JP7335678B2 - Thermally conductive addition-curable silicone composition and its cured product - Google Patents

Thermally conductive addition-curable silicone composition and its cured product Download PDF

Info

Publication number
JP7335678B2
JP7335678B2 JP2020099502A JP2020099502A JP7335678B2 JP 7335678 B2 JP7335678 B2 JP 7335678B2 JP 2020099502 A JP2020099502 A JP 2020099502A JP 2020099502 A JP2020099502 A JP 2020099502A JP 7335678 B2 JP7335678 B2 JP 7335678B2
Authority
JP
Japan
Prior art keywords
silicone composition
thermally conductive
curable silicone
group
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020099502A
Other languages
Japanese (ja)
Other versions
JP2021193168A (en
Inventor
啓太 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2020099502A priority Critical patent/JP7335678B2/en
Priority to PCT/JP2021/020107 priority patent/WO2021251148A1/en
Priority to TW110119425A priority patent/TW202208552A/en
Publication of JP2021193168A publication Critical patent/JP2021193168A/en
Application granted granted Critical
Publication of JP7335678B2 publication Critical patent/JP7335678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • C08K5/33Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、熱伝導性付加硬化型シリコーン組成物に関する。詳細には、銀粉末を高充填することで高熱伝導化を達成し、かつ付加硬化性も良好な熱伝導性付加硬化型シリコーン組成物に関する。 The present invention relates to thermally conductive addition-curable silicone compositions. More particularly, the present invention relates to a thermally conductive addition-curable silicone composition that achieves high thermal conductivity by being highly filled with silver powder and has good addition curability.

電子部品パッケージやパワーモジュールに共通する課題として、動作中の発熱及びそれによる性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。とりわけ、発熱部の付近に冷却部材を配置して両者を密接させたうえで、冷却部材から効率的に放熱する技術が一般的である。その際、発熱部と冷却部材との間に隙間があると、熱伝導率の悪い空気が介在することにより伝熱性が低下し、発熱部材の温度が十分に下がらなくなってしまう。このような空気の介在を防ぎ、熱伝導を向上させるため、熱伝導率がよく、部材の表面に追随性のある放熱材料、例えば放熱グリースや放熱シートが用いられている(例えば、特許文献1~9)。 Heat generation during operation and resulting deterioration in performance are widely known as problems common to electronic component packages and power modules, and various heat dissipation techniques are used as means for solving this problem. In particular, a technique of arranging a cooling member in the vicinity of the heat-generating part to bring them into close contact with each other and efficiently dissipating heat from the cooling member is generally used. At that time, if there is a gap between the heat-generating part and the cooling member, heat transfer is lowered due to the interposition of air with poor thermal conductivity, and the temperature of the heat-generating member cannot be lowered sufficiently. In order to prevent such intervening air and improve heat conduction, a heat-dissipating material with good thermal conductivity and conformability to the surface of the member, such as heat-dissipating grease and heat-dissipating sheet, is used (for example, Patent Document 1 ~9).

実際の電子部品パッケージやパワーモジュールの熱対策としては、薄く圧縮可能であり、発熱部と冷却部材との隙間への侵入性に優れる放熱グリースが、放熱性能の観点から好適である。さらに所望の厚みに圧縮後に加熱硬化させることで、発熱部での発熱と冷却を反復する熱履歴による膨張・収縮に起因する放熱グリースの流れ出し(ポンピングアウト)を発生しづらくし、電子部品パッケージやパワーモジュールの信頼性を高めることができる、付加硬化型の放熱グリースがとりわけ有用である(例えば、特許文献10)。 As a heat countermeasure for actual electronic component packages and power modules, thermal grease that can be compressed thinly and has excellent penetrability into the gap between the heat generating part and the cooling member is suitable from the viewpoint of heat radiation performance. Furthermore, by compressing it to a desired thickness and then heat-hardening it, it is difficult for the thermal grease to flow out (pumping out) due to expansion and contraction due to the thermal history of repeated heat generation and cooling in the heat-generating part, making it difficult for the heat-generating grease to flow out (pumping out). Addition-curing heat-dissipating greases are particularly useful because they can increase the reliability of power modules (eg, Patent Document 10).

近年、電子部品パッケージやパワーモジュールの高出力・高性能化、自動運転車両用半導体やIoTといった新しいアプリケーションへ対応するため、放熱材料にも高熱伝導・高信頼性化の要求が、より高まっている。そうした要求を満足しうる熱伝導性充填剤として銀粉末が挙げられる。銀はそれ単体の熱伝導率が極めて高く、かつ加熱硬化時に粉末同士が部分的に焼結することで効率的に伝熱経路を形成する結果、銀粉末を配合した放熱材料の熱伝導性が大幅に向上する。 In recent years, there has been an increasing demand for high thermal conductivity and high reliability in heat dissipation materials in order to respond to new applications such as high output and high performance electronic component packages and power modules, semiconductors for self-driving vehicles, and IoT. . Silver powder is an example of a thermally conductive filler that can satisfy such requirements. The thermal conductivity of silver itself is extremely high, and when the powder is partially sintered during heat hardening, it forms a heat transfer path efficiently. significantly improved.

一方で銀粉末を配合した付加硬化型シリコーン組成物においては、硬化性の低下がみられることが知られている。十分に硬化していない状態で電子部品パッケージやパワーモジュールに実装されてしまうと、信頼性が低下するおそれがある。特許文献11では、シロキサンオリゴマー、オルガノポリシロキサン、シリコーンレジンで表面処理された銀粉末を配合することで付加硬化型シリコーン組成物の硬化性を改善できることが開示されている。しかし、特許文献11に記載の発明では、銀粉末にシロキサンオリゴマー、オルガノポリシロキサン、シリコーンレジンで表面処理を施す工程が必要であるため、生産性が低い。 On the other hand, addition-curable silicone compositions containing silver powder are known to show a decrease in curability. If it is mounted in an electronic component package or a power module in a state where it has not been sufficiently hardened, there is a risk that the reliability will be lowered. Patent Literature 11 discloses that the curability of an addition-curable silicone composition can be improved by blending silver powder surface-treated with a siloxane oligomer, an organopolysiloxane, and a silicone resin. However, the invention described in Patent Document 11 requires a step of surface-treating the silver powder with a siloxane oligomer, organopolysiloxane, and silicone resin, resulting in low productivity.

特開2002-327116号公報Japanese Patent Application Laid-Open No. 2002-327116 特開2004-130646号公報JP-A-2004-130646 特開2009-234112号公報JP 2009-234112 A 特開2009-209230号公報Japanese Patent Application Laid-Open No. 2009-209230 特開2010-095730号公報JP 2010-095730 A 特開2008-031336号公報JP 2008-031336 A 特開2007-177001号公報Japanese Patent Application Laid-Open No. 2007-177001 特開2008-260798号公報Japanese Patent Application Laid-Open No. 2008-260798 特開2009-209165号公報JP 2009-209165 A 特開2016-053140号公報JP 2016-053140 A 特開平7-109501号公報JP-A-7-109501

従って、本発明は、硬化性に優れる、銀粉末を含有する熱伝導性付加硬化型シリコーン組成物を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a thermally conductive addition-curable silicone composition containing silver powder that exhibits excellent curability.

本発明者らは、上記目的を達成するために鋭意研究を行った結果、脂肪族不飽和炭化水素基含有オルガノポリシロキサン、銀粉末、アルカリ土類金属過酸化物またはアルカリ金属過酸化物、オルガノハイドロジェンポリシロキサン、白金族金属触媒を特定量配合することで、硬化性に優れる、熱伝導性付加硬化型シリコーン組成物が得られることを見出し、本発明を完成した。 The present inventors have conducted intensive studies to achieve the above objects, and as a result, found that aliphatic unsaturated hydrocarbon group-containing organopolysiloxane, silver powder, alkaline earth metal peroxide or alkali metal peroxide, organo The inventors have found that a thermally conductive, addition-curable silicone composition with excellent curability can be obtained by blending a specific amount of hydrogen polysiloxane and a platinum group metal catalyst, and have completed the present invention.

従って、本発明は、下記熱伝導性付加硬化型シリコーン組成物を提供する。 Accordingly, the present invention provides the thermally conductive addition-curable silicone composition described below.

[1]
(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン
(B)銀粉末:組成物中、10~98質量%となる量、
(C)アルカリ土類金属過酸化物、またはアルカリ金属過酸化物:組成物中、0.03~10質量%となる量、
(D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(D)成分中のSiH基の個数の合計が0.5~5となる量、
(E)白金族金属触媒:有効量
を含む、熱伝導性付加硬化型シリコーン組成物。

[2]
(B)成分の平均粒径が0.01~300μmである、[1]に記載の熱伝導性付加硬化型シリコーン組成物。

[3]
(C)成分がアルカリ土類金属過酸化物である、[1]または[2]に記載の熱伝導性付加硬化型シリコーン組成物。

[4]
(C)成分が過酸化カルシウムである、[1]~[3]のいずれか1つに記載の熱伝導性付加硬化型シリコーン組成物。

[5]
さらに、(F)成分として、アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物及び有機クロロ化合物からなる群より選択される1種以上の付加硬化反応制御剤を有効量含有する、[1]~[4]のいずれか1つに記載の熱伝導性付加硬化型シリコーン組成物。

[6]
[1]~[5]のいずれか1つに記載の熱伝導性付加硬化型シリコーン組成物の硬化物。
[1]
(A) Organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and a kinematic viscosity at 25° C. of 60 to 100,000 mm 2 /s (B) Silver powder: Composition Medium, an amount that is 10 to 98% by mass,
(C) an alkaline earth metal peroxide or an alkali metal peroxide: an amount of 0.03 to 10% by mass in the composition;
(D) Organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule: an amount such that the total number of SiH groups is 0.5 to 5,
(E) a platinum group metal catalyst: a thermally conductive addition-curable silicone composition comprising an effective amount.

[2]
The thermally conductive addition-curable silicone composition according to [1], wherein component (B) has an average particle size of 0.01 to 300 μm.

[3]
The thermally conductive addition-curable silicone composition of [1] or [2], wherein component (C) is an alkaline earth metal peroxide.

[4]
The thermally conductive addition-curable silicone composition according to any one of [1] to [3], wherein component (C) is calcium peroxide.

[5]
Furthermore, as component (F), an effective amount of one or more addition curing reaction inhibitors selected from the group consisting of acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds [1] to The thermally conductive addition-curable silicone composition according to any one of [4].

[6]
A cured product of the thermally conductive addition-curable silicone composition according to any one of [1] to [5].

本発明の熱伝導性付加硬化型シリコーン組成物は、組成物中に銀粉末を配合することで高熱伝導化を達成しながら、優れた加熱硬化性を有するものである。その結果、電子部品パッケージやパワーモジュールへ実装することで優れた放熱性能と高い信頼性を両立することができる。 ADVANTAGE OF THE INVENTION The thermally conductive addition-curable silicone composition of the present invention achieves high thermal conductivity by incorporating silver powder into the composition and has excellent heat curing properties. As a result, it is possible to achieve both excellent heat dissipation performance and high reliability by mounting it on an electronic component package or power module.

以下、本発明を詳細に説明する。 The present invention will be described in detail below.

(A)成分
(A)成分は、1分子中に少なくとも2個、好ましくは2~100個、より好ましくは2~50個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサンである。
(A) component (A) component has at least 2, preferably 2 to 100, more preferably 2 to 50 aliphatic unsaturated hydrocarbon groups in one molecule, kinematic viscosity at 25 ° C. of 60 to 100,000 mm 2 /s.

脂肪族不飽和炭化水素基は、脂肪族不飽和結合を有する、好ましくは炭素数2~8、より好ましくは炭素数2~6の1価炭化水素基である。該脂肪族不飽和炭化水素基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。これらのなかでも、ビニル基が好ましい。該脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子、分子鎖途中のケイ素原子のいずれに結合していてもよく、両者に結合していてもよい。 The aliphatic unsaturated hydrocarbon group is a monovalent hydrocarbon group preferably having 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, having an aliphatic unsaturated bond. Examples of the aliphatic unsaturated hydrocarbon group include alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group. Among these, a vinyl group is preferred. The aliphatic unsaturated hydrocarbon group may be bonded to either a silicon atom at the end of the molecular chain, a silicon atom in the middle of the molecular chain, or both.

(A)成分のオルガノポリシロキサンのケイ素原子に結合する、脂肪族不飽和炭化水素基以外の有機基としては、好ましくは炭素数1~18、より好ましくは炭素数1~10、さらに好ましくは炭素数1~8の、非置換又は置換の1価炭化水素基である。該1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又はこれらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。これらのなかでも、メチル基であることが好ましい。 The organic group other than the aliphatic unsaturated hydrocarbon group, which is bonded to the silicon atom of the component (A) organopolysiloxane, preferably has 1 to 18 carbon atoms, more preferably 1 to 10 carbon atoms, and further preferably has 1 to 10 carbon atoms. It is an unsubstituted or substituted monovalent hydrocarbon group of numbers 1 to 8. Examples of the monovalent hydrocarbon group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group and nonyl. aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group; or part of the hydrogen atoms of these groups. Alternatively, all of them are substituted with halogen atoms such as fluorine, bromine and chlorine, cyano groups and the like, such as chloromethyl, chloropropyl, bromoethyl, trifluoropropyl and cyanoethyl groups. Among these, a methyl group is preferred.

(A)成分のオルガノポリシロキサンは、25℃での動粘度が、60~100,000mm2/s、好ましくは100~30,000mm2/sである。該動粘度が60mm2/s未満であると、シリコーン組成物の物理的特性が低下し、100,000mm2/sを超えると、シリコーン組成物の伸展性が乏しいものとなる場合がある。
本発明において、動粘度は、ウベローデ型オストワルド粘度計により測定した25℃における値である(以下、同じ)。
The (A) component organopolysiloxane has a kinematic viscosity at 25° C. of 60 to 100,000 mm 2 /s, preferably 100 to 30,000 mm 2 /s. If the kinematic viscosity is less than 60 mm 2 /s, the physical properties of the silicone composition may deteriorate, and if it exceeds 100,000 mm 2 /s, the extensibility of the silicone composition may be poor.
In the present invention, kinematic viscosity is a value at 25° C. measured with an Ubbelohde Ostwald viscometer (the same shall apply hereinafter).

(A)成分のオルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状構造、分岐鎖状構造、一部分岐状構造又は環状構造を有する直鎖状構造等であってもよい。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するものが好ましい。該直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造又は環状構造を有していてもよい。 The molecular structure of the component (A) organopolysiloxane is not particularly limited as long as it has the properties described above. etc. In particular, those having a linear structure in which the main chain consists of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups are preferred. The organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure.

該オルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。
(A)成分は、本発明の組成物中、1.5~90質量%含有することが好ましく、2~20質量%含有することがより好ましい。
The organopolysiloxane can be used singly or in combination of two or more.
The component (A) content in the composition of the present invention is preferably 1.5 to 90% by mass, more preferably 2 to 20% by mass.

(B)成分
(B)成分は銀粉末である。銀粉末の製造方法は特に限定されるものではないが、例えば電解法、粉砕法、熱処理法、アトマイズ法、還元法等が挙げられる。また、その形状は、フレーク状、球状、粒状、不定形状、樹枝状、針状等、特に限定されるものではない。
(B)成分の平均粒径は、0.01μmより小さいと、得られる組成物の粘度が高くなりすぎ、伸展性の乏しいものとなるおそれがあり、300μmより大きいと、得られる組成物が不均一となるおそれがあるため、0.01~300μmの範囲が好ましく、0.1~100μmの範囲がより好ましく、1~50μmの範囲が特に好ましい。なお、平均粒径は、レーザー光回折法による粒度分布測定における体積基準の平均値(又はメジアン径)として求めた値である。
(B) Component (B) Component is silver powder. The method for producing the silver powder is not particularly limited, and examples thereof include an electrolysis method, a pulverization method, a heat treatment method, an atomization method, a reduction method and the like. Moreover, the shape is not particularly limited and may be flake-like, spherical, granular, amorphous, dendritic, needle-like, or the like.
If the average particle size of the component (B) is less than 0.01 µm, the viscosity of the resulting composition may become too high, resulting in poor spreadability. The range of 0.01 to 300 μm is preferable, the range of 0.1 to 100 μm is more preferable, and the range of 1 to 50 μm is particularly preferable, because there is a possibility of uniformity. The average particle diameter is a value determined as a volume-based average value (or median diameter) in particle size distribution measurement by a laser beam diffraction method.

また、(B)成分は1種を単独で又は2種以上を組み合わせて使用することができ、その割合は特に限定されず、任意である。
(B)成分の配合量は、本発明の組成物中、10~98質量%であり、70~97質量%が好ましく、80~95質量%がより好ましい。該配合量が、98質量%より多いと、組成物の粘度増加が著しく、作業性が低下するおそれがあり、10質量%より少ないと熱伝導性に乏しいものとなるおそれがある。
In addition, component (B) can be used singly or in combination of two or more, and the ratio is not particularly limited and is arbitrary.
The amount of component (B) is 10 to 98% by mass, preferably 70 to 97% by mass, more preferably 80 to 95% by mass, in the composition of the present invention. If the amount is more than 98% by mass, the viscosity of the composition may be significantly increased and workability may be lowered. If the amount is less than 10% by mass, the thermal conductivity may be poor.

(C)成分
(C)成分はアルカリ土類金属過酸化物、またはアルカリ金属過酸化物であり、本発明の組成物の硬化性を向上させるための助触媒として作用する。
Component (C) Component (C) is an alkaline earth metal peroxide or an alkali metal peroxide, and acts as a co-catalyst for improving the curability of the composition of the present invention.

安全性及び化学的安定性の観点からアルカリ土類金属過酸化物を用いることが好ましく、過酸化カルシウムが特に好ましい。 From the viewpoint of safety and chemical stability, it is preferable to use alkaline earth metal peroxides, and calcium peroxide is particularly preferable.

(C)成分の配合量は、本発明の組成物中、0.03~10質量%であり、0.05~5質量%が好ましい。配合量が、0.03質量%未満であると、本発明の組成物の硬化性向上に資する効果に乏しく、10質量%を超えても助触媒効果が著しく増大することはなく、不経済であり、本発明の組成物において、著しい増粘を招くおそれもある。 The amount of component (C) is 0.03 to 10% by mass, preferably 0.05 to 5% by mass, in the composition of the present invention. If the amount is less than 0.03% by mass, the effect of improving the curability of the composition of the present invention is poor, and even if it exceeds 10% by mass, the promoter effect does not significantly increase, which is uneconomical There is a possibility that the composition of the present invention may be significantly thickened.

(D)成分
(D)成分は、ケイ素原子に結合した水素原子(SiH基)を1分子中に2個以上、好ましくは2~100個、より好ましくは2~50個有するオルガノハイドロジェンポリシロキサンである。該オルガノハイドロジェンポリシロキサンは、分子中のSiH基が、上述した(A)成分の脂肪族不飽和炭化水素基と、後述する白金族金属触媒((E)成分)の存在下で付加反応し、架橋構造を形成できるものであればよい。
Component (D) Component (D) is an organohydrogenpolysiloxane having 2 or more, preferably 2 to 100, and more preferably 2 to 50 silicon-bonded hydrogen atoms (SiH groups) per molecule. is. In the organohydrogenpolysiloxane, the SiH groups in the molecule undergo an addition reaction with the aliphatic unsaturated hydrocarbon groups of component (A) described above in the presence of a platinum group metal catalyst (component (E)) described later. , as long as it can form a crosslinked structure.

前記オルガノハイドロジェンポリシロキサンは、上記性質を有するものであれば、その分子構造は特に限定されず、直鎖状構造、分岐鎖状構造、環状構造、一部分岐状構造又は一部環状構造を有する直鎖状構造等が挙げられる。これらのなかでも、直鎖状構造、環状構造が好ましい。
該オルガノハイドロジェンポリシロキサンは、25℃での動粘度が、好ましくは1~1,000mm2/s、より好ましくは10~300mm2/sである。前記動粘度が1mm2/s以上であれば、シリコーン組成物の物理的特性が低下するおそれがなく、1,000mm2/s以下であれば、シリコーン組成物の伸展性が乏しいものとなるおそれがない。
The molecular structure of the organohydrogenpolysiloxane is not particularly limited as long as it has the properties described above, and has a linear structure, a branched chain structure, a cyclic structure, a partially branched structure, or a partially cyclic structure. Linear structure etc. are mentioned. Among these, linear structures and cyclic structures are preferred.
The organohydrogenpolysiloxane has a kinematic viscosity at 25° C. of preferably 1 to 1,000 mm 2 /s, more preferably 10 to 300 mm 2 /s. If the kinematic viscosity is 1 mm 2 / s or more, the physical properties of the silicone composition may not deteriorate. There is no

前記オルガノハイドロジェンポリシロキサンのケイ素原子に結合する有機基としては、脂肪族不飽和炭化水素基以外の非置換又は置換の1価炭化水素基が挙げられ、特には、炭素数1~12、好ましくは炭素数1~10の、非置換又は置換の1価炭化水素基である。該1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基、これらの水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基、エポキシ環含有有機基(グリシジル基又はグリシジルオキシ基置換アルキル基)等で置換したもの、例えば、クロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基、2-グリシドキシエチル基、3-グリシドキシプロピル基、及び4-グリシドキシブチル基等が挙げられる。これらの中でも、メチル基、3-グリシドキシプロピル基が好ましい。 Examples of the organic group bonded to the silicon atom of the organohydrogenpolysiloxane include unsubstituted or substituted monovalent hydrocarbon groups other than aliphatic unsaturated hydrocarbon groups, particularly preferably having 1 to 12 carbon atoms. is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms. Examples of the monovalent hydrocarbon group include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and dodecyl group, aryl groups such as phenyl group, 2-phenylethyl group and 2-phenylpropyl group. aralkyl groups such as groups, those in which some or all of these hydrogen atoms are substituted with halogen atoms such as fluorine, bromine, chlorine, etc., cyano groups, epoxy ring-containing organic groups (glycidyl groups or glycidyloxy group-substituted alkyl groups), etc. , for example, chloromethyl group, chloropropyl group, bromoethyl group, trifluoropropyl group, cyanoethyl group, 2-glycidoxyethyl group, 3-glycidoxypropyl group, and 4-glycidoxybutyl group. . Among these, a methyl group and a 3-glycidoxypropyl group are preferred.

該オルガノハイドロジェンポリシロキサンは、1種単独でも2種以上を混合して使用してもよい。
(D)成分のオルガノハイドロジェンポリシロキサンの配合量は、(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(D)成分中のSiH基の個数の合計が0.5~5となる量、好ましくは0.7~4.5となる量、より好ましくは1~4となる量である。(D)成分の量が上記下限値未満では付加反応が十分に進行せず、架橋が不十分となる。また、上記上限値超では、架橋構造が不均一となったり、組成物の保存性が著しく悪化する場合がある。
The organohydrogenpolysiloxane may be used alone or in combination of two or more.
The amount of component (D) organohydrogenpolysiloxane to be blended is such that the total number of SiH groups in component (D) relative to the total number of aliphatic unsaturated hydrocarbon groups in component (A) is 0.5 to 5, preferably 0.7 to 4.5, more preferably 1 to 4. If the amount of component (D) is less than the above lower limit, the addition reaction will not proceed sufficiently, resulting in insufficient cross-linking. On the other hand, when the above upper limit is exceeded, the crosslinked structure may become non-uniform, and the storage stability of the composition may be significantly deteriorated.

(E)成分
(E)成分は白金族金属触媒であり、上述した(A)成分と(D)成分との付加反応を促進するために作用する。白金族金属触媒は、付加反応に用いられる従来公知のものを使用することができる。該白金族金属触媒としては、例えば、白金系、パラジウム系、ロジウム系の触媒が挙げられるが、中でも比較的入手しやすい白金又は白金化合物が好ましい。白金又は白金化合物としては、例えば、白金の単体、白金黒、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。
白金族金属触媒は1種単独でも2種以上を組み合わせて使用してもよい。
Component (E) Component (E) is a platinum group metal catalyst and acts to promote the addition reaction between the components (A) and (D) described above. As the platinum group metal catalyst, conventionally known ones used for addition reactions can be used. Examples of the platinum group metal catalyst include platinum-based, palladium-based, and rhodium-based catalysts, among which platinum or platinum compounds, which are relatively easily available, are preferable. Examples of platinum or platinum compounds include simple platinum, platinum black, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, and platinum coordination compounds.
The platinum group metal catalysts may be used singly or in combination of two or more.

(E)成分の配合量は触媒としての有効量、即ち、付加反応を促進して本発明の熱伝導性付加硬化型シリコーン組成物を硬化させるために必要な有効量であればよい。該有効量は、組成物中、白金族金属原子に換算した質量基準で0.1~500ppmが好ましく、1~200ppmがより好ましく、10~100ppmがさらに好ましい。触媒の量が上記下限値より少ないと触媒としての効果が得られないことがある。また上記上限値を超えても触媒効果が増大することはなく、不経済である。 Component (E) may be added in an effective amount as a catalyst, that is, in an effective amount necessary to accelerate the addition reaction and cure the thermally conductive addition-curable silicone composition of the present invention. The effective amount is preferably from 0.1 to 500 ppm, more preferably from 1 to 200 ppm, and even more preferably from 10 to 100 ppm, based on the mass in terms of platinum group metal atoms in the composition. If the amount of the catalyst is less than the above lower limit, the effect as a catalyst may not be obtained. Even if the above upper limit is exceeded, the catalytic effect does not increase, which is uneconomical.

本発明の熱伝導性付加硬化型シリコーン組成物は、上記成分の他に、必要に応じてさらに以下の任意成分を添加することができる。 In addition to the components described above, the thermally conductive addition-curable silicone composition of the present invention may optionally contain the following optional components.

(F)成分
(F)成分は室温でのヒドロシリル化反応の進行を抑える反応制御剤であり、シェルフライフ、ポットライフを延長させるために添加するものである。該反応制御剤は、付加硬化型シリコーン組成物に使用される従来公知の反応制御剤を使用することができる。該反応制御剤としては、例えば、アセチレンアルコール類(例えば、エチニルメチルデシルカルビノール、1-エチニル-1-シクロヘキサノール、3,5-ジメチル-1-ヘキシン-3-オール)等のアセチレン化合物、トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の各種窒素化合物、トリフェニルホスフィン等の有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。
Component (F) Component (F) is a reaction control agent that suppresses the progress of the hydrosilylation reaction at room temperature, and is added to prolong shelf life and pot life. As the reaction control agent, conventionally known reaction control agents used for addition curing silicone compositions can be used. Examples of the reaction control agent include acetylene compounds such as acetylene alcohols (e.g., ethynylmethyldecylcarbinol, 1-ethynyl-1-cyclohexanol, 3,5-dimethyl-1-hexyn-3-ol); Various nitrogen compounds such as butylamine, tetramethylethylenediamine, and benzotriazole, organic phosphorus compounds such as triphenylphosphine, oxime compounds, organic chloro compounds, and the like can be mentioned.

(F)成分を配合する場合の配合量は、(A)成分100質量部に対し、0.05~5質量部が好ましく、より好ましくは0.1~2質量部である。反応制御剤の量が0.05質量部未満では、所望とする十分なシェルフライフ、ポットライフが得られないおそれがあり、また、5質量部より多い場合には、シリコーン組成物の硬化性が低下するおそれがある。 When component (F) is blended, the blending amount is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 2 parts by mass, per 100 parts by mass of component (A). If the amount of the reaction inhibitor is less than 0.05 parts by mass, the desired shelf life and pot life may not be obtained. may decrease.

また反応制御剤は、シリコーン組成物への分散性を良くするために、従来公知のオルガノ(ポリ)シロキサンやトルエン等で希釈して使用してもよい。 In order to improve the dispersibility in the silicone composition, the reaction control agent may be diluted with conventionally known organo(poly)siloxane, toluene, or the like.

その他の成分
本発明の熱伝導性付加硬化型シリコーン組成物は、組成物の強度や粘度を調整するためにメチルポリシロキサン等の反応性を有さないオルガノ(ポリ)シロキサンを含有してもよい。
さらに、銀以外の従来公知の熱伝導性充填剤を1種以上併用してもよい。
さらに、熱伝導性充填剤の充填性を向上する目的や、組成物に接着性を付与する目的で、加水分解性オルガノポリシロキサンや各種変成シリコーン、加水分解性オルガノシランを配合してもよい。
さらに、組成物の粘度を調整するための溶剤を配合してもよい。
さらに、シリコーン組成物の劣化を防ぐために、2,6-ジ-tert-ブチル-4-メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。
さらに、染料、顔料、難燃剤、沈降防止剤、又はチクソ性向上剤等を、必要に応じて配合することもできる。
Other Components The thermally conductive addition-curable silicone composition of the present invention may contain a non-reactive organo(poly)siloxane such as methylpolysiloxane in order to adjust the strength and viscosity of the composition. .
Furthermore, one or more conventionally known thermally conductive fillers other than silver may be used in combination.
Furthermore, hydrolyzable organopolysiloxanes, various modified silicones, and hydrolyzable organosilanes may be blended for the purpose of improving the filling properties of the thermally conductive filler or imparting adhesiveness to the composition.
Furthermore, a solvent may be added to adjust the viscosity of the composition.
Furthermore, in order to prevent deterioration of the silicone composition, conventionally known antioxidants such as 2,6-di-tert-butyl-4-methylphenol may be contained as necessary.
Furthermore, dyes, pigments, flame retardants, anti-settling agents, thixotropy improvers, etc. can be blended as needed.

シリコーン組成物の製造方法
本発明のシリコーン組成物の製造方法について説明する。本発明のシリコーン組成物の製造方法は特に限定されず、従来公知の製造方法を利用することができる。
上述した(A)~(D)成分、及び必要により(E)成分やその他成分を、例えば、トリミックス、ツウィンミックス、プラネタリーミキサー(いずれも(株)井上製作所製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスミックス(プライミクス株式会社製混合機の登録商標)等の混合機等を用いて、25℃で通常3分~24時間、好ましくは5分~12時間、特に好ましくは10分~6時間混合する方法が挙げられる。また混合時に脱気を行ってもよく、40~170℃の範囲で加熱しながら混合してもよい。
Method for Producing Silicone Composition A method for producing the silicone composition of the present invention will be described. The method for producing the silicone composition of the present invention is not particularly limited, and conventionally known production methods can be used.
The above components (A) to (D), and if necessary, component (E) and other components, for example, Trimix, Twinmix, and Planetary Mixer (both registered trademarks of Mixer manufactured by Inoue Seisakusho Co., Ltd.), Using a mixer such as Ultra Mixer (registered trademark of mixer manufactured by Mizuho Kogyo Co., Ltd.), Hibismix (registered trademark of mixer manufactured by Primix Co., Ltd.), etc., at 25 ° C. for usually 3 minutes to 24 hours, preferably A method of mixing for 5 minutes to 12 hours, particularly preferably 10 minutes to 6 hours, can be used. Further, degassing may be performed during mixing, and mixing may be performed while heating in the range of 40 to 170°C.

本発明の組成物の製造においては、予め(A)及び(B)成分を25℃で混合し、その後、(C)及び(D)を25℃で混合することが、本発明の組成物の硬化物が良好な熱伝導性と硬化性を発現する観点から好ましい。なお、任意成分である(E)成分及び/又は(F)成分を配合する場合は、予め(A)及び(B)成分を混合後、(E)成分及び/又は(F)成分を混合し、その後(C)成分及び(D)成分を混合することが好ましい。 In the production of the composition of the present invention, the components (A) and (B) are preliminarily mixed at 25°C, and then (C) and (D) are mixed at 25°C. It is preferable from the viewpoint that the cured product exhibits good thermal conductivity and curability. When blending optional components (E) and/or (F), components (A) and (B) are mixed in advance, and then components (E) and/or (F) are mixed. , and then mixing components (C) and (D).

本発明の熱伝導性付加硬化型シリコーン組成物は、25℃にて測定される粘度が、好ましくは10~1,000Pa・s、より好ましくは20~700Pa・s、さらに好ましくは40~600Pa・sである。粘度が、10Pa・s未満では、形状保持が困難となる、銀粉末が沈降する等、作業性が悪くなるおそれがある。また粘度が1,000Pa・sを超える場合にも、吐出や塗布が困難となる等、作業性が悪くなるおそれがある。前記粘度は、上述した各成分の配合量を調整することにより得ることができる。 The thermally conductive addition-curable silicone composition of the present invention has a viscosity measured at 25° C. of preferably 10 to 1,000 Pa·s, more preferably 20 to 700 Pa·s, still more preferably 40 to 600 Pa·s. is s. If the viscosity is less than 10 Pa·s, workability may be deteriorated, such as difficulty in shape retention and sedimentation of the silver powder. Also, if the viscosity exceeds 1,000 Pa·s, there is a possibility that workability will be deteriorated, such as difficulty in discharge or application. The said viscosity can be obtained by adjusting the compounding quantity of each component mentioned above.

本発明の熱伝導性付加硬化型シリコーン組成物の硬化物は、0.5~20W/m・Kの熱伝導率を有する。 A cured product of the thermally conductive addition-curable silicone composition of the present invention has a thermal conductivity of 0.5 to 20 W/m·K.

本発明の熱伝導性付加硬化型シリコーン組成物を加熱硬化する場合の硬化条件は、特に制限されるものでないが、好ましくは80~200℃、より好ましくは100~180℃で、好ましくは15分~4時間、より好ましくは30分~2時間である。 Curing conditions for heat-curing the thermally conductive addition-curable silicone composition of the present invention are not particularly limited, but are preferably 80 to 200°C, more preferably 100 to 180°C, and preferably 15 minutes. ~4 hours, more preferably 30 minutes to 2 hours.

以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。なお、動粘度はウベローデ型オストワルド粘度計による25℃の値を示す。 EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples. The kinematic viscosity indicates the value at 25° C. measured by an Ubbelohde-type Ostwald viscometer.

[実施例1~10、比較例1~6]
熱伝導性付加硬化型シリコーン組成物の調製
下記(A)~(F)成分を、下記表1~3に示す配合量で、下記に示す方法で配合して熱伝導性付加硬化型シリコーン組成物を調製した。
すなわち、0.3リットルのハイビスミックス(プライミクス株式会社製)に、(A)及び(B)成分を加え、25℃で1時間混合した。次に(F)、(E)、(D)及び(C)成分を加え、均一になるように混合し、各シリコーン組成物を調製した。
得られた各シリコーン組成物について、下記の方法に従い、粘度、熱伝導率を測定するとともに、硬化物の状態を確認した。結果を表1~3に示す。
なお、下記表1~3において(E)成分の質量は、白金-ジビニルテトラメチルジシロキサン錯体をジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)の質量である。また、SiH/SiViは(A)成分中のアルケニル基の個数の合計に対する(D)成分中のSiH基の個数の合計の比である。
[Examples 1 to 10, Comparative Examples 1 to 6]
Preparation of Thermally Conductive Addition-Cure Silicone Composition The following components (A) to (F) are blended in the amounts shown in Tables 1 to 3 below according to the method shown below to prepare a thermally conductive addition-curable silicone composition. was prepared.
That is, components (A) and (B) were added to 0.3 liter of Hibismix (manufactured by Primix Co., Ltd.) and mixed at 25° C. for 1 hour. Next, components (F), (E), (D) and (C) were added and mixed uniformly to prepare each silicone composition.
For each silicone composition obtained, the viscosity and thermal conductivity were measured according to the following methods, and the state of the cured product was confirmed. The results are shown in Tables 1-3.
In Tables 1 to 3 below, the mass of component (E) is the mass of a solution of a platinum-divinyltetramethyldisiloxane complex dissolved in dimethylpolysiloxane (platinum atom content: 1% by mass). SiH/SiVi is the ratio of the total number of SiH groups in component (D) to the total number of alkenyl groups in component (A).

(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm2/sのジメチルポリシロキサン
A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が30,000mm2/sのジメチルポリシロキサン
(A) Component A-1: Dimethylpolysiloxane having both ends capped with dimethylvinylsilyl groups and having a kinematic viscosity at 25°C of 600 mm 2 /s A-2: Both ends capped with dimethylvinylsilyl groups and having a kinematic viscosity of 600 mm 2 /s Dimethylpolysiloxane having a kinematic viscosity of 30,000 mm 2 /s at

(B)成分
B-1:平均粒径4μmのフレーク状銀粉末
B-2:平均粒径3μmのフレーク状銀粉末
B-3:平均粒径15μmのフレーク状銀粉末
B-4:平均粒径3μmの球状銀粉末
(B) Component B-1: Silver flake powder with an average particle size of 4 μm B-2: Silver flake powder with an average particle size of 3 μm B-3: Silver flake powder with an average particle size of 15 μm B-4: Average particle size 3 μm spherical silver powder

(C)成分
C-1:過酸化カルシウム(シグマアルドリッチ製、純度75%)
(C) Component C-1: Calcium peroxide (manufactured by Sigma-Aldrich, purity 75%)

(D)成分
D-1:下記式(1)で示されるメチルハイドロジェンジメチルポリシロキサン
(25℃における動粘度=100mm2/s)

Figure 0007335678000001
(D) Component D-1: Methylhydrogendimethylpolysiloxane represented by the following formula (1) (kinematic viscosity at 25° C.=100 mm 2 /s)
Figure 0007335678000001

(E)成分
E-1:白金-ジビニルテトラメチルジシロキサン錯体を上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金原子含有量:1質量%)
(E) Component E-1: A solution of a platinum-divinyltetramethyldisiloxane complex dissolved in the same dimethylpolysiloxane as A-1 above (platinum atom content: 1% by mass)

(F)成分
F-1:下記式(2)で示される1-エチニル-1-シクロヘキサノール

Figure 0007335678000002
(F) Component F-1: 1-ethynyl-1-cyclohexanol represented by the following formula (2)
Figure 0007335678000002

[粘度]
各シリコーン組成物の絶対粘度を、マルコム粘度計(タイプPC-1T)を用いて25℃で測定した(ロータAで10rpm、ズリ速度6[1/s])。
[viscosity]
The absolute viscosity of each silicone composition was measured at 25° C. using a Malcolm viscometer (type PC-1T) (rotor A, 10 rpm, shear rate 6 [1/s]).

[熱伝導率]
φ12.7mmの2枚のアルミニウム板の間に各シリコーン組成物を挟み込み、0.14MPaの圧力を掛けた状態で150℃で1時間加熱硬化させ、熱抵抗測定用の試験片を作製し、シリコーン組成物の熱抵抗を測定した。さらに、試験片の厚みをマイクロゲージにて測定し、あらかじめ測定しておいたアルミニウム板の厚さとの差分からシリコーン組成物の厚さを算出した。その後、下記式からシリコーン組成物の熱伝導率を導出した。

(シリコーン組成物の厚さ[μm])÷(シリコーン組成物の熱抵抗値[mm2・K/W])

なお、熱抵抗測定には、ナノフラッシュ(ニッチェ社製、LFA447)を用いた。
[Thermal conductivity]
Each silicone composition was sandwiched between two aluminum plates with a diameter of 12.7 mm and was cured by heating at 150°C for 1 hour under a pressure of 0.14 MPa to prepare a test piece for thermal resistance measurement. was measured. Furthermore, the thickness of the test piece was measured with a microgauge, and the thickness of the silicone composition was calculated from the difference from the previously measured thickness of the aluminum plate. After that, the thermal conductivity of the silicone composition was derived from the following formula.

(thickness of silicone composition [μm]) ÷ (thermal resistance value of silicone composition [mm 2 K/W])

Nanoflash (LFA447 manufactured by Nitschei) was used for the thermal resistance measurement.

[硬化物の状態]
直径2.5cmの2枚のパラレルプレートの間に、未硬化の各シリコーン組成物を厚み2mmで塗布した。塗布したプレートを25℃から150℃まで5℃/分で昇温した後、150℃で1時間保持した後に25℃まで冷却し、ゴム状に硬化/未硬化で液状のまま、いずれであるかを指触で判断した。なお硬化物の作製には、粘弾性測定装置(ARES-G2:ティー・エイ・インスツルメント・ジャパン株式会社製)を用いた。
[State of cured product]
Each uncured silicone composition was applied to a thickness of 2 mm between two parallel plates with a diameter of 2.5 cm. After the coated plate was heated from 25° C. to 150° C. at 5° C./min, it was held at 150° C. for 1 hour and then cooled to 25° C. to determine whether it cured to a rubbery state or remained liquid in an uncured state. was judged by finger touch. A viscoelasticity measuring device (ARES-G2: manufactured by TA Instruments Japan Co., Ltd.) was used to prepare the cured product.

Figure 0007335678000003
Figure 0007335678000003
Figure 0007335678000004
Figure 0007335678000004
Figure 0007335678000005
Figure 0007335678000005

表1~3の結果より、本発明の要件を満たす実施例1~10の熱伝導性付加硬化型シリコーン組成物では、加熱硬化後にゴム状の硬化物が得られていることがわかった。即ち、本発明の組成物は、電子部品パッケージやパワーモジュール実装時に高い信頼性を得ることができる。 From the results in Tables 1 to 3, it was found that the thermally conductive addition-curable silicone compositions of Examples 1 to 10, which satisfied the requirements of the present invention, gave rubber-like cured products after heat curing. That is, the composition of the present invention can obtain high reliability when electronic component packages and power modules are mounted.

一方、比較例1~5の熱伝導性付加硬化型シリコーン組成物では、加熱硬化後にゴム状の硬化物が得られず、液状のままであった。即ち、比較例1~5の組成物は、電子部品パッケージやパワーモジュール実装時の信頼性が低下するおそれがある。また比較例6では、ペースト状の熱伝導性付加硬化型シリコーン組成物を得ることができなかった。 On the other hand, the thermally conductive addition-curable silicone compositions of Comparative Examples 1 to 5 did not form a rubber-like cured product after heat curing, and remained liquid. That is, the compositions of Comparative Examples 1 to 5 may deteriorate in reliability when mounted on electronic component packages or power modules. Also, in Comparative Example 6, a pasty thermally conductive addition-curable silicone composition could not be obtained.

従って、本発明の熱伝導性付加硬化型シリコーン組成物の硬化物は、組成物中に銀粉末を大量に配合することで高い熱伝導性を達成し、かつ加熱硬化性が良好である。このような特性を有するため、高い信頼性が求められる電子部品パッケージやパワーモジュールに使用する放熱グリースとして特に好適に利用することができる。 Accordingly, the cured product of the thermally conductive addition-curable silicone composition of the present invention achieves high thermal conductivity and good heat curability by incorporating a large amount of silver powder into the composition. Due to such properties, it can be particularly suitably used as a heat dissipation grease for use in electronic component packages and power modules that require high reliability.

Claims (5)

(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が60~100,000mm2/sであるオルガノポリシロキサン
(B)銀粉末:組成物中、10~98質量%となる量、
(C)アルカリ土類金属過酸化物:組成物中、0.03~10質量%となる量、
(D)1分子中に2個以上のケイ素原子に結合した水素原子を有するオルガノハイドロジェンポリシロキサン:(A)成分中の脂肪族不飽和炭化水素基の個数の合計に対する(D)成分中のSiH基の個数の合計が0.5~5となる量、
(E)白金族金属触媒:有効量
を含む、熱伝導性付加硬化型シリコーン組成物。
(A) Organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and a kinematic viscosity at 25° C. of 60 to 100,000 mm 2 /s (B) Silver powder: Composition Medium, an amount that is 10 to 98% by mass,
(C) alkaline earth metal peroxide : an amount of 0.03 to 10% by mass in the composition;
(D) Organohydrogenpolysiloxane having two or more silicon-bonded hydrogen atoms in one molecule: an amount such that the total number of SiH groups is 0.5 to 5,
(E) a platinum group metal catalyst: a thermally conductive addition-curable silicone composition comprising an effective amount.
(B)成分の平均粒径が0.01~300μmである、請求項1に記載の熱伝導性付加硬化型シリコーン組成物。 2. The thermally conductive addition-curable silicone composition according to claim 1, wherein component (B) has an average particle size of 0.01 to 300 μm. (C)成分が過酸化カルシウムである、請求項1または2に記載の熱伝導性付加硬化型シリコーン組成物。 3. The thermally conductive addition-curable silicone composition according to claim 1 , wherein component (C) is calcium peroxide. さらに、(F)成分として、アセチレン化合物、窒素化合物、有機リン化合物、オキシム化合物及び有機クロロ化合物からなる群より選択される1種以上の付加硬化反応制御剤を有効量含有する、請求項1~3のいずれか1項に記載の熱伝導性付加硬化型シリコーン組成物。 Claims 1 to 3, further comprising, as component (F), an effective amount of one or more addition curing reaction inhibitors selected from the group consisting of acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds and organic chloro compounds. 4. The thermally conductive addition-curable silicone composition according to any one of 3 . 請求項1~4のいずれか1項に記載の熱伝導性付加硬化型シリコーン組成物の硬化物。
A cured product of the thermally conductive addition-curable silicone composition according to any one of claims 1 to 4 .
JP2020099502A 2020-06-08 2020-06-08 Thermally conductive addition-curable silicone composition and its cured product Active JP7335678B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020099502A JP7335678B2 (en) 2020-06-08 2020-06-08 Thermally conductive addition-curable silicone composition and its cured product
PCT/JP2021/020107 WO2021251148A1 (en) 2020-06-08 2021-05-27 Thermally-conductive addition-curable silicone composition and cured product thereof
TW110119425A TW202208552A (en) 2020-06-08 2021-05-28 Thermally-conductive addition-curable silicone composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020099502A JP7335678B2 (en) 2020-06-08 2020-06-08 Thermally conductive addition-curable silicone composition and its cured product

Publications (2)

Publication Number Publication Date
JP2021193168A JP2021193168A (en) 2021-12-23
JP7335678B2 true JP7335678B2 (en) 2023-08-30

Family

ID=78846022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020099502A Active JP7335678B2 (en) 2020-06-08 2020-06-08 Thermally conductive addition-curable silicone composition and its cured product

Country Status (3)

Country Link
JP (1) JP7335678B2 (en)
TW (1) TW202208552A (en)
WO (1) WO2021251148A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046966A (en) 2000-03-31 2011-03-10 Hitachi Chem Co Ltd Method of producing novel silicone polymer, silicone polymer produced by the method, thermosetting resin composition, resin film, metal foil with insulating material, insulating film with metal foils on both faces, metal-clad laminate, multilayer metal-clad laminate, and multilayer printed wiring board
JP2013010862A (en) 2011-06-29 2013-01-17 Shin-Etsu Chemical Co Ltd Curable and grease-like thermoconductive silicone composition and semiconductor device
JP2013100464A (en) 2011-10-13 2013-05-23 Shin-Etsu Chemical Co Ltd Conductive silicone composition and method for producing the same
JP2016512567A (en) 2013-02-11 2016-04-28 ダウ コーニング コーポレーションDow Corning Corporation Method for forming thermally conductive thermal radical curable silicone composition
WO2018025502A1 (en) 2016-08-03 2018-02-08 信越化学工業株式会社 Thermally conductive silicone composition
JP2018058953A (en) 2016-10-03 2018-04-12 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JP2018070800A (en) 2016-10-31 2018-05-10 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046966A (en) 2000-03-31 2011-03-10 Hitachi Chem Co Ltd Method of producing novel silicone polymer, silicone polymer produced by the method, thermosetting resin composition, resin film, metal foil with insulating material, insulating film with metal foils on both faces, metal-clad laminate, multilayer metal-clad laminate, and multilayer printed wiring board
JP2013010862A (en) 2011-06-29 2013-01-17 Shin-Etsu Chemical Co Ltd Curable and grease-like thermoconductive silicone composition and semiconductor device
JP2013100464A (en) 2011-10-13 2013-05-23 Shin-Etsu Chemical Co Ltd Conductive silicone composition and method for producing the same
JP2016512567A (en) 2013-02-11 2016-04-28 ダウ コーニング コーポレーションDow Corning Corporation Method for forming thermally conductive thermal radical curable silicone composition
WO2018025502A1 (en) 2016-08-03 2018-02-08 信越化学工業株式会社 Thermally conductive silicone composition
JP2018058953A (en) 2016-10-03 2018-04-12 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device
JP2018070800A (en) 2016-10-31 2018-05-10 信越化学工業株式会社 Thermally conductive silicone composition and semiconductor device

Also Published As

Publication number Publication date
TW202208552A (en) 2022-03-01
WO2021251148A1 (en) 2021-12-16
JP2021193168A (en) 2021-12-23

Similar Documents

Publication Publication Date Title
KR102360378B1 (en) Silicone composition
KR102176435B1 (en) Thermally conductive silicone composition
JP5832983B2 (en) Silicone composition
JP6269511B2 (en) Thermally conductive silicone composition, cured product and composite sheet
JP7325324B2 (en) Thermally conductive silicone composition
JP5472055B2 (en) Thermally conductive silicone grease composition
JP5947267B2 (en) Silicone composition and method for producing thermally conductive silicone composition
JP5843364B2 (en) Thermally conductive composition
JP2015212318A (en) Thermal conductive silicone composition
CN112867764A (en) Addition-curable silicone composition and method for producing same
JP2018053260A (en) Thermal conductive silicone composition, cured article and composite sheet
JP7355708B2 (en) Thermal conductive addition-curing silicone composition
JP7335678B2 (en) Thermally conductive addition-curable silicone composition and its cured product
JP7010381B2 (en) Silicone composition and its manufacturing method
CN111918929B (en) Silicone composition
WO2023145438A1 (en) Thermally-conductive addition-curable silicone composition and cured product thereof
WO2023132192A1 (en) Highly thermally conductive silicone composition
WO2024048335A1 (en) Thermally conductive silicone composition
WO2023021954A1 (en) Thermally conductive silicone composition and thermally conductive silicone cured article
CN115991936A (en) Thermally conductive silicone composition
WO2023021956A1 (en) Heat-conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230817

R150 Certificate of patent or registration of utility model

Ref document number: 7335678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150