JP7329219B2 - Method for producing aldol condensate from aldehyde - Google Patents

Method for producing aldol condensate from aldehyde Download PDF

Info

Publication number
JP7329219B2
JP7329219B2 JP2020532302A JP2020532302A JP7329219B2 JP 7329219 B2 JP7329219 B2 JP 7329219B2 JP 2020532302 A JP2020532302 A JP 2020532302A JP 2020532302 A JP2020532302 A JP 2020532302A JP 7329219 B2 JP7329219 B2 JP 7329219B2
Authority
JP
Japan
Prior art keywords
aldehyde
catalyst
reaction
silica
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020532302A
Other languages
Japanese (ja)
Other versions
JPWO2020022114A1 (en
Inventor
智司 佐藤
貫一郎 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Chiba University NUC
JNC Petrochemical Corp
Original Assignee
JNC Corp
Chiba University NUC
JNC Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, Chiba University NUC, JNC Petrochemical Corp filed Critical JNC Corp
Publication of JPWO2020022114A1 publication Critical patent/JPWO2020022114A1/en
Application granted granted Critical
Publication of JP7329219B2 publication Critical patent/JP7329219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Description

本発明は、アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法に関する。 The present invention is a method for producing an aldol condensate using an aldol condensation reaction of aldehyde, comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina. Regarding the method.

塩化ビニール樹脂の可塑剤として大量に使用されているジオクチルフタレート(以下DOPと略記する。)はいわゆるフタレート系可塑剤の代表である。DOPの原料である2-エチルヘキサノールは、ノルマルブチルアルデヒドのアルドール縮合物である2-エチル-2-ヘキセナールを水添して工業的に製造されている。ノルマルブチルアルデヒドのアルドール縮合は通常、水酸化ナトリウム、又はアニオン交換樹脂といった塩基触媒が用いられる(非特許文献1)。これらの方法は各々、高BOD負荷の廃水が発生する或いは、触媒が高コストであるという問題点を有している。また、気相中、塩基触媒下で、アルデヒドの縮合反応を検討した例もあるが(非特許文献2)、反応の検討を行ったに過ぎず、原料転化率、目的物選択率が十分でなく工業化への応用が可能である反応とは言えない。 Dioctyl phthalate (hereinafter abbreviated as DOP), which is used in large quantities as a plasticizer for vinyl chloride resins, is a representative of so-called phthalate plasticizers. 2-Ethylhexanol, which is a raw material for DOP, is industrially produced by hydrogenating 2-ethyl-2-hexenal, which is an aldol condensate of normal butyraldehyde. Aldol condensation of normal butyraldehyde usually uses a base catalyst such as sodium hydroxide or an anion exchange resin (Non-Patent Document 1). Each of these methods has the problem of generating wastewater with a high BOD load or the high cost of the catalyst. There is also an example of investigating the condensation reaction of aldehydes in the gas phase under the presence of a basic catalyst (Non-Patent Document 2), but this is only a study of the reaction, and the raw material conversion rate and target product selectivity are insufficient. It cannot be said that this is a reaction that can be applied to industrialization.

気相でのアルドール反応についての検討例は多々あるものの、特許文献1のように、ケトンを原料としており、アルデヒドを反応原料とした実施例を示している例はほとんど見られず、鎖状アルデヒドの気相アルドール縮合反応の困難さを示唆している。一方、特許文献2では、液相での固定床流通反応での鎖状アルデヒドでの検討を行っているが、アルコールの製造を目的としたものであり、反応成績が充分とは言えなかった。 Although there are many examples of studies on aldol reactions in the gas phase, there are almost no examples showing examples in which ketones are used as raw materials and aldehydes are used as reaction raw materials, as in Patent Document 1. Chain aldehydes suggesting the difficulty of the gas-phase aldol condensation reaction of On the other hand, in Patent Document 2, although a chain aldehyde is studied in a fixed bed flow reaction in a liquid phase, the purpose is to produce alcohol, and the reaction results were not satisfactory.

特開平6-25065号公報JP-A-6-25065 特表2011-517656号公報Japanese Patent Publication No. 2011-517656

Industrial Organic Chemistry (K.Weissermel,H.J.Arpe Wiley VCH)Industrial Organic Chemistry (K. Weissermel, H. J. Arpe Wiley VCH) Topics in Catalysis (2017), 60(19-20), 1522-1536.Topics in Catalysis (2017), 60(19-20), 1522-1536.

本発明の目的は、上記従来の技術課題を解決することであり、アルデヒドからアルドール縮合物を効率よく製造する方法を提供することである。 An object of the present invention is to solve the above-mentioned conventional technical problems, and to provide a method for efficiently producing an aldol condensate from an aldehyde.

本発明者らは鋭意検討の結果、シリカ、アルミナ及びシリカ-アルミナから選ばれるいずれか一種類以上を触媒として用い、気相でアルドール縮合反応を行うことにより、アルデヒドからアルドール縮合物を効率よく生成することを見いだし、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that an aldol condensation product is efficiently produced from an aldehyde by performing an aldol condensation reaction in a gas phase using at least one selected from silica, alumina and silica-alumina as a catalyst. I found that it does, and came to complete the present invention.

本発明は、以下を包含する。
[1] アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、
気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法。
[2] 前記触媒が220から380m-1のBET比表面積を有する、[1]に記載の製造方法。
[3] 前記触媒が250から350m-1のBET比表面積を有する、[1]に記載の製造方法。
[4] 前記触媒が酸素、アルミニウム又はケイ素以外の成分を含まない、[1]から[3]のいずれかに記載の製造方法。
[5] 前記触媒がシリカである、[1]から[3]のいずれかに記載の製造方法。
[6] 前記アルデヒドが炭素数2から6の直鎖アルデヒドである、[1]から[5]のいずれかに記載の製造方法。
[7] 前記アルデヒドが、ノルマルブチルアルデヒドである[1]から[5]のいずれかに記載の製造方法。
[8] 前記アルドール縮合物が、2-エチル-2-ヘキセナールである[1]から[7]のいずれかに記載の方法。
The present invention includes the following.
[1] A method for producing an aldol condensate using an aldol condensation reaction of an aldehyde,
A production method comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina.
[2] The production method according to [1], wherein the catalyst has a BET specific surface area of 220 to 380 m 2 g -1 .
[3] The production method according to [1], wherein the catalyst has a BET specific surface area of 250 to 350 m 2 g -1 .
[4] The production method according to any one of [1] to [3], wherein the catalyst does not contain any component other than oxygen, aluminum or silicon.
[5] The production method according to any one of [1] to [3], wherein the catalyst is silica.
[6] The production method according to any one of [1] to [5], wherein the aldehyde is a linear aldehyde having 2 to 6 carbon atoms.
[7] The production method according to any one of [1] to [5], wherein the aldehyde is n-butyraldehyde.
[8] The method according to any one of [1] to [7], wherein the aldol condensate is 2-ethyl-2-hexenal.

本発明の製造方法によれば、アルデヒドからアルドール縮合物を効率よく製造することができる。 According to the production method of the present invention, an aldol condensate can be efficiently produced from an aldehyde.

図1は、実施例で用いた固定床常圧気相流通反応装置の概略図である。FIG. 1 is a schematic diagram of a fixed-bed atmospheric gas-phase flow reactor used in Examples.

本発明は、アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法である。 The present invention is a method for producing an aldol condensate using an aldol condensation reaction of aldehyde, comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina. The method.

[触媒について]
(触媒成分)
本発明における触媒はシリカ(SiO)単体、アルミナ(Al)単体、シリカ-アルミナ複合体、及びこれらを混合したものを使用することができる。
[About the catalyst]
(catalyst component)
As the catalyst in the present invention, silica (SiO 2 ) simple substance, alumina (Al 2 O 3 ) simple substance, silica-alumina composite, and mixture thereof can be used.

本発明で用いる触媒に、他の金属を担持させること、さらに他の酸化物と複合化させることもできるが、本発明では、他の成分(酸素、アルミニウム、ケイ素以外の成分)を含まないことが好ましい。シリカ、アルミナ、シリカ-アルミナ複合体の中では、シリカであることがさらに好ましい。なお、シリカ-アルミナ複合体は、シリカとアルミナを任意の割合で含むことができるが、シリカ成分が多い方が好ましい。
なお、ここで「他の成分を含まない」とは、意図的に他の成分を含ませることをしないことをいい、他の成分が不可避的に含有してしまうことは許容される。
The catalyst used in the present invention can be loaded with other metals, or can be composited with other oxides, but in the present invention, it does not contain other components (components other than oxygen, aluminum, and silicon). is preferred. Among silica, alumina, and silica-alumina composites, silica is more preferable. The silica-alumina composite can contain silica and alumina in any ratio, but it is preferable that the silica component is large.
Here, "not containing other components" means not intentionally containing other components, and unavoidable inclusion of other components is acceptable.

本発明に用いる触媒の比表面積(BET比表面積)は、特に限定されるものではないが、アルドール縮合物の収率の観点から、220から380m-1であることが好ましく、250から350m-1であることがさらに好ましい。Although the specific surface area (BET specific surface area) of the catalyst used in the present invention is not particularly limited, it is preferably 220 to 380 m 2 g −1 and 250 to 350 m 2 g −1 from the viewpoint of yield of aldol condensate. More preferably, it is 2 g -1 .

(触媒前駆体)
本発明に用いられる触媒は、市販品、市販品を焼成したもの、アルミニウム又はケイ素の水酸化物、あるいは有機アルミニウム化合物又は有機ケイ素化合物を熱分解したもの等を用いることができ、特に限定されるものではない。
他の成分を含有させるときには、含浸法などにより従来の技術を用いて担持させることができるが、上述したように、他の成分を含まないシリカ、アルミナ、シリカ-アルミナ触媒であることが好ましい。
(catalyst precursor)
The catalyst used in the present invention may be a commercially available product, a product obtained by calcining a commercially available product, a hydroxide of aluminum or silicon, or a product obtained by thermally decomposing an organoaluminum compound or an organosilicon compound, etc., and is particularly limited. not a thing
When other components are contained, they can be supported using conventional techniques such as impregnation, but as described above, silica, alumina, and silica-alumina catalysts containing no other components are preferred.

[アルドール縮合物の製造方法について]
(原料)
原料となるアルデヒドは特に限定されないが、反応温度の範囲内(例えば、200℃から400℃)で気体状態であるアルデヒドが好ましい。アルデヒドは、直鎖のアルデヒドあるいは、分岐鎖を有するアルデヒドのいずれでもよいが、反応収率の観点から、直鎖アルデヒドが好ましく、炭素数2から6の直鎖アルデヒドがさらに好ましい。具体的には、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒドなどが挙げられる。
[Method for producing aldol condensate]
(material)
The aldehyde used as a raw material is not particularly limited, but an aldehyde that is in a gaseous state within the reaction temperature range (for example, 200° C. to 400° C.) is preferred. The aldehyde may be either a straight-chain aldehyde or a branched aldehyde, but from the viewpoint of reaction yield, a straight-chain aldehyde is preferred, and a straight-chain aldehyde having 2 to 6 carbon atoms is more preferred. Specific examples include acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, capronaldehyde and the like.

原料となるアルデヒドは、単一のアルデヒドを用いてよいし、複数のアルデヒドを用いてもよいが、目的とするアルドール縮合物が一つの場合、単一のアルデヒドを用いることが好ましい。 A single aldehyde may be used as the raw material aldehyde, or a plurality of aldehydes may be used. However, when the target aldol condensate is one, it is preferable to use a single aldehyde.

(原料の制限)
原料のアルデヒド中の水分は、特に限定されないが、0~10重量%の範囲が好ましい。アルデヒド中の水分が10重量%を超えると反応効率が低下する場合がある。
(Restrictions on raw materials)
The water content in the raw material aldehyde is not particularly limited, but is preferably in the range of 0 to 10% by weight. If the water content in the aldehyde exceeds 10% by weight, the reaction efficiency may decrease.

(原料の速度)
原料のアルデヒドの供給量については、アルドール縮合物ができる程度に量を供給すればよく、特に限定されるものではないが、例えば、単位時間、単位触媒体積あたり0.1から3.0の空間速度(LHSV:Liquid Hourly Space Velocity 単位 h-1)、とすることができる。
(raw material speed)
The amount of aldehyde to be supplied as a raw material is not particularly limited as long as it is sufficient to supply an aldol condensate, but for example, 0.1 to 3.0 spaces per unit time and unit catalyst volume. velocity (LHSV: Liquid Hourly Space Velocity unit h −1 ).

(生成物)
また、これらの原料から得られるアルドール縮合物は、前記アルデヒドがアルドール縮合し、二量化することにより得られる化合物である。アルドール縮合物は、原料となるアルデヒドの種類に応じて変わるものであるが、例えば、クロトンアルデヒド、2-メチル-2-ペンテナール、2-エチル-2-ヘキセナール、2-プロピル-2-ヘプテナール、2-ブチル-2-オクテナールなどが挙げられる。
(product)
Moreover, the aldol condensate obtained from these raw materials is a compound obtained by the aldol condensation and dimerization of the aldehyde. The aldol condensate varies depending on the type of aldehyde used as a raw material. -Butyl-2-octenal and the like.

(反応装置)
本発明のアルドール縮合物の製造で使用される反応装置は、気体のアルデヒドを触媒に接触させることができれば特に限定されない。たとえば、気相流通反応装置に所定量の触媒を入れ、これを公知の方法で活性化することにより活性な触媒層を気相流通反応装置内に形成させてもよい。ここに、原料のアルデヒドを供給することによりアルドール縮合物を製造することが可能である。
(Reactor)
The reactor used in the production of the aldol condensate of the present invention is not particularly limited as long as it can bring the gaseous aldehyde into contact with the catalyst. For example, an active catalyst layer may be formed in the gas phase flow reactor by placing a predetermined amount of catalyst in the gas phase flow reactor and activating it by a known method. It is possible to produce an aldol condensate by supplying the starting aldehyde here.

(反応温度)
本発明のアルドール縮合物製造方法の反応温度は、200℃から400℃の温度範囲、すなわち、原料であるアルデヒドが気相状態として存在する温度が好適である。反応を十分に進行させるためには200℃以上が好ましく、生成物選択率を良好に保つためには400℃以下が好ましい。更に好ましい温度範囲としては220℃から300℃の範囲である。
(reaction temperature)
The reaction temperature in the method for producing an aldol condensate of the present invention is preferably in the temperature range of 200° C. to 400° C., that is, the temperature at which the raw material aldehyde exists in a gaseous state. A temperature of 200° C. or higher is preferable for allowing the reaction to proceed sufficiently, and a temperature of 400° C. or less is preferable for maintaining good product selectivity. A more preferable temperature range is from 220°C to 300°C.

(反応圧力)
本発明のアルドール縮合の反応の圧力は、特に限定されるものではないが、大気圧下で行うことが好ましい。
(reaction pressure)
Although the pressure of the aldol condensation reaction of the present invention is not particularly limited, it is preferably carried out under atmospheric pressure.

(キャリアガス)
本発明の気相アルドール縮合反応は、原料と一緒にキャリアガスを流すことができる。キャリアガスの種類は、非酸化性ガスであることが好ましい。より好ましくは、水素ガス又は水素含有不活性ガスであり、さらに好ましくは、水素ガスである。ここで、不活性ガスとは、反応に影響しないガスのことをいい、窒素ガス、アルゴンガスなどが挙げられる。
キャリアガスの流量は、特に限定されないが、滞留時間が長いと高次アルドール反応が進行するおそれがあるため、触媒層体積に対するキャリアガスフィード量の比(キャリアガスフィード量/触媒層体積)として、0.01~100/min程度であることが好ましい。
なお、原料を投入する前に、触媒を前処理することが好ましい。前処理は、反応と同じキャリアガスを用いて、反応と同じ温度で、例えば10分~10時間維持することにより、行われる。
(carrier gas)
In the gas phase aldol condensation reaction of the present invention, a carrier gas can flow together with the raw materials. The type of carrier gas is preferably non-oxidizing gas. Hydrogen gas or a hydrogen-containing inert gas is more preferred, and hydrogen gas is even more preferred. Here, the inert gas means a gas that does not affect the reaction, and examples thereof include nitrogen gas and argon gas.
The flow rate of the carrier gas is not particularly limited, but if the residence time is long, a high-order aldol reaction may proceed. It is preferably about 0.01 to 100/min.
In addition, it is preferable to pre-treat the catalyst before charging the raw material. The pretreatment is performed by using the same carrier gas as the reaction and maintaining the same temperature as the reaction for 10 minutes to 10 hours, for example.

実施例
以下、実施例により本発明をさらに説明する。なお、本発明は実施例に限定されるものではない。
EXAMPLES The present invention will be further described with reference to examples below. In addition, the present invention is not limited to the examples.

(反応装置)
実施例、比較例に用いた固定床常圧気相流通反応装置を図1に示す。反応器上部から触媒層までの内径は約17mm、全長300mmの反応器であり、その上端にキャリアガス導入口、原料流入口および熱電対導入口があり、下端にガス抜け口を有するものである。
(Reactor)
FIG. 1 shows the fixed-bed normal-pressure gas-phase flow reactor used in Examples and Comparative Examples. The inner diameter from the top of the reactor to the catalyst layer is about 17 mm, and the total length of the reactor is 300 mm. .

(触媒)
触媒は、シリカ(富士シリシア化学社製 CARiACT Q-3、Q-6、Q-10、Q-15)、アルミナ(触媒学会参照触媒 JRC-ALO-7)、シリカ-アルミナ(日揮化学社製 N631HN)、ZrO(第一稀元素化学工業株式会社製 RSC-100)、3wt%LiO/ZrO(RSC-100に水酸化リチウムを公知の方法にて含侵担持して調製した触媒)を用いた。
(catalyst)
The catalysts are silica (CARiACT Q-3, Q-6, Q-10, Q-15 manufactured by Fuji Silysia Chemical Co., Ltd.), alumina (catalyst society reference catalyst JRC-ALO-7), silica-alumina (N631HN manufactured by JGC Chemical Co., Ltd. ), ZrO 2 (RSC-100 manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.), 3 wt% Li 2 O/ZrO 2 (catalyst prepared by impregnating and supporting lithium hydroxide in RSC-100 by a known method) was used.

(原料)
原料であるn-ブチルアルデヒドは特級試薬(和光純薬製 試薬特級)を、精製せずそのまま使用した。
(material)
As the starting material, n-butyraldehyde, a special grade reagent (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was used as it was without purification.

(触媒層の前処理)
表1、表2で示した所定量の触媒を設定した反応装置に水素ガスを20ml/minの供給量で反応管に流通させた。その後、電気炉にて反応槽を反応温度まで上昇させ、その温度で1時間保持することで前処理を行った。
(Pretreatment of catalyst layer)
Hydrogen gas was passed through the reaction tube at a supply rate of 20 ml/min in a reaction apparatus in which a predetermined amount of catalyst shown in Tables 1 and 2 was set. After that, the reaction vessel was heated to the reaction temperature in an electric furnace, and pretreatment was performed by holding at that temperature for 1 hour.

(気相アルドール縮合反応)
前処理が終了した触媒が設定された反応器に原料をキャリアガスと共に反応管上部より供給した。原料であるブチルアルデヒド及びキャリアガスである水素を各々所定の流量で反応器に供給した。アルデヒドを、反応管壁をつたわせることにより下に向かって移動させ、反応管外部に設置された電気炉により加熱し反応管内部で蒸発させて、触媒層で触媒と接触させた。触媒層で反応した反応物は反応管下部にてアセトンドライアイストラップにて冷却、液化させた後、回収した。
原料供給開始から1時間毎に生成物混合液を回収し、反応時間0時間から5時間目までの分析結果の平均値を反応結果とした。
反応物の分析は、キャピラリーカラム(ジーエルサイエンス製 TC-WAX 60m)とFID検出器が設置されたガスクロマトグラフ(島津製作所製 GC-14B)を用いて行った。ガスクロマトグラフィーでの分析は、検量線補正後、ブチルアルデヒドの転化率、2-エチル-2-ヘキセナール(以下2E2Hと略記)などの選択率を決定し、この値から転化率(モル%)、選択率(モル%)を求めた。
(Gas phase aldol condensation reaction)
A raw material was supplied from the upper part of the reaction tube together with a carrier gas to the reactor in which the pretreated catalyst was set. Butyraldehyde as a raw material and hydrogen as a carrier gas were each supplied to the reactor at a predetermined flow rate. Aldehyde was moved downward by running along the wall of the reaction tube, heated by an electric furnace installed outside the reaction tube, evaporated inside the reaction tube, and brought into contact with the catalyst at the catalyst layer. The reactant reacted in the catalyst layer was cooled and liquefied with an acetone dry ice trap at the bottom of the reaction tube, and then recovered.
The product mixture was collected every hour from the start of supplying the raw materials, and the average value of the analysis results from the 0th hour to the 5th hour of the reaction time was taken as the reaction result.
The reaction product was analyzed using a capillary column (TC-WAX 60m, manufactured by GL Sciences) and a gas chromatograph (GC-14B, manufactured by Shimadzu Corporation) equipped with an FID detector. Analysis by gas chromatography is carried out by determining the conversion of butyraldehyde and the selectivity of 2-ethyl-2-hexenal (hereinafter abbreviated as 2E2H) after correcting the calibration curve. Selectivity (mol %) was determined.

実施例1
シリカ(富士シリシア化学製 CARiACT Q-10 BET比表面積 295m/g)を用いたブチルアルデヒドの気相アルドール縮合反応を行った。反応温度200℃、触媒量0.5g、反応原料であるブチルアルデヒドは1.3g/hで、キャリアガスである水素は流速5cm/minで各々反応器に供給した。結果を表1に示した。
Example 1
Gas-phase aldol condensation reaction of butyraldehyde was carried out using silica (CARiACT Q-10, BET specific surface area: 295 m 2 /g, manufactured by Fuji Silysia Chemical). The reaction temperature was 200° C., the amount of catalyst was 0.5 g, butyraldehyde as a reaction raw material was 1.3 g/h, and hydrogen as a carrier gas was supplied to the reactor at a flow rate of 5 cm 3 /min. Table 1 shows the results.

実施例2
用いる触媒の触媒量を2.0gに変更した以外は、実施例1に準じた。結果を表1に示した。
Example 2
Example 1 was followed except that the amount of the catalyst used was changed to 2.0 g. Table 1 shows the results.

実施例3
用いる触媒の触媒量を4.0gに変更した以外は、実施例1に準じた。結果を表1に示した。
Example 3
Example 1 was followed except that the amount of the catalyst used was changed to 4.0 g. Table 1 shows the results.

実施例4
触媒にγ-アルミナ(触媒学会参照触媒JRC-ALO-7 BET比表面積 180m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 4
Example 1 was followed except that γ-alumina (Catalysis Society of Japan reference catalyst JRC-ALO-7 BET specific surface area 180 m 2 /g) was used as a catalyst. Table 1 shows the results.

実施例5
触媒に別の種類のシリカ(富士シリシア化学製 CARiACT Q-3 BET比表面積 705m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 5
Example 1 was followed except that another type of silica (CARiACT Q-3, BET specific surface area: 705 m 2 /g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. Table 1 shows the results.

実施例6
触媒に別の種類のシリカ(富士シリシア化学製 CARiACT Q-6 BET比表面積 401m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 6
Example 1 was followed except that another type of silica (CARiACT Q-6, BET specific surface area: 401 m 2 /g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. Table 1 shows the results.

実施例7
触媒に別の種類のシリカ(富士シリシア化学製 CARiACT Q-15 BET比表面積 226m/g)を用いた以外は実施例1に準じた。結果を表1に示した。転化率は高くないが、選択率は高く、アルドール縮合に寄与していることがわかった。
Example 7
Example 1 was followed except that another type of silica (CARiACT Q-15, BET specific surface area: 226 m 2 /g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. Table 1 shows the results. The conversion was not high, but the selectivity was high, which was found to contribute to the aldol condensation.

実施例8
触媒にシリカ-アルミナ(日揮化学製 N631HN BET比表面積 397m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 8
Example 1 was followed except that silica-alumina (manufactured by Nikki Chemicals, N631HN, BET specific surface area: 397 m 2 /g) was used as a catalyst. Table 1 shows the results.

比較例1
触媒にジルコニア(第一稀元素化学工業製 RSC-100 BET比表面積 106m/g)を用いた以外は実施例1に準じた。結果を表1に示した。シリカやアルミナに比べて選択率が低かった。
Comparative example 1
Example 1 was followed except that zirconia (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd., RSC-100, BET specific surface area: 106 m 2 /g) was used as a catalyst. Table 1 shows the results. The selectivity was low compared to silica and alumina.

比較例2
触媒に酸化リチウム-ジルコニア(ジルコニアRSC-100に公知の方法にて水酸化リチウムを含侵担持して調製した触媒)を用いた以外は実施例1に準じた。結果を表1に示した。
Comparative example 2
Example 1 was followed except that lithium oxide-zirconia (a catalyst prepared by impregnating and supporting lithium hydroxide on zirconia RSC-100 by a known method) was used as a catalyst. Table 1 shows the results.

実施例9
反応温度を180℃にした以外は実施例1に準じた。結果を表2に示した。
Example 9
Example 1 was followed except that the reaction temperature was 180°C. Table 2 shows the results.

実施例10
反応温度を220℃にした以外は実施例1に準じた。結果を表2に示した。
Example 10
Example 1 was followed except that the reaction temperature was 220°C. Table 2 shows the results.

実施例11
反応温度を240℃にした以外は実施例1に準じた。結果を表2に示した。
Example 11
Example 1 was followed except that the reaction temperature was 240°C. Table 2 shows the results.

実施例12
反応温度を260℃にした以外は実施例1に準じた。結果を表2に示した。
Example 12
Example 1 was followed except that the reaction temperature was 260°C. Table 2 shows the results.

Figure 0007329219000001
Figure 0007329219000001

Figure 0007329219000002
Figure 0007329219000002

[符号の説明]
1.原料(原料流入口)
2.キャリアガス(キャリアガス導入口)
3.熱電対
4.熱電対カバー(上部に熱電対導入口あり)
5.反応管
6.電気炉
7.触媒層
8.ガラスウール
9.ガス抜け穴(生成物回収)
[Description of symbols]
1. Raw material (raw material inlet)
2. Carrier gas (carrier gas inlet)
3. thermocouple4. Thermocouple cover (there is a thermocouple inlet on the top)
5. reaction tube6. electric furnace7. catalyst layer8. glass wool9. Gas vent (product recovery)

Claims (8)

アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、
水素存在下において、気体のアルデヒドと、シリカ触媒とが接触する工程を含み、原料として直鎖アルデヒドのみを用いる、製造方法。
A method for producing an aldol condensate using an aldol condensation reaction of an aldehyde,
A production method comprising a step of contacting a gaseous aldehyde with a silica catalyst in the presence of hydrogen , and using only a linear aldehyde as a raw material .
前記触媒が220から380m-1のBET比表面積を有する、請求項1に記載の製造方法。 The process according to claim 1, wherein said catalyst has a BET specific surface area of 220 to 380 m 2 g -1 . 前記触媒が250から350m-1のBET比表面積を有する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the catalyst has a BET specific surface area of 250 to 350 m 2 g -1 . 前記触媒が酸素及びケイ素以外の成分を含まない、請求項1から3のいずれか一項に記載の製造方法。 4. The manufacturing method according to any one of claims 1 to 3, wherein the catalyst does not contain components other than oxygen and silicon . 記アルデヒドが炭素数2から6の直鎖アルデヒドである、請求項1から4のいずれか一項に記載の製造方法。 5. The production method according to any one of claims 1 to 4, wherein the aldehyde is a linear aldehyde having 2 to 6 carbon atoms. 前記アルデヒドが、ノルマルブチルアルデヒドである請求項1から4のいずれか一項に記載の製造方法。5. The production method according to any one of claims 1 to 4, wherein the aldehyde is normal butyraldehyde. 前記アルドール縮合物が、2-エチル-2-ヘキセナールである請求項1から6のいずれか一項に記載の製造方法。The production method according to any one of claims 1 to 6, wherein the aldol condensate is 2-ethyl-2-hexenal. 前記アルデヒドと、前記触媒とが接触する工程を、220℃以上、260℃以下で実施する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the step of contacting the aldehyde with the catalyst is carried out at 220°C or higher and 260°C or lower.
JP2020532302A 2018-07-27 2019-07-16 Method for producing aldol condensate from aldehyde Active JP7329219B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018141305 2018-07-27
JP2018141305 2018-07-27
PCT/JP2019/027841 WO2020022114A1 (en) 2018-07-27 2019-07-16 Method for producing aldol condensation product from aldehyde

Publications (2)

Publication Number Publication Date
JPWO2020022114A1 JPWO2020022114A1 (en) 2021-08-12
JP7329219B2 true JP7329219B2 (en) 2023-08-18

Family

ID=69180481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020532302A Active JP7329219B2 (en) 2018-07-27 2019-07-16 Method for producing aldol condensate from aldehyde

Country Status (2)

Country Link
JP (1) JP7329219B2 (en)
WO (1) WO2020022114A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845076A1 (en) 2006-04-12 2007-10-17 DSMIP Assets B.V. Process for the preparation of a ketone or an aldehyde using silica as a catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845076A1 (en) 2006-04-12 2007-10-17 DSMIP Assets B.V. Process for the preparation of a ketone or an aldehyde using silica as a catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUN, Daolai et al.,Vapor-phase self-aldol condensation of butanal over Ag-modified TiO2,Applied Catalysis A: General,2016年,Vol.524,p.8-16,2.1. Samples, 2.2. Catalytic reaction, Table 1, ISSN 0926-860X
VITCHA, James F. et al.,Vapor Phase Aldol Reaction Acyclic Acid by the Reaction of Acetic Acid and Formaldehyde,I & EC PRODUCT RESEARCH AND DEVELOPMENT,1966年,Vol. 5, No. 1,pp. 50-53

Also Published As

Publication number Publication date
JPWO2020022114A1 (en) 2021-08-12
WO2020022114A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
KR102369420B1 (en) Chromium-free hydrogenation of hydroformylation mixtures
KR101623998B1 (en) Process for production of isobutene by cracking mtbe-containing mixtures
US7632962B2 (en) Hydrogenation process and catalysts
WO2014199349A2 (en) Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene
Sun et al. Vapor-phase dehydration of C4 unsaturated alcohols to 1, 3-butadiene
US8710287B2 (en) Cineole
JP6332913B2 (en) Solid phosphoric acid catalyst and method for producing trioxane using the same
US10245583B1 (en) Use of charge-containing molecules linked with covalent bonds to enhance acetylene hydrogenation catalysts
JP6091310B2 (en) Method for producing butadiene
Sun et al. Cyclodehydration of diethylene glycol over Ag-modified Al2O3 catalyst
JP7329219B2 (en) Method for producing aldol condensate from aldehyde
US6313323B1 (en) Trimerization of formaldehyde in the gas phase
JP5825027B2 (en) Method for producing diol compound
US9834501B2 (en) Efficient synthesis of methacroelin and other alpha, beta—unsaturated aldehydes from methanol and an aldehyde
US11717807B2 (en) Method for producing conjugated diene
EP0902784B1 (en) Continuous process for the conversion of 2,5-dihydrofuran to 2,3-dihydrofuran
TWI547478B (en) Method for producing n-propyl acetate and method for producing allyl acetate
ES2562624T3 (en) Procedure for the preparation of cis-rose oxide
US4396784A (en) Hydrogenation of fluoroacids with rhenium-fluorided alumina catalyst
US20090143626A1 (en) Process for preparing an arylalkyl compound
Singh et al. A comparative study on basicity based on supported K-salt catalysts for isomerization of 1-methoxy-4-(2-propene-1-yl) benzene
Sun et al. Vapor-phase isomerization of 3-pentenal over amorphous SiO2 catalyst
WO2014013706A1 (en) Method for producing 2-(isopropylamino)ethanol
Lin et al. Yan
Abraham Production of propylene oxide from propylene glycol

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230728

R150 Certificate of patent or registration of utility model

Ref document number: 7329219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150