JP7335089B2 - Liquid-cooled screw compressor - Google Patents

Liquid-cooled screw compressor Download PDF

Info

Publication number
JP7335089B2
JP7335089B2 JP2019077953A JP2019077953A JP7335089B2 JP 7335089 B2 JP7335089 B2 JP 7335089B2 JP 2019077953 A JP2019077953 A JP 2019077953A JP 2019077953 A JP2019077953 A JP 2019077953A JP 7335089 B2 JP7335089 B2 JP 7335089B2
Authority
JP
Japan
Prior art keywords
liquid
liquid supply
sectional area
oil
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019077953A
Other languages
Japanese (ja)
Other versions
JP2020033993A (en
Inventor
孝二 田中
透 野口
広宣 坂口
貴徳 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Compressors Corp
Original Assignee
Kobelco Compressors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Compressors Corp filed Critical Kobelco Compressors Corp
Priority to KR1020217004176A priority Critical patent/KR102580244B1/en
Priority to SG11202100933SA priority patent/SG11202100933SA/en
Priority to CN201980056538.5A priority patent/CN112585358B/en
Priority to PCT/JP2019/031728 priority patent/WO2020045068A1/en
Publication of JP2020033993A publication Critical patent/JP2020033993A/en
Application granted granted Critical
Publication of JP7335089B2 publication Critical patent/JP7335089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、液冷式スクリュー圧縮機に関する。 The present invention relates to liquid-cooled screw compressors.

油冷式スクリュー圧縮機のような液冷式スクリュー圧縮機では、潤滑と圧縮空気の冷却のために、ロータ室内に液体(例えば油)を供給し、雌雄ロータが噛み合いながら回転することにより構成される圧縮過程にある圧縮空気にその液体を混入させている。特許文献1に開示された油冷式スクリュー圧縮機が備えるロータ室内への給油口は、いわゆるキリ穴であり、両端間で直径が一定の直管形状である。 A liquid-cooled screw compressor, such as an oil-cooled screw compressor, is constructed by supplying a liquid (e.g., oil) to the rotor chamber for lubrication and cooling of the compressed air, and rotating the male and female rotors in mesh with each other. The liquid is entrained in the compressed air that is in the process of being compressed. The oil supply port into the rotor chamber provided in the oil-cooled screw compressor disclosed in Patent Document 1 is a so-called drilled hole, and has a straight pipe shape with a constant diameter between both ends.

特開2014-214740号公報JP 2014-214740 A

液冷式スクリュー圧縮機では、液体の撹拌による動力損失や、ロータ室とスクリューロータの歯部との間の狭小隙間における液体の粘性による動力損失のような、空気を圧縮するための動力以外の動力損失がある。これらの動力損失のために、液冷式とすることで、却って効率が低下し得る。 In a liquid-cooled screw compressor, there are power losses other than the power for compressing the air, such as power loss due to liquid agitation and power loss due to the viscosity of the liquid in the narrow gap between the rotor chamber and the teeth of the screw rotor. There is power loss. Because of these power losses, liquid cooling can actually reduce efficiency.

また、特許文献1の給油口のように、給液口の形状が直管形状であると、運転時にスクリューロータが給液口の真上を通り過ぎる際に、給液口からロータ室に供給される液体の流れが阻害され、速度が低下する。この速度低下により、歯溝内での液体の分散性が低下し、圧縮空気の冷却効率が低下し得る。 Further, if the shape of the liquid supply port is straight like the oil supply port of Patent Document 1, when the screw rotor passes directly above the liquid supply port during operation, the liquid is supplied from the supply port to the rotor chamber. The flow of liquid is blocked and slowed down. This velocity reduction can reduce the dispersibility of the liquid in the tooth spaces and reduce the cooling efficiency of the compressed air.

以上の理由より、従来の液冷式スクリュー圧縮機は、空気を所要圧力まで圧縮するために必要な動力の低減や、冷却効率の向上について、改善の余地がある。 For the above reasons, the conventional liquid-cooled screw compressor has room for improvement in terms of reducing the power required to compress air to the required pressure and improving cooling efficiency.

本発明は、液冷式スクリュー圧縮機において、空気を所要圧力まで圧縮するために必要な動力を低減することや、冷却効率を向上することを課題とする。 An object of the present invention is to reduce the power required to compress air to a required pressure and to improve the cooling efficiency in a liquid-cooled screw compressor.

本発明の一態様は、ケーシングに設けられ、一対のスクリューロータが収容されたロータ室と、前記ケーシングに設けられた給液ラインと、前記給液ラインと接続し、前記給液ラインから供給される液体を前記ロータ室に供給するために、前記ケーシングに設けられた給液口とを備え、前記給液口は、前記給液ラインと流体的に連通する入口部と、前記ロータ室と流体的に連通する噴射部と、前記入口部と前記噴射部とを流体的に接続する、一定の流路断面積を有する中間部とを備え、前記噴射部の前記ロータ室に対する開口部は、前記給油口の軸線に直交する平面としてロータ室側から見て円形であり、前記開口部の流路断面積は、前記中間部の前記流路断面積よりも大きく、前記噴射部の前記開口部における直径は、前記スクリューロータの歯部の軸直角歯先幅よりも大きい、液冷式スクリュー圧縮機を提供する。 According to one aspect of the present invention, a rotor chamber provided in a casing and housing a pair of screw rotors, a liquid supply line provided in the casing, and a liquid supply line connected to the liquid supply line are supplied from the liquid supply line. a fluid inlet in the casing for supplying liquid to the rotor chamber, the fluid inlet having an inlet portion in fluid communication with the fluid supply line; and an intermediate portion having a constant flow cross-sectional area fluidly connecting the inlet portion and the injection portion, the opening of the injection portion to the rotor chamber being connected to the rotor chamber . When viewed from the rotor chamber side, the plane perpendicular to the axis of the fuel filler port is circular, the cross-sectional area of the flow path of the opening is larger than the cross-sectional area of the flow path of the intermediate portion, and the opening of the injection portion provides a liquid-cooled screw compressor , wherein the diameter at is greater than the tip width of a tooth portion perpendicular to the axis of the screw rotor .

給液口の噴射部のロータ室に対する開口部は、給液口の中間部の流路断面積よりも大きい流路断面積を有する。この構成により、給液口が両端間で流路断面積が一定の直管形状(いわゆるキリ穴)である場合と比較して、運転時にスクリューロータの歯部が給液口の真上を通り過ぎる瞬間において、中間部のロータ室側の端部と歯先との距離が長くなる。言い換えれば、給液口から噴射された液体がスクリューロータの歯部(歯先)とケーシングの隙間を通過する際に、液体が通過し得る断面積が拡大する。従って、ロータ室への液噴射時の圧力損失が減少する。この圧力損失減少により、給液口へ供給される液体の体積流量を、給液口がキリ穴である場合と同一としたままで、ロータ室に噴射される液体の流速を増加できる。言い換えれば、体積流量を増加することなく、給液口がキリ穴である場合よりもロータ室に噴射される液体の流速を増加できる。この流速増加により、液柱がスクリューロータの歯部の歯面に衝突する際の微粒化が促進され、液滴の伝熱面積が増加し、圧縮空気に対する冷却効率が向上する。従って、空気を所要圧力まで圧縮するのに必要な動力を低減できる。 The opening of the injection part of the liquid supply port to the rotor chamber has a channel cross-sectional area that is larger than the channel cross-sectional area of the intermediate part of the liquid supply port. With this configuration, the teeth of the screw rotor pass directly above the liquid supply port during operation, compared to the case where the liquid supply port has a straight pipe shape (so-called drilled hole) with a constant flow passage cross-sectional area between both ends. At an instant, the distance between the end of the intermediate portion on the rotor chamber side and the tip of the tooth increases. In other words, when the liquid injected from the liquid supply port passes through the gap between the tooth portion (tooth tip) of the screw rotor and the casing, the cross-sectional area through which the liquid can pass increases. Therefore, the pressure loss during liquid injection into the rotor chamber is reduced. This reduction in pressure loss makes it possible to increase the flow velocity of the liquid injected into the rotor chamber while maintaining the same volumetric flow rate of the liquid supplied to the liquid supply port as in the case where the liquid supply port is a drilled hole. In other words, the flow velocity of the liquid injected into the rotor chamber can be increased more than when the liquid supply port is a drilled hole without increasing the volumetric flow rate. This increase in flow velocity promotes atomization when the liquid column collides with the tooth surfaces of the screw rotor, increases the heat transfer area of the droplets, and improves the cooling efficiency of the compressed air. Therefore, the power required to compress the air to the required pressure can be reduced.

仮にロータ室へ噴射される液体の流速増加のために、給液口へ供給する液体の体積流量を増加すると、スクリューロータの歯部による液体の撹拌による動力損失や、スクリューロータの歯部(歯先)とケーシングとの間の狭小隙間における液体の粘性による動力損失を増加させてしまう。しかし、前述のように、本発明の一態様によれば、給液口へ供給する液体の体積流量は同一のままで、ロータ室に噴射される液体の流速を増加できるため、動力損失の増加も発生しない。 If the volumetric flow rate of the liquid supplied to the liquid supply port is increased in order to increase the flow velocity of the liquid injected into the rotor chamber, the power loss due to the stirring of the liquid by the teeth of the screw rotor and the teeth of the screw rotor (tooth It increases the power loss due to the viscosity of the liquid in the narrow gap between the tip and the casing. However, as described above, according to one aspect of the present invention, the flow velocity of the liquid injected into the rotor chamber can be increased while the volumetric flow rate of the liquid supplied to the liquid supply port remains the same, resulting in an increase in power loss. does not occur.

前記給液ラインは、前記スクリューロータのロータ軸線方向に沿って設けられており、前記給液口は、前記ロータ軸線方向に沿った直線上に複数個配設されてもよい。The liquid supply line may be provided along a rotor axial direction of the screw rotor, and a plurality of the liquid supply ports may be arranged on a straight line along the rotor axial direction.

本明細書において、スクリューロータの歯部の「軸直角歯先幅」とは、歯部のロータ軸と直交する断面における、歯部の先端が有する平滑面の幅をいう。開口部の直径を軸直角歯先幅よりも大きく設定したことにより、スクリューロータの歯部が給液口の真上を通り過ぎる際に、平滑面が給液口の噴射部を塞ぐことがないので、より効果的にロータ室への液噴射時の圧力損失を減少できる。 In this specification, the "axis-perpendicular tip width" of the tooth portion of the screw rotor refers to the width of the smooth surface of the tip of the tooth portion in a cross section perpendicular to the rotor axis of the tooth portion. By setting the diameter of the opening to be larger than the tip width perpendicular to the axis, the smooth surface does not block the injection part of the liquid supply port when the teeth of the screw rotor pass directly above the liquid supply port. , the pressure loss can be more effectively reduced when the liquid is injected into the rotor chamber.

前記中間部の直径は0.7mm以上18mm以下であり、前記噴射部の前記開口部における直径は、前記中間部の直径の4.0倍以下であってもよい。 The diameter of the intermediate portion may be 0.7 mm or more and 18 mm or less, and the diameter of the opening of the injection portion may be 4.0 times or less of the diameter of the intermediate portion.

特に、前記噴射部の前記開口部における直径は、前記中間部の直径の1.5倍以上3.0倍以下であってもよい。 In particular, the diameter of the opening of the injection part may be 1.5 times or more and 3.0 times or less of the diameter of the intermediate part.

前記噴射部は、前記中間部と接続する部分から前記開口部に向けて前記流路断面積が漸増する、逆テーパ形状を有してもよい。 The injection section may have a reverse tapered shape in which the cross-sectional area of the flow path gradually increases from a portion connected to the intermediate section toward the opening.

前記噴射部は、前記中間部と接続する部分から前記開口部までの前記流路断面積が一定であり、前記噴射部の前記中間部と接続する部分に、前記流路断面積が非連続的に増加する段差が形成されてもよい。 The injection section has a constant flow passage cross-sectional area from a portion connected to the intermediate portion to the opening, and a discontinuous flow passage cross-sectional area at a portion of the injection portion connected to the intermediate portion. may be formed.

前記給液口は、前記ケーシングに設けられた前記給液ラインから前記ロータ室まで貫通する取付穴に挿入された、両端開口の管部材を備え、前記管部材によって前記中間部が画定され、前記管部材の前記ロータ室に臨む端面は、前記取付穴内に位置し、前記管部材の前記端面と、前記取付穴の穴周壁によって前記噴射部が画定されてもよい。 The liquid supply port includes a tubular member having both ends opened and inserted into a mounting hole penetrating from the liquid supply line provided in the casing to the rotor chamber. An end face of the pipe member facing the rotor chamber may be positioned within the mounting hole, and the injection portion may be defined by the end face of the pipe member and the peripheral wall of the mounting hole.

この構成により、給液口をケーシングに設ける加工時の寸法管理が、ケーシングそのものを直接、掘削等にて加工して、中間部と、その中間部の流路断面積より大きい流路断面積をロータ室に対する開口部に備えた噴射部を形成する場合に比べ、容易となる。加工時の寸法管理が容易になることで、より高度な品質安定性を確保できる。また、異なる管部材を使用することで、給液口の中間部の直径を、製品仕様に合わせて容易に変更できる。さらに、注液口を設けるためにケーシングに施す加工としては、流路断面積が非連続的に増加する段差の加工や、流路断面積が連続的に拡大するテーパ形状の加工を必要とせず、取付穴(貫通穴)の形成のみが要求されるため、工数削減を図ることができる。 With this configuration, the dimensional control at the time of processing to provide the liquid supply port in the casing can be achieved by directly processing the casing itself by excavation or the like to form an intermediate portion and a flow passage cross-sectional area larger than the flow passage cross-sectional area of the intermediate portion. This is easier than in the case of forming the injection part provided in the opening to the rotor chamber. By facilitating dimensional control during processing, a higher level of quality stability can be ensured. In addition, by using different pipe members, the diameter of the intermediate portion of the liquid supply port can be easily changed according to product specifications. Furthermore, as the processing applied to the casing to provide the injection port, it is not necessary to process a step that increases the cross-sectional area of the flow channel discontinuously or to process a tapered shape that continuously expands the cross-sectional area of the flow channel. Since only the formation of mounting holes (through holes) is required, the number of man-hours can be reduced.

前記入口部は、前記給液ラインと接続する部分から前記中間部に向けて流路断面が漸減する、テーパ形状を有してもよい。 The inlet portion may have a tapered shape in which a cross section of the flow passage gradually decreases from a portion connected to the liquid supply line toward the intermediate portion.

前記入口部は、前記給液ラインと接続する部分から前記中間部と接続する部分まで、前記中間部の前記流路断面積よりも大きい一定の流路断面積を有し、前記入口部の前記中間部と接続する部分に、前記流路断面積が非連続的に減少する段差が形成されてもよい。 The inlet portion has a constant flow channel cross-sectional area larger than the flow channel cross-sectional area of the intermediate portion from the portion connected to the liquid supply line to the portion connected to the intermediate portion. A step may be formed in a portion connecting with the intermediate portion so that the cross-sectional area of the flow passage decreases discontinuously.

これらの構成により、給液ラインから給液口の入口部に液体が流入する際の流路断面積の急激な縮小が緩和され、圧力損失が低減される。その結果、より効果的に、給液口へ供給する液体の体積流量を増加することなく、ロータ室に噴射される液体の流速を増加できる。 With these configurations, a rapid reduction in the cross-sectional area of the flow path when liquid flows from the liquid supply line into the inlet of the liquid supply port is alleviated, and pressure loss is reduced. As a result, the flow velocity of the liquid injected into the rotor chamber can be increased more effectively without increasing the volumetric flow rate of the liquid supplied to the liquid supply port.

本発明に係る液冷式スクリュー圧縮機によれば、圧縮空気の冷却効率が向上し、空気を所要圧力まで圧縮するために必要な動力の低減、つまり効率改善を実現し得る。 ADVANTAGE OF THE INVENTION According to the liquid-cooled screw compressor of the present invention, the cooling efficiency of compressed air is improved, and the power required for compressing air to a required pressure can be reduced, that is, the efficiency can be improved.

本発明の第1実施形態に係る油冷式スクリュー圧縮機の模式的な平面図。1 is a schematic plan view of an oil-cooled screw compressor according to a first embodiment of the present invention; FIG. 図1の線II-IIでの断面図。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 1; 図1の線III-IIIでの断面図。2 is a cross-sectional view taken along line III--III of FIG. 1; FIG. 本発明の第1実施形態に係る油冷式スクリュー圧縮機を含む圧縮機システムの模式図。1 is a schematic diagram of a compressor system including an oil-cooled screw compressor according to a first embodiment of the present invention; FIG. 図3の部分Vの拡大図。FIG. 4 is an enlarged view of portion V of FIG. 3; 図3の部分Vの異なる断面での断面図。4A and 4B are cross-sectional views at different cross-sections of portion V of FIG. 3; 給油口を雌ロータ室から見た図。The figure which looked at the oil filler port from the female rotor chamber. 従来の油冷式圧縮機の図5と同様の断面図。Sectional drawing similar to FIG. 5 of the conventional oil-cooled compressor. 第1実施形態の変形例の図6と同様の断面図。Sectional drawing similar to FIG. 6 of the modification of 1st Embodiment. 第1実施形態の他の変形例の図6と同様の断面図。Sectional drawing similar to FIG. 6 of the other modification of 1st Embodiment. 本発明の第2実施形態に係る油冷式スクリュー圧縮機の図3と同様の断面図。Sectional drawing similar to FIG. 3 of the oil-cooled screw compressor which concerns on 2nd Embodiment of this invention. 第2実施形態の図6と同様の断面図。Sectional drawing similar to FIG. 6 of 2nd Embodiment. 第2実施形態の変形例の図6と同様の断面図。Sectional drawing similar to FIG. 6 of the modification of 2nd Embodiment. 第2実施形態の他の変形例の図6と同様の断面図。Sectional drawing similar to FIG. 6 of the other modification of 2nd Embodiment. 本発明の第3実施形態に係る油冷式スクリュー圧縮機の図3と同様の断面図。FIG. 3 is a cross-sectional view similar to FIG. 3 of an oil-cooled screw compressor according to a third embodiment of the present invention; 第3実施形態の図6と同様の断面図。Sectional drawing similar to FIG. 6 of 3rd Embodiment. オリフィス管の斜視図。A perspective view of an orifice tube. 油量と断面効率の関係を示すグラフ。Graph showing the relationship between the amount of oil and cross-sectional efficiency.

(第1実施形態)
図1から図3を参照すると、本発明の第1実施形態に係る油冷式スクリュー圧縮機(液冷式スクリュー圧縮機)1は、空間的に互いに連通する雄ロータ室2aと雌ロータ室2bとが形成されたケーシング2を備える。雄ロータ室2aには雄ロータ3が収容され、雌ロータ室2bには雌ロータ4が収容されている。また、ケーシング2には、ロータ室2a,2bに空間的に連通している吸込口2cと吐出口2dとが設けられている。
(First embodiment)
1 to 3, an oil-cooled screw compressor (liquid-cooled screw compressor) 1 according to a first embodiment of the present invention includes a male rotor chamber 2a and a female rotor chamber 2b that are spatially communicated with each other. and a casing 2 formed with. A male rotor 3 is housed in the male rotor chamber 2a, and a female rotor 4 is housed in the female rotor chamber 2b. The casing 2 is also provided with a suction port 2c and a discharge port 2d that are spatially connected to the rotor chambers 2a and 2b.

雄ロータ室2aは、円筒面2eと、一対の端面2g,2hによって画定されている。また、雌ロータ室2bは、円筒面2fと、雄ロータ室2aと共通の一対の端面2g,2hによって画定されている。 The male rotor chamber 2a is defined by a cylindrical surface 2e and a pair of end surfaces 2g and 2h. The female rotor chamber 2b is defined by a cylindrical surface 2f and a pair of end surfaces 2g and 2h common to the male rotor chamber 2a.

雄ロータ(スクリューロータ)3は、ロータ軸3aと、ロータ軸3aの外周に設けられた複数の螺旋状の歯部3bを備える。同様に、雌ロータ4は、ロータ軸4aと、ロータ軸4aの外周に設けられた複数の螺旋状の歯部4bを備える。互いに隣接する歯部4bの対の間には、螺旋状の歯溝4cがそれぞれ画定されている。雄ロータ3のロータ軸3aは、軸受5A,5Bによって、それ自体の軸線Lm回りに回転自在に支持されている。雌ロータ4のロータ軸4aも、軸受6A,6Bによって、それ自体の軸線Lf回りに回転自在に指示されている。 The male rotor (screw rotor) 3 includes a rotor shaft 3a and a plurality of spiral teeth 3b provided on the outer circumference of the rotor shaft 3a. Similarly, the female rotor 4 has a rotor shaft 4a and a plurality of spiral teeth 4b provided on the outer circumference of the rotor shaft 4a. A spiral tooth space 4c is defined between each pair of teeth 4b adjacent to each other. A rotor shaft 3a of the male rotor 3 is rotatably supported by bearings 5A and 5B about its own axis Lm. A rotor shaft 4a of the female rotor 4 is also rotatably supported around its own axis Lf by bearings 6A and 6B.

雄ロータ3の吸込口2c側のロータ軸3aには、モータを含む駆動機構7が機械的に接続されている。駆動機構7によって雄ロータ3が回転されると、雄ロータ3の歯部3bが雌ロータ4の歯溝4cに入り込んだ状態で噛み合い、それによって雄ロータ3と雌ロータ4が同期回転する。雄ロータ3に代えて、雌ロータ4を駆動機構によって回転駆動してもよい。 A drive mechanism 7 including a motor is mechanically connected to the rotor shaft 3a of the male rotor 3 on the suction port 2c side. When the male rotor 3 is rotated by the driving mechanism 7, the teeth 3b of the male rotor 3 engage with the tooth grooves 4c of the female rotor 4, whereby the male rotor 3 and the female rotor 4 rotate synchronously. Instead of the male rotor 3, the female rotor 4 may be rotationally driven by a drive mechanism.

吸込口2cから吸い込まれた気体(本実施形態では空気)は、雄ロータ3の歯部3bと雌ロータ4の歯溝4cによって画定される閉じ込み空間内に閉じ込められ、ロータ3,4の回転に伴って軸線Lm,Lf方向に移動しつつ圧縮され、吐出口2dから吐出される。 Gas (air in this embodiment) sucked from the suction port 2c is confined in a confinement space defined by the tooth portions 3b of the male rotor 3 and the tooth grooves 4c of the female rotor 4, causing the rotors 3 and 4 to rotate. As a result, it is compressed while moving in the directions of the axes Lm and Lf, and is discharged from the discharge port 2d.

ケーシング2には、雌ロータ室2bに冷却、潤滑等のための油(液体)を供給するために3個の給油口(給液口)11A,11B,11Cが設けられている。これらの給油口11A~11Cは、雌ロータ室2bの底部に開口しており、雌ロータ4の軸線Lf(雌ロータ室2bの軸線でもある。)に沿った直線上に配置されている。給油口の個数は1個又は2個でもよく、4個以上でもよい。また、雌ロータ室2bのための給油口に代えて、又はそれと併せて、雄ロータ室2aのための給油口を設けてもよい。給油口11A~Cについては、後に詳述する。 The casing 2 is provided with three oil supply ports (liquid supply ports) 11A, 11B, and 11C for supplying oil (liquid) for cooling, lubrication, etc., to the female rotor chamber 2b. These oil supply ports 11A to 11C open at the bottom of the female rotor chamber 2b and are arranged on a straight line along the axis Lf of the female rotor 4 (which is also the axis of the female rotor chamber 2b). The number of filler ports may be one, two, or four or more. Further, instead of or in addition to the oil supply port for the female rotor chamber 2b, an oil supply port for the male rotor chamber 2a may be provided. The fuel filler ports 11A to 11C will be detailed later.

給油口11A~11Cから油を雌ロータ室2bに供給しているので、吐出口2dから吐出される空気には油が含まれている。図4を併せて参照すると、吐出口2dから吐出された空気は、空気配管12Aを介してセパレータ13に導入される。セパレータ13では、空気と油が分離される。油が分離された空気は、空気配管12Bから圧縮空気を必要とする機器ないし設備へ送られる。セパレータ13で空気から分離された油は、油供給配管14を介して、ケーシング2に設けられた給油ライン(給液ライン)15(本実施形態ではケーシング2に穿設した長孔)へ送られる。給油ライン15から給油口11A~11Cを経て、雌ロータ室2bに油が供給される。このように、油冷式スクリュー圧縮機1とセパレータ13との間を油が循環する。本実施形態では、セパレータ13から油冷式スクリュー圧縮機1へ送油するための油ポンプ16が、油供給配管14に設けられている。 Since the oil is supplied to the female rotor chamber 2b from the oil supply ports 11A to 11C, the air discharged from the discharge port 2d contains oil. Also referring to FIG. 4, the air discharged from the discharge port 2d is introduced into the separator 13 through the air pipe 12A. The separator 13 separates air and oil. The air from which the oil has been separated is sent from the air pipe 12B to equipment or facilities that require compressed air. The oil separated from the air by the separator 13 is sent through an oil supply pipe 14 to an oil supply line (liquid supply line) 15 provided in the casing 2 (a long hole drilled in the casing 2 in this embodiment). . Oil is supplied from an oil supply line 15 to the female rotor chamber 2b through the oil supply ports 11A to 11C. Thus, oil circulates between the oil-cooled screw compressor 1 and the separator 13 . In this embodiment, an oil pump 16 for feeding oil from the separator 13 to the oil-cooled screw compressor 1 is provided in the oil supply pipe 14 .

次に、給油口11A~11Cについて詳細に説明する。以下の説明では、3個の給油口11A~11Cについて特に区別する必要がない場合、1個の給油口について参照番号11を使用する。 Next, the fuel filler ports 11A-11C will be described in detail. In the following description, reference number 11 is used for one fuel filler port when there is no particular need to distinguish between the three fuel filler ports 11A to 11C.

図5から図7を参照すると、給油口11よって給油ライン15と雌ロータ室2bとが流体的に連通されている。給油口11は、全体として、雌ロータ4の軸線Lm(雌ロータ室2bの軸線でもある。)に対して直交する方向に真直に延びている。 Referring to FIGS. 5 to 7, the oil supply line 15 and the female rotor chamber 2b are fluidly communicated through the oil supply port 11. As shown in FIG. The oil filler port 11 as a whole extends straight in a direction orthogonal to the axis Lm of the female rotor 4 (which is also the axis of the female rotor chamber 2b).

給油口11は、給油ライン15と流体的に連通する入口部21、雌ロータ室2bと流体的に連通する噴射部22、及び入口部21と噴射部22とを流体的に接続する中間部23を備える。 The fuel supply port 11 has an inlet portion 21 fluidly communicating with the oil supply line 15, an injection portion 22 fluidly communicating with the female rotor chamber 2b, and an intermediate portion 23 fluidly connecting the inlet portion 21 and the injection portion 22. Prepare.

本実施形態では、入口部21と中間部23の、給油口11の軸線Liに直交する断面の形状は円形である。この断面形状は、円形以外であってもよい。また、入口部21は一定の直径Deを有し、中間部23も一定の直径Dmを有し、これらの直径De,Dmは同一である。言い換えれば、入口部21から中間部23までの全体にわたって流路断面積Ae,Amが一定である。 In the present embodiment, the shape of the cross section of the inlet portion 21 and the intermediate portion 23 perpendicular to the axis Li of the filler port 11 is circular. This cross-sectional shape may be other than circular. The inlet portion 21 has a constant diameter De and the intermediate portion 23 also has a constant diameter Dm, and these diameters De and Dm are the same. In other words, the channel cross-sectional areas Ae and Am are constant throughout from the inlet portion 21 to the intermediate portion 23 .

噴射部22は雌ロータ室2b、より具体的には雌ロータ室2bを画定するケーシング2の円筒面2fに開口する開口部22aを備える。本実施形態では、噴射部22の、給油口11の軸線Liに直交する断面の形状は円形である。この断面形状は、円形以外であってもよい。本実施形態では、噴射部22は、中間部23と接続する部分22bから開口部22aに向けて漸増する直径Diを有する。言い換えれば、噴射部22は、噴射部22が中間部23と接続する部分22bから開口部22aに向けて流路断面積Aiが漸増する逆テーパ形状を有する。この逆テーパ形状により、噴射部22の開口部22aにおける流路断面積Aiは、中間部23の流路断面積Amよりも大きい。 The injection part 22 comprises an opening 22a opening into the female rotor chamber 2b, more specifically into the cylindrical surface 2f of the casing 2 defining the female rotor chamber 2b. In this embodiment, the shape of the cross section of the injection part 22 perpendicular to the axis Li of the filler port 11 is circular. This cross-sectional shape may be other than circular. In this embodiment, the injection part 22 has a diameter Di that gradually increases from a portion 22b that connects to the intermediate part 23 toward the opening 22a. In other words, the injection portion 22 has an inverse tapered shape in which the flow passage cross-sectional area Ai gradually increases from the portion 22b where the injection portion 22 connects with the intermediate portion 23 toward the opening portion 22a. Due to this inverse tapered shape, the channel cross-sectional area Ai at the opening 22 a of the injection part 22 is larger than the channel cross-sectional area Am at the intermediate part 23 .

噴射部22の開口部22aにおける直径Diは、雌ロータ4の歯部4bの軸直角歯先幅Wtよりも大きい。「軸直角歯先幅」とは、歯部4bのロー軸4aの軸線Lfと直交する断面における、歯部4bの先端が有する平滑面4dの幅をいう。
The diameter Di at the opening 22a of the injection portion 22 is larger than the axis-perpendicular tip width Wt of the tooth portion 4b of the female rotor 4. As shown in FIG. The "axis-perpendicular tip width" refers to the width of the smooth surface 4d of the tip of the tooth portion 4b in the cross section perpendicular to the axis Lf of the rotor shaft 4a of the tooth portion 4b.

中間部23の直径Dmは0.7mm以上18mm以下に設定できる。噴射部22の開口部22aにおける直径Diは、中間部23の直径Dmの4倍以下に設定できる。特に、噴射部22の開口部22aにおける直径Diは、中間部23の直径Dmの1.5倍以上3.0倍以下に設定できる。 The diameter Dm of the intermediate portion 23 can be set to 0.7 mm or more and 18 mm or less. The diameter Di at the opening 22a of the injection portion 22 can be set to be four times or less the diameter Dm of the intermediate portion 23. As shown in FIG. In particular, the diameter Di at the opening 22a of the injection portion 22 can be set to be 1.5 times or more and 3.0 times or less the diameter Dm of the intermediate portion 23 .

給油ライン15により供給される油は、入口部21は給油口11に入り、中間部23に流入し、中間部23の雌ロータ室2b側の端部23aから噴射される。噴射された油は噴射部22を通って雌ロータ室2bに供給される。 The oil supplied through the oil supply line 15 enters the oil supply port 11 at the inlet portion 21, flows into the intermediate portion 23, and is jetted from the end portion 23a of the intermediate portion 23 on the female rotor chamber 2b side. The injected oil passes through the injection portion 22 and is supplied to the female rotor chamber 2b.

給油口11の噴射部22の雌ロータ室2bに対する開口部22aにおける直径Di、従って流路断面Aiは、給油口11の中間部23の直径Dm、従って流路断面積Amよりも大きい。そのため、図8に示すように給油口11が両端間で流路断面積が一定の直管形状(いわゆるキリ穴)である場合と比較して、運転時に雌ロータ4の歯部4bが給油口11の真上を通り過ぎる瞬間において、中間部23の雌ロータ室2b側の端部23aと歯部4bの歯先との距離が長くなる。言い換えれば、給油口11から噴射された油が雌ロータ4の歯部4bの歯先とケーシング2の円筒面2fとの隙間を通過する際に、油が通過し得る断面積が拡大する。従って、雌ロータ室2bへの油噴射時の圧力損失が減少する。この圧力損失減少により、給油口11へ供給される油の体積流量を、図8のように給油口11がキリ穴である場合と同一としたままで、雌ロータ室2bに噴射される油の流速を増加できる。言い換えれば、体積流量を増加することなく、給油口11がキリ穴である場合よりも雌ロータ室2bに噴射される油の流速を増加できる。この流速増加により、液柱が雌ロータ4の歯部4bの歯面に衝突する際の微粒化が促進され、油滴の伝熱面積が増加し、圧縮空気に対する冷却効率が向上する。従って、空気を所要圧力まで圧縮するのに必要な動力を低減できる。 The diameter Di at the opening 22a of the injection portion 22 of the fuel filler port 11 with respect to the female rotor chamber 2b, and therefore the flow passage cross-section Ai, is larger than the diameter Dm of the intermediate portion 23 of the fuel filler port 11, and therefore the flow passage cross-sectional area Am. Therefore, as compared with the case where the oil filler port 11 has a straight pipe shape (a so-called drilled hole) in which the flow passage cross-sectional area is constant between both ends as shown in FIG. 11, the distance between the end portion 23a of the intermediate portion 23 on the side of the female rotor chamber 2b and the tip of the tooth portion 4b increases. In other words, when the oil injected from the oil supply port 11 passes through the gap between the tip of the tooth portion 4b of the female rotor 4 and the cylindrical surface 2f of the casing 2, the cross-sectional area through which the oil can pass increases. Therefore, pressure loss during injection of oil into the female rotor chamber 2b is reduced. Due to this reduction in pressure loss, the volumetric flow rate of the oil supplied to the oil supply port 11 remains the same as in the case where the oil supply port 11 has a drilled hole as shown in FIG. Can increase flow velocity. In other words, the flow velocity of the oil injected into the female rotor chamber 2b can be increased more than when the oil supply port 11 is a drilled hole without increasing the volumetric flow rate. This increase in flow speed promotes atomization when the liquid column collides with the tooth surface of the tooth portion 4b of the female rotor 4, increases the heat transfer area of the oil droplets, and improves the cooling efficiency of the compressed air. Therefore, the power required to compress the air to the required pressure can be reduced.

仮に雌ロータ室2bへ噴射される油の流速増加のために、給油口11へ供給する液体の体積流量を増加すると、雌ロータ4の歯部4bによる油の撹拌による動力損失や、雌ロータ4の歯部4b(歯先)とケーシング2の円筒面2fとの間の狭小隙間における油の粘性による動力損失を増加させてしまう。しかし、本実施形態では、給油口11へ供給する油の体積流量は同一のままで、雌ロータ室2bに噴射される油の流速を増加できるため、動力損失の増加も発生しない。 If the volumetric flow rate of the liquid supplied to the oil filler port 11 is increased in order to increase the flow velocity of the oil injected into the female rotor chamber 2b, power loss due to the stirring of the oil by the teeth 4b of the female rotor 4 and The viscosity of the oil in the narrow gap between the tooth portion 4b (tooth tip) of the casing 2 and the cylindrical surface 2f of the casing 2 increases the power loss. However, in this embodiment, the flow velocity of the oil injected into the female rotor chamber 2b can be increased while the volumetric flow rate of the oil supplied to the oil filler port 11 remains the same, so an increase in power loss does not occur.

前述のように、噴射部22の開口部22aにおける直径Diは、雌ロータ4の歯部4bの軸直角歯先幅Wtよりも大きい。そのため、雌ロータ4の歯部4bが給油口11の真上を通り過ぎる際に、歯部4bの先端が有する平滑面4dによって給油口11の噴射部22が塞がることがなく、より効果的に雌ロータ室2bへの油噴射時の圧力損失を減少できる。 As described above, the diameter Di at the opening 22a of the injection portion 22 is larger than the axis-perpendicular tip width Wt of the tooth portion 4b of the female rotor 4. As shown in FIG. Therefore, when the toothed portion 4b of the female rotor 4 passes right above the oil filler opening 11, the injection portion 22 of the oil filler opening 11 is not blocked by the smooth surface 4d of the tip of the toothed portion 4b. Pressure loss during oil injection to the rotor chamber 2b can be reduced.

図9及び図10は、第1実施形態の変形例を示す。 9 and 10 show a modification of the first embodiment.

図9の変形例では、給油口11の入口部21は給油ライン15と接続する部分21aから中間部23と接続する部分21bに向けて直径De、従って流路断面積Aeが漸減するテーパ形状を有する。 In the modified example of FIG. 9, the inlet portion 21 of the fuel filler port 11 has a tapered shape in which the diameter De, and therefore the flow passage cross-sectional area Ae, gradually decreases from the portion 21a connected to the fuel supply line 15 toward the portion 21b connected to the intermediate portion 23. have.

図10の変形例では、給油口11の入口部21は、給油ライン15と接続する部分21aから中間部23と接続する部分21bまで、中間部23の直径Dmよりも大きい一定の直径Deを有する。言い換えれば、入口部21は、給油ライン15と接続する部分21aから中間部23と接続する部分21bまで、中間部23の流路断面積Amよりも大きい一定の流路断面積Aeを有する。そのため、入口部21が中間部23と接続する部分に、流路断面積が急激ないしは非連続的に減少する段差25が形成されている。 10, the inlet portion 21 of the fuel filler port 11 has a constant diameter De larger than the diameter Dm of the intermediate portion 23 from the portion 21a connected to the fuel supply line 15 to the portion 21b connected to the intermediate portion 23. . In other words, inlet portion 21 has a constant flow passage cross-sectional area Ae larger than flow passage cross-sectional area Am of intermediate portion 23 from portion 21 a connected to oil supply line 15 to portion 21 b connected to intermediate portion 23 . Therefore, a step 25 is formed at a portion where the inlet portion 21 is connected to the intermediate portion 23 so that the cross-sectional area of the flow passage decreases abruptly or discontinuously.

図9及び図10に示す構成により、給油ライン15から給油口11の入口部21に油が流入する際の流路断面積の急激な縮小が緩和され、圧力損失が低減される。その結果、より効果的に、給油口11へ供給する油の体積流量を増加することなく、雌ロータ室2bに噴射される油の流速を増加できる。 The configuration shown in FIGS. 9 and 10 alleviates a rapid reduction in the cross-sectional area of the flow path when oil flows from the oil supply line 15 into the inlet 21 of the oil supply port 11, thereby reducing pressure loss. As a result, the flow velocity of the oil injected into the female rotor chamber 2b can be increased more effectively without increasing the volumetric flow rate of the oil supplied to the oil filler port 11. FIG.

以下の第2及び第3実施形態については、第1実施形態と異なる点を説明する。これらの実施形態に関して特に言及しない構造、機能等は、第1実施形態と同様である。また、これらの実施形態に関する図面において、第1実施形態のものと同一又は同様の要素には同一の符号を付している。さらに、図1、図2、及び図4に示される第1実施形態に係る油冷式圧縮機の全体的な構成は、これらの実施形態についても同様である。 In the following second and third embodiments, points different from the first embodiment will be described. Structures, functions, and the like that are not specifically mentioned in these embodiments are the same as those in the first embodiment. In addition, in the drawings relating to these embodiments, the same reference numerals are given to the same or similar elements as those of the first embodiment. Furthermore, the overall configuration of the oil-cooled compressor according to the first embodiment shown in FIGS. 1, 2, and 4 is the same for these embodiments.

(第2実施形態)
図11及び図12に示す本発明の第2実施形態に係る油冷式スクリュー圧縮機1では、給油口11の噴射部22は、中間部23と接続する部分22bから開口部22aまで、中間部23の直径Dmよりも大きい一定の直径Diを有する。言い換えれば、噴射部22は、中間部23と接続する部分22bから開口部22aまで、中間部23の流路断面積Amよりも大きい一定の流路断面積Aeを有する。そのため、噴射部22の中間部23と接続する部分に、流路断面積が急激ないし非連続的に増加する段差26が形成されている。
(Second embodiment)
In the oil-cooled screw compressor 1 according to the second embodiment of the present invention shown in FIGS. It has a constant diameter Di greater than the diameter Dm of 23. In other words, the injection portion 22 has a constant flow passage cross-sectional area Ae larger than the flow passage cross-sectional area Am of the intermediate portion 23 from the portion 22b connected to the intermediate portion 23 to the opening 22a. Therefore, a step 26 is formed at a portion of the injection portion 22 that is connected to the intermediate portion 23 so that the cross-sectional area of the flow passage increases abruptly or discontinuously.

噴射部22の雌ロータ室2bに対する開口部22aは、中間部23の流路断面積Amよりも大きい流路断面積Aeを有するので、体積流量を増加することなく雌ロータ室2bに噴射される油の流速を増加できる。この速度増加により、圧縮空気に対する冷却効率が向上し、空気を所要圧力まで圧縮するのに必要な動力を低減できる。また、給油口11へ供給する油の体積流量は同一のままで、雌ロータ室に噴射される液体の流速を増加できるため、動力損失の増加も発生しない。さらに、噴射部22の開口部22aにおける直径Diは、雌ロータ4の歯部4bの軸直角歯先幅Wtよりも大きいので、歯部4bの先端面が有する平滑面4dが噴射部22を塞ぐことがなく、より効果的に雌ロータ室2bへの油噴射時の圧力損失を減少できる。 Since the opening 22a of the injection portion 22 for the female rotor chamber 2b has a flow passage cross-sectional area Ae larger than the flow passage cross-sectional area Am of the intermediate portion 23, the jet is injected into the female rotor chamber 2b without increasing the volumetric flow rate. Can increase oil flow rate. This increase in speed improves cooling efficiency for the compressed air and reduces the power required to compress the air to the required pressure. Further, since the flow velocity of the liquid injected into the female rotor chamber can be increased while the volumetric flow rate of the oil supplied to the oil supply port 11 remains the same, an increase in power loss does not occur. Furthermore, since the diameter Di at the opening 22a of the injection portion 22 is larger than the axis-perpendicular tip width Wt of the tooth portion 4b of the female rotor 4, the injection portion 22 is blocked by the smooth surface 4d of the tip surface of the tooth portion 4b. Therefore, it is possible to more effectively reduce pressure loss during injection of oil into the female rotor chamber 2b.

図13及び図14は、第2実施形態の変形例を示す。 13 and 14 show a modification of the second embodiment.

図13の変形例では、給油口11の入口部21は、給油ライン15と接続する部分21aから中間部23と接続する部分21bまで、中間部23の流路断面積Amよりも大きい一定の流路断面積Aeを有する。そのため、入口部21の中間部23と接続する部分に、流路断面積が非連続的に減少する段差25が形成されている。中間部23の厚みTHmは、入口部21の厚みTHeと噴射部22の厚みTHiとの和よりも大きい。 In the modified example of FIG. 13 , the inlet portion 21 of the fuel filler port 11 has a constant flow larger than the flow passage cross-sectional area Am of the intermediate portion 23 from the portion 21 a connected to the fuel filler line 15 to the portion 21 b connected to the intermediate portion 23 . It has a cross-sectional area Ae. Therefore, a step 25 is formed in a portion of the inlet portion 21 connected to the intermediate portion 23 so that the cross-sectional area of the flow passage decreases discontinuously. The thickness THm of the intermediate portion 23 is greater than the sum of the thickness THe of the inlet portion 21 and the thickness THi of the injection portion 22 .

図14の変形例では、給油口11の入口部21は給油ライン15と接続する部分21aから中間部23と接続する部分21bに向けて直径De、従って流路断面積Aeが漸減するテーパ形状を有する。図13及び図14の構成により、給油ライン15から給油口11の入口部21に油が流入する際の流路断面積の急激な縮小が緩和され、圧力損失が低減される。その結果、より効果的に、給油口11へ供給する油の体積流量を増加することなく、雌ロータ室2bに噴射される油の流速を増加できる。 In the modified example of FIG. 14, the inlet portion 21 of the fuel filler port 11 has a tapered shape in which the diameter De, and therefore the flow passage cross-sectional area Ae, gradually decreases from the portion 21a connected to the fuel supply line 15 toward the portion 21b connected to the intermediate portion 23. have. The configuration of FIGS. 13 and 14 alleviates a rapid reduction in the cross-sectional area of the flow path when oil flows from the oil supply line 15 into the inlet 21 of the oil supply port 11, thereby reducing pressure loss. As a result, the flow velocity of the oil injected into the female rotor chamber 2b can be increased more effectively without increasing the volumetric flow rate of the oil supplied to the oil filler port 11. FIG.

(第3実施形態)
図15及び図16に示す本発明の第3実施形態に係る油冷式スクリュー圧縮機1では、ケーシング2に、別部材を取り付けることで、給油口11を設けている。
(Third embodiment)
In the oil-cooled screw compressor 1 according to the third embodiment of the present invention shown in FIGS. 15 and 16, the oil supply port 11 is provided by attaching another member to the casing 2 .

ケーシング2には、給油ライン15から雌ロータ室2bまで貫通する取付穴31が設けられている。本実施形態では、取付穴31は一定の直径Daを有する円形である。図17に示す、両端開口、つまり中央に軸穴32aを有するオリフィス管(管部材)32が、取付穴31に挿入ないし嵌入され、ケーシング2に対して固定されている。 The casing 2 is provided with a mounting hole 31 penetrating from the oil supply line 15 to the female rotor chamber 2b. In this embodiment, the mounting hole 31 is circular with a constant diameter Da. An orifice tube (pipe member) 32, shown in FIG.

オリフィス管32の雌ロータ室2b側の端面32bは、取付穴31内に位置しており、雌ロータ室2bを画定する円筒面2fに対して窪んでいる。また、オリフィス管32の給油ライン15側の端面32cも取付穴31内に位置している。オリフィス管32の端面32cと、取付穴31の穴周壁31aとによって、給油口11の入口部21が画定されている。また、オリフィス管32の軸穴32aが給油口11の中間部23を構成している。さらに、オリフィス管32の端面32bと、取付穴31の穴周壁31aとによって、給油口11の噴射部22が画定されている。 An end face 32b of the orifice pipe 32 on the side of the female rotor chamber 2b is located in the mounting hole 31 and recessed from the cylindrical surface 2f defining the female rotor chamber 2b. An end face 32 c of the orifice pipe 32 on the oil supply line 15 side is also located inside the mounting hole 31 . The inlet portion 21 of the oil filler port 11 is defined by the end face 32c of the orifice pipe 32 and the hole peripheral wall 31a of the mounting hole 31 . Further, the shaft hole 32 a of the orifice pipe 32 constitutes the intermediate portion 23 of the filler port 11 . Further, the end face 32b of the orifice pipe 32 and the hole peripheral wall 31a of the mounting hole 31 define the injection portion 22 of the oil filler port 11. As shown in FIG.

本実施形態における噴射部22は、第2実施形態のものと同様の形状を有している。特に、中間部23、つまりオリフィス管32の軸穴32aと噴射部22とが接続する部分に、流路断面積が非連続的に増加する段差26が形成されている。 The injection part 22 in this embodiment has the same shape as that of the second embodiment. In particular, the intermediate portion 23, that is, the portion where the shaft hole 32a of the orifice pipe 32 and the injection portion 22 are connected, is formed with a step 26 that discontinuously increases the flow passage cross-sectional area.

本実施形態における入口部21は、図13に示すものと同様の形状を有している。特に、入口部21が中間部23、つまりオリフィス管32の軸穴32aと接続する部分に、流路断面積が非連続的に減少する段差25が形成されている。 The inlet portion 21 in this embodiment has a shape similar to that shown in FIG. In particular, a step 25 that discontinuously decreases the cross-sectional area of the flow passage is formed at the portion where the inlet portion 21 connects with the intermediate portion 23 , that is, the shaft hole 32 a of the orifice pipe 32 .

第1及び第2実施形態並びにそれらの変形例と同様の効果に加え、本実施形態には以下の効果がある。まず、給油口11をケーシング2に設ける加工時の寸法管理が、ケーシング2そのものを直接、掘削等にて加工して、中間部23と、その中間部23の流路断面積より大きい流路断面積をロータ室に対する開口部に備えた噴射部22を形成する場合に比べ、容易となる。加工時の寸法管理が容易になることで、より高度な品質安定性を確保できる。また、異なるオリフィス管32を使用することで、給油口11の中間部23の直径Dmを、製品使用に合わせて容易に変更できる。さらに、給油口11を設けるためにケーシング2に施す加工としては、流路断面積が非連続的に増加する段差の加工や、流路断面積が連続的に拡大するテーパ形状の加工を必要とせず、取付穴31の形成のみが要求されるため、工数削減を図ることができる。 In addition to the same effects as those of the first and second embodiments and their modifications, this embodiment has the following effects. First, the dimensional control at the time of processing to provide the fuel filler port 11 in the casing 2 is to directly process the casing 2 itself by excavation or the like, and to form an intermediate portion 23 and a flow passage section larger than the flow passage cross-sectional area of the intermediate portion 23 . This is easier than in the case of forming the injection part 22 having an area at the opening with respect to the rotor chamber. By facilitating dimensional control during processing, a higher level of quality stability can be ensured. Also, by using a different orifice pipe 32, the diameter Dm of the intermediate portion 23 of the filler port 11 can be easily changed according to product use. Furthermore, the machining of the casing 2 to provide the oil filler port 11 requires machining of a step that increases the cross-sectional area of the flow path discontinuously and machining of a tapered shape that continuously expands the cross-sectional area of the flow path. Since only the formation of the mounting holes 31 is required, the number of man-hours can be reduced.

(試験)
本発明の効果を確認するための試験を行った。この試験では、第3実施形態の油冷式スクリュー圧縮機1(図15に示すようにオリフィス管32で給油口11を構成している)と、比較例として図8に示す油冷式スクリュー圧縮機1(給油口11が一定直径のキリ穴)を使用した。個々の油冷式スクリュー圧縮機1(75KW)について、2種類の循環油量で実際に運転し、断熱効率(実際の消費動力に対する理論消費動力の割合)を求めた。個々の油冷式スクリュー圧縮機1の吐出圧力は0.7MPaに設定した。周囲温度は20℃であった。
(test)
A test was conducted to confirm the effect of the present invention. In this test, the oil-cooled screw compressor 1 of the third embodiment (the orifice pipe 32 constitutes the oil supply port 11 as shown in FIG. 15) and the oil-cooled screw compressor shown in FIG. Machine 1 (a drilled hole with a constant diameter for the oil filler port 11) was used. Each oil-cooled screw compressor 1 (75 kW) was actually operated with two different amounts of circulating oil, and the adiabatic efficiency (ratio of theoretical power consumption to actual power consumption) was determined. The discharge pressure of each oil-cooled screw compressor 1 was set to 0.7 MPa. Ambient temperature was 20°C.

第3実施形態と比較例のいずれにおいても、3個の給油口11A~11Cの中間部23の直径Dmは、雌ロータ4の歯部4bの軸直角歯先幅Wtの4.4倍であった(Dm=4.4×Wt)。 In both the third embodiment and the comparative example, the diameter Dm of the intermediate portion 23 of the three oil filler ports 11A to 11C is 4.4 times the tip width Wt perpendicular to the axis of the tooth portion 4b of the female rotor 4. (Dm = 4.4 x Wt).

第3実施形態については、循環油量は所定の油量Q(L/min)と約1.4×Q(L/min)で運転した際の断熱効率を求めた。循環油量はQ(L/min)のときの給油口11A,11B,11Cの噴射部22の直径Diは、それぞれ2.2Dm(Di=2.2×Dm)、2.9Dm(Di=2.9×Dm)、及び2.9Dm(Di=2.9×Dm)であった。一方、潤滑油量が1.4×Q(L/min)のときの給油口11A,11B,11Cの噴射部22の直径Diは、それぞれ1.7Dm(Di=1.7×Dm)、2.2Dm(Di=2.2×Dm)、及び2.2Dm(Di=2.2×Dm)。 For the third embodiment, the adiabatic efficiency was obtained when the engine was operated with a predetermined oil amount Q 0 (L/min) and approximately 1.4×Q 0 (L/min) as the circulating oil amount. When the circulating oil amount is Q 0 (L/min), the diameters Di of the injection portions 22 of the oil filler ports 11A, 11B, and 11C are 2.2 Dm (Di=2.2×Dm) and 2.9 Dm (Di= 2.9×Dm), and 2.9 Dm (Di=2.9×Dm). On the other hand, when the lubricating oil amount is 1.4×Q 0 (L/min), the diameter Di of the injection portion 22 of each of the oil supply ports 11A, 11B, and 11C is 1.7Dm (Di=1.7×Dm), 2.2 Dm (Di = 2.2 x Dm), and 2.2 Dm (Di = 2.2 x Dm).

図18に試験結果を示す。この図18に示されているように、第3実施形態の油冷式スクリュー圧縮機1は、比較例よりも約1%程度断熱効率が向上することが確認できた。 FIG. 18 shows the test results. As shown in FIG. 18, it has been confirmed that the oil-cooled screw compressor 1 of the third embodiment has improved adiabatic efficiency by about 1% as compared to the comparative example.

1 油冷式スクリュー圧縮機(液冷式スクリュー圧縮機)
2 ケーシング
2a 雄ロータ室
2b 雌ロータ室
2c 吸込口
2d 吐出口
2e,2f 円筒面
2g,2h 端面
3 雄ロータ
3a ロータ軸
3b 歯部
4 雌ロータ
4a ロータ軸
4b 歯部
4c 歯溝
4d 平滑面
5A,5B,6A,6B 軸受
7 駆動機構
11A,11B,11C 給油口(給液口)
12A,12B 空気配管
13 セパレータ
14 油供給配管
15 給油ライン(給液ライン)
16 油ポンプ
21 入口部
21a,21b 部分
22 噴射部
22a 開口部
22b 部分
23 中間部
23a 端部
25,26 段差
31 取付穴
31a 穴周壁
32 オリフィス管
32a 軸穴
32b,32c 端面
1 Oil-cooled screw compressor (liquid-cooled screw compressor)
2 casing 2a male rotor chamber 2b female rotor chamber 2c suction port 2d discharge port 2e, 2f cylindrical surface 2g, 2h end surface 3 male rotor 3a rotor shaft 3b tooth portion 4 female rotor 4a rotor shaft 4b tooth portion 4c tooth groove 4d smooth surface 5A , 5B, 6A, 6B bearing 7 drive mechanism 11A, 11B, 11C oil supply port (liquid supply port)
12A, 12B air pipe 13 separator 14 oil supply pipe 15 oil supply line (liquid supply line)
16 oil pump 21 inlet 21a, 21b portion 22 injection portion 22a opening 22b portion 23 intermediate portion 23a end 25, 26 step 31 mounting hole 31a hole peripheral wall 32 orifice pipe 32a shaft hole 32b, 32c end face

Claims (9)

ケーシングに設けられ、一対のスクリューロータが収容されたロータ室と、
前記スクリューロータのロータ軸線方向に沿って前記ケーシングに形成された給液ラインと、
前記給液ラインと接続し、前記給液ラインから供給される液体を前記ロータ室に供給するために、前記給液ラインと交差する方向に沿って前記ケーシングに設けられた給液口と
を備え、
前記給液口は、
前記給液ラインと流体的に連通する入口部と、
前記ロータ室と流体的に連通する噴射部と、
前記入口部と前記噴射部とを流体的に接続する、一定の流路断面積を有する中間部とを備え、
前記噴射部の前記ロータ室に対する開口部は、前記給口の軸線に直交する平面としてロータ室側から見て円形であり、前記噴射部の開口部及び前記入口部の前記給液ラインに対する開口部の流路断面積は、前記中間部の前記流路断面積よりも大きく、前記噴射部の前記開口部における直径は、前記スクリューロータの歯部の軸直角歯先幅よりも大きい、液冷式スクリュー圧縮機。
a rotor chamber provided in the casing and containing a pair of screw rotors;
a liquid supply line formed in the casing along the axial direction of the screw rotor ;
a liquid supply port provided in the casing along a direction intersecting with the liquid supply line for connecting to the liquid supply line and supplying the liquid supplied from the liquid supply line to the rotor chamber; ,
The liquid supply port is
an inlet in fluid communication with the liquid supply line;
an injector in fluid communication with the rotor chamber;
an intermediate portion having a constant flow passage cross-sectional area fluidly connecting the inlet portion and the injection portion;
The opening of the injection section with respect to the rotor chamber has a circular shape as viewed from the rotor chamber side as a plane perpendicular to the axis of the liquid supply port, and the opening of the injection section and the opening of the inlet section with respect to the liquid supply line. is larger than the flow passage cross-sectional area of the intermediate portion , and the diameter at the opening of the injection portion is larger than the tip width of the tooth portion perpendicular to the axis of the screw rotor. type screw compressor.
記給液口は、前記ロータ軸線方向に沿った直線上に複数個配設されている、請求項1に記載の液冷式スクリュー圧縮機。 2. The liquid-cooled screw compressor according to claim 1, wherein a plurality of said liquid supply ports are arranged on a straight line along said rotor axial direction. 前記中間部の直径は0.7mm以上18mm以下であり、
前記噴射部の前記開口部における直径は、前記中間部の直径の4.0倍以下である、請求項1又は2に記載の液冷式スクリュー圧縮機。
The intermediate portion has a diameter of 0.7 mm or more and 18 mm or less,
3. The liquid-cooled screw compressor according to claim 1, wherein the diameter of the opening of the injection section is 4.0 times or less the diameter of the intermediate section.
前記噴射部の前記開口部における直径は、前記中間部の直径の1.5倍以上3.0倍以下である、請求項3に記載の液冷式スクリュー圧縮機。 4. The liquid-cooled screw compressor according to claim 3, wherein the diameter of the opening of the injection section is 1.5 times or more and 3.0 times or less of the diameter of the intermediate section. 前記噴射部は、前記中間部と接続する部分から前記開口部に向けて前記流路断面積が漸増する、逆テーパ形状を有する、請求項1から請求項4のいずれか1項に記載の液冷式スクリュー圧縮機。 5. The liquid according to any one of claims 1 to 4, wherein the injection part has a reverse tapered shape in which the cross-sectional area of the flow path gradually increases from a portion connected to the intermediate part toward the opening. Cold screw compressor. 前記噴射部は、前記中間部と接続する部分から前記開口部までの前記流路断面積が一定であり、
前記噴射部の前記中間部と接続する部分に、前記流路断面積が非連続的に増加する段差が形成されている、請求項1から請求項4のいずれか1項に記載の液冷式スクリュー圧縮機。
The injection part has a constant flow passage cross-sectional area from a portion connected to the intermediate part to the opening,
5. The liquid cooling type according to any one of claims 1 to 4, wherein a step is formed in a portion of the injection section that is connected to the intermediate portion so that the cross-sectional area of the flow passage increases discontinuously. screw compressor.
前記給液口は、前記ケーシングに設けられた前記給液ラインから前記ロータ室まで貫通する取付穴に挿入された、両端開口の管部材を備え、
前記管部材によって前記中間部が画定され、
前記管部材の前記ロータ室に臨む端面は、前記取付穴内に位置し、
前記管部材の前記端面と、前記取付穴の穴周壁によって前記噴射部が画定されている、請求項6に記載の液冷式スクリュー圧縮機。
The liquid supply port includes a tubular member with both ends open, which is inserted into a mounting hole penetrating from the liquid supply line provided in the casing to the rotor chamber,
the tubular member defines the intermediate portion;
an end surface of the tubular member facing the rotor chamber is located in the mounting hole,
7. The liquid-cooled screw compressor according to claim 6, wherein said injection portion is defined by said end face of said pipe member and a peripheral wall of said mounting hole.
前記入口部は、前記給液ラインと接続する部分から前記中間部に向けて流路断面が漸減する、テーパ形状を有する、請求項1から6のいずれか1項に記載の液冷式スクリュー圧縮機。 7. The liquid-cooled screw compressor according to any one of claims 1 to 6, wherein the inlet section has a tapered shape in which the flow passage cross section gradually decreases from the portion connected to the liquid supply line toward the intermediate portion. machine. 前記入口部は、前記給液ラインと接続する部分から前記中間部と接続する部分まで、前記中間部の前記流路断面積よりも大きい一定の流路断面積を有し、
前記入口部の前記中間部と接続する部分に、前記流路断面積が非連続的に減少する段差が形成されている、請求項1から請求項7のいずれか1項に記載の液冷式スクリュー圧縮機。
The inlet section has a constant flow channel cross-sectional area larger than the flow channel cross-sectional area of the intermediate portion from the portion connected to the liquid supply line to the portion connected to the intermediate portion,
8. The liquid cooling type according to any one of claims 1 to 7, wherein a step is formed in a portion of the inlet portion connected to the intermediate portion so that the cross-sectional area of the flow passage decreases discontinuously. screw compressor.
JP2019077953A 2018-08-27 2019-04-16 Liquid-cooled screw compressor Active JP7335089B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217004176A KR102580244B1 (en) 2018-08-27 2019-08-09 Liquid-cooled screw compressor
SG11202100933SA SG11202100933SA (en) 2018-08-27 2019-08-09 Liquid-cooled screw compressor
CN201980056538.5A CN112585358B (en) 2018-08-27 2019-08-09 Liquid-cooled screw compressor
PCT/JP2019/031728 WO2020045068A1 (en) 2018-08-27 2019-08-09 Liquid-cooled screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018158544 2018-08-27
JP2018158544 2018-08-27

Publications (2)

Publication Number Publication Date
JP2020033993A JP2020033993A (en) 2020-03-05
JP7335089B2 true JP7335089B2 (en) 2023-08-29

Family

ID=69667497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019077953A Active JP7335089B2 (en) 2018-08-27 2019-04-16 Liquid-cooled screw compressor

Country Status (4)

Country Link
JP (1) JP7335089B2 (en)
KR (1) KR102580244B1 (en)
CN (1) CN112585358B (en)
SG (1) SG11202100933SA (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034806A (en) 2001-10-27 2003-05-09 엘지전선 주식회사 An equipped restrictor at supplied oil line of screw compressor
CN201858157U (en) 2010-10-22 2011-06-08 武汉新世界制冷工业有限公司 Screw compressor refrigerator oil injection device
WO2018038070A1 (en) 2016-08-23 2018-03-01 株式会社日立産機システム Fluid machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123613U (en) * 1977-03-11 1978-10-02
JPS57135293A (en) * 1981-02-12 1982-08-20 Ebara Corp Screw compressor
JPH11336683A (en) * 1998-05-21 1999-12-07 Mayekawa Mfg Co Ltd Oil-cooled screw compressor
JP6236219B2 (en) 2013-04-30 2017-11-22 北越工業株式会社 Oil-cooled screw compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034806A (en) 2001-10-27 2003-05-09 엘지전선 주식회사 An equipped restrictor at supplied oil line of screw compressor
CN201858157U (en) 2010-10-22 2011-06-08 武汉新世界制冷工业有限公司 Screw compressor refrigerator oil injection device
WO2018038070A1 (en) 2016-08-23 2018-03-01 株式会社日立産機システム Fluid machine

Also Published As

Publication number Publication date
CN112585358A (en) 2021-03-30
SG11202100933SA (en) 2021-03-30
KR102580244B1 (en) 2023-09-20
JP2020033993A (en) 2020-03-05
KR20210029261A (en) 2021-03-15
CN112585358B (en) 2022-11-25

Similar Documents

Publication Publication Date Title
JP6986117B2 (en) Fluid machine
CN111295518B (en) Liquid-cooled screw compressor
JP6752087B2 (en) Screw compressor
CN111094750B (en) Screw compressor
WO2020095608A1 (en) Liquid screw compressor
US20240183357A1 (en) Screw compressor
JP5422260B2 (en) Oil-free screw compressor
JP7335089B2 (en) Liquid-cooled screw compressor
CN111279081B (en) Liquid-cooled screw compressor
JP2008297944A (en) Screw compressor
JP6945729B2 (en) Liquid supply type screw compressor
WO2020045068A1 (en) Liquid-cooled screw compressor
JP6767353B2 (en) Screw compressor with liquid supply mechanism
JP7218281B2 (en) Feed screw compressor
WO2024024253A1 (en) Liquid-cooled screw compressor
CN113167275A (en) Screw compressor
JP7366799B2 (en) Liquid feed type screw compressor
US12025129B2 (en) Liquid supply type screw compressor
JP2023087275A (en) screw compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230817

R151 Written notification of patent or utility model registration

Ref document number: 7335089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151