JP7334108B2 - Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid - Google Patents

Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid Download PDF

Info

Publication number
JP7334108B2
JP7334108B2 JP2019206373A JP2019206373A JP7334108B2 JP 7334108 B2 JP7334108 B2 JP 7334108B2 JP 2019206373 A JP2019206373 A JP 2019206373A JP 2019206373 A JP2019206373 A JP 2019206373A JP 7334108 B2 JP7334108 B2 JP 7334108B2
Authority
JP
Japan
Prior art keywords
water
soluble
functional fluid
soluble functional
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019206373A
Other languages
Japanese (ja)
Other versions
JP2021080321A (en
Inventor
元太 中村
康正 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yushiro Chemical Industry Co Ltd
Original Assignee
Yushiro Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yushiro Chemical Industry Co Ltd filed Critical Yushiro Chemical Industry Co Ltd
Priority to JP2019206373A priority Critical patent/JP7334108B2/en
Publication of JP2021080321A publication Critical patent/JP2021080321A/en
Application granted granted Critical
Publication of JP7334108B2 publication Critical patent/JP7334108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水溶性機能流体、該水溶性機能流体の原液、水溶性機能流体の殺菌装置、および水溶性機能流体の殺菌方法に関する。 TECHNICAL FIELD The present invention relates to a water-soluble functional fluid, an undiluted solution of the water-soluble functional fluid, an apparatus for sterilizing the water-soluble functional fluid, and a method for sterilizing the water-soluble functional fluid.

切削、研削、塑性加工等といった金属加工を行う場合、加工工具と被加工材との間を潤滑・冷却するために加工油剤が使用される。当該加工油剤には、油性加工油剤と水溶性加工油剤とがあるが、効率的に冷却できることや、無人化された機械においても加工時の火災を防止できることから、水溶性加工油剤が主に用いられている。金属加工の際は、大量の加工油剤をポンプによって循環しながら使用する。 2. Description of the Related Art When performing metal working such as cutting, grinding, plastic working, etc., a working fluid is used to lubricate and cool between a working tool and a workpiece. There are oil-based processing fluids and water-soluble processing fluids, but water-soluble processing fluids are mainly used because they can cool efficiently and prevent fires during processing even in unmanned machines. It is During metal working, a large amount of working oil is used while being circulated by a pump.

金属加工に用いられる水溶性加工油剤は、一般に鉱物油、油脂、脂肪酸、脂肪酸エステル、極圧添加剤、界面活性剤、消泡剤、金属防食剤、酸化防止剤、防腐・防カビ剤等を目的に応じて適宜混合して製造され、水で希釈して、いわゆるクーラントとしたうえで使用される。クーラントには、切削性、研削性等に係る1次性能と、作業性等に係る2次性能とが要求される。1次性能としては、例えば、仕上げ面精度の向上、工具寿命の延長等が挙げられ、2次性能としては、例えば、防錆性に優れること、劣化し難く管理が容易であること、人体に無害であること、泡立ちが少ないこと等が挙げられる。 Water-soluble processing oils used in metal processing generally include mineral oils, fats, fatty acids, fatty acid esters, extreme pressure additives, surfactants, antifoaming agents, anticorrosive agents for metals, antioxidants, preservatives and antifungal agents. It is produced by appropriately mixing them according to the purpose, diluted with water, and used as a so-called coolant. A coolant is required to have primary performance such as machinability and grindability, and secondary performance such as workability. Primary performance includes, for example, improved surface finish precision and extended tool life. It should be harmless and cause little foaming.

水溶性加工油剤には、上記したような、細菌、酵母、カビ等の微生物の栄養源となる物質が多く含有されているため、希釈後のクーラントが腐敗しやすいという問題がある。クーラントの腐敗が進行すると、1次性能、2次性能ともに低下するうえ、腐敗による悪臭も問題となる。また、腐敗によって油剤交換の頻度が高くなれば、コスト面においても不利となる。さらに、クーラントにカビが発生した場合、ポンプ等の循環系統においてパイプ詰まりの原因にもなる。これを防ぐため、加工油剤には防腐・防カビ剤が添加され、あるいは、その他成分によって防腐・防カビ処理がなされる。 Since the water-soluble processing oil contains many substances that serve as nutrients for microorganisms such as bacteria, yeast, and molds as described above, there is a problem that the diluted coolant tends to spoil. As the decay of the coolant progresses, both primary performance and secondary performance deteriorate, and bad odors due to decay also become a problem. Moreover, if the frequency of oil replacement increases due to putrefaction, it is disadvantageous in terms of cost. Furthermore, if mold grows in the coolant, it may cause clogging of pipes in circulation systems such as pumps. In order to prevent this, an antiseptic/antifungal agent is added to the processing oil, or antiseptic/antifungal treatment is performed with other ingredients.

しかしながら、一般に、防腐剤や防カビ剤は、分解もしくは不活性化により効果が短期間で著しく低下してしまうという問題がある。また、広く知られている防腐剤や防カビ剤としては、ホルムアルデヒド放出型やフェノール系のものが挙げられるが、このようなものは刺激物である。すなわち、加工油剤に防腐・防カビ性能を発揮させ得る程度に多量に添加すると、加工油剤自体が皮膚刺激性の激しいものとなってしまい、人体に悪影響を及ぼすことがあった。 However, in general, preservatives and antifungal agents have the problem that their effects are remarkably reduced in a short period of time due to decomposition or inactivation. Also, widely known preservatives and fungicides include formaldehyde-releasing agents and phenolic agents, which are irritants. That is, when the processing oil is added in a large amount to the extent that antiseptic and antifungal performance can be exhibited, the processing oil itself becomes severely irritating to the skin, which may adversely affect the human body.

また、加工油剤において、界面活性剤(乳化剤)として脂肪酸と各種アミンとを反応させたアミンセッケンを使用したものがある(特許文献1)。この場合、加工油剤にはアルカリのアミンが遊離した状態で存在し、当該遊離状態のアミンを大量に含ませることで、加工油剤にある程度の防腐・防カビ性を付与することができる。また、加工油剤において抗菌性アミンを含ませる技術もある(特許文献2)。あるいは、加工油剤を高pH(pH9以上のアルカリ)とすることにより、防腐性を確保する技術も知られている。 In addition, there is a processing oil that uses an amine soap obtained by reacting a fatty acid with various amines as a surfactant (emulsifier) (Patent Document 1). In this case, an alkaline amine is present in a free state in the processing oil, and by containing a large amount of the free amine, the processing oil can be imparted with a certain degree of antiseptic and antifungal properties. There is also a technique of incorporating an antibacterial amine in a processing oil (Patent Document 2). Alternatively, there is also known a technique of ensuring antiseptic properties by making the processing oil high pH (alkali of pH 9 or higher).

防腐剤やアミンを使用しない技術としては、油剤またはクーラントを物理化学的/装置的な側面から殺菌する方法として、電磁波の照射(特許文献3および4)、超音波の照射(特許文献5)、オゾンによる殺菌(特許文献6)、紫外線による殺菌(特許文献7)などが知られている。 Techniques that do not use preservatives or amines include methods for sterilizing oils or coolants from the physico-chemical/apparatus aspects, such as irradiation with electromagnetic waves (Patent Documents 3 and 4), irradiation with ultrasonic waves (Patent Document 5), Sterilization by ozone (Patent Document 6), sterilization by ultraviolet rays (Patent Document 7), and the like are known.

特公昭61-40720号公報Japanese Patent Publication No. 61-40720 特開2009-161585号公報JP 2009-161585 A 特開平2-212597号公報JP-A-2-212597 特開平2-29496号公報JP-A-2-29496 特開昭63-245494号公報JP-A-63-245494 特開2006-087563号公報JP 2006-087563 A 特開平4-264199号公報JP-A-4-264199

しかしながら、例えば、加工油剤に遊離アミンを添加することによって防腐効果を発現させる場合、十分な防腐効果を発現させるためには多量の遊離アミンが必要となる。そのため、より防腐効果の高い技術が求められていた。また、抗菌性アミンを添加することによって防腐効果を発現させる場合は、当該抗菌性アミンが生物毒性を有する場合があり、地球環境や人体への悪影響が懸念された。さらに、高pH化によって防腐性を確保する場合は、人体に対して著しい皮膚障害の発生が懸念され、加えて、非鉄金属を加工する場合には金属腐食も懸念された。 However, for example, when adding a free amine to a processing oil to exhibit antiseptic effect, a large amount of free amine is required to exhibit a sufficient antiseptic effect. Therefore, a technique with a higher antiseptic effect has been demanded. Moreover, when an antiseptic effect is exhibited by adding an antibacterial amine, the antibacterial amine may have biotoxicity, and there is concern about adverse effects on the global environment and the human body. Furthermore, when antiseptic properties are secured by raising the pH, there is concern about the occurrence of significant skin damage to the human body, and in addition, when non-ferrous metals are processed, metal corrosion is also a concern.

また、電磁波や超音波による方法は、クーラント中の油剤成分を変質させたり、エマルションを破壊する恐れがある。
また、オゾンによる方法では、発生したオゾンの酸化力が強くクーラント成分を破壊するために、金属加工油剤としての機能が低下するおそれがあるうえ、腐食性や毒性が強いため作業環境を悪化させる可能性があり、設備の腐食等への対策や作業環境基準等に準じた除害設備の設置、管理等の対策が必要となる。
Moreover, methods using electromagnetic waves or ultrasonic waves may alter the oil component in the coolant or destroy the emulsion.
In addition, in the ozone method, the generated ozone has a strong oxidizing power and destroys the coolant components, so there is a risk that the function as a metalworking fluid will decrease. Therefore, it is necessary to take measures such as measures against corrosion of equipment, installation and management of abatement equipment according to work environment standards, etc.

一方、紫外線の照射による殺菌は、微生物のDNAを損傷することにより殺菌をするものであるため、あらゆる菌種に有効であるうえにクーラント成分を破壊するおそれがない、耐性菌を作らない、など利点が多い殺菌方法である。しかし、紫外線はピーク波長が400nm以下と波長が短く透過性に劣るために特許文献7に示されているように、クーラントの循環経路中に紫外線を十分照射できるような底の浅い部分を設ける必要があった。加えて、照射中の作業者への曝露を制限する設備、保護具等の対応も必須である。
また、上述のとおり、紫外線殺菌は生物のDNAが紫外線により損傷することを利用した殺菌方法であるが、ほとんどの生物は紫外線によるDNA損傷に対する修復機能をいくつか有している。その一つが「光回復」といわれるもので、紫外線照射により不活化した微生物が、近紫外から可視領域の光の照射を受けると自己の持つ光回復酵素の働きによりDNAを修復し再び活性化するという現象であり、「紫外線によるDNA損傷の光回復」,山本,生物物理,Vol.25 NO.3 (1985)」などでその機構が紹介されている。このように、紫外線による殺菌も装置内を循環する流体に対し恒久的に殺菌をする目的では好ましいとはいえない。
On the other hand, sterilization by ultraviolet irradiation kills bacteria by damaging the DNA of microorganisms, so it is effective against all types of bacteria, has no risk of destroying coolant components, does not create resistant bacteria, etc. It is a sterilization method with many advantages. However, since ultraviolet light has a short peak wavelength of 400 nm or less and poor transparency, it is necessary to provide a shallow portion in the circulation path of the coolant so that it can be sufficiently irradiated with ultraviolet light, as shown in Patent Document 7. was there. In addition, it is essential to take measures such as equipment and protective equipment to limit the exposure of workers during irradiation.
Moreover, as described above, ultraviolet sterilization is a sterilization method that utilizes damage to the DNA of living organisms by ultraviolet rays, but most organisms have some repair functions for DNA damage caused by ultraviolet rays. One of them is called "photoreactivation", and when microorganisms that have been inactivated by ultraviolet irradiation are exposed to light in the near-ultraviolet to visible range, their own photoreactivation enzyme works to repair and reactivate their DNA. This phenomenon is described in "Photorecovery of DNA Damage by Ultraviolet Rays", Yamamoto, Biophysics, Vol. 25 No. 3 (1985)", etc., introduces the mechanism. As described above, sterilization by ultraviolet light is not preferable for the purpose of permanently sterilizing the fluid circulating in the apparatus.

また、上記の各種殺菌方法では、電磁波発生装置、オゾン発生装置、紫外線発生装置、といった、大掛かりな設備を導入する必要があり、設備費用や運転費用が嵩むという問題があり、さらに、該費用に見合った防腐性効果が得られているとは言い難い。 In addition, in the various sterilization methods described above, it is necessary to introduce large-scale equipment such as an electromagnetic wave generator, an ozone generator, and an ultraviolet generator. It is difficult to say that a commensurate antiseptic effect is obtained.

ここで、物理化学的殺菌方法として、従来の金属加工流体分野ではほとんど顧みられてこなかった「一重項酸素発生光殺菌法」について説明する。
これはローズベンガルやメチレンブルーなどといった色素(光増感剤)を用いる殺菌方法である。
これらの色素分子の三重項状態は一重項酸素と三重項酸素とのエネルギー差とほぼ等しい励起エネルギーを持っているため、これらの色素を可視光により光励起し、項間交差により励起三重項状態に移行させ、この状態の色素が三重項酸素と衝突すると電子とエネルギーの交換が起こり、色素が基底状態に戻ると同時に三重項酸素が一重項酸素に遷移する、というメカニズムを利用して、光の照射により一重項酸素を発生させ、その強い酸化作用を利用して殺菌するという方法である。この手法は光線力学療法(PDT)として二十世紀初頭に発見され、現在でも医療・衛生分野において広く用いられている。この殺菌方法によると、光増感剤を用いるために可視光の照射で反応を起こすことが可能であるので、紫外線照射による殺菌方法と違い、曝露による作業者に対するリスクを回避することができる。また、光増感剤を金属加工油剤に添加し、それに可視光を照射するという方法であるため、上述したような物理化学的/装置的殺菌手法が持つ課題を解決することが可能である。
Here, as a physicochemical sterilization method, the "singlet oxygen generation photo sterilization method", which has hardly been considered in the conventional field of metalworking fluids, will be described.
This is a sterilization method that uses dyes (photosensitizers) such as rose bengal and methylene blue.
Since the triplet state of these dye molecules has an excitation energy almost equal to the energy difference between singlet oxygen and triplet oxygen, these dyes are photoexcited by visible light, and intersystem crossing results in an excited triplet state. When the dye in this state collides with triplet oxygen, electrons and energy are exchanged, and at the same time the dye returns to the ground state, the triplet oxygen transitions to singlet oxygen. In this method, singlet oxygen is generated by irradiation, and its strong oxidizing action is used for sterilization. This method was discovered as photodynamic therapy (PDT) at the beginning of the twentieth century and is still widely used in the medical and hygiene fields. According to this sterilization method, since a photosensitizer is used, it is possible to cause a reaction by irradiation with visible light, so unlike the sterilization method that uses ultraviolet irradiation, risks to workers due to exposure can be avoided. In addition, since it is a method of adding a photosensitizer to a metal working fluid and irradiating it with visible light, it is possible to solve the problems of the above-mentioned physicochemical/apparatus sterilization methods.

しかしながら、これまでは通常の金属加工油剤に光殺菌が可能な上記色素を添加しても、分離・沈殿が起こる、光退色反応が起こり光増感剤が一重項酸素を発生させることができなくなり殺菌能がなくなる、といった問題が発生するために、実用的な殺菌性を得ることは困難であった。 However, until now, even if the above dyes that can be photosterilized are added to ordinary metal working fluids, separation and precipitation occur, photobleaching occurs, and the photosensitizer cannot generate singlet oxygen. It has been difficult to obtain practical bactericidal properties due to problems such as loss of bactericidal properties.

そこで、本発明は、抗菌性、防腐性を備え、抗菌性を長期間にわたり維持可能であり、臭気、皮膚刺激が低減、さらに分離等が低減され、液安定性に優れた光殺菌を活用した水溶性機能流体を提供することを課題とする。 Therefore, the present invention has antibacterial and antiseptic properties, can maintain antibacterial properties for a long period of time, reduces odor and skin irritation, further reduces separation, etc., and utilizes photosterilization with excellent liquid stability. An object of the present invention is to provide a water-soluble functional fluid.

上記課題を解決するべく鋭意検討した結果、本発明者らは以下の知見を得た。
従来の水溶性機能流体の耐腐敗性は防腐剤、またはアミンに依存しており、これらを含まずに実用的な耐腐敗性を備えた水溶性機能流体は存在していなかった。防腐剤、またはアミンに依存せず、かつ、新規な機械の設置・管理等の大幅なコストをかけずに水溶性機能流体を殺菌する方法としては光増感剤(色素)を添加して光殺菌をする方法が有効であり、殊に塩基性光増感剤を用いることが有効である。しかし、従来の切削油剤に塩基性光増感剤を添加すると水溶性機能流体に含有される脂肪酸アニオンと塩基性光増感剤が錯体を形成し、分離・沈殿などの問題が起こるほか、光退色反応が起こり光増感剤に一重項酸素発生能がなくなるといった問題点がある。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
The antiseptic properties of conventional water-soluble functional fluids depend on preservatives or amines, and there has been no water-soluble functional fluid with practical anti-septic properties that does not contain these agents. As a method for sterilizing a water-soluble functional fluid without relying on preservatives or amines and without incurring significant costs such as installation and management of new machines, a photosensitizer (pigment) is added and light is applied. A sterilization method is effective, and it is particularly effective to use a basic photosensitizer. However, when a basic photosensitizer is added to a conventional cutting oil, the fatty acid anion contained in the water-soluble functional fluid forms a complex with the basic photosensitizer, causing problems such as separation and precipitation. There is a problem that a fading reaction occurs and the photosensitizer loses ability to generate singlet oxygen.

本発明は、以上の知見に基づいてなされたものであり、以下のとおりである。
<1>
水溶性機能流体全量基準で、
(a)下記式(1)で示すジアミノフェノチアジニウム骨格あるいはジアミノフェノキサジニウム骨格を含む塩基性光増感剤を5重量ppm~100重量ppm、(b)二塩基酸塩を0.05~0.75重量部含有することを特徴とする水溶性機能流体。
The present invention has been made based on the above findings, and is as follows.
<1>
Based on the total amount of water-soluble functional fluid,
(a) 5 ppm by weight to 100 ppm by weight of a basic photosensitizer containing a diaminophenothiazinium skeleton or a diaminophenoxazinium skeleton represented by the following formula (1); (b) 0.05 of a dibasic acid salt; A water-soluble functional fluid characterized by containing up to 0.75 parts by weight.

Figure 0007334108000001

(式(1)中、Yは、SまたはOである。Rはそれぞれ同一であっても異なっていてもよく、水素原子、メチル基、エチル基のいずれかである。)
<2>
水溶性切削油、水溶性研削油、水溶性洗浄剤、水溶性プレス油、水溶性鍛造油、水溶性圧延油、水溶性離型剤、水溶性切断油、水溶性研磨油又は水溶性作動油として使用される、<1>に記載の水溶性機能流体。
<3>
<1>または<2>に記載の水溶性機能流体の原液であって、原液全量基準で、
(a)下記式(1)で示すジアミノフェノチアジニウム骨格あるいはジアミノフェノキサジニウム骨格を含む塩基性光増感剤を100重量ppm~2000重量ppm、(b)二塩基酸塩を1~15重量部含有することを特徴とする水溶性機能流体の原液。
Figure 0007334108000001

(In Formula (1), Y is S or O. Each R may be the same or different and is a hydrogen atom, a methyl group, or an ethyl group.)
<2>
Water-soluble cutting oil, water-soluble grinding oil, water-soluble detergent, water-soluble press oil, water-soluble forging oil, water-soluble rolling oil, water-soluble release agent, water-soluble cutting oil, water-soluble polishing oil, or water-soluble hydraulic oil The water-soluble functional fluid according to <1>, which is used as
<3>
A stock solution of the water-soluble functional fluid according to <1> or <2>, which is based on the total amount of the stock solution,
(a) 100 ppm to 2000 ppm by weight of a basic photosensitizer containing a diaminophenothiazinium skeleton or diaminophenoxazinium skeleton represented by the following formula (1); (b) 1 to 15 ppm of a dibasic acid salt; A stock solution of a water-soluble functional fluid characterized by containing parts by weight.

Figure 0007334108000002
(式()中、Yは、SまたはOである。Rはそれぞれ同一であっても異なっていてもよく、水素原子、メチル基、エチル基のいずれかである。)
<4>
水溶性切削油、水溶性研削油、水溶性洗浄剤、水溶性プレス油、水溶性鍛造油、水溶性圧延油、水溶性離型剤、水溶性切断油、水溶性研磨油又は水溶性作動油の原液として使用される、<3>に記載の水溶性機能流体の原液。
<5>
<1>または<2>に記載の水溶性機能流体を殺菌する殺菌装置であって、
少なくとも前記水溶性機能流体を貯留する貯留部と、
前記水溶性機能流体に光を照射する光照射部と、
前記水溶性機能流体を使用しながら金属加工を行う金属工作機械と、
前記貯留部、および金属工作機械との間で前記水溶性機能流体を循環させる循環部と、を備え、
前記光照射部により殺菌された状態の水溶性機能流体を循環部により金属工作機械へ供給する、水溶性機能流体の殺菌装置。
<6>
前記光照射部が貯留部内に設置されていることを特徴とする<5>に記載の水溶性機能流体の殺菌装置。
<7>
前記光照射部が貯留部外に設置されていることを特徴とする<5>に記載の水溶性機能流体の殺菌装置。
<8>
<1>または<2>に記載の水溶性機能流体に波長範囲が600~800nmの可視光を100mW/cm以上の放射照度で照射することを特徴とする、水溶性機能流体の殺菌方法。
Figure 0007334108000002
(In formula ( 1 ), Y is S or O. Each R may be the same or different and is a hydrogen atom, a methyl group, or an ethyl group.)
<4>
Water-soluble cutting oil, water-soluble grinding oil, water-soluble detergent, water-soluble press oil, water-soluble forging oil, water-soluble rolling oil, water-soluble release agent, water-soluble cutting oil, water-soluble polishing oil, or water-soluble hydraulic oil The stock solution of the water-soluble functional fluid according to <3>, which is used as the stock solution of
<5>
A sterilization device for sterilizing the water-soluble functional fluid according to <1> or <2>,
a storage part that stores at least the water-soluble functional fluid;
a light irradiation unit that irradiates the water-soluble functional fluid with light;
a metal machine tool that performs metal processing while using the water-soluble functional fluid;
a circulation unit that circulates the water-soluble functional fluid between the storage unit and the metal machine tool,
An apparatus for sterilizing water-soluble functional fluid, wherein the water-soluble functional fluid sterilized by the light irradiation unit is supplied to a metal machine tool by a circulation unit.
<6>
The apparatus for sterilizing water-soluble functional fluid according to <5>, wherein the light irradiation section is installed in a storage section.
<7>
The apparatus for sterilizing a water-soluble functional fluid according to <5>, wherein the light irradiation section is installed outside the storage section.
<8>
A method for sterilizing a water-soluble functional fluid, comprising irradiating the water-soluble functional fluid according to <1> or <2> with visible light having a wavelength range of 600 to 800 nm at an irradiance of 100 mW/cm 2 or more.

本発明によると、抗菌性、防腐性を備え、抗菌性を長期間にわたり維持可能であり、臭気、皮膚刺激が低減され、分離等も低減され、さらに液安定性に優れた水溶性機能流体を提供することができる。 According to the present invention, a water-soluble functional fluid that has antibacterial and antiseptic properties, can maintain antibacterial properties for a long period of time, reduces odor and skin irritation, reduces separation, etc., and has excellent liquid stability. can provide.

実施例で光殺菌の実験を行うための装置を模式的に表した図である。FIG. 2 is a diagram schematically showing an apparatus for conducting photo-sterilization experiments in Examples.

<水溶性機能流体>
本発明の水溶性機能流体は、該水溶性機能流体全体を100重量部とした場合に、(a)下記式(1)で示すジアミノフェノチアジニウム骨格あるいはジアミノフェノキサジニウム骨格を含む塩基性光増感剤を5ppm~100ppm、(b)二塩基酸塩を0.05~0.75重量部含有することを特徴とする。
<Water-soluble functional fluid>
The water-soluble functional fluid of the present invention comprises (a) a basic fluid containing a diaminophenothiazinium skeleton or a diaminophenoxazinium skeleton represented by the following formula (1), when the total amount of the water-soluble functional fluid is 100 parts by weight. It is characterized by containing 5 ppm to 100 ppm of a photosensitizer and 0.05 to 0.75 parts by weight of (b) a dibasic salt.

Figure 0007334108000003
Figure 0007334108000003

(式(1)中、Yは、SまたはOである。Rはそれぞれ同一であっても異なっていてもよく、水素原子、メチル基、エチル基のいずれかである。) (In Formula (1), Y is S or O. Each R may be the same or different and is a hydrogen atom, a methyl group, or an ethyl group.)

((a)塩基性光増感剤)
本発明において用いる(a)塩基性光増感剤は、上記式(1)で表されるジアミノフェノチアジニウム骨格あるいはジアミノフェノキサジニウム骨格を有する。
該(a)塩基性光増感剤は、対イオンとしてCl、Br、I、およびSO 2-からなる群より選ばれるいずれかを有している。また、ジアミノフェノチアジニウム骨格またはジアミノフェノキサジニウム骨格は、置換基として、さらに、メチル基、ニトロ基を有していてもよく、一部の芳香環に縮合した芳香環をさらに有していてもよい。
((a) basic photosensitizer)
The (a) basic photosensitizer used in the present invention has a diaminophenothiazinium skeleton or diaminophenoxazinium skeleton represented by the above formula (1).
The (a) basic photosensitizer has a counterion selected from the group consisting of Cl , Br , I and SO 4 2− . In addition, the diaminophenothiazinium skeleton or diaminophenoxazinium skeleton may further have a methyl group or a nitro group as a substituent, and may further have an aromatic ring condensed to a part of the aromatic ring. may

本発明における(a)塩基性光増感剤は、光照射により一重項酸素を発生し、これにより殺菌することが可能となる。
一重項酸素()を発生させるには、メチレンブルー等の色素(光増感剤)を使用する。これらの色素分子の三重項状態は、と三重項酸素()とのエネルギー差とほぼ等しい励起エネルギーを持っている。そこで、これらの色素を可視光により光励起し、項間交差により励起三重項状態に移行させる。この励起三重項状態の色素がと衝突すると電子とエネルギーの交換が起こり、色素が基底状態に戻ると同時にに遷移するメカニズムである。
The (a) basic photosensitizer in the present invention generates singlet oxygen upon irradiation with light, which enables sterilization.
A dye (photosensitizer) such as methylene blue is used to generate singlet oxygen ( 1 O 2 ). The triplet states of these dye molecules have excitation energies approximately equal to the energy difference between 1 O 2 and triplet oxygen ( 3 O 2 ). Therefore, these dyes are photoexcited by visible light, and they are transferred to an excited triplet state by intersystem crossing. When the dye in the excited triplet state collides with 3 O 2 , electrons and energy are exchanged, and the dye returns to the ground state, and at the same time, 3 O 2 transitions to 1 O 2 .

本発明において、(a)塩基性光増感剤として具体的には、以下の化合物を挙げることができる。 Specific examples of (a) the basic photosensitizer in the present invention include the following compounds.

(1)トロニウムクロライド(トルイジンブルー) (1) toronium chloride (toluidine blue)

Figure 0007334108000004
Figure 0007334108000004

(2)メチレンブルー (2) methylene blue

Figure 0007334108000005
Figure 0007334108000005

(3)アズールB (3) Azure B

Figure 0007334108000006
Figure 0007334108000006

(4)Basic Green5 (4) Basic Green 5

Figure 0007334108000007
Figure 0007334108000007

(5)Basic Blue3 (5) Basic Blue3

Figure 0007334108000008
Figure 0007334108000008

(6)Basic Blue12 (6) Basic Blue 12

Figure 0007334108000009
Figure 0007334108000009

上記したように、本発明では、カチオン性の塩基性光増感剤を使用する。一般的に菌は、-に帯電しているため、本発明の(a)塩基性光増感剤はカチオン性であるので、菌の近傍に存在し、発生した一重項酸素が有効に菌に作用するものと考えられる。 As noted above, the present invention employs a cationic basic photosensitizer. Since bacteria are generally negatively charged, the (a) basic photosensitizer of the present invention is cationic, so it exists in the vicinity of the bacteria, and the generated singlet oxygen effectively affects the bacteria. It is considered to work.

本発明の水溶性機能流体において、上記の(a)塩基性光増感剤の添加量は、該水溶性機能流体全体を100重量部とした場合に、5ppm以上100ppm以下である。ここで、ppmは重量比を表す。5ppm以上とすることにより、光殺菌能を有効に発揮させることができ、100ppm以下とすることにより、光殺菌能を十分としつつ、設備汚れを防ぎ、経済性の点で好ましいものとできる。 In the water-soluble functional fluid of the present invention, the amount of the basic photosensitizer (a) added is 5 ppm or more and 100 ppm or less when the entire water-soluble functional fluid is taken as 100 parts by weight. Here, ppm represents weight ratio. By making it 5 ppm or more, it is possible to effectively exhibit the photo-sterilizing ability, and by making it 100 ppm or less, it is possible to prevent facility contamination while maintaining sufficient photo-sterilizing ability, which is preferable in terms of economy.

((b)二塩基酸塩)
本発明の水溶性機能流体は、防錆性を備えるべく(b)二塩基酸塩を有している。
(b)二塩基酸塩としては、例えば、オクテニルコハク酸ナトリウム、リノール酸アクリル酸付加物ナトリウム、ドデカン二酸ナトリウム、オクテニルコハク酸カリウム、リノール酸アクリル酸付加物カリウム、ドデカン二酸カリウム、オクテニルコハク酸リチウム、リノール酸アクリル酸付加物リチウム、ドデカン二酸リチウム、リシノール酸縮合物、セバシン酸、ウンデカン二酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、クエン酸、イタコン酸、マレイン化ロジン、アクリル化ロジン、マレオピマル酸などを挙げることができる。
((b) dibasic acid salt)
The water-soluble functional fluid of the present invention contains (b) a dibasic acid salt to provide antirust properties.
(b) Dibasic acid salts include, for example, sodium octenylsuccinate, sodium linoleic acid acrylic acid adduct, sodium dodecanedioate, potassium octenylsuccinate, potassium linoleic acid acrylic acid adduct, potassium dodecanedioate, lithium octenylsuccinate, Lithium linoleic acid acrylic acid adduct, lithium dodecanedioate, ricinoleic acid condensate, sebacic acid, undecanedioic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, citric acid, itaconic acid, maleated rosin, Acrylated rosin, maleopimaric acid and the like can be mentioned.

(b)二塩基酸塩は、塩として添加してもよいし、あるいは、二塩基酸と無機塩またはアミンとを添加してもよい。なお、アミンは、後で説明するようにα水素を有さないアミンを用いることが好ましい。
α水素を有さないアミンとしては、例えば、tert-ブチルアミン、tert-アミルアミン、2,3-ジメチル-2,3-ブタンジアミン、tert-ブチルヒドラジン、1,1,3,3-テトラメチルブチルアミン、2-アミノ-2-メチル-1-プロパノール、2-アミノ-2-メチル-1,3-プロパンジオール、トリス(ヒドロキシメチル)アミノメタン、2-(ジメチルアミノ)-2-メチル-1-プロパノール、2-アミノイソ酪酸、2-アミノ-2-エチル-1,3-プロパンジオール、3,5-ジメチル-1-アダマンタンアミン、1-アダマンタンアミン、アダマンタン-1,3-ジアミン、クミルアミン、2,2,6,6-テトラメチルピペリジンなどを挙げることができる。
(b) The dibasic acid salt may be added as a salt, or a dibasic acid and an inorganic salt or an amine may be added. As for the amine, it is preferable to use an amine having no α-hydrogen as will be described later.
Amines having no α hydrogen include, for example, tert-butylamine, tert-amylamine, 2,3-dimethyl-2,3-butanediamine, tert-butylhydrazine, 1,1,3,3-tetramethylbutylamine, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, tris(hydroxymethyl)aminomethane, 2-(dimethylamino)-2-methyl-1-propanol, 2-aminoisobutyric acid, 2-amino-2-ethyl-1,3-propanediol, 3,5-dimethyl-1-adamantanamine, 1-adamantanamine, adamantane-1,3-diamine, cumylamine, 2,2, 6,6-tetramethylpiperidine and the like can be mentioned.

従来の水溶性機能流体は、防錆剤として、一級カルボン酸、一級スルホン酸などの一塩基酸を含んでいるものが多い。本発明者が実験したところによると、該従来の水溶性機能流体に、上記のカチオン性の塩基性光増感剤を加えると、一塩基酸と塩基性光増感剤とで錯体を形成し、水溶性機能流体が時間の経過とともに分離し、沈殿が生じることがわかった。しかし、代わりに、上記の二塩基酸塩を加えた場合は沈殿が生じないことを、本発明者らは見出した。 Many conventional water-soluble functional fluids contain monobasic acids such as primary carboxylic acids and primary sulfonic acids as rust preventives. According to experiments conducted by the present inventors, when the cationic basic photosensitizer is added to the conventional water-soluble functional fluid, a complex is formed between the monobasic acid and the basic photosensitizer. , it was found that the water-soluble functional fluid separated over time and precipitated. However, we have found that no precipitation occurs when the above dibasic acid salt is added instead.

(b)二塩基酸は二つのアニオンを備えており、(b)二塩基酸塩の一方のアニオンと(a)塩基性光増感剤とが錯体を形成するが、立体障害などの理由から二塩基酸塩の他方のアニオンは錯体を形成しないで、フリーで存在し、エマルジョン、または、溶解性を維持することができるため、沈殿の発生を防ぐことができるものと、本発明者らは考えている。 (b) The dibasic acid has two anions, and (b) one anion of the dibasic acid salt and (a) the basic photosensitizer form a complex, but due to reasons such as steric hindrance, The present inventors believe that the other anion of the dibasic salt does not form a complex, exists free, and can maintain the emulsion or solubility, thus preventing the occurrence of precipitation. thinking.

(b)二塩基酸塩の添加量は、機能流体全体を100重量部として、0.05~0.75重量部である。添加量を0.05重量部以上とすることで、防錆性を確保することができ、また、0.75重量部以下とすることで、防錆性を十分としつつ、設備汚れを防ぎ、経済性の点で好ましいものとできる。 (b) The amount of the dibasic acid salt to be added is 0.05 to 0.75 parts by weight based on 100 parts by weight of the entire functional fluid. By setting the addition amount to 0.05 parts by weight or more, it is possible to ensure rust prevention, and by setting the addition amount to 0.75 parts by weight or less, it is possible to prevent equipment contamination while ensuring sufficient rust prevention, It can be preferable from the point of view of economy.

(α水素を有するアミン)
従来の水溶性機能流体は、α水素を有するアミンを含有している。しかしながら、本発明者らは、該水溶性機能流体に、(b)塩基性光増感剤を加えると、α水素を有するアミンが還元剤として働き、(b)塩基性光増感剤が還元され、光退色反応が起こることを見出した。よって、本発明においては、該光退色反応を防止すべく、水溶性機能流体は、α水素を有するアミンを含まないことが好ましい。
(amine with α hydrogen)
Conventional water-soluble functional fluids contain amines with alpha hydrogens. However, the present inventors found that when (b) a basic photosensitizer is added to the water-soluble functional fluid, the amine having α hydrogen acts as a reducing agent, and (b) the basic photosensitizer is reduced. It was found that a photobleaching reaction occurs. Therefore, in the present invention, the water-soluble functional fluid preferably does not contain an amine having α-hydrogen in order to prevent the photobleaching reaction.

なお、ここでいう、「α水素を有するアミンを含まない」とは、不純物として含まれる不可避成分としてのα水素を有するアミンまでも除外する意味ではない。よって、本発明の水溶性機能流体は、本願の効果を損なわない程度において、α水素を有するアミンを含んでいてもよく、例えば、0.1質量部未満のα水素を有するアミンを不可避成分として含んでいてもよい。 Here, the expression "not containing an amine having an α-hydrogen" does not mean excluding an amine having an α-hydrogen as an unavoidable component contained as an impurity. Therefore, the water-soluble functional fluid of the present invention may contain an amine having an α-hydrogen to an extent that does not impair the effects of the present application. may contain.

なお、アニリン性のアミノ基に由来するα水素は、上記のα水素には該当しない。これは、アニリン性化合物では、芳香環により窒素原子上の非共有対電子対が非局在化されるため、非共有電子対でα水素をヒドリドとして押し出すことができないからである。よって、(a)塩基性光増感剤は、アミノ基を有してはいるが、アニリン性化合物であるので、上記の「α水素を有するアミン」には該当しない。 Note that α-hydrogen derived from an aniline amino group does not correspond to the α-hydrogen described above. This is because, in an aniline compound, the aromatic ring delocalizes the lone pair of electrons on the nitrogen atom, so the lone pair of electrons cannot push out α-hydrogen as a hydride. Therefore, although the (a) basic photosensitizer has an amino group, since it is an aniline compound, it does not correspond to the above-mentioned "amine having an α-hydrogen".

(一塩基酸塩)
また、上記したように、従来の水溶性機能流体に含まれる一塩基酸塩(アニオン性界面活性剤である一級スルホン酸塩、一級カルボン酸塩)は、(a)塩基性光増感剤と錯体を形成し、沈殿を生じさせる。よって、本発明の水溶性機能流体は、一塩基酸塩は含まないことが好ましい。ただし、不可避不純物として一塩基酸塩が含まれていた場合をも排除する趣旨ではなく、本願の効果を損なわない程度において、一塩基酸塩を含んでいてもよく、例えば、0.2質量部未満の一塩基酸塩を不可避成分として含んでいてもよい。
(monobasic acid salt)
In addition, as described above, monobasic salts (primary sulfonates and primary carboxylates that are anionic surfactants) contained in conventional water-soluble functional fluids are (a) basic photosensitizers and It forms a complex and causes precipitation. Therefore, it is preferable that the water-soluble functional fluid of the present invention does not contain a monobasic acid salt. However, it is not intended to exclude the case where the monobasic acid salt is contained as an inevitable impurity, and the monobasic acid salt may be contained to the extent that the effect of the present application is not impaired. It may contain less than monobasic acid salt as an inevitable ingredient.

(被乳化体)
本発明の水溶性機能流体は、被乳化体として鉱油またはエステル、またはその両方を含んでいてもよい。鉱油としては、例えば、原油を常圧蒸留および減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理などの精製処理を適宜組み合わせて精製したパラフィン系鉱油またはナフテン系鉱油が挙げられる。
(Emulsified body)
The water-soluble functional fluids of the present invention may contain mineral oils or esters, or both, as emulsifiers. As the mineral oil, for example, the lubricating oil fraction obtained by atmospheric distillation and vacuum distillation of crude oil is subjected to solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, and sulfuric acid washing. , paraffinic mineral oil or naphthenic mineral oil refined by appropriately combining refining treatments such as clay treatment.

被乳化体の含有量は、特に限定されないが、機能流体全体を100重量部として、0.25~4重量部である。添加量を1重量部以上とすることで、潤滑性を確保することができ、また、3.5重量部以下とすることで、潤滑性を十分としつつ、乳化安定性不良を防ぎ、経済性の点で好ましいものとできる。 The content of the substance to be emulsified is not particularly limited, but is 0.25 to 4 parts by weight based on 100 parts by weight of the functional fluid as a whole. By setting the amount to 1 part by weight or more, it is possible to ensure lubricity, and by setting the amount to 3.5 parts by weight or less, sufficient lubricity can be obtained while preventing poor emulsification stability, resulting in economic efficiency. It can be preferable in terms of

(界面活性剤)
エマルション系の水溶性機能流体は、さらに界面活性剤を含んでいることが好ましい。界面活性剤としては、従来から水溶性金属加工油剤に用いられているアニオン系、ノニオン系などの界面活性剤の中から任意に選択して適用することができる。
界面活性剤の含有量は、特に限定されないが、機能流体全体を100重量部として、0.5~3.5重量部である。添加量を0.75重量部以上とすることで、良好なエマルジョンを形成することができ、また、2.5重量部以下とすることで、泡立ちによるトラブルを防ぎ、経済性の点で好ましいものとできる。
(Surfactant)
The emulsion-based water-soluble functional fluid preferably further contains a surfactant. The surfactant can be arbitrarily selected from anionic and nonionic surfactants conventionally used in water-soluble metal working fluids.
The content of the surfactant is not particularly limited, but is 0.5 to 3.5 parts by weight based on 100 parts by weight of the entire functional fluid. When the amount is 0.75 parts by weight or more, a good emulsion can be formed, and when the amount is 2.5 parts by weight or less, problems due to foaming can be prevented, which is preferable in terms of economy. can be done.

(水溶性機能流体の用途)
本発明の水溶性機能流体は、水溶性切削油、水溶性研削油、水溶性洗浄剤、水溶性プレス油、水溶性鍛造油、水溶性圧延油、水溶性切断油、水溶性研磨油又は水溶性作動油、水溶性離型剤として使用することができる。
(Use of water-soluble functional fluid)
The water-soluble functional fluid of the present invention includes water-soluble cutting oil, water-soluble grinding oil, water-soluble detergent, water-soluble press oil, water-soluble forging oil, water-soluble rolling oil, water-soluble cutting oil, water-soluble polishing oil, or water-soluble It can be used as a soluble hydraulic fluid and a water-soluble release agent.

<水溶性機能流体の原液>
本発明の水溶性機能流体の原液は、上記した水溶性機能流体が備える各成分を5~100倍の濃度で備える。
上記した水溶性機能流体は、輸送性、取扱性などの点から、濃縮品である原液として流通される。したがって、該濃縮品を購入したユーザーは、水で該原液を塩基性光増感剤の濃度が5ppm以上となるよう、5~100倍に希釈して水溶性機能流体として使用する。
加工点での潤滑性(被乳化体の濃度)の観点からは、5倍~50倍が好ましく、10倍~30倍がより好ましく、20倍が最も好ましい。
水溶性機能流体の原液は、該原液全体を100重量部として、(a)式(1)の塩基性光増感剤を100~2000ppm含み、(b)二塩基酸塩を1~15重量部含む。
<Undiluted solution of water-soluble functional fluid>
The undiluted solution of the water-soluble functional fluid of the present invention contains each component of the above-described water-soluble functional fluid at a concentration of 5 to 100 times.
The above-mentioned water-soluble functional fluid is distributed as a concentrate, which is a concentrated product, from the viewpoint of transportability, handleability, and the like. Therefore, a user who purchases the concentrated product dilutes the stock solution with water by 5 to 100 times so that the concentration of the basic photosensitizer is 5 ppm or more, and uses it as a water-soluble functional fluid.
From the viewpoint of lubricity (concentration of the material to be emulsified) at the point of processing, it is preferably 5-fold to 50-fold, more preferably 10-fold to 30-fold, and most preferably 20-fold.
The stock solution of the water-soluble functional fluid contains (a) 100 to 2000 ppm of the basic photosensitizer of formula (1) and (b) 1 to 15 parts by weight of the dibasic acid salt, based on 100 parts by weight of the whole stock solution. include.

また、水溶性機能流体の原液は、該原液全量基準で、被乳化体を50~80重量部含んでいてもよく、界面活性剤を10~70重量部含んでいてもよい。 Further, the stock solution of the water-soluble functional fluid may contain 50 to 80 parts by weight of the substance to be emulsified and 10 to 70 parts by weight of the surfactant, based on the total amount of the stock solution.

<水溶性機能流体の殺菌装置>
本発明の水溶性機能流体の殺菌装置は、少なくとも水溶性機能流体を貯留する貯留部(タンク)と、一箇所もしくは複数箇所に設置され、該水溶性機能流体を使用しながら金属加工を行う金属工作機械と、金属工作機械に前記水溶性機能流体を供給し、そこで使用された水溶性機能流体を回収し、再び貯留部に戻す配管である循環部と、水溶性機能流体にLED光源による光を照射し、水溶性機能流体を光殺菌するための光照射装置である光照射部、とを備える。光照射部により殺菌された状態の水溶性機能流体は循環部により貯留部と金属工作機械との間を循環され金属工作機械へと供給される。さらに、回収した水溶性機能流体に含まれる加工時に出た切りくず等を除去するためのフィルタを備えていてもよい。
貯留部(タンク)に貯留された水溶性機能流体はポンプによって貯留部(タンク)と金属工作機械との間を循環し(循環部)、光照射部にて可視領域の光の照射を受けて貯留時、循環時、または金属工作機械での使用時に発生した細菌、酵母、カビ等の微生物を殺菌される。これにより、貯留部では菌数が少ない状態の水溶性機能流体が貯留される。
少なくとも以上の構成を備えている限り、本発明の殺菌装置は設備の規模、形態などに合わせ適宜変更を加えることが可能である。例えば、光照射部は水溶性機能流体を貯留する貯留部内に設けてもよいし、循環部である配管内、もしくは配管の一部に設置した浄化装置内など貯留部外に設けてもよい。また、この殺菌装置は、金属工作機械において用いられる水溶性機能流体を殺菌する目的で設置するものであるので、その構成については「JIS B 6016‐2 工作機械‐潤滑システム」に準拠した構成とすることが好ましい。
<Sterilization device for water-soluble functional fluid>
The apparatus for sterilizing a water-soluble functional fluid of the present invention comprises at least a reservoir (tank) for storing the water-soluble functional fluid, and a metal tank installed at one or a plurality of locations for performing metal processing while using the water-soluble functional fluid. a machine tool, a circulation section that is a pipe that supplies the water-soluble functional fluid to a metal machine tool, collects the water-soluble functional fluid used there, and returns it to the reservoir again; and a light irradiation unit which is a light irradiation device for irradiating and photosterilizing the water-soluble functional fluid. The water-soluble functional fluid sterilized by the light irradiation section is circulated between the storage section and the metal machine tool by the circulation section and supplied to the metal machine tool. Furthermore, a filter may be provided for removing chips and the like generated during processing contained in the recovered water-soluble functional fluid.
The water-soluble functional fluid stored in the reservoir (tank) is circulated (circulation part) between the reservoir (tank) and the metal machine tool by a pump, and is irradiated with light in the visible region at the light irradiation part. Microorganisms such as bacteria, yeast, and mold generated during storage, circulation, or use in metal machine tools are sterilized. As a result, the water-soluble functional fluid with a small number of bacteria is stored in the reservoir.
As long as it has at least the above configuration, the sterilization apparatus of the present invention can be appropriately modified according to the scale, form, etc. of the facility. For example, the light irradiator may be provided inside the reservoir that stores the water-soluble functional fluid, or it may be provided outside the reservoir, such as inside the pipe that is the circulation part or inside a purifying device installed in a part of the pipe. In addition, since this sterilization device is installed for the purpose of sterilizing the water-soluble functional fluid used in metal machine tools, its configuration conforms to "JIS B 6016-2 Machine tools - lubrication system". preferably.

<水溶性機能流体の殺菌方法>
本発明の水溶性機能流体は、前記光照射部において可視領域の光を照射することにより殺菌することができる。
具体的には、LEDを光源とした光を照射する方法が挙げられ、光源として450nmをピークとするLED、500nmをピークとするLED、530nmをピークとするLED、550nmをピークとするLED、600nmをピークとするLED、620nmをピークとするLED、645nmをピークとするLED、660nmをピークとするLED、700nmをピークとするLED、等が挙げられるが、主波長が600nm~800nmのLEDが好ましい。
<Method for sterilizing water-soluble functional fluid>
The water-soluble functional fluid of the present invention can be sterilized by irradiating light in the visible region in the light irradiation section.
Specifically, there is a method of irradiating light using an LED as a light source, and as a light source, an LED with a peak of 450 nm, an LED with a peak of 500 nm, an LED with a peak of 530 nm, an LED with a peak of 550 nm, and an LED with a peak of 600 nm. An LED with a peak of 620 nm, an LED with a peak of 645 nm, an LED with a peak of 660 nm, an LED with a peak of 700 nm, etc., but an LED with a dominant wavelength of 600 nm to 800 nm is preferable. .

またメタルハライドランプ、高圧水銀ランプ、キセノンランプ、ハロゲンランプ、パルスキセノンランプ等の放電ランプを用いてもよい。さらにこれらの光は、光学フィルタを通すことによって、上記好ましい波長の光に調整したものであってもよい。 Discharge lamps such as metal halide lamps, high-pressure mercury lamps, xenon lamps, halogen lamps, and pulse xenon lamps may also be used. Furthermore, these lights may be adjusted to light of the above preferred wavelengths by passing them through an optical filter.

照射方法は、特に限定されない。例えば照度1~1500mW/cmの光を照射することができる。100mW/cm以上の照度が好ましく、1200mW/cm以上でもよい。積算光量は10~500J/cmとなるように照射することができる。積算光量は、好ましくは30~400J/cm、より好ましくは100~400J/cmである。 The irradiation method is not particularly limited. For example, light with an illuminance of 1 to 1500 mW/cm 2 can be irradiated. An illuminance of 100 mW/cm 2 or more is preferable, and 1200 mW/cm 2 or more may be used. Irradiation can be performed so that the integrated amount of light is 10 to 500 J/cm 2 . The integrated amount of light is preferably 30 to 400 J/cm 2 , more preferably 100 to 400 J/cm 2 .

<殺菌に有効な光増感剤の選定>
(実施例1~6、比較例1~12、参考例1~3)
植種用菌液として、実施設で腐敗劣化した水溶性機能流体(ユシロ化学工業(株)製、ユシロンフォーマー(登録商標)ER53)を所定濃度に調製後オートクレーブ滅菌した普通ブイヨン培地(栄研化学(株)製、栄研(登録商標))に加え、30℃、120rpmの振とう培養機で24時間振とう培養し、細菌数10CFU/ml相当としたものを使用し、該植種用菌液をオートクレーブ滅菌した生理食塩水で希釈し、生菌数1.4×10CFU/mlとなるように調製し、試験溶液を作製した。
なお、細菌数の計測は段階希釈法により実施し、普通寒天培地上で、30°C、4時間静置培養後に出現したコロニー数を計測することにより算出した。
上記試験溶液に、表1に示す塩基性光増感剤を、それぞれ表1に示す量を添加して光増感剤選定用試験溶液を作製し、該光増感剤選定用試験溶液に対して、図1に示すように、300mm離れた位置から、20mm幅の水入りシャーレを介して(熱線を妨げる目的で使用)、白熱灯(岩崎電気(株)製、アイランプ PRF 100V、5000W)にて光照射し、30分後の菌数を以下の基準により確認した。
<Selection of photosensitizer effective for sterilization>
(Examples 1 to 6, Comparative Examples 1 to 12, Reference Examples 1 to 3)
As a bacterial solution for inoculum, a water-soluble functional fluid (Yushiron Former (registered trademark) ER53, manufactured by Yushiro Chemical Industry Co., Ltd.) that has been putrefied and deteriorated at the actual facility was prepared to a predetermined concentration and then autoclaved to sterilize normal bouillon medium (fermentation medium). Eiken (registered trademark) manufactured by Kenkagaku Co., Ltd.) and cultured with a shaking incubator at 30°C and 120 rpm for 24 hours so that the number of bacteria is equivalent to 10 9 CFU/ml. The inoculum solution was diluted with autoclave-sterilized physiological saline to prepare a viable cell count of 1.4×10 7 CFU/ml to prepare a test solution.
The number of bacteria was measured by a serial dilution method, and was calculated by counting the number of colonies that appeared after static culture on a nutrient agar medium at 30°C for 4 hours.
To the above test solution, a basic photosensitizer shown in Table 1 was added in an amount shown in Table 1 to prepare a test solution for selecting a photosensitizer, and the test solution for selecting a photosensitizer As shown in FIG. 1, from a position 300 mm away, an incandescent lamp (eye lamp PRF 100 V, 5000 W, manufactured by Iwasaki Electric Co., Ltd.) was placed through a petri dish containing water with a width of 20 mm (used to block heat rays). After 30 minutes, the number of bacteria was confirmed according to the following criteria.

++:菌数が1.0×10CFU/ml以上1.4×10CFU/ml以下、
+ :菌数1.0×10CFU/ml以上1.0×10CFU/ml未満、
- :菌数0~10CFU/ml未満、
++: the number of bacteria is 1.0×10 6 CFU/ml or more and 1.4×10 7 CFU/ml or less,
+: bacteria count of 1.0×10 2 CFU/ml or more and less than 1.0×10 6 CFU/ml,
-: Bacterial count 0 to less than 10 2 CFU/ml,

比較例において、使用した光増感剤の構造を、参考に以下に示す。
比較例1:ニュートラルレッド
The structures of the photosensitizers used in the comparative examples are shown below for reference.
Comparative Example 1: Neutral Red

Figure 0007334108000011
Figure 0007334108000011

比較例2:アクリジンオレンジ Comparative Example 2: Acridine Orange

Figure 0007334108000012
Figure 0007334108000012

比較例3:Brilliant Blue R Comparative Example 3: Brilliant Blue R

Figure 0007334108000013
Figure 0007334108000013

比較例4:Acid Green 9 Comparative Example 4: Acid Green 9

Figure 0007334108000014
Figure 0007334108000014

比較例5:EosinY Comparative Example 5: EosinY

Figure 0007334108000015
Figure 0007334108000015

比較例6:Rose bengal Comparative Example 6: Rose bengal

Figure 0007334108000016
Figure 0007334108000016

比較例7:Rhodamine B Comparative Example 7: Rhodamine B

Figure 0007334108000017
Figure 0007334108000017

比較例8:Acid Red 52 Comparative Example 8: Acid Red 52

Figure 0007334108000018
Figure 0007334108000018

比較例9:ニューコクシン Comparative Example 9: New Coxin

Figure 0007334108000019
Figure 0007334108000019

比較例10:アルラレッドAC Comparative Example 10: Allura Red AC

Figure 0007334108000020
Figure 0007334108000020

比較例11:フルオレセイン Comparative Example 11: Fluorescein

Figure 0007334108000021
Figure 0007334108000021

比較例12:テトラフェニルポリフィリン Comparative Example 12: Tetraphenylporphyrin

Figure 0007334108000022
Figure 0007334108000022

光増感剤を添加しなかったブランクでは、光照射後においても菌数に変化は見られなかった。
本発明において使用する(a)式(1)の塩基性光増感剤を加えた実施例1~6では、添加量5ppmでも菌数の減少が見られ、添加量20ppm、100ppmでは、菌は死滅していた。
これに対して、式(1)の範囲から外れる光増感剤を使用した比較例1~12では、菌数の減少が見られないか、または、添加量100ppmにおいて、減少が見られた程度であった(比較例2)。
また、殺菌性のないアミンであるトリエタノールアミンを加えた参考例1では、添加量を1000ppmとしても殺菌性は見られなかった。従来の防腐剤である、1,2-ベンゾイソチアゾール-3(2H)-オンを使用した参考例2では、100ppmにおいて、菌数の減少が見られた程度であった。また、トリエタノールアミンの濃度を1重量%とし、メチレンブルーの添加量を5~1000ppmで変化させた参考例3では、α水素を有するアミンであるトリエタノールアミンにより、メチレンブルーが還元してロイコメチレンブルーに変化したため、光殺菌能を示さなかった。
In the blank to which no photosensitizer was added, no change in the number of bacteria was observed even after light irradiation.
In Examples 1 to 6 in which the basic photosensitizer of formula (1) (a) used in the present invention was added, a decrease in the number of bacteria was observed even at an addition amount of 5 ppm, and at an addition amount of 20 ppm and 100 ppm, the bacteria were was dead.
On the other hand, in Comparative Examples 1 to 12 using photosensitizers outside the range of formula (1), no decrease in the number of bacteria was observed, or a decrease was observed at an addition amount of 100 ppm. (Comparative Example 2).
Moreover, in Reference Example 1, in which triethanolamine, which is an amine having no bactericidal activity, was added, no bactericidal activity was observed even when the added amount was 1000 ppm. In Reference Example 2 using 1,2-benzisothiazol-3(2H)-one, which is a conventional antiseptic, the number of bacteria was only reduced at 100 ppm. In Reference Example 3, in which the concentration of triethanolamine was 1% by weight and the amount of methylene blue added was varied from 5 to 1000 ppm, triethanolamine, which is an amine having α-hydrogen, reduces methylene blue to leucomethylene blue. Because of the change, it did not show photobactericidal activity.

<照射照度の確認>
(実施例7~15、比較例13~16)

段落[0053]で調製した試験溶液にトルイジンブルー、またはメチレンブルーを50ppm添加し、この試験溶液に対して、照射照度を変化させたLED光源を照射し、定めた光量に達した時の菌数を、段落[0054]にて定義した基準により確認した。添加した光増感剤の種類および添加量、光照射条件、および結果を以下の[表2]に示す。
<Confirmation of illumination intensity>
(Examples 7-15, Comparative Examples 13-16)

Add 50 ppm of toluidine blue or methylene blue to the test solution prepared in paragraph [0053], irradiate this test solution with an LED light source whose irradiation intensity is changed, and measure the number of bacteria when the determined light intensity is reached. , confirmed by the criteria defined in paragraph [0054]. The types and amounts of added photosensitizers, light irradiation conditions, and results are shown in [Table 2] below.

表2に示されるとおり、100mW/cm以上の照度でLED光を照射すると、光量が30J/cm程度の照射でも菌数の減少がみられ、光量が400J/cmを超えると菌数0~10未満まで減少する。そして、この効果は、トルイジンブルーに替えてメチレンブルーを添加した際にも得られることがわかった。 As shown in Table 2, when the LED light is irradiated at an illuminance of 100 mW/cm 2 or more, the number of bacteria is reduced even at a light intensity of about 30 J/cm 2 , and when the light intensity exceeds 400 J/cm 2 , the number of bacteria is observed. Decrease from 0 to less than 10. It was also found that this effect was obtained when methylene blue was added instead of toluidine blue.

また、620nm以上の波長の照射により菌数が減少することがわかる。また、100mW/cm以下の放射照度だと菌数は減少しない。さらに放射照度が1200mW/cmになると、450nmの波長でも菌数を減らすことができるが、880nmと、可視光の領域を超えた波長の照射では同じ放射照度でも菌数の減少はみられない。 Moreover, it can be seen that the number of bacteria is reduced by irradiation with a wavelength of 620 nm or more. Also, if the irradiance is 100 mW/cm 2 or less, the number of bacteria does not decrease. Furthermore, at an irradiance of 1200 mW/ cm2 , the number of bacteria can be reduced even at a wavelength of 450 nm, but with irradiation at a wavelength of 880 nm, which exceeds the visible light range, no reduction in the number of bacteria is observed even with the same irradiance. .

<光殺菌性の維持、油剤性能の維持の評価>
(実施例16~23、比較例17~27、参考例4~7)
切削油剤として、表3に示す成分を含有する切削油剤、離型剤、熱間鍛造油を準備し、以下の実験により光殺菌性の維持、油剤性能の維持について評価した。
<Evaluation of maintenance of photobactericidal property and maintenance of oil agent performance>
(Examples 16-23, Comparative Examples 17-27, Reference Examples 4-7)
As cutting fluids, cutting fluids, mold release agents, and hot forging oils containing the components shown in Table 3 were prepared, and the following experiments were carried out to evaluate the maintenance of the photosterilization property and the maintenance of the oil performance.

(防錆性)
鋳鉄切りくずをガラス製シャーレに入れ、切りくずが完全に浸るまで、濃度が5%になるように水で希釈した各実施例または比較例の水溶性金属加工油剤を注いだ。その後、フタをして10分間静置した後、蓋をしたままシャーレを斜めにして希釈液を流出させた。次いで、シャーレを水平台の上に置き、この状態で6時間静置して錆の発生の有無を確認した。
防錆性の評価において、「○」は錆の発生が見られなかったことを示し、「×」は錆が発生した場合を表す。
(rust resistance)
Cast iron chips were placed in a glass petri dish, and the water-soluble metal working fluid of each example or comparative example diluted with water to a concentration of 5% was poured into the petri dish until the chips were completely soaked. After that, the petri dish was left to stand for 10 minutes with the lid on, and then the petri dish was slanted with the lid on to allow the diluted solution to flow out. Next, the petri dish was placed on a horizontal table and left to stand in this state for 6 hours to confirm the presence or absence of rust.
In the evaluation of rust resistance, "○" indicates that no rust was observed, and "x" indicates that rust occurred.

(色素の耐色)
濃度が5%になるように水で希釈した各実施例または比較例の水溶性金属加工油剤を1週間実験室に放置した時の外観を観察した。色素の退色が認められるものを「×」、色を維持しているものを「○」と評価した。
(color fastness of pigment)
The appearance of the water-soluble metal working fluid of each example or comparative example diluted with water to a concentration of 5% was observed after being left in a laboratory for one week. A case where fading of the dye was recognized was evaluated as "x", and a case where the color was maintained was evaluated as "good".

(液安定性の維持)
濃度が5%になるように水で希釈した各実施例または比較例の水溶性金属加工油剤を1週間実験室に放置した時の外観を観察した。浮上油の発生や沈殿物が生じているものを「×」、発生していないものを「○」とした。
また、各実施例についてメチレンブルーを100ppm添加したものも準備し、同様に1週間放置し、外観を観察した。評価基準も同様である。
(Maintenance of liquid stability)
The appearance of the water-soluble metal working fluid of each example or comparative example diluted with water to a concentration of 5% was observed after being left in a laboratory for one week. A case where floating oil was generated or a sediment was generated was evaluated as "×", and a case where it was not generated was evaluated as "○".
In addition, 100 ppm of methylene blue was also prepared for each example, left for one week in the same manner, and the appearance was observed. The evaluation criteria are also the same.

(光殺菌能の維持)
濃度が5%になるように水で希釈した各実施例または比較例の水溶性金属加工油剤を1週間実験室に放置したものに菌液を加え、1.4×10CFU/mlになるように調整した。菌液としては、上記の「生菌の殺菌に有効な光増感剤の選定」で使用したものと同様のものを使用し、図1に示す方法と同様の方法により評価した。
また、各実施例についてメチレンブルーを100ppm添加したものも準備し、同様に1週間放置し、外観を観察した。評価基準も同様である。
(Maintenance of photobactericidal activity)
The water-soluble metalworking fluid of each example or comparative example diluted with water to a concentration of 5% was left in the laboratory for one week, and the bacterial solution was added to obtain 1.4×10 7 CFU/ml. adjusted to As the bacterial solution, the same one as used in the above "Selection of a photosensitizer effective in sterilizing viable bacteria" was used, and evaluation was performed by the same method as shown in FIG.
In addition, 100 ppm of methylene blue was also prepared for each example, left for one week in the same manner, and the appearance was observed. The evaluation criteria are also the same.

二塩基酸と、無機アルカリ塩および/または2-アミノ-2-メチル-1-プロパノールとを防錆成分として含有する実施例16~23は防錆性能が良好であったほか、メチレンブルーを添加した場合でも成分の沈殿、メチレンブルーの退色がなく、光殺菌性を維持した。
一方、無機アルカリ塩および/または2-アミノ-2-メチル-1-プロパノールを用いず、ジエタノールアミン、トリエタノールアミン、2,2’-(シクロヘキシルイミノ)ビスエタノールをアミン成分として加えた比較例17~21ではメチレンブルー添加後に光退色反応が起こり色素が退色してしまった。これによりメチレンブルーは光殺菌能を失い、光照射しても殺菌することができなかった。
Examples 16 to 23 containing a dibasic acid, an inorganic alkali salt and/or 2-amino-2-methyl-1-propanol as antirust components had good antirust performance, and methylene blue was added. Even in such a case, there was no precipitation of components and no discoloration of methylene blue, and the photosterilization property was maintained.
On the other hand, Comparative Examples 17 to 17 in which diethanolamine, triethanolamine, and 2,2′-(cyclohexylimino)bisethanol were added as amine components without using an inorganic alkali salt and/or 2-amino-2-methyl-1-propanol. In No. 21, a photobleaching reaction occurred after the addition of methylene blue and the dye faded. As a result, methylene blue lost its photo-sterilization ability and could not sterilize even with light irradiation.

また、3価のカルボン酸であるクエン酸と無機ナトリウム塩(比較例22)、クエン酸と1-アミノ-2-プロパノール、トリエタノールアミン(比較例23)により三塩基酸塩を形成した場合、無機ナトリウム塩を含有する比較例22ではメチレンブルーの退色はなく光殺菌能も維持できた。1-アミノ-2-プロパノール、トリエタノールアミンを含有する比較例23では比較例17~21と同様にメチレンブルーの退色が起こり、光殺菌性も示さなかった。
さらに、非極性基を持たないクエン酸は保護被膜としての作用が弱いため、比較例22、23ではともに錆が発生した。
Further, when a tribasic acid salt is formed by citric acid, which is a trivalent carboxylic acid, and an inorganic sodium salt (Comparative Example 22), citric acid, 1-amino-2-propanol, and triethanolamine (Comparative Example 23), In Comparative Example 22 containing an inorganic sodium salt, there was no fading of methylene blue and the photosterilization ability could be maintained. In Comparative Example 23 containing 1-amino-2-propanol and triethanolamine, discoloration of methylene blue occurred similarly to Comparative Examples 17 to 21, and photobactericidal properties were not exhibited.
Furthermore, citric acid, which does not have a non-polar group, has a weak action as a protective film, so rust occurred in both Comparative Examples 22 and 23.

一塩基酸塩と2-アミノ-2-メチル-1-プロパノールを防錆成分とした比較例24~27は錆の発生を抑え、メチレンブルーの退色もなく光殺菌能を維持したが、沈殿が発生し、液の安定性には劣るものであった。 Comparative Examples 24 to 27, in which monobasic acid salt and 2-amino-2-methyl-1-propanol are used as antirust components, suppress the formation of rust and maintain the photosterilization ability without fading of methylene blue, but precipitation occurs. However, the stability of the liquid was inferior.

参考例4として、1-アミノ-2-プロパノールと水のみからなる溶液に上記実施例、および比較例と同様の操作を行った場合、1-アミノ-2-プロパノールの作用によりメチレンブルーの退色がおきた。また、防錆成分としての一塩基酸塩もしくは二塩基酸塩を含有しないため防錆性はなかった。また、光照射実験の際に殺菌能を示した。
さらに、参考例6、および7には潤滑成分として、鉱物油、エステルを添加した例を示す。これら成分の添加に関わらず、各項目の評価は良好であった。
As Reference Example 4, when a solution consisting of 1-amino-2-propanol and water alone was treated in the same manner as in the above Examples and Comparative Examples, methylene blue discoloration occurred due to the action of 1-amino-2-propanol. Ta. Moreover, since it did not contain a monobasic acid salt or a dibasic acid salt as a rust-preventing component, it had no rust-preventing properties. In addition, it showed bactericidal activity during the light irradiation experiment.
Furthermore, Reference Examples 6 and 7 show examples in which mineral oil and ester are added as lubricating components. Regardless of the addition of these components, the evaluation of each item was good.

Claims (8)

水溶性機能流体全量基準で、
(a)下記式(1)で示すジアミノフェノチアジニウム骨格あるいはジアミノフェノキサジニウム骨格を含む塩基性光増感剤を5重量ppm~100重量ppm、
(b)二塩基酸塩を0.05~0.75重量部含有し、
(c)α水素を有するアミンを含まない又は0.1質量部未満で含み、
(d)一塩基酸塩を含まない又は0.2質量部未満で含む、
水溶性機能流体。
Figure 0007334108000025

(式(1)中、Yは、SまたはOである。Rはそれぞれ同一であっても異なっていてもよく、水素原子、メチル基、エチル基のいずれかである。)
Based on the total amount of water-soluble functional fluid,
(a) 5 ppm to 100 ppm by weight of a basic photosensitizer containing a diaminophenothiazinium skeleton or a diaminophenoxazinium skeleton represented by the following formula (1);
(b) contains 0.05 to 0.75 parts by weight of a dibasic acid salt;
(c) no or less than 0.1 parts by weight of amines with alpha hydrogens;
(d) containing no or less than 0.2 parts by weight of a monobasic salt;
Water-soluble functional fluid.
Figure 0007334108000025

(In Formula (1), Y is S or O. Each R may be the same or different and is a hydrogen atom, a methyl group, or an ethyl group.)
水溶性切削油、水溶性研削油、水溶性洗浄剤、水溶性プレス油、水溶性鍛造油、水溶性圧延油、水溶性離型剤、水溶性切断油、水溶性研磨油又は水溶性作動油として使用される、請求項1に記載の水溶性機能流体。 Water-soluble cutting oil, water-soluble grinding oil, water-soluble detergent, water-soluble press oil, water-soluble forging oil, water-soluble rolling oil, water-soluble release agent, water-soluble cutting oil, water-soluble polishing oil, or water-soluble hydraulic oil The water-soluble functional fluid according to claim 1, which is used as a 請求項1または2に記載の水溶性機能流体の原液であって、原液全量基準で、
(a)下記式(1)で示すジアミノフェノチアジニウム骨格あるいはジアミノフェノキサジニウム骨格を含む塩基性光増感剤を100重量ppm~2000重量ppm、
(b)二塩基酸塩を1~15重量部含有し、
(c)α水素を有するアミンを含まない又は0.5質量部未満で含み、
(d)一塩基酸塩を含まない又は1.0質量部未満で含む、
水溶性機能流体の原液。
Figure 0007334108000026
(式()中、Yは、SまたはOである。Rはそれぞれ同一であっても異なっていてもよく、水素原子、メチル基、エチル基のいずれかである。)
3. The stock solution of the water-soluble functional fluid according to claim 1 or 2, which is based on the total amount of the stock solution,
(a) 100 ppm to 2000 ppm by weight of a basic photosensitizer containing a diaminophenothiazinium skeleton or a diaminophenoxazinium skeleton represented by the following formula (1);
(b) containing 1 to 15 parts by weight of a dibasic acid salt;
(c) no or less than 0.5 parts by weight of amines with alpha hydrogens;
(d) containing no or less than 1.0 parts by weight of a monobasic salt;
Stock solution of water-soluble functional fluid.
Figure 0007334108000026
(In formula ( 1 ), Y is S or O. Each R may be the same or different and is a hydrogen atom, a methyl group, or an ethyl group.)
水溶性切削油、水溶性研削油、水溶性洗浄剤、水溶性プレス油、水溶性鍛造油、水溶性圧延油、水溶性離型剤、水溶性切断油、水溶性研磨油又は水溶性作動油の原液として使用される、請求項3に記載の水溶性機能流体の原液。 Water-soluble cutting oil, water-soluble grinding oil, water-soluble detergent, water-soluble press oil, water-soluble forging oil, water-soluble rolling oil, water-soluble release agent, water-soluble cutting oil, water-soluble polishing oil, or water-soluble hydraulic oil The stock solution of the water-soluble functional fluid according to claim 3, which is used as a stock solution of 請求項1または2に記載の水溶性機能流体を殺菌する殺菌装置であって、
少なくとも前記水溶性機能流体を貯留する貯留部と、
前記水溶性機能流体に光を照射する光照射部と、
前記水溶性機能流体を使用しながら金属加工を行う金属工作機械と、
前記貯留部、および金属工作機械との間で前記水溶性機能流体を循環させる循環部と、を備え、
前記光照射部により殺菌された状態の水溶性機能流体を循環部により金属工作機械へ供給する、水溶性機能流体の殺菌装置。
A sterilization device for sterilizing the water-soluble functional fluid according to claim 1 or 2,
a storage part that stores at least the water-soluble functional fluid;
a light irradiation unit that irradiates the water-soluble functional fluid with light;
a metal machine tool that performs metal processing while using the water-soluble functional fluid;
a circulation unit that circulates the water-soluble functional fluid between the storage unit and the metal machine tool,
An apparatus for sterilizing water-soluble functional fluid, wherein the water-soluble functional fluid sterilized by the light irradiation unit is supplied to a metal machine tool by a circulation unit.
前記光照射部が貯留部内に設置されていることを特徴とする請求項5に記載の水溶性機能流体の殺菌装置。 6. The apparatus for sterilizing water-soluble functional fluid according to claim 5, wherein the light irradiation section is installed in a storage section. 前記光照射部が循環部に設置されていることを特徴とする請求項5に記載の水溶性機能流体の殺菌装置。 6. The apparatus for sterilizing water-soluble functional fluid according to claim 5, wherein the light irradiation unit is installed in the circulation unit. 請求項1または2に記載の水溶性機能流体に波長範囲が600~800nmの可視光を100mW/cm以上の放射照度で照射することを特徴とする、水溶性機能流体の殺菌方法。 A method for sterilizing a water-soluble functional fluid, comprising irradiating the water-soluble functional fluid according to claim 1 or 2 with visible light having a wavelength range of 600 to 800 nm at an irradiance of 100 mW/cm 2 or more.
JP2019206373A 2019-11-14 2019-11-14 Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid Active JP7334108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019206373A JP7334108B2 (en) 2019-11-14 2019-11-14 Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206373A JP7334108B2 (en) 2019-11-14 2019-11-14 Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid

Publications (2)

Publication Number Publication Date
JP2021080321A JP2021080321A (en) 2021-05-27
JP7334108B2 true JP7334108B2 (en) 2023-08-28

Family

ID=75964159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206373A Active JP7334108B2 (en) 2019-11-14 2019-11-14 Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid

Country Status (1)

Country Link
JP (1) JP7334108B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078557A2 (en) 2002-03-12 2003-09-25 Ecolab Inc. Antimicrobial compositions with singlet oxygen-generating compounds as lubricating coatings of conveyors and containers
US20150064741A1 (en) 2013-08-30 2015-03-05 Illinois Tool Works, Inc. Metal working fluid composition and method of detecting fluid deterioration
CN105670739A (en) 2016-03-09 2016-06-15 周紫阳 Cast iron processing cutting fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078557A2 (en) 2002-03-12 2003-09-25 Ecolab Inc. Antimicrobial compositions with singlet oxygen-generating compounds as lubricating coatings of conveyors and containers
US20150064741A1 (en) 2013-08-30 2015-03-05 Illinois Tool Works, Inc. Metal working fluid composition and method of detecting fluid deterioration
CN105670739A (en) 2016-03-09 2016-06-15 周紫阳 Cast iron processing cutting fluid

Also Published As

Publication number Publication date
JP2021080321A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
EP3114255B1 (en) Corrosion-inhibiting compositions
JP2017514987A (en) Use of N-methyl-N-acylglucamine as a corrosion inhibitor
JP2007537027A (en) Equipment and process used for sonication
JP7334108B2 (en) Water-soluble functional fluid, stock solution of water-soluble functional fluid, apparatus for sterilizing water-soluble functional fluid, and method for sterilizing water-soluble functional fluid
CN110846119A (en) Water-based metal working fluid waste liquid regeneration and reuse treating agent and regeneration and reuse treating method
KR101689976B1 (en) Method for preparing eco-friendly metal working fluids
JP2006510713A (en) Pyrithione biocide enhanced by zinc metal ions and organic amines
US20080102005A1 (en) Method and system for control of microorganisms in metalworking fluid
JP4484468B2 (en) Contact lens disinfection method and disinfectant for the same
WO2021235187A1 (en) Water-soluble functional fluid, undiluted solution for water-soluble functional fluid, sterilization device for water-soluble functional fluid, and sterilization method for water-soluble functional fluid
WO1992001029A1 (en) Aqueous coolant
KR20150121612A (en) Environmental friendly water soluble metal working fluid composition
Shennan Selection and evaluation of biocides for aqueous metal-working fluids
JP2573520B2 (en) Water-soluble cutting oil composition
JP4552165B2 (en) Industrial antibacterial agent composition and industrial antibacterial method
CN201643003U (en) Ultraviolet ozone sterilization device for metal cutting fluid
CN104472539A (en) Non-oxidized type compound bactericide for water treatment and preparation method thereof
RU2785820C1 (en) Concentrated disinfectant detergent for cleaning cutting fluid (coolant) circulation systems
Nandakumar et al. Impact of pulsed laser irradiations from Nd: YAG laser on the larvae of the fouling barnacle Balanus amphitrite
JP2006321733A (en) Bactericidal algicide having discoloration prevention effect and discoloration prevention method
KR101239794B1 (en) Corrosion-inhibiting compositions for the medical instruments
JP6216665B2 (en) Water-soluble functional fluid with rot resistance
JP6685051B2 (en) Antifungal agent for water-soluble metalworking oil and water-soluble metalworking oil composition containing the same
PL212593B1 (en) New ecological coolant for the metalwork
PL214714B1 (en) New ecological coolant for the metalwork

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230816

R150 Certificate of patent or registration of utility model

Ref document number: 7334108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150