JP7333098B2 - Valuable metal recovery method from waste batteries - Google Patents

Valuable metal recovery method from waste batteries Download PDF

Info

Publication number
JP7333098B2
JP7333098B2 JP2021177018A JP2021177018A JP7333098B2 JP 7333098 B2 JP7333098 B2 JP 7333098B2 JP 2021177018 A JP2021177018 A JP 2021177018A JP 2021177018 A JP2021177018 A JP 2021177018A JP 7333098 B2 JP7333098 B2 JP 7333098B2
Authority
JP
Japan
Prior art keywords
crushing
crushed
roasting
iron
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021177018A
Other languages
Japanese (ja)
Other versions
JP2023066433A (en
Inventor
敏典 廣瀬
Original Assignee
株式会社フラップリソース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=86326024&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7333098(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社フラップリソース filed Critical 株式会社フラップリソース
Priority to JP2021177018A priority Critical patent/JP7333098B2/en
Publication of JP2023066433A publication Critical patent/JP2023066433A/en
Application granted granted Critical
Publication of JP7333098B2 publication Critical patent/JP7333098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Description

特許法第30条第2項適用 1)学術団体の研究集会において発表 [研究集会名]令和2年度成果発表会・第3回特別講演会 [主催者名]特定非営利活動法人広島循環型社会推進機構 [開催日]令和3年3月15日Application of Article 30, Paragraph 2 of the Patent Act 1) Presented at a research meeting of an academic organization Social Promotion Organization [Date] March 15, 2021

本発明は、回収・再資源化に取り組むことが求められているリチウムイオン電池等の使用済みの廃電池からのコバルト、ニッケル、リチウム等の有価金属回収方法に関する。 TECHNICAL FIELD The present invention relates to a method for recovering valuable metals such as cobalt, nickel, and lithium from used waste batteries such as lithium ion batteries, for which collection and recycling efforts are required.

特許文献1には、廃電池を焙焼する焙焼工程と、焙焼物を破砕容器に入れてチェーンミルを用いて破砕する破砕工程と、破砕物を篩別けして篩上物と篩下物とに分離する篩別工程と、を有する廃電池からの有価金属回収方法が開示されている。 Patent Document 1 describes a roasting process of roasting waste batteries, a crushing process of putting the roasted products in a crushing container and crushing them using a chain mill, and sieving the crushed products to separate the sieved products and the unsieved products. A method for recovering valuable metals from waste batteries is disclosed, comprising a sieving step to separate the

特許文献2には、鉄製ケースに内蔵された使用済みリチウム電池を該鉄製ケースとともに焙焼し、得られた焙焼物を破砕し、1次磁選して磁性物と非磁性物に分別し、さらに前記非磁性物を2次磁選する使用済みリチウム電池からの有価物回収方法が開示されている。 In Patent Document 2, a used lithium battery incorporated in an iron case is roasted together with the iron case, the resulting roasted product is crushed, primary magnetic separation is performed to separate magnetic substances and non-magnetic substances, and further A method for recovering valuables from used lithium batteries is disclosed in which the non-magnetic materials are subjected to secondary magnetic separation.

特開2021-139019号公報Japanese Patent Application Laid-Open No. 2021-139019 特開平11―185833号公報JP-A-11-185833

特許文献1の発明は、焙焼温度としては700℃ 以上に加熱し1200℃ 以下とすることが好ましいとの記載があり、焙焼温度が高すぎると、主に廃電池の外部シェルに用いられている鉄等の一部がキルン等の焙焼炉本体の内壁等に付着してしまい、円滑な操業の妨げになったり、あるいはキルン自体の劣化につながる場合があり好ましくないとの記載があることから、廃電池をそのまま直接に焙焼炉本体に投入していることが示唆されている。すると、廃電池に含有されているアルミニウムの融点が660.3℃であるので、焙焼炉内でアルミニウムが溶けて炉内の底壁等に例えば高さ約5cmの塊で凝固して付着するので、炉内の底壁に付着した、廃電池の焙焼温度で溶融していない部材が混在しているアルミニウムの回収が極めて困難であるという問題があった。さらに、焙焼温度で溶融したアルミニウムの中に焙焼温度では溶融しない廃電池の部材が混在しており、焙焼温度では溶融しない廃電池の部材の回収率が低下しているという問題があった。 The invention of Patent Document 1 describes that the roasting temperature is preferably 700° C. or higher and 1200° C. or lower. Some of the iron, etc. attached to the inner wall of the main body of the roasting furnace such as the kiln may interfere with smooth operation or may lead to deterioration of the kiln itself, which is not preferable. Therefore, it is suggested that the waste batteries are put directly into the main body of the roasting furnace. Then, since the melting point of the aluminum contained in the waste battery is 660.3° C., the aluminum melts in the roasting furnace and solidifies and adheres to the bottom wall of the furnace, for example, in lumps of about 5 cm in height. Therefore, there is a problem that it is extremely difficult to recover the aluminum adhering to the bottom wall of the furnace and mixed with members that are not melted at the roasting temperature of the waste battery. Furthermore, the aluminum melted at the roasting temperature contains waste battery materials that do not melt at the roasting temperature, and there is a problem that the recovery rate of the waste battery materials that do not melt at the roasting temperature is low. Ta.

特許文献2の発明は、焙焼温度が高すぎると、焙焼物が溶融凝固してその破砕が困難になり、また銅の溶融が起こり炉を破損するので、550℃~1000℃が好ましいとの記載や、図1に焙焼前ドラム缶と焙焼後ドラム缶の記載があるので、焙焼物はドラム缶に収容して焙焼することが示唆されている。すると、廃電池に含有されているアルミニウムの融点が660.3℃であるので、ドラム缶内でアルミニウムが溶けて周壁の底壁等に例えば高さ約5cmの塊で凝固して付着するので、ドラム缶の底壁に付着した、廃電池の焙焼温度で溶融していない部材が混在しているアルミニウムを剥離させて回収することが極めて困難であるという問題があった。さらに、焙焼温度で溶融したアルミニウムの中に焙焼温度では溶融しない廃電池の部材が混在しており、焙焼温度では溶融しない廃電池の部材の回収率が低下しているという問題があった。 According to the invention of Patent Document 2, if the roasting temperature is too high, the roasted product will melt and solidify, making it difficult to crush the roasted product, and the copper will melt and damage the furnace. Since the description and the description of the drum before roasting and the drum after roasting are shown in FIG. 1, it is suggested that the roasted product is stored in a drum and roasted. Then, since the melting point of the aluminum contained in the waste battery is 660.3° C., the aluminum melts inside the drum and solidifies and adheres to the bottom wall of the peripheral wall, etc., in clumps of about 5 cm in height. There is a problem that it is extremely difficult to separate and recover the aluminum adhering to the bottom wall of the waste battery, which is mixed with members that are not melted at the roasting temperature of the waste battery. Furthermore, the aluminum melted at the roasting temperature contains waste battery materials that do not melt at the roasting temperature, and there is a problem that the recovery rate of the waste battery materials that do not melt at the roasting temperature is low. Ta.

本発明はこうした問題に鑑み創案されたもので、焙焼工程で溶融する溶融金属に溶融しない金属が混在しないようにし、かつ溶融していない金属が混在していない溶融金属の回収が容易にできる廃電池からの有価金属回収方法を提供することを課題とする。 The present invention has been devised in view of these problems, and it is possible to prevent unmelted metal from being mixed with the molten metal that is melted in the roasting process, and to easily recover the molten metal that is not mixed with unmelted metal. An object of the present invention is to provide a method for recovering valuable metals from waste batteries.

請求項1に記載の廃電池からの有価金属回収方法は、廃電池を、底壁近傍を含む周壁に複数の空気穴を有する鉄製容器内に収納し、収納した該鉄製容器を複数個載置したトレー状の鉄製受け皿を焙焼炉内に載置した状態で前記廃電池を焙焼する焙焼工程と、該焙焼工程後に前記鉄製容器から焙焼物を取り出して、該焙焼物を衝撃荷重で破砕する破砕工程と、 該破砕工程後に、破砕物に対する磁選と同時に篩別を実施する、磁選・篩別工程と、を備えたことを特徴とする。
In the method for recovering valuable metals from waste batteries according to claim 1, the waste batteries are stored in an iron container having a plurality of air holes in the peripheral wall including the vicinity of the bottom wall, and a plurality of the iron containers are placed. a roasting step of roasting the waste battery with the tray -shaped iron saucer placed in a roasting furnace; It is characterized by comprising a crushing step of crushing with an impact load, and a magnetic separation/sieving step of carrying out magnetic separation and sieving simultaneously with the crushed material after the crushing step.

請求項2に記載の廃電池からの有価金属回収方法は、請求項1において、前記破砕工程が、垂設された回転軸の下部の、前記焙焼物に衝撃荷重を与えることが可能な所定の高さに、かつ金属製チェーンの回転速度を遅くすると、ホウキで掃くように破砕物を排出させることができる高さに、一方端を固定され他方端を自由端にした金属製チェーンを複数有するチェーン式破砕手段を備えて、前記チェーン式破砕手段の衝撃力を基にして、前記廃電池の構成部材別に固形物と粉末物に分けることができるように、前記廃電池の種類ごとに設定した所定の投入量及び所定の破砕時間で前記チェーン式破砕手段を作動させて破砕することを特徴とする。
The method for recovering valuable metals from waste batteries according to claim 2 is characterized in that, in claim 1, the crushing step is performed by applying a shock load to the roasted material at the bottom of the vertically installed rotating shaft. It has a plurality of metal chains with one end fixed and the other end free at a height that can discharge crushed materials like sweeping with a broom when the rotation speed of the metal chain is slowed down. A chain-type crushing means is provided, and based on the impact force of the chain-type crushing means, it is set for each type of the waste battery so that the waste battery can be separated into solid matter and powder matter according to the constituent members of the waste battery. It is characterized in that the chain-type crushing means is actuated and crushed at a predetermined amount to be charged and for a predetermined crushing time.

請求項3に記載の廃電池からの有価金属回収方法は、請求項1又は2において、前記磁選・篩別工程が、予め定めた大きさの粉末状の破砕物を篩別可能な大きさの目開きを有するスクリーンを備えた、下流側を下方に斜設した篩用振動装置と、該篩用振動装置の上方に磁性体の破砕物を引き寄せ可能な磁石を有する磁選手段とを備え、前記破砕工程後の破砕物を、磁性体の破砕物、所定の大きさ以上の非磁性体の破砕物、及び、所定の大きさ未満の非磁性体の破砕物に分離することを特徴とする。 The method for recovering valuable metals from waste batteries according to claim 3 is characterized in that, in claim 1 or 2, the magnetic separation/sieving step has a size capable of sieving crushed powders of a predetermined size. A sieve vibrating device having a screen having mesh openings, the downstream side of which is slanted downward; The crushed material after the crushing step is separated into crushed magnetic material, crushed non-magnetic material having a size equal to or larger than a predetermined size, and crushed non-magnetic material having a size smaller than a predetermined size.

請求項1に記載の廃電池からの有価金属回収方法は、焙焼工程で加える焙焼温度で溶融する金属、例えば廃電池のケースの素材であるアルミニウムを廃電池の溶融していない部材の混在がなく、純度が高い状態のものを回収できるという効果を奏する。また、廃電池の焙焼温度で溶融しない部材が溶融するアルミニウムに混在しないので、焙焼温度で溶融しない部材の回収率が高まるという効果を奏する。 In the method for recovering valuable metals from waste batteries according to claim 1, a metal that melts at the roasting temperature applied in the roasting process, such as aluminum, which is the material of the case of the waste battery, is mixed with unmelted members of the waste battery. There is an effect that it is possible to recover the product in a state of high purity. In addition, since the materials that do not melt at the roasting temperature of the waste battery do not mix with the molten aluminum, there is an effect that the recovery rate of the materials that do not melt at the roasting temperature increases.

請求項2に記載の廃電池からの有価金属回収方法は、前記チェーン式破砕手段の金属チェーン自体の大きさ・材質の強度、及び金属チェーンの回転数から生ずる衝撃力を基にして、前記廃電池の構成部材をすべて破砕でき、かつ構成部材別に固形物と粉末物に分けることができる、前記廃電池の種類ごとの所定の投入量及び所定の破砕時間で破砕するので、焙焼物の破砕率を100%にでき、固形物として回収したい焙焼物を破砕時間を長くし過ぎて粉末物になるまで破砕せずに固形物として回収でき、粉末物として回収したい焙焼物を破砕時間を短くし過ぎて固形物のままでなく破砕されて粉末物として回収できるという効果を奏する。 The method for recovering valuable metals from waste batteries according to claim 2 is characterized in that, based on the size and strength of the material of the metal chain itself of the chain-type crushing means and the impact force generated by the number of revolutions of the metal chain, the waste All the constituent members of the battery can be crushed, and the constituent members can be separated into solids and powders, and the waste batteries are crushed in a predetermined amount and for a predetermined crushing time for each type of waste battery, so the crushing rate of the roasted product can be set to 100%, the roasted product to be recovered as a solid can be recovered as a solid without crushing it to powder by making the crushing time too long, and the roasted product to be recovered as a powder can be recovered as a solid by shortening the crushing time too much. Therefore, it is possible to collect the powder as a crushed powder rather than as a solid substance.

請求項3に記載の廃電池からの有価金属回収方法は、破砕率100%であるので磁性体と非磁性体がくっついた状態の破砕物が残っていないので、磁力選別回収された磁性物への銅素材の混入がなくなり、内部素材である負極板の銅箔を固形物として回収でき、内部素材である正極板のニッケル、コバルト、リチウムを粉末体として回収できることから、有価金属の回収率が高まるという効果を奏する。 In the method for recovering valuable metals from waste batteries according to claim 3, since the crushing rate is 100%, there is no crushed material in which the magnetic material and the non-magnetic material are stuck together. , the copper foil of the negative electrode plate, which is the internal material, can be recovered as a solid matter, and the nickel, cobalt, and lithium of the positive electrode plate, which are the internal materials, can be recovered as powders, so the recovery rate of valuable metals is increased. It has the effect of increasing.

本発明の廃電池からの有価金属回収方法のフロー図である。1 is a flowchart of a method for recovering valuable metals from waste batteries according to the present invention; FIG. 鉄製容器の説明図で、(a)は本発明の複数の空気穴を設けた鉄製容器の説明図で、(b)は比較例の従来のドラム缶の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the iron-made container, (a) is explanatory drawing of the iron-made container which provided the some air hole of this invention, (b) is explanatory drawing of the conventional drum of a comparative example. 本発明の焙焼工程の廃電池を収容した鉄製容器と鉄製受け皿の縦断面説明図である。FIG. 2 is an explanatory longitudinal cross-sectional view of an iron container and an iron saucer containing waste batteries in the roasting process of the present invention; 鉄製容器及び鉄製受け皿を載置した搬出入用置台を焙焼炉に搬入前の状態の、説明する部分のみを表した概要説明図である。Fig. 2 is a schematic explanatory view showing only the parts to be explained, showing the state before carrying the loading/unloading stand on which the iron container and the iron saucer are placed into the roasting furnace. 本発明の焙焼工程の焙焼炉内に鉄製容器等をセットした状態の、説明する部分のみを表した縦断面概要説明図である。FIG. 2 is a schematic longitudinal sectional view showing only the parts to be explained, in a state where an iron container or the like is set in the roasting furnace of the roasting step of the present invention. 本発明の焙焼工程の焙焼後に取り出した受け皿の縦断面説明図で、(a)は焙焼炉内から取り出した直後の状態の縦断面説明図で、(b)は鉄製容器を取り出した状態の縦断面説明図で、(c)は溶融して受け皿に付着した溶融金属を剥離した状態の縦断面説明図である。It is a vertical cross-sectional explanatory view of the saucer taken out after roasting in the roasting process of the present invention, (a) is a vertical cross-sectional explanatory view of the state immediately after being taken out from the roasting furnace, and (b) is an iron container taken out. It is a vertical cross-sectional explanatory view of the state, and (c) is a vertical cross-sectional explanatory view of a state in which the molten metal that has melted and adhered to the tray is peeled off. 比較例のドラム缶を載置した搬出入用置台を焙焼炉に搬入前の状態の、説明する部分のみを表した概要説明図である。FIG. 10 is a schematic explanatory view showing only a portion to be explained of a loading/unloading table on which drums of a comparative example are placed before being loaded into a roasting furnace; 廃電池を収容した比較例のドラム缶を焙焼炉内にセットした比較例の、説明する部分のみを表した概要縦断面説明図である。FIG. 10 is a schematic vertical cross-sectional explanatory view showing only a portion to be explained of a comparative example in which a comparative drum containing waste batteries is set in a roasting furnace. 焙焼炉から取り出した比較例のドラム缶の縦断面説明図である。FIG. 3 is a vertical cross-sectional explanatory view of a drum of a comparative example taken out from a roasting furnace; 焙焼物を取り出した後の比較例のドラム缶の残存物の状態の説明図である。FIG. 10 is an explanatory diagram of the state of the residue of the drum of the comparative example after the roasted product is taken out; 磁選・篩別工程の装置の左側面視の概要説明図である。It is an outline explanatory drawing of the left side view of the apparatus of a magnetic separation and sieving process. 図11におけるA―A断面における上流側を見た概要説明図である。FIG. 12 is a schematic explanatory view of the upstream side in the AA cross section in FIG. 11;

本発明の廃電池からの有価金属回収方法1は、回収・再資源化に取り組むことが求められているリチウムイオン電池等の小型二次電池の使用済みとなった廃電池20からのコバルト、ニッケル、リチウム等の有価金属回収方法である。特に、リチウムイオン電池は、携帯電話やパソコンのバッテリー、車載用バッテリーなどに使用され、世界的な電気自動車へのシフトによって、市場規模の急拡大が予測されている。 Method 1 for recovering valuable metals from waste batteries of the present invention uses cobalt and nickel from used waste batteries 20 of small secondary batteries such as lithium ion batteries, for which recovery and recycling are required. , a method for recovering valuable metals such as lithium. Lithium-ion batteries, in particular, are used in mobile phones, personal computer batteries, vehicle batteries, etc., and the market is expected to expand rapidly due to the worldwide shift to electric vehicles.

前記リチウムイオン電池は、電解液、鉄製又はアルミニウム製のケース、ニッケル、コバルト、リチウム等を含有した正極板、黒鉛やチタン酸リチウムを被覆した銅などを含有した負極板を備えている。 The lithium ion battery includes an electrolytic solution, a case made of iron or aluminum, a positive electrode plate containing nickel, cobalt, lithium or the like, and a negative electrode plate containing copper coated with graphite or lithium titanate.

前記廃電池からの有価金属回収方法1は、図1に示すように、廃電池20を、底壁近傍を含む周壁に複数の空気穴6を有する鉄製容器5内に収納し、収納した該鉄製容器5を複数個載置した略トレー状の鉄製受け皿7を焙焼炉10内に載置した状態で前記廃電池20を焙焼する焙焼工程2と、該焙焼工程2後に前記鉄製容器5から焙焼物21を取り出して、該焙焼物21を衝撃荷重で破砕する破砕工程3と、該破砕工程3後に、破砕物に対する磁選と同時に篩別を実施する、磁選・篩別工程4と、を備える。 The method 1 for recovering valuable metals from waste batteries includes, as shown in FIG. A roasting step 2 of roasting the waste battery 20 in a state where a substantially tray-shaped iron receiving tray 7 having a plurality of containers 5 placed thereon is placed in a roasting furnace 10, and the iron container after the roasting step 2. A crushing step 3 for removing the roasted product 21 from 5 and crushing the roasted product 21 with an impact load, and a magnetic separation/sieving step 4 for performing magnetic separation and sieving on the crushed product after the crushing step 3, Prepare.

前記焙焼工程2は、図2(a)に示すように、廃電池20を、底壁近傍を含む周壁に複数の空気穴6を有する鉄製容器5内に収納し、収納した該鉄製容器5を複数個載置した略トレー状の鉄製受け皿7を焙焼炉10内に載置した状態で前記廃電池20を焙焼する。前記空気穴6の直径は例えば1.5cmとするが、溶融金属22が前記鉄製容器5から流出できる直径で、かつ焙焼時に前記鉄製容器5から廃電池20の溶融しない部材の流出を阻止できる直径であれば、いずれの大きさの直径でもよい。 In the roasting step 2, as shown in FIG. 2(a), the waste battery 20 is stored in an iron container 5 having a plurality of air holes 6 in the peripheral wall including the vicinity of the bottom wall. The waste battery 20 is roasted in a roasting furnace 10 in a state in which a substantially tray-shaped iron tray 7 on which a plurality of the waste batteries 20 are placed is placed. The diameter of the air hole 6 is, for example, 1.5 cm, which is large enough to allow the molten metal 22 to flow out of the iron container 5 and prevent the unmelted members of the waste battery 20 from flowing out of the iron container 5 during roasting. The diameter may be of any size.

また、図2(a)に示すように、空気穴6は、前記鉄製容器5の底壁上に溶融金属22が滞留して凝固しないように前記鉄製容器5の周壁の底壁近傍、すなわち下端に空気穴6aを設け、かつ該空気穴6aを円周方向に複数個所設けることが必要である。さらに、前記周壁の底壁近傍、すなわち下端に設けた空気穴6aは溶融金属22の流出で空気の流入が困難になるので、前記周壁の下端から上方に向かって複数個所に空気穴6b、6c、6dも設け、かつ該空気穴6b、6c、6dを円周方向にも複数個所設ける。 As shown in FIG. 2(a), the air hole 6 is formed near the bottom wall of the peripheral wall of the iron container 5, i. It is necessary to provide an air hole 6a at a plurality of locations in the circumferential direction. Furthermore, since it becomes difficult for air to flow into the air hole 6a provided near the bottom wall of the peripheral wall, i.e., at the lower end, due to the outflow of the molten metal 22, a plurality of air holes 6b and 6c are provided upward from the lower end of the peripheral wall. , 6d are also provided, and a plurality of air holes 6b, 6c, 6d are also provided in the circumferential direction.

焙焼温度は800℃~1200℃で焙焼するが、前記廃電池20を構成している部材の金属の融点は、鉄が1538℃、アルミニウムが660.3℃、銅が1085℃、ニッケルが1455℃、コバルトが1495℃、チタン酸リチウムが1533℃であることから、焙焼工程2においてアルミニウムが溶融し、鉄、銅、ニッケル、コバルト、チタン酸リチウムは溶融しない。 The roasting temperature is 800°C to 1200°C. Since the temperature is 1455° C., cobalt is 1495° C., and lithium titanate is 1533° C., aluminum melts in roasting step 2, but iron, copper, nickel, cobalt, and lithium titanate do not melt.

溶融したアルミニウムは、比較例として、例えば、図2(b)に示すように空気穴6を設けない、内容積が200リットルのドラム缶31に、図7又は図8に示すように、廃電池20を収容して焙焼した場合は、図9に示すように、ドラム缶31の上部は溶融していない焙焼物21なので取り出し容易であるが、溶融した焙焼物21であるアルミニウムは前記ドラム缶31内で凝固する。 As a comparative example, the molten aluminum was placed in a drum 31 having an internal volume of 200 liters without an air hole 6 as shown in FIG. is stored and roasted, as shown in FIG. coagulate.

すると、上部の溶融していない該焙焼物21を取り除いた後のドラム缶31の下部には、図10に示すように、焙焼温度で溶融し凝固したアルミニウム内に廃電池の焙焼温度で溶融していない部材が混在して凝固した廃電池部材混在溶融物23が付着しており、該廃電池部材混在溶融物23の塊を取り除き回収することが困難であるので、アルミニウムが溶解してできた廃電池部材混在溶融物23付着ドラム缶として処分しなければならず、純度の高いアルミニウムを回収できないし、本来回収すべき廃電池の部材を回収できないという問題があった。 As a result, as shown in FIG. 10, aluminum melted and solidified at the roasting temperature is melted at the roasting temperature of the waste battery in the lower part of the drum 31 after removing the roasted material 21 that is not melted in the upper part. It is difficult to remove and recover lumps of the waste battery material mixed molten material 23, which is solidified by the mixed waste battery material mixed with non-removable materials. In addition, there is a problem that it is impossible to recover high-purity aluminum and that waste battery members that should be recovered cannot be recovered.

前記鉄製容器5は、図2(a)に示すように、周壁の少なくとも下端に空気穴6を設けた、水平断面が円形状又は四角形状の筒状部を備えた、蓋なしの容器であり、前記空気穴6は、部位によって焙焼中は空気を入れて、溶融させないで固形物又は粉体物として回収する素材の融点以下で強く加熱することを促進させたり、溶融させて回収する素材を、例えば溶融した溶融金属22のアルミニウムを流れ出させるという機能を有する。そして、溶融して前記鉄製容器5から流出した溶融金属22のアルミニウムは、前記略トレー状の鉄製受け皿7内に堆積するようにしている。 The iron container 5, as shown in FIG. 2(a), is a lidless container having a cylindrical portion with a circular or square horizontal cross section and an air hole 6 provided in at least the lower end of the peripheral wall. , The air hole 6, depending on the part, introduces air during roasting to promote strong heating below the melting point of the material to be recovered as a solid or powder without melting, or material to be melted and recovered has a function of flowing out, for example, the aluminum of the molten metal 22 that has been melted. The aluminum of the molten metal 22 melted and flowed out of the iron container 5 is deposited in the substantially tray-shaped iron receiving pan 7 .

前記鉄製受け皿7は、四角形状又は円形状の平板の周縁に短い高さの周壁を有するトレー状の形態をし、例えば四角形状の場合は2m四方の広さで、複数の、例えば4個の前記鉄製容器5を一段積みで並べることができ、例えば固定床炉型の焙焼炉10内の固定床12の上に載置することができ、溶融して流出して溶融金属22のアルミニウムの受け皿とすることができる。 The iron tray 7 has a tray-like shape having a short peripheral wall on the peripheral edge of a rectangular or circular flat plate. The iron containers 5 can be arranged in a single stack, for example, can be placed on the fixed floor 12 in the roasting furnace 10 of the fixed floor furnace type, and the aluminum of the molten metal 22 is melted and flowed out. It can be used as a saucer.

前記焙焼炉10は、バッチ式で、炉床は、例えば、図4及び図5に示すように、焙焼炉の内外でスライドする形態の固定床12があり、炉の内外でスライドして前記鉄製容器5を出し入れ可能な形態であればいずれでもよい。また、前記焙焼炉10は、焙焼時に空気供給ができる構造で、炉蓋13を開にして前記鉄製受け皿7をスライドさせて炉内に投入し炉蓋13を閉にして炉内を密閉にすることが可能な構造がよい。 The roasting furnace 10 is of a batch type, and the hearth has a fixed floor 12 that slides inside and outside the roasting furnace, as shown in FIGS. Any form may be used as long as the iron container 5 can be taken in and out. The roasting furnace 10 has a structure capable of supplying air during roasting. The furnace lid 13 is opened, the iron tray 7 is slid, and the iron tray 7 is thrown into the furnace, and the furnace lid 13 is closed to seal the inside of the furnace. A structure that can be used is good.

次に、焙焼工程2の方法を説明する。まず、図4に示すように、焙焼炉10の外において、例えばリチウムイオン電池の廃電池20の端子に絶縁処理した、形状やケース素材が同一の種類の廃電池20を集める。そして、同一種類の廃電池20を、周壁の底壁近傍に空気穴6を有する鉄製容器5内に充填するように収納する。このような収納した前記鉄製容器5を複数個、例えば4個準備する。 Next, the method of roasting step 2 will be described. First, as shown in FIG. 4, outside the roasting furnace 10, waste batteries 20 of the same type and having the same shape and case material, for example, lithium-ion batteries whose terminals are insulated, are collected. Then, waste batteries 20 of the same type are stored so as to be filled in an iron container 5 having an air hole 6 near the bottom wall of the peripheral wall. A plurality of such iron containers 5, for example four, are prepared.

そして、図3に示すように、廃電池20を収納した前記鉄製容器5を前記鉄製受け皿7に複数個、例えば4個載置する。この載置した前記鉄製受け皿7を、図4及び図5に示すように、炉蓋13を開けて焙焼炉10外にスライドして出した固定床12の上にセットし、該セット後に前記固定床12をスライドさせて焙焼炉10内に入れて該炉蓋13を閉にして焙焼炉10の炉内を密閉状態にする。 Then, as shown in FIG. 3, a plurality of, for example, four iron containers 5 containing waste batteries 20 are placed on the iron tray 7 . As shown in FIGS. 4 and 5, the placed iron tray 7 is set on the fixed floor 12 which is slid out of the roasting furnace 10 by opening the furnace lid 13, and after the setting, the above-described The fixed bed 12 is slid into the roasting furnace 10, and the furnace cover 13 is closed to make the inside of the roasting furnace 10 airtight.

次に、着火バーナー11に点火し、新しい空気を炉内に流入させながら廃電池20の焙焼を行う。そして、廃電池20が着火すると前記着火バーナー11を消火する。そして、炉内の温度は、800℃~1200℃の範囲で維持させて焙焼処理をする。 Next, the ignition burner 11 is ignited, and the waste battery 20 is roasted while introducing new air into the furnace. When the waste battery 20 is ignited, the ignition burner 11 is extinguished. Then, the roasting treatment is performed while maintaining the temperature in the furnace within the range of 800°C to 1200°C.

約4時間の焙焼処理後に、焙焼炉10の炉蓋13を開にして、前記焙焼炉10から、前記鉄製容器5が載置された前記鉄製受け皿7を取り出し常温まで冷却するために放置する。前記焙焼炉10から取り出した前記鉄製受け皿7には、図6(a)に示すように、焙焼温度で溶融した溶融金属22のアルミニウムが流出して堆積しており、鉄製容器5の中は焙焼温度で溶融した溶融金属22が混在せず、焙焼温度で溶融しない焙焼物21が収容されている。 After the roasting treatment for about 4 hours, the furnace cover 13 of the roasting furnace 10 is opened, and the iron tray 7 on which the iron container 5 is placed is taken out from the roasting furnace 10 and cooled to room temperature. put. As shown in FIG. 6( a ), the aluminum of the molten metal 22 melted at the roasting temperature flows out and accumulates on the iron receiving pan 7 taken out from the roasting furnace 10 . contains no molten metal 22 melted at the roasting temperature and contains the roasted material 21 that does not melt at the roasting temperature.

冷却後に前記鉄製容器5を前記鉄製受け皿7から取り出し、その後に、図6(b)に示すように、前記金属製受け皿7内に残存している、凝固した溶融金属22、例えばアルミニウムを剥離して取り出す。これにより、不純物が極めて少ない溶融金属22、例えばアルミニウムを容易に回収することができる。その後、図6(c)に示すように、前記金属製受け皿7内には焙焼後に生じた付着物がないので、前記金属製受け皿7を繰り返し使用することができる。 After cooling, the iron container 5 is taken out from the iron tray 7, and then, as shown in FIG. remove it. As a result, the molten metal 22 containing very few impurities, such as aluminum, can be easily recovered. After that, as shown in FIG. 6(c), since there is no deposit generated after roasting in the metal tray 7, the metal tray 7 can be used repeatedly.

次に、前記破砕工程3について説明する。前記破砕工程3は、垂設された回転軸の下部の、前記焙焼物21に衝撃荷重を与えることが可能な所定の高さに、一方端を固定され他方端を自由端にした金属製チェーンを複数有するチェーン式破砕手段(図示なし)を備えて、前記チェーン式破砕手段の衝撃力を基にして、前記廃電池20の構成部材別に固形物と粉末物に分けることができるように、前記廃電池20の種類ごとに設定した所定の投入量及び所定の破砕時間で前記チェーン式破砕手段を作動させて破砕する工程である。 Next, the crushing step 3 will be described. In the crushing step 3, a metal chain with one end fixed and the other end free at a predetermined height at which an impact load can be applied to the roasted product 21 below the vertically installed rotating shaft. A chain-type crushing means (not shown) having a plurality of In this step, the chain-type crushing means is operated to crush waste batteries 20 at a predetermined amount and for a predetermined crushing time set for each type of waste battery 20 .

前記焙焼工程2後の前記鉄製容器5から焙焼物21を取り出して、該焙焼物21を衝撃荷重で破砕する。その衝撃荷重で破砕する装置として、垂設された回転軸の下部の、前記焙焼物21に衝撃荷重を与えることが可能な所定の高さに、一方端を固定され他方端を自由端にした金属製チェーンを複数有するチェーン式破砕手段(図示なし)を使用する。 After the roasting step 2, the roasted product 21 is taken out from the iron container 5, and the roasted product 21 is crushed by an impact load. As a device for crushing by the impact load, one end is fixed at a predetermined height at which the impact load can be applied to the roasted product 21 at the bottom of the vertically installed rotating shaft, and the other end is a free end. A chain crushing means (not shown) having multiple metal chains is used.

そして、廃電池20には、携帯電話のバッテリー、パソコンのバッテリー、又は、車載用バッテリー等の大きさ、形状及び材質が異なる種々の種類があり、種類ごとに形状、硬度、材質や大きさが異なるので、廃電池20ごとに構成する部位ごとに、回収する状態を、磁性物、非磁性物である固形物、及び、非磁性物である粉体物のいずれかに分けることを考え、これが実現できる破砕方法にする。 There are various types of waste batteries 20 having different sizes, shapes, and materials, such as batteries for mobile phones, batteries for personal computers, and batteries for vehicles. Since it is different, it is considered that the state to be collected is divided into magnetic substances, solid substances that are non-magnetic substances, and powder substances that are non-magnetic substances for each part constituting each waste battery 20. Make the crushing method feasible.

前記チェーン式破砕手段のチェーン回転時の衝撃力は、金属製チェーンの材質や太さ、及び回転数で決まる。前記金属製チェーンの材質や太さは装置ごとに一定であり、チェーンの回転数は装置によって調整が可能であるが、回転数を一定に設定することもできる。該回転数を一定にした場合、すなわち衝撃力を一定にした場合、回転時間すなわち破砕時間、及び焙焼物21の投入量によって、例えば、焙焼物21である固形物が破砕され大きさが小さくなった固形物となったり、焙焼物21である固形物が破砕され粉末体となったりするように、廃電池20の部材の材質の硬度、大きさを基に投入量及び破砕時間を調整して、大きさを小さくした固形物にするか、粉末物にするかの調整をすることができる。 The impact force of the chain-type crushing means when the chain rotates is determined by the material, thickness, and rotation speed of the metal chain. The material and thickness of the metal chain are constant for each device, and the number of rotations of the chain can be adjusted depending on the device, but the number of rotations can also be set constant. When the number of rotations is constant, that is, when the impact force is constant, for example, the solid material, which is the roasted material 21, is crushed and reduced in size depending on the rotation time, that is, the crushing time, and the amount of the roasted material 21 input. The input amount and the crushing time are adjusted based on the hardness and size of the materials of the waste battery 20 so that the solids that are the roasted product 21 are crushed into powder. , it is possible to adjust whether it is a solid with a reduced size or a powder.

そこで、廃電池20ごとに構成する部位ごとに、回収する状態を、磁性物、非磁性物である固形物、及び、非磁性物である粉体物のいずれかに分けることができるように、トライして前記チェーン式破砕手段の衝撃力を基にして、前記廃電池20の構成部材別に固形物と粉末物に分けることができるように、前記廃電池20の種類ごとに所定の投入量及び所定の破砕時間を設定し、前記チェーン式破砕手段を作動させて破砕する。 Therefore, in order to be able to classify the collected state into either a magnetic substance, a non-magnetic solid substance, or a non-magnetic powder substance for each part constituting each waste battery 20, Based on the impact force of the chain-type crushing means, the waste battery 20 is divided into solids and powders according to the components of the waste battery 20. A predetermined crushing time is set, and the chain-type crushing means is operated to crush.

前記チェーン式破砕手段としては、例えば、竪型チェーン式破砕装置があり、バッチ式で、中央に垂設された回転軸の下部に、水平方向で等間隔の位置に一端を取り付け固定し他端を自由端とした2本の鉄製チェーンの回転により、チェーンの焙焼物21に対する衝撃による破砕と、投入され落下中の焙焼物21をチェーンにより跳ね飛ばすので四方八方に飛ばされる焙焼物21同士の衝突による衝撃での破砕とが発生する。また、破砕後の破砕物24は、前記チェーンの回転速度を遅くすると、ホウキで掃くように竪型チェーン式破砕装置の破砕室の周壁の下部に設けた排出口から排出させることができる。 As the chain-type crushing means, for example, there is a vertical chain-type crusher, which is a batch type. The rotation of the two iron chains with free ends crushes the roasted food 21 by the impact of the chain and the roasted food 21 thrown in and falling is bounced off by the chain, so that the roasted food 21 collides with each other. Fragmentation due to impact caused by Further, the crushed material 24 after crushing can be discharged from a discharge port provided in the lower part of the peripheral wall of the crushing chamber of the vertical chain crusher as if sweeping with a broom by slowing down the rotation speed of the chain.

破砕工程3は、前記鉄製受け皿7に載置された状態で冷却された鉄製容器5から焙焼済みの焙焼物21を取り出し、その焙焼物21を定量ずつ投入用ベルトコンベア(図示なし)に投入する。そして、投入用ベルトコンベアにより、前記焙焼物21は、バッチ式で、中央に垂設された回転軸の下部に、水平方向で等間隔の位置に一端を取り付け固定し他端を自由端とした2本の鉄製チェーンを備えた前記竪型チェーン式破砕装置の破砕室(図示なし)に投入される。 In the crushing step 3, the roasted product 21 is taken out from the iron container 5 that has been cooled while being placed on the iron receiving plate 7, and the roasted product 21 is put into a feeding belt conveyor (not shown) in fixed amounts. do. Then, by the belt conveyor for feeding, the roasted product 21 is batch-type, and one end is attached and fixed at equal intervals in the horizontal direction to the lower part of the rotating shaft vertically installed in the center, and the other end is a free end. It is put into a crushing chamber (not shown) of the vertical chain crusher equipped with two iron chains.

そして、投入した廃電池20の種類に応じて設定した所定の破砕時間及び所定の投入量で、前記金属製チェーンを回転させて焙焼物21を破砕する。破砕時間が終了すると、チェーンの回転速度を遅くして破砕室内の破砕物を外部に掃きだす。 Then, the metal chain is rotated to crush the toasted material 21 for a predetermined crushing time and a predetermined amount of charge set according to the type of the waste battery 20 put in. When the crushing time is over, the rotation speed of the chain is slowed down to sweep out the crushed material in the crushing chamber.

次に、前記磁選・篩別工程4について説明する。前記磁選・篩別工程4は、該破砕工程3後に、破砕物に対する磁選と同時に篩別を実施する工程であり、図11及び図12に示すように、予め定めた大きさの粉末状の破砕物を篩別可能な大きさの目開きを有するスクリーンを備えた、下流側を下方に斜設した篩用振動装置41と、該篩用振動装置41の上方に磁性体51の破砕物24を引き寄せ可能な磁石42aを有する磁選手段42とを備え、前記破砕工程3後の破砕物24を、磁性体51の破砕物24、所定の大きさ以上の非磁性体固形体53の破砕物、及び、所定の大きさ未満の非磁性体粉末体52の破砕物に分離する工程である。 Next, the magnetic separation/sieving step 4 will be described. The magnetic separation/sieving step 4 is a step of performing magnetic separation and sieving of the crushed material after the crushing step 3. As shown in FIGS. A sieve vibrating device 41 having a screen having openings large enough to sift objects, and a sieve vibrating device 41 inclined downward on the downstream side; A magnetic separation means 42 having an attractable magnet 42a is provided, and the crushed material 24 after the crushing step 3 is divided into the crushed material 24 of the magnetic body 51, the crushed material of the non-magnetic solid body 53 having a predetermined size or more, and , to separate crushed non-magnetic powders 52 having a size smaller than a predetermined size.

前記磁選手段42は、前記篩用振動装置41の上方に設置され、例えば、図11及び図12に示すように、回転するベルトコンベア42bの内側に大きい磁石42aを設置した構造がある。前記磁選手段42により、篩用振動装置41上の破砕物24の中から磁性体51を引き付けることができる。前記ベルトコンベア42bは方向Kで回転し、該ベルトコンベア42bの端部のローラの付近には磁石42aがないので、ここで引き付けた磁性体51は落下し磁性体回収箱51a内に回収される。 The magnetic separation means 42 is installed above the sieve vibration device 41. For example, as shown in FIGS. 11 and 12, there is a structure in which a large magnet 42a is installed inside a rotating belt conveyor 42b. The magnetic separation means 42 can attract the magnetic material 51 from the crushed material 24 on the sieve vibrating device 41 . The belt conveyor 42b rotates in the direction K, and since there is no magnet 42a near the roller at the end of the belt conveyor 42b, the magnetic material 51 attracted here falls and is collected in the magnetic material collection box 51a. .

前記篩別は、予め定めた大きさの粉末状の破砕物を篩別可能な大きさの目開きを有するスクリーンを備えた篩用振動装置41で、前記スクリーンに、揺動手段と連結したコイルスプリング41a等によって振動を与える。前記振動を与えると、下流側を下方に向けて斜設した前記篩用振動装置41上の破砕物24は篩をかけられながら徐々に下流側に移動する。また、前記予め定めた目開きの大きさは、回収する素材の固形体と粉末体とをふるい分け可能な大きさが好ましく、例えば3mmがあり、前記スクリーンは3mm径の多孔構造がある。目開きの大きさは、破砕工程3後の破砕物24には、粉末状の破砕物24と、固形状の破砕物24とが混在しているので、粉末状と固形状とを分離可能な大きさに設定する。 The sieving is performed by a sieve vibrating device 41 equipped with a screen having openings large enough to sift crushed powdery materials of a predetermined size, and a coil connected to a swinging means is attached to the screen. Vibration is given by the spring 41a or the like. When the vibration is applied, the crushed materials 24 on the sieve vibrating device 41 obliquely installed with the downstream side facing downward are gradually moved downstream while being sieved. Moreover, the size of the predetermined mesh opening is preferably a size that enables sieving of the solid and powder of the material to be recovered, and is, for example, 3 mm, and the screen has a porous structure with a diameter of 3 mm. The size of the opening is such that the powdery crushed material 24 and the solid crushed material 24 are mixed in the crushed material 24 after the crushing step 3, so that the powdery form and the solid form can be separated. set to size.

前記破砕工程3後の破砕物24を前記篩用振動装置41上に載置すると、磁性手段42のベルトコンベア42bに磁性体の破砕物24が引き付けられ、3mm未満の大きさの非磁性体の破砕物は篩下に落下し、3mm以上の大きさの非磁性体の破砕物は篩上に残る。これにより、磁性体の破砕物24、所定の大きさ以上の固形状の非磁性体の破砕物24、及び、所定の大きさ未満の粉末状の非磁性体の破砕物24に分離して回収ができる。
When the crushed material 24 after the crushing step 3 is placed on the sieve vibrating device 41, the crushed material 24 of magnetic material is attracted to the belt conveyor 42b of the magnetic means 42, and the non-magnetic material having a size of less than 3 mm is generated. The crushed material falls under the sieve, and non-magnetic crushed material with a size of 3 mm or more remains on the sieve. As a result, the crushed magnetic material 24, the crushed solid non-magnetic material 24 of a predetermined size or more, and the crushed powder 24 of non-magnetic material less than a predetermined size are separated and recovered. can be done.

前記磁性体51の破砕物24として例えばケースの鉄が回収でき、所定の大きさ以上の非磁性固形体53として例えば負極板の銅が回収でき、及び、所定の大きさ未満の非磁性粉末体52として例えば正極板のニッケル、コバルト、リチウムが回収できる。篩下に落下した非磁性粉末体52は、前記篩用振動装置41の下方に上下方向で略平行に設置したベルトコンベア43で搬送され非磁性粉末体回収箱52aに回収され、前記篩用振動装置41上に残った非磁性固形体52は前記篩用振動装置41の振動により徐々に下降し非磁性固形体回収箱53aに回収される。 For example, the iron in the case can be recovered as the crushed material 24 of the magnetic material 51, the copper in the negative electrode plate can be recovered as the non-magnetic solid body 53 having a predetermined size or more, and the non-magnetic powder having a size less than a predetermined size can be recovered. As 52, for example, nickel, cobalt, and lithium of the positive plate can be recovered. The non-magnetic powder 52 that has fallen under the sieve is transported by a belt conveyor 43 installed substantially parallel in the vertical direction below the sieve vibrating device 41, collected in a non-magnetic powder collection box 52a, and subjected to the sieve vibration. The non-magnetic solids 52 remaining on the device 41 are gradually lowered by the vibration of the sieve vibrating device 41 and collected in the non-magnetic solids collection box 53a.

箱型形状でケーシングが鉄製で、大きさが縦3cm×横15cm×高さ10cmのリチウムイオン電池を、底壁近傍を含む周壁に複数の空気穴6を設けた、200リットル入りのドラム缶と略同じ大きさの円筒状の鉄製容器5に収納して、その収納した鉄製容器5を4個、一段で鉄製受け皿7に載置して、焙焼炉10内にセットして焙焼温度800℃~1200℃で約4時間焙焼した。その後、焙焼物21の4.5kgを、所定の衝撃力を有する前記竪型チェーン式破砕装置で破砕時間を10秒の場合と13秒の場合の2通りで破砕を行った。その後、上方に前記磁選手段42を設けた、3mm径の多孔構造のスクリーンを有する篩用振動装置41で振動を与えた。 A lithium-ion battery with a box-shaped casing made of iron and a size of 3 cm long, 15 cm wide, and 10 cm high is abbreviated as a 200-liter drum containing a plurality of air holes 6 on the peripheral wall including the vicinity of the bottom wall. The iron containers 5 are stored in cylindrical iron containers 5 of the same size, and the four iron containers 5 stored are placed on the iron receiving pan 7 in one stage, set in the roasting furnace 10, and roasted at a temperature of 800 ° C. Roasted at ~1200°C for about 4 hours. Thereafter, 4.5 kg of the roasted product 21 was crushed by the vertical chain type crusher having a predetermined impact force for two crushing times of 10 seconds and 13 seconds. After that, vibration was applied by a sieve vibrating device 41 having a porous screen with a diameter of 3 mm and having the magnetic separation means 42 provided above.

その結果、焙焼後の廃電池20を鉄製容器5から容易に取り出すことができ、破砕されていない焙焼物21がなく破砕率100%を達成し、破砕物24の粒度は10秒の場合が0.5cm~13cm、13秒の場合が0.5cm~4cmとなった。なお、この廃電池20はケースがアルミニウム製でなく鉄製のため、焙焼温度で溶融する金属はなかった。そして、磁性体51の鉄、非磁性固形体53の銅箔、非磁性粉末体52のニッケル、コバルト、リチウムをそれぞれ回収できた。 As a result, the waste battery 20 after roasting can be easily taken out from the iron container 5, there is no roasted material 21 that is not crushed, and the crushing rate is 100%, and the particle size of the crushed material 24 is 10 seconds. 0.5 cm to 13 cm, and 0.5 cm to 4 cm for 13 seconds. Since the case of this waste battery 20 is made of iron instead of aluminum, there is no metal that melts at the roasting temperature. Then, the iron of the magnetic substance 51, the copper foil of the non-magnetic solid substance 53, and the nickel, cobalt and lithium of the non-magnetic powder substance 52 were recovered.

前記結果から、箱型形状でケーシングが鉄製で、大きさが縦3cm×横15cm×高さ10cmのリチウムイオン電池の破砕工程3は、前記竪型チェーン式破砕装置の破砕室への投入量を4~6kgとし、破砕時間は12~14秒を設定した。 From the above results, in the crushing process 3 of lithium ion batteries having a box shape, a casing made of iron, and a size of 3 cm long × 15 cm wide × 10 cm high, the amount of input to the crushing chamber of the vertical chain crusher is The weight was set to 4 to 6 kg, and the crushing time was set to 12 to 14 seconds.

箱型形状でケーシングがアルミニウム製で、大きさが縦1cm×横12cm×高さ10cmのリチウムイオン電池を、底壁近傍を含む周壁に複数の空気穴6を設けた、200リットル入りのドラム缶と略同じ大きさの鉄製容器5に収納して、その収納した鉄製容器5を4個、一段で鉄製受け皿7に載置して、焙焼炉10内にセットして焙焼温度800℃~1200℃で約4時間焙焼した。その後、焙焼物21の3kgを所定の衝撃力を有する前記竪型チェーン式破砕装置で破砕時間を10秒の場合と13秒の場合の2通りで破砕を行った。その後、上方に前記磁選手段42を設けた、3mm径の多孔構造のスクリーンを有する篩用振動装置41で振動を与えた。 A 200-liter drum containing a lithium-ion battery with a box-shaped casing made of aluminum and a size of 1 cm long x 12 cm wide x 10 cm high is provided with a plurality of air holes 6 on the peripheral wall including the vicinity of the bottom wall. Stored in iron containers 5 of approximately the same size, four of the stored iron containers 5 are placed on the iron tray 7 in one stage, set in the roasting furnace 10, and roasted at a temperature of 800 ° C. to 1200. ℃ for about 4 hours. Thereafter, 3 kg of the roasted product 21 was crushed by the vertical chain type crusher having a predetermined impact force for two crushing times of 10 seconds and 13 seconds. After that, vibration was applied by a sieve vibrating device 41 having a porous screen with a diameter of 3 mm and having the magnetic separation means 42 provided above.

その結果、前記鉄製受け皿7から流出し凝固した、焙焼温度で溶融していない部材が混在していない状態のアルミニウムを回収でき、焙焼後の廃電池20を鉄製容器5から容易に取り出すことができ、破砕されていない焙焼物21がなく破砕率100%を達成し、破砕物24の粒度は10秒の場合が0.5cm~7cm、13秒の場合が0.5cm~4cmとなった。そして、磁性体51の鉄、非磁性固形体53の銅箔、非磁性粉末体52のニッケル、コバルト、リチウムをそれぞれ、溶融金属22のアルミニウムに巻き込まれることなく高い回収率で回収できた。 As a result, the aluminum that has flowed out and solidified from the iron receiving pan 7 and is not mixed with members that have not melted at the roasting temperature can be recovered, and the waste battery 20 after roasting can be easily taken out from the iron container 5. A crushing rate of 100% was achieved without any uncrushed roasted product 21, and the particle size of the crushed product 24 was 0.5 cm to 7 cm for 10 seconds and 0.5 cm to 4 cm for 13 seconds. . The iron of the magnetic material 51, the copper foil of the non-magnetic solid material 53, and the nickel, cobalt, and lithium of the non-magnetic powder material 52 could be recovered at a high recovery rate without being caught in the aluminum of the molten metal 22, respectively.

前記結果から、箱型形状でケーシングがアルミニウム製で、大きさが縦1cm×横12cm×高さ10cmのリチウムイオン電池の破砕工程3は、前記竪型チェーン式破砕装置の破砕室への投入量を3kgとし、破砕時間は8~10秒を設定した。 From the above results, in the crushing step 3 of the lithium-ion battery with a box-shaped casing made of aluminum and a size of 1 cm long × 12 cm wide × 10 cm high, the amount of input to the crushing chamber of the vertical chain crusher was set to 3 kg, and the crushing time was set to 8 to 10 seconds.

円筒形状でケーシングが鉄製で、大きさが直径1.5cm×高さ3cmのリチウムイオン電池を、底壁近傍を含む周壁に複数の空気穴6を設けた、200リットル入りのドラム缶と略同じ大きさの円筒状の鉄製容器5に収納して、その収納した鉄製容器5を4個、一段で鉄製受け皿7に載置して、焙焼炉10内にセットして焙焼温度800℃~1200℃で約4時間焙焼した。その後、焙焼物21の4kgを所定の衝撃力を有する前記竪型チェーン式破砕装置で破砕時間を10秒の場合と13秒の場合の2通りで破砕を行った。その後、上方に前記磁選手段42を設けた、3mm径の多孔構造のスクリーンを有する篩用振動装置41で振動を与えた。 A cylindrical lithium-ion battery with a casing made of iron and a size of 1.5 cm in diameter and 3 cm in height is provided with a plurality of air holes 6 on the peripheral wall including the vicinity of the bottom wall, and is approximately the same size as a 200-liter drum. It is stored in a cylindrical iron container 5 with a thickness, and the four iron containers 5 stored are placed in one stage on an iron saucer 7 and set in a roasting furnace 10 at a roasting temperature of 800 ° C. to 1200. ℃ for about 4 hours. Thereafter, 4 kg of the roasted product 21 was crushed by the vertical chain type crusher having a predetermined impact force for two crushing times of 10 seconds and 13 seconds. After that, vibration was applied by a sieve vibrating device 41 having a porous screen with a diameter of 3 mm and having the magnetic separation means 42 provided above.

その結果、焙焼後の廃電池20を鉄製容器5から容易に取り出すことができ、破砕率は破砕時間が10秒の場合は破砕率が95%で、破砕時間が13秒の場合は破砕率が100%であった。そのとき得られた破砕物の粒度は0.5cm~5cmとなった。そして、磁性体51の鉄、非磁性固形体53の銅箔、非磁性粉末体52のニッケル、コバルト、リチウムをそれぞれ回収できた。 As a result, the waste battery 20 after roasting can be easily removed from the iron container 5, and the crushing rate is 95% when the crushing time is 10 seconds, and the crushing rate is 95% when the crushing time is 13 seconds. was 100%. The grain size of the crushed material obtained at that time was 0.5 cm to 5 cm. Then, the iron of the magnetic substance 51, the copper foil of the non-magnetic solid substance 53, and the nickel, cobalt and lithium of the non-magnetic powder substance 52 were recovered.

前記結果から、円筒形状でケーシングが鉄製で、大きさが直径1.5cm×高さ3cmのリチウムイオン電池の破砕工程3は、前記竪型チェーン式破砕装置の破砕室への投入量を4kgとし、破砕時間は13秒を設定した。 From the above results, in the crushing step 3 of the lithium ion battery having a cylindrical shape, a casing made of iron, and a size of 1.5 cm in diameter and 3 cm in height, the amount of input to the crushing chamber of the vertical chain crusher was set to 4 kg. , and the crushing time was set to 13 seconds.

以上から、本発明の廃電池からの有価金属回収方法1は、焙焼工程2において、同一種類の廃電池20を、空気穴6を設けた鉄製容器5に収納し、その鉄製容器5を鉄製受け皿7に載置して焙焼すると、溶融金属22であるアルミニウムを純度の高い状態で回収でき、かつ、焙焼温度で溶融した溶融金属22のアルミニウムの凝固した塊の中に、廃電池20の焙焼温度で溶融していない部材が混在しないようになったので、廃電池20の焙焼温度で溶融していない部材の回収率が向上した。 As described above, in the method 1 for recovering valuable metals from waste batteries of the present invention, in the roasting step 2, waste batteries 20 of the same type are stored in an iron container 5 provided with an air hole 6, and the iron container 5 is made of iron. When placed on the tray 7 and roasted, the aluminum that is the molten metal 22 can be recovered in a high-purity state, and the waste battery 20 is placed in the aluminum solidified mass of the molten metal 22 melted at the roasting temperature. Therefore, the recovery rate of the members not melted at the roasting temperature of the waste battery 20 is improved.

また、破砕工程3において、竪型チェーン式破砕装置を用いて、前記チェーン式破砕手段の衝撃力を基にして、前記廃電池の構成部材別に固形物と粉末物に分けることができるように、前記廃電池20の種類ごとに所定の投入量及び所定の破砕時間を設定し、前記チェーン式破砕手段を作動させて破砕するようにしたことにより、破砕率100%を達成でき、くっついていた部材同士の剥離が進み、磁選手段42により引き付ける磁性体51の中に、非磁性体がくっついた磁性体が激減し、非磁性体の量が増加して、素材の回収率が向上した。 Further, in the crushing step 3, a vertical chain type crushing device is used, based on the impact force of the chain type crushing means, so that the waste battery can be separated into solid matter and powdery matter according to the constituent members of the waste battery. By setting a predetermined input amount and a predetermined crushing time for each type of the waste battery 20 and operating the chain-type crushing means to crush, a crushing rate of 100% can be achieved. The detachment progressed, and the magnetic material with the non-magnetic material stuck to it decreased sharply in the magnetic material 51 attracted by the magnetic separation means 42, the amount of the non-magnetic material increased, and the recovery rate of the material improved.

1 有価金属回収方法
2 焙焼工程
3 破砕工程
4 磁選・篩別工程
5 鉄製容器
6 空気穴
7 鉄製受け皿
10 焙焼炉
11 着火バーナー
12 固定床
13 炉蓋
20 廃電池
21 焙焼物
22 溶融金属
23 廃電池部材混在溶融物
24 破砕物
31 ドラム缶
40 磁選・篩別手段
41 篩用振動装置
41a コイルスプリング
42 磁選手段
42a 磁石
42b ベルトコンベア
43 ベルトコンベア
51 磁性体
51a 磁性体回収箱
52 非磁性粉末体
52a 非磁性粉末体回収箱
53 非磁性固形体
53a 非磁性固形体回収箱
1 Valuable metal recovery method 2 Roasting process 3 Crushing process 4 Magnetic separation/sieving process 5 Iron vessel 6 Air hole 7 Iron saucer 10 Roasting furnace 11 Ignition burner 12 Fixed bed 13 Furnace lid 20 Waste battery 21 Roasted material 22 Molten metal 23 Mixed melted waste battery materials 24 Crushed material 31 Drum can 40 Magnetic separation/sieving means 41 Sieve vibration device 41a Coil spring 42 Magnetic separation means 42a Magnet 42b Belt conveyor 43 Belt conveyor 51 Magnetic material 51a Magnetic material collection box 52 Non-magnetic powder 52a Non-magnetic powder collection box 53 Non-magnetic solid body 53a Non-magnetic solid body collection box

Claims (3)

廃電池を、底壁近傍を含む周壁に複数の空気穴を有する鉄製容器内に収納し、収納した該鉄製容器を複数個載置したトレー状の鉄製受け皿を焙焼炉内に載置した状態で前記廃電池を焙焼する焙焼工程と、
該焙焼工程後に前記鉄製容器から焙焼物を取り出して、該焙焼物を衝撃荷重で破砕する破砕工程と、
該破砕工程後に、破砕物に対する磁選と同時に篩別を実施する、磁選・篩別工程と、を備えたことを特徴とする廃電池からの有価金属回収方法。
A waste battery is stored in an iron container having a plurality of air holes in the peripheral wall including the vicinity of the bottom wall, and a tray-like iron saucer on which a plurality of the iron containers are placed is placed in the roasting furnace. a roasting step of roasting the waste battery in the state of
A crushing step of removing the roasted product from the iron container after the roasting step and crushing the roasted product with an impact load;
A method for recovering valuable metals from waste batteries, characterized by comprising a magnetic separation/sieving step in which, after the crushing step, magnetic separation and sieving of the crushed materials are carried out at the same time.
前記破砕工程が、垂設された回転軸の下部の、前記焙焼物に衝撃荷重を与えることが可能な所定の高さに、かつ金属製チェーンの回転速度を遅くすると、ホウキで掃くように破砕物を排出させることができる高さに、一方端を固定され他方端を自由端にした金属製チェーンを複数有するチェーン式破砕手段を備えて、前記チェーン式破砕手段の衝撃力を基にして、前記廃電池の構成部材別に固形物と粉末物に分けることができるように、前記廃電池の種類ごとに設定した所定の投入量及び所定の破砕時間で前記チェーン式破砕手段を作動させて破砕することを特徴とする請求項1に記載の廃電池からの有価金属回収方法。 In the crushing step, when the rotation speed of the metal chain is lowered to a predetermined height where the impact load can be applied to the roasted product at the bottom of the vertically installed rotating shaft, crushing is performed by sweeping with a broom. Equipped with chain-type crushing means having a plurality of metal chains with one end fixed and the other end free at a height that allows objects to be discharged , based on the impact force of the chain-type crushing means, The chain-type crushing means is operated and crushed at a predetermined amount and crushing time set for each type of the waste battery so that the waste battery can be separated into solid matter and powder matter according to the constituent members of the waste battery. The method for recovering valuable metals from waste batteries according to claim 1, characterized in that: 前記磁選・篩別工程が、予め定めた大きさの粉末状の破砕物を篩別可能な大きさの目開きを有するスクリーンを備えた、下流側を下方に斜設した篩用振動装置と、該篩用振動装置の上方に磁性体の破砕物を引き寄せ可能な磁石を有する磁選手段とを備え、前記破砕工程後の破砕物を、磁性体の破砕物、所定の大きさ以上の非磁性体の破砕物、及び、所定の大きさ未満の非磁性体の破砕物に分離することを特徴とする請求項1又は2に記載の廃電池からの有価金属回収方法。 In the magnetic separation/sieving step, a sieve vibrating device having a screen having openings of a size capable of sieving crushed powdery materials of a predetermined size and having a downstream side inclined downward; A magnetic separation means having a magnet capable of attracting the crushed magnetic material above the vibrating device for sieve is provided, and the crushed material after the crushing step is separated from the crushed magnetic material, the non-magnetic material having a predetermined size or more. 3. The method for recovering valuable metals from waste batteries according to claim 1 or 2, wherein the crushed substances are separated into crushed substances of a size less than a predetermined size and non-magnetic crushed substances smaller than a predetermined size.
JP2021177018A 2021-10-29 2021-10-29 Valuable metal recovery method from waste batteries Active JP7333098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021177018A JP7333098B2 (en) 2021-10-29 2021-10-29 Valuable metal recovery method from waste batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021177018A JP7333098B2 (en) 2021-10-29 2021-10-29 Valuable metal recovery method from waste batteries

Publications (2)

Publication Number Publication Date
JP2023066433A JP2023066433A (en) 2023-05-16
JP7333098B2 true JP7333098B2 (en) 2023-08-24

Family

ID=86326024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021177018A Active JP7333098B2 (en) 2021-10-29 2021-10-29 Valuable metal recovery method from waste batteries

Country Status (1)

Country Link
JP (1) JP7333098B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028560A (en) 2004-07-14 2006-02-02 Toho Titanium Co Ltd Melting apparatus for metal titanium
JP2019173142A (en) 2018-03-29 2019-10-10 Jx金属株式会社 Method for processing lithium ion battery scrap, and strainer
JP2019175546A (en) 2018-03-26 2019-10-10 住友金属鉱山株式会社 Melting separation unit, separation method of aluminum from waste lithium ion battery, and recovery method of valuables from waste lithium ion battery
JP2020049474A (en) 2018-09-28 2020-04-02 株式会社下瀬微生物研究所 Burner fuel manufacturing apparatus and manufacturing method
JP2020143330A (en) 2019-03-06 2020-09-10 太平洋セメント株式会社 Copper recovery apparatus and recovery method from copper-containing waste material, and heat resistant vessel
JP2021140896A (en) 2020-03-03 2021-09-16 Dowaエコシステム株式会社 Lithium ion battery housing container and method for recovering aluminum from lithium ion battery
JP2021139019A (en) 2020-03-06 2021-09-16 住友金属鉱山株式会社 Valuable metal recovery method from waste battery
JP2021150282A (en) 2020-03-13 2021-09-27 Dowaエコシステム株式会社 Lithium recovery method and lithium ion secondary battery processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028560A (en) 2004-07-14 2006-02-02 Toho Titanium Co Ltd Melting apparatus for metal titanium
JP2019175546A (en) 2018-03-26 2019-10-10 住友金属鉱山株式会社 Melting separation unit, separation method of aluminum from waste lithium ion battery, and recovery method of valuables from waste lithium ion battery
JP2019173142A (en) 2018-03-29 2019-10-10 Jx金属株式会社 Method for processing lithium ion battery scrap, and strainer
JP2020049474A (en) 2018-09-28 2020-04-02 株式会社下瀬微生物研究所 Burner fuel manufacturing apparatus and manufacturing method
JP2020143330A (en) 2019-03-06 2020-09-10 太平洋セメント株式会社 Copper recovery apparatus and recovery method from copper-containing waste material, and heat resistant vessel
JP2021140896A (en) 2020-03-03 2021-09-16 Dowaエコシステム株式会社 Lithium ion battery housing container and method for recovering aluminum from lithium ion battery
JP2021139019A (en) 2020-03-06 2021-09-16 住友金属鉱山株式会社 Valuable metal recovery method from waste battery
JP2021150282A (en) 2020-03-13 2021-09-27 Dowaエコシステム株式会社 Lithium recovery method and lithium ion secondary battery processing method

Also Published As

Publication number Publication date
JP2023066433A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP6268130B2 (en) Method for recovering valuable materials from lithium-ion batteries
JP5574876B2 (en) Gypsum waste material recycling equipment
US5769331A (en) Method and apparatus for recycling empty aluminum cans
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
US9707569B2 (en) Method and system for processing slag material
JP2010231925A (en) Method of collecting valuable resource of manganese lithium-ion secondary battery, and device therefor
US20120024108A1 (en) Process and system for material reclamation and recycling
CN110694771A (en) Flexible airflow powder removing method for waste ternary lithium battery
CN106099238A (en) A kind of recovery method of waste secondary battery ferrum
JP5404019B2 (en) Recycling method for waste aluminum products
JP7333098B2 (en) Valuable metal recovery method from waste batteries
JP2021123760A (en) Valuable material sorting method
JP3450684B2 (en) How to recover valuable resources from used lithium batteries
JP6966960B2 (en) Lithium-ion battery waste disposal method
JP7322687B2 (en) Valuable metal recovery method from waste batteries
JP2020061297A (en) Method of recovering valuable material from lithium ion secondary battery
JP3273652B2 (en) Sintering method for sinter
JP3564035B2 (en) Method and apparatus for separating and recovering metal and slag from metal-containing raw materials
TWI790740B (en) Method for recovering valuable materials from lithium ion secondary cell
KR101815491B1 (en) Aluminum can recycling system
JP7236524B2 (en) Method for collecting valuables from lithium ion secondary battery
CN108588332B (en) Deoxidizer production device and process for producing deoxidizer by using same
US5192359A (en) Recovery of aluminum from furnace dross
WO2023204230A1 (en) Method for recovering valuable materials from lithium-ion secondary battery
KR200278865Y1 (en) Powder omitted

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20211112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230804

R150 Certificate of patent or registration of utility model

Ref document number: 7333098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150