Next, an explosion-proof sheet (not shown) is wrapped around the entire pile
次に、装薬材60の点火具62の各脚線64を連結した配線を斜め装薬孔直列脚線から水平装薬孔直列脚線となるように発破器(図示省略)から延長された発破母線(図示省略)に接続する(S11)。
Next, the wiring connecting the
次に、発破器による遠隔操作で各点火具42を点火し、直列配線で先行して水平装薬孔31~39内の各動的破砕剤61が点火されることで、水平装薬孔31~39内で各動的破砕剤61による破砕力によって図1(b)の杭頭部20の杭頭余盛部21を水平破断するとともに、電気的にわずかに遅れて斜め装薬孔41~49内の各動的破砕剤61が点火されることで、水平破断よりもわずかに遅れて斜め装薬孔41~49内で各動的破砕剤61による破砕力によって杭頭余盛部21を小割破砕する(S12)。
Next, each
すなわち、水平装薬孔31~39内で各動的破砕剤61によりほぼ同時に発生する破砕力による亀裂が別の破砕力発生元である最近接の他の水平装薬孔に向かうため、水平方向の放射状4方向に亀裂が伝搬し互いに連結することで杭頭余盛部21が水平破断される。また、斜め装薬孔41~49内で各動的破砕剤61によりほぼ同時に発生する破砕力による亀裂が別の破砕力発生元である最近接の他の装薬孔に向かうため、斜め装薬孔とその水平投影位置の水平装薬孔からの亀裂同士が連結し、隣接する斜め装薬孔からの亀裂同士が連結することで杭頭余盛部21が小割破砕される。
That is, the cracks due to the crushing forces generated by the respective dynamic crushing
次に、水平破断され小割破砕された杭頭余盛部21の小割片を工事現場から外部に搬出する(S13)。
Next, the small pieces of the pile
本実施形態の杭頭処理工法によれば、杭頭部20において水平方向に形成された複数の水平装薬孔31~39と水平方向に対し斜め上方に形成された複数の斜め装薬孔41~49とにそれぞれ装薬材60を装填してから、各装薬材60内の動的破砕剤61を同時に点火することによる動的破砕によって、複数の水平装薬孔31~39内の装薬材60で杭頭余盛部21を水平破断し、好ましくはこの水平破断にわずかに遅れて複数の斜め装薬孔41~49内の装薬材60で杭頭余盛部21を小割破砕することができる。このように、動的破砕剤61により杭頭余盛部21の水平破断と小割破砕とをほぼ同時にかつ確実に実施することができる。
According to the pile head processing method of the present embodiment, the plurality of horizontal charging holes 31 to 39 formed in the horizontal direction in the
従来の杭頭余盛部を水平破断してから、水平破断後の杭頭余盛部を小割破砕する方法に比べ、杭頭余盛部21の水平破断と杭頭余盛部21の小割破砕とをほぼ同時に行うことができるので、破砕回数が1回で済み、杭頭処理の全工程を短期化でき、また、破砕時の他作業員の避難時間も半減できるため、全工期に及ぼす影響を低減でき、施工効率が向上する。
Compared to the conventional method of horizontally breaking the pile head reinforcement portion and then splitting and crushing the pile head reinforcement portion after horizontal breaking, the horizontal breakage of the pile
また、コンクリート杭10の杭頭処理において、水平装薬孔・斜め装薬孔をさや管に代替し、杭鉄筋の組立時にさや管を取付ける前施工とし、コンクリート打設後の後施工を装薬と配線と点火のみとする工法により、さや管に対応した位置に水平装薬孔・斜め装薬孔が形成され、コンクリート杭に装薬孔を削孔する必要がないので、コンクリート杭の削孔を伴う工法と比べて、作業効率が大幅に向上する。
In addition, in the pile head treatment of the
また、図1(a)のように、コンクリート杭10が施工区域の境界線B1,B2からなる隅角部CRに位置する場合でも、全ての装薬孔31~39,41~49に対し図3の装薬材60を境界線B1,B2に存在する外壁等の障害物と干渉することなく挿入することができる。したがって、図1(a)のような装薬孔31~39,41~49の配置は、施工区域内におけるコンクリート杭の施工位置に拘わらず適用可能である。
In addition, as shown in FIG. 1(a), even when the
また、図1(a)(b)では水平装薬孔・斜め装薬孔の総数をそれぞれ9本としたが、本実施形態はこれに限定されず、たとえば、図1(a)(b)の水平装薬孔37,斜め装薬孔47を省略し、それぞれ総数を8本としてもよい。
In addition, in FIGS. 1(a) and 1(b), the total number of horizontal charging holes and oblique charging holes is nine, respectively, but the present embodiment is not limited to this. The
次に、図5に水平装薬孔および斜め装薬孔の総数をそれぞれ8本とした別の例を示す。図5のように、水平装薬孔71~78のうち水平装薬孔73,74,77,78が杭中心Pの放射状配置とされ、放射状配置の残りをなす複数の装薬孔と同数の複数の水平装薬孔71,72,75,76が非放射状配置とされている。非放射状配置の水平装薬孔71,72は、水平装薬孔73と略平行にかつ近接する水平装薬孔間の間隔が等しくなるように配置されている。同様に、非放射状配置の水平装薬孔75,76は、水平装薬孔77と略平行にかつ近接する装薬孔間の間隔が等しくなるように配置されている。また、水平装薬孔71,72と75,76とは、所定の杭直径方向軸rに関して互いに線対称になっている。また、水平装薬孔71,72の最奥部および水平装薬孔75,76の最奥部が杭中心Pから外れるように配置されている。また、杭中心Pの放射状配置の水平装薬孔73,74,77,78に対応する各水平さや管の長さは、コンクリート打設の際に使用されるトレミー管と干渉しないように調整されている。 Next, FIG. 5 shows another example in which the total number of horizontal charging holes and oblique charging holes is eight. As shown in FIG. 5, among the horizontal charging holes 71 to 78, horizontal charging holes 73, 74, 77, and 78 are radially arranged around the pile center P, and the same number of charging holes as the remaining radially arranged charging holes are arranged. A plurality of horizontal charging holes 71, 72, 75, 76 are non-radially arranged. The non-radially arranged horizontal charging holes 71, 72 are arranged substantially parallel to the horizontal charging hole 73 and are spaced equally between adjacent horizontal charging holes. Similarly, the non-radially arranged horizontal charging holes 75, 76 are arranged generally parallel to the horizontal charging hole 77 and with equal spacing between adjacent charging holes. Also, the horizontal charge holes 71, 72 and 75, 76 are line-symmetrical with respect to a predetermined pile diameter direction axis r. Further, the innermost portions of the horizontal charging holes 71 and 72 and the innermost portions of the horizontal charging holes 75 and 76 are arranged so as to deviate from the pile center P. The length of each horizontal sheath pipe corresponding to the radially arranged horizontal charge holes 73, 74, 77, 78 of the pile center P is adjusted so as not to interfere with the tremie pipe used when placing concrete. ing.
また、各水平装薬孔71~88に対応して図1(b)、図2と同様に斜め装薬孔81~88が設けられている。斜め装薬孔81~88のそれぞれの水平投影位置に各水平装薬孔71~88が位置するようになっている。各水平装薬孔71~88と各斜め装薬孔81~88とは、図2と同様に、水平さや管と斜めさや管とが共通の開口を有するようにプラスチック管等により一体に構成される。 In addition, diagonal charging holes 81 to 88 are provided corresponding to the horizontal charging holes 71 to 88 in the same manner as in FIG. 1(b) and FIG. Each of the horizontal charging holes 71-88 is positioned at the horizontal projection position of each of the oblique charging holes 81-88. The horizontal charging holes 71 to 88 and the oblique charging holes 81 to 88 are integrally formed of a plastic tube or the like so that the horizontal sheath tube and the oblique sheath tube have a common opening, as in FIG. be.
また、図1の場合と同様に、装薬材60の動的破砕剤61の装薬量は、水平破断する杭の水平断面積に対し各水平装薬孔71~78が分担する分担破断面積に基づいて設定され、また、小割破砕する杭頭余盛部21の垂直断面積に対し各斜め装薬孔81~88が分担する分担破断面積に基づいて設定される。
As in the case of FIG. 1, the charging amount of the dynamic crushing
図5の例によれば、図1,図2と同様に杭頭余盛部21の水平破砕および小割破砕を行うことができる。また、コンクリート杭10が図1(a)と同様に、境界線B1,B2からなる隅角部CRに位置する場合でも、全ての装薬孔71~78、81~88に図3の装薬材60を挿入可能である。
According to the example of FIG. 5, horizontal crushing and splitting of the pile
次に、図6に全ての水平装薬孔が杭中心の放射状配置とされたさらに別の例を示す。図6のように、全て(8本)の水平装薬孔91~98が杭中心Pの放射状配置とされている。なお、水平装薬孔91~98に対応する各水平さや管の長さは、コンクリート打設の際に使用されるトレミー管と干渉しないように調整されている。また、各水平装薬孔91~98に対応して図1(b)、図2と同様に斜め装薬孔101~108が設けられている。斜め装薬孔101~108のそれぞれの水平投影位置に各水平装薬孔91~98が位置するようになっている。各水平装薬孔91~98と各斜め装薬孔101~108とは、図2と同様に、水平さや管と斜めさや管とが共通の開口を有するようにプラスチック管等により一体に構成される。図6の例によれば、図1,図2と同様に杭頭余盛部21の水平破砕および小割破砕を行うことができる。
Next, FIG. 6 shows yet another example in which all the horizontal charge holes are radially arranged around the pile center. As shown in FIG. 6, all (eight) horizontal charging holes 91 to 98 are radially arranged around the pile center P. As shown in FIG. The length of each horizontal sheath pipe corresponding to the horizontal charging holes 91 to 98 is adjusted so as not to interfere with the tremie pipe used when placing concrete. Further, diagonal charging holes 101 to 108 are provided corresponding to the horizontal charging holes 91 to 98 in the same manner as in FIG. 1(b) and FIG. Horizontal charging holes 91 to 98 are positioned at the horizontal projection positions of the oblique charging holes 101 to 108, respectively. Each of the horizontal charging holes 91 to 98 and each of the oblique charging holes 101 to 108 is integrally constructed of a plastic tube or the like so that the horizontal sheath tube and the oblique sheath tube have a common opening, as in FIG. be. According to the example of FIG. 6, horizontal crushing and splitting of the pile
以上のように本発明を実施するための形態について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。たとえば、図1,図5,図6では、水平装薬孔と斜め装薬孔のそれぞれの本数を8~9本としたが、本発明は、これに限定されず、杭径等に応じて適宜増減できることはもちろんである。すなわち、装薬孔の本数は、事前に試験等で断面積に対する平米あたりの動的破砕剤容量を定め、破砕時のガス圧で切断される範囲を想定して本数を定めるので、対象とする杭径および装薬孔の径等によって異なる。 Although the embodiments for carrying out the present invention have been described above, the present invention is not limited to these, and various modifications are possible within the scope of the technical idea of the present invention. For example, in FIGS. 1, 5, and 6, the number of each of the horizontal charging holes and the oblique charging holes is 8 to 9, but the present invention is not limited to this, depending on the pile diameter and the like. Of course, it can be increased or decreased as appropriate. In other words, the number of charging holes is determined in advance by testing the dynamic crushing agent capacity per square meter with respect to the cross-sectional area, and the number is determined by assuming the range that will be cut by the gas pressure during crushing. It varies depending on the pile diameter and the diameter of the charge hole.
また、各装薬孔に詰める込め物の深さは、横孔方式の込め物長率と同様に、装薬孔長さの40%程度となるように図3の装薬材60のビニル管63の径を調整することが好ましい。なお、この場合、装薬材長には点火具も含まれる。 In addition, the depth of the charge stuffed into each charge hole is about 40% of the length of the charge hole, similar to the charge length ratio of the horizontal hole method. It is preferable to adjust the diameter of 63 . In this case, the length of the propellant material also includes the igniter.
また、杭頭余盛部21における小割破砕のための各斜め装薬孔の装薬量は、分担する破断断面積で定めること以外にも、たとえば、分担する破断体積で定めるようにしてもよい。
Further, the charging amount of each oblique charging hole for crushing into small pieces in the pile
本発明によれば、場所打ちコンクリート杭の杭頭処理において、最も時間を要する後処理のドリル削孔を省略できかつ杭頭余盛部の水平破断と小割破砕とをほぼ同時に行うことができるので、大幅な時間短縮となり、杭頭処理の全体工程を50%以上短縮できる。また、削孔に要する人工と工期が不要となるため、大幅なコストダウンを図ることができる。 According to the present invention, in pile head processing of cast-in-place concrete piles, it is possible to omit drilling, which is the post-processing that takes the most time, and to perform horizontal breaking and small splitting of the pile head reinforcement portion almost simultaneously. Therefore, the time is greatly reduced, and the entire process of pile head treatment can be shortened by more than 50%. In addition, since manpower and work period required for drilling are not required, significant cost reduction can be achieved.
10 コンクリート杭
11 杭主筋
12 せん断補強筋
20 杭頭部
20a 杭頭外周面
21 杭頭余盛部
22 杭天端
31~39 水平装薬孔
41~49 斜め装薬孔
51,52 一対の軽量部材
59 開口
60 装薬材
61 動的破砕剤
62 点火具
63 ビニル管
64 脚線
71~78,91~98 水平装薬孔
81~88、101~108 斜め装薬孔
10
Claims (6)
コンクリート杭の杭鉄筋の組み立て時に複数の水平さや管を杭軸方向に直交しかつ杭天端に関連する高さ位置が同一となるように配置する工程と、
前記組み立て時に複数の斜めさや管を同一の前記高さ位置であって杭頭外周面に相当する位置から杭軸直交方向に対し斜め上方に向けて配置する工程と、
前記杭鉄筋が設置された所定位置においてコンクリートを打設する工程と、
前記コンクリート杭において前記複数の水平さや管により水平方向に形成された複数の水平装薬孔および前記複数の斜めさや管により水平方向に対し斜め上方に形成された複数の斜め装薬孔にそれぞれ装薬材を装填する工程と、
前記装填された装薬材内の動的破砕剤により前記杭頭部の杭頭余盛部を水平破断しかつ小割破砕する工程と、を含み、
前記複数の斜めさや管は、それぞれの水平投影位置が前記複数の水平さや管の各水平位置と重複するように前記複数の水平さや管と同数設けられる杭頭処理工法。 A pile head treatment method for treating the pile head of a cast-in-place concrete pile,
A step of arranging a plurality of horizontal sheath pipes perpendicular to the pile axis direction and having the same height position relative to the top of the pile when assembling the pile reinforcing bars of the concrete pile;
a step of arranging a plurality of oblique sheath pipes at the same height position at the time of assembly from a position corresponding to the outer peripheral surface of the pile head toward an obliquely upward direction with respect to the perpendicular direction to the pile axis;
A step of placing concrete at a predetermined position where the pile reinforcing bars are installed;
In the concrete pile, a plurality of horizontal charge holes formed in the horizontal direction by the plurality of horizontal sheath tubes and a plurality of oblique charge holes formed obliquely upward with respect to the horizontal direction by the plurality of oblique sheath tubes are charged respectively. a step of loading the medicinal material;
horizontally breaking and splitting the pile head reinforcement portion of the pile head by a dynamic crushing agent in the loaded charging material,
The pile head processing method, wherein the plurality of oblique sheath pipes are provided in the same number as the plurality of horizontal sheath pipes so that each horizontal projected position overlaps each horizontal position of the plurality of horizontal sheath pipes.
前記放射状配置の残りをなす複数の前記水平装薬孔と少なくとも同数の前記水平装薬孔が所定の杭直径方向に関して線対称に形成される請求項1乃至3のいずれかに記載の杭頭処理工法。 a portion of the plurality of horizontal charge holes are formed to form a portion of a radial arrangement about the pile center;
The pile head treatment according to any one of claims 1 to 3, wherein at least the same number of horizontal charging holes as the rest of the radially arranged horizontal charging holes are formed line-symmetrically with respect to a predetermined pile diameter direction. Construction method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020040623A JP7335842B2 (en) | 2020-03-10 | 2020-03-10 | Pile head processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020040623A JP7335842B2 (en) | 2020-03-10 | 2020-03-10 | Pile head processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021143463A JP2021143463A (en) | 2021-09-24 |
JP7335842B2 true JP7335842B2 (en) | 2023-08-30 |
Family
ID=77766144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020040623A Active JP7335842B2 (en) | 2020-03-10 | 2020-03-10 | Pile head processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7335842B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001303560A (en) | 2000-04-24 | 2001-10-31 | Morishige Akiyama | Method for processing head of concrete pile |
JP2015078564A (en) | 2013-10-18 | 2015-04-23 | 鹿島建設株式会社 | Pile head processing jig and pile head processing method |
WO2017141039A1 (en) | 2016-02-19 | 2017-08-24 | Novaslice Ltd | Improvements in or relating to pile head removal |
JP2019167690A (en) | 2018-03-22 | 2019-10-03 | 五洋建設株式会社 | Pile head processing method |
JP2020165146A (en) | 2019-03-29 | 2020-10-08 | 五洋建設株式会社 | Pile head treatment method |
JP2021101065A (en) | 2019-12-24 | 2021-07-08 | 五洋建設株式会社 | Pile head treatment method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05148835A (en) * | 1991-11-28 | 1993-06-15 | Asahi S K B Kk | Crushing method of pile head of concrete pile |
JPH11152902A (en) * | 1997-11-20 | 1999-06-08 | Kumagai Gumi Co Ltd | Drilling device |
-
2020
- 2020-03-10 JP JP2020040623A patent/JP7335842B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001303560A (en) | 2000-04-24 | 2001-10-31 | Morishige Akiyama | Method for processing head of concrete pile |
JP2015078564A (en) | 2013-10-18 | 2015-04-23 | 鹿島建設株式会社 | Pile head processing jig and pile head processing method |
WO2017141039A1 (en) | 2016-02-19 | 2017-08-24 | Novaslice Ltd | Improvements in or relating to pile head removal |
JP2019167690A (en) | 2018-03-22 | 2019-10-03 | 五洋建設株式会社 | Pile head processing method |
JP2020165146A (en) | 2019-03-29 | 2020-10-08 | 五洋建設株式会社 | Pile head treatment method |
JP2021101065A (en) | 2019-12-24 | 2021-07-08 | 五洋建設株式会社 | Pile head treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP2021143463A (en) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014188967A1 (en) | Pile head processing method | |
JP5620706B2 (en) | Dismantling method | |
JP6423690B2 (en) | Dismantling method | |
JP2005179924A (en) | Method for blowing up and demolishing reinforced concrete structure | |
JP7335842B2 (en) | Pile head processing method | |
JP2007332669A (en) | Blast control charge container and blast control method | |
JP7050637B2 (en) | Pile head treatment method | |
JP6194223B2 (en) | Pile head processing jig and pile head processing method | |
JP7353963B2 (en) | Pile head treatment method | |
JP6461022B2 (en) | Underground pile crushing method | |
JP6854626B2 (en) | Pile head treatment method | |
KR100885925B1 (en) | Blasting demolition method of the silo on a large cylindrical structure | |
JP2019167690A (en) | Pile head processing method | |
JP7085464B2 (en) | How to build a retaining wall structure in the reverse striking method | |
JP7295610B2 (en) | Method for removing concrete from the surface of a reinforced concrete building | |
JP2020165146A (en) | Pile head treatment method | |
JP2000213900A (en) | Blasting method | |
JP6844082B2 (en) | Underground pile crushing method | |
CN109238051B (en) | Method for removing risks in single-tower blasting demolition of power transmission tower with angle steel structure | |
JPS6145726B2 (en) | ||
JP6611592B2 (en) | How to remove the concrete from the surface of the reinforced concrete frame to expose the rebar | |
JP2019120095A (en) | Method for processing pile head | |
JPS5810532B2 (en) | Concrete structure destruction method | |
WO2002084207A1 (en) | Method of breaking or fracturing concrete | |
JP7330031B2 (en) | Dismantling method of columnar structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230818 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7335842 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |