WO2020022114A1 - Method for producing aldol condensation product from aldehyde - Google Patents

Method for producing aldol condensation product from aldehyde Download PDF

Info

Publication number
WO2020022114A1
WO2020022114A1 PCT/JP2019/027841 JP2019027841W WO2020022114A1 WO 2020022114 A1 WO2020022114 A1 WO 2020022114A1 JP 2019027841 W JP2019027841 W JP 2019027841W WO 2020022114 A1 WO2020022114 A1 WO 2020022114A1
Authority
WO
WIPO (PCT)
Prior art keywords
aldehyde
catalyst
silica
reaction
alumina
Prior art date
Application number
PCT/JP2019/027841
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 智司
貫一郎 乾
Original Assignee
国立大学法人千葉大学
Jnc株式会社
Jnc石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, Jnc株式会社, Jnc石油化学株式会社 filed Critical 国立大学法人千葉大学
Priority to JP2020532302A priority Critical patent/JP7329219B2/en
Publication of WO2020022114A1 publication Critical patent/WO2020022114A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing an aldol condensate using an aldol condensation reaction of an aldehyde, comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina. About the method.
  • DOP Dioctyl phthalate
  • 2-Ethylhexanol a raw material for DOP, is industrially produced by hydrogenating 2-ethyl-2-hexenal, an aldol condensate of normal butyraldehyde.
  • Aldol condensation of normal butyraldehyde generally uses a base catalyst such as sodium hydroxide or an anion exchange resin (Non-Patent Document 1).
  • base catalyst such as sodium hydroxide or an anion exchange resin
  • Non-Patent Document 2 the aldehyde condensation reaction was studied in the gas phase under a base catalyst. However, only the reaction was studied, and the raw material conversion and the target product selectivity were sufficient. It is not a reaction that can be applied to industrialization.
  • Patent Document 1 Although there are many examples of studies on the aldol reaction in the gas phase, as in Patent Document 1, almost no examples showing examples using aldehydes as reaction materials are found. Suggests the difficulty of the gas-phase aldol condensation reaction of. On the other hand, Patent Literature 2 studies a chain aldehyde in a fixed bed flow reaction in a liquid phase, but aims at producing alcohol, and the reaction results were not satisfactory.
  • An object of the present invention is to solve the above-mentioned conventional technical problems, and to provide a method for efficiently producing an aldol condensate from an aldehyde.
  • the present inventors have conducted intensive studies and found that an aldol condensation product is efficiently produced from an aldehyde by performing an aldol condensation reaction in the gas phase using at least one selected from silica, alumina and silica-alumina as a catalyst. And found that the present invention was completed.
  • the present invention includes the following.
  • [1] A method for producing an aldol condensate using an aldol condensation reaction of an aldehyde, A process comprising contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina.
  • [2] The production method according to [1], wherein the catalyst has a BET specific surface area of 220 to 380 m 2 g ⁇ 1 .
  • [4] The production method according to any one of [1] to [3], wherein the catalyst contains no components other than oxygen, aluminum or silicon.
  • an aldol condensate can be efficiently produced from an aldehyde.
  • FIG. 1 is a schematic diagram of a fixed-bed normal-pressure gas-phase flow reactor used in Examples.
  • the present invention relates to a method for producing an aldol condensate using an aldol condensation reaction of an aldehyde, comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina. Is the way.
  • Catalyst component As the catalyst in the present invention, a simple substance of silica (SiO 2 ), a simple substance of alumina (Al 2 O 3 ), a silica-alumina composite, or a mixture thereof can be used.
  • the catalyst used in the present invention can support other metals, and can be complexed with other oxides.
  • other components components other than oxygen, aluminum, and silicon
  • silica alumina and a silica-alumina composite
  • silica is more preferable.
  • the silica-alumina composite can contain silica and alumina at an arbitrary ratio, but preferably has a large silica component.
  • “not containing other components” means not intentionally including other components, and it is permissible that other components are inevitably contained.
  • the specific surface area (BET specific surface area) of the catalyst used in the present invention is not particularly limited, it is preferably from 220 to 380 m 2 g -1 and from 250 to 350 m 2 from the viewpoint of the yield of the aldol condensate. More preferably, it is 2 g -1 .
  • the catalyst used in the present invention may be a commercially available product, a product obtained by calcining a commercially available product, a hydroxide of aluminum or silicon, or a product obtained by thermally decomposing an organic aluminum compound or an organic silicon compound, and is particularly limited. Not something. When other components are contained, they can be supported by a conventional technique such as an impregnation method. However, as described above, silica, alumina, and a silica-alumina catalyst containing no other components are preferable.
  • the aldehyde as a raw material is not particularly limited, but an aldehyde that is in a gaseous state within a reaction temperature range (for example, 200 ° C. to 400 ° C.) is preferable.
  • the aldehyde may be a linear aldehyde or a branched aldehyde, but from the viewpoint of reaction yield, a linear aldehyde is preferable, and a linear aldehyde having 2 to 6 carbon atoms is more preferable.
  • Specific examples include acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, caprolaldehyde and the like.
  • aldehyde as a raw material, a single aldehyde may be used or a plurality of aldehydes may be used. However, when the target aldol condensate is one, it is preferable to use a single aldehyde.
  • the water content in the starting aldehyde is not particularly limited, but is preferably in the range of 0 to 10% by weight. If the water content in the aldehyde exceeds 10% by weight, the reaction efficiency may decrease.
  • the supply amount of the aldehyde as a raw material may be an amount sufficient to produce an aldol condensate, and is not particularly limited. For example, a space of 0.1 to 3.0 per unit time and unit catalyst volume is used.
  • Velocity LHSV: Liquid Hourly Space Velocity unit h ⁇ 1 ).
  • the aldol condensate obtained from these raw materials is a compound obtained by subjecting the aldehyde to aldol condensation and dimerization.
  • the aldol condensate varies depending on the type of aldehyde used as a raw material. Examples thereof include crotonaldehyde, 2-methyl-2-pentenal, 2-ethyl-2-hexenal, 2-propyl-2-heptenal, -Butyl-2-octenal;
  • the reactor used in the production of the aldol condensate of the present invention is not particularly limited as long as the gaseous aldehyde can be brought into contact with the catalyst.
  • a predetermined amount of a catalyst may be put in a gas-phase flow reactor, and activated by a known method to form an active catalyst layer in the gas-phase flow reactor.
  • the reaction temperature of the method for producing an aldol condensate of the present invention is preferably in a temperature range of 200 ° C. to 400 ° C., that is, a temperature at which the aldehyde as a raw material exists in a gas phase.
  • the temperature is preferably 200 ° C. or higher for sufficiently proceeding the reaction, and 400 ° C. or lower for maintaining good product selectivity.
  • a more preferred temperature range is from 220 ° C to 300 ° C.
  • reaction pressure The pressure for the aldol condensation reaction of the present invention is not particularly limited, but it is preferable to carry out the reaction under atmospheric pressure.
  • a carrier gas in the gas-phase aldol condensation reaction of the present invention, can be flowed together with the raw materials.
  • the type of carrier gas is preferably a non-oxidizing gas. More preferably, it is hydrogen gas or a hydrogen-containing inert gas, and even more preferably, it is hydrogen gas.
  • the inert gas refers to a gas that does not affect the reaction, and examples thereof include a nitrogen gas and an argon gas.
  • the flow rate of the carrier gas is not particularly limited. However, if the residence time is long, the higher order aldol reaction may proceed. Therefore, the ratio of the carrier gas feed amount to the catalyst layer volume (carrier gas feed amount / catalyst layer volume) is: It is preferably about 0.01 to 100 / min. It is preferable to pretreat the catalyst before charging the raw materials. The pretreatment is performed by using the same carrier gas as the reaction and maintaining the same temperature as the reaction, for example, for 10 minutes to 10 hours.
  • FIG. 1 shows a fixed-bed normal-pressure gas-phase flow reactor used in Examples and Comparative Examples.
  • the reactor has an inner diameter from the upper part of the reactor to the catalyst layer of about 17 mm and a total length of 300 mm.
  • the reactor has a carrier gas inlet, a raw material inlet, and a thermocouple inlet at the upper end, and has a gas outlet at the lower end. .
  • the catalyst was silica (CariACT Q-3, Q-6, Q-10, Q-15, manufactured by Fuji Silysia Chemical Ltd.), alumina (Catalyst Society of Japan, JRC-ALO-7), silica-alumina (N631HN, manufactured by JGC Chemicals, Inc.) ), ZrO 2 (RSC-100 manufactured by Daiichi Kagaku Kagaku Kogyo KK), 3 wt% Li 2 O / ZrO 2 (a catalyst prepared by impregnating and supporting lithium hydroxide on RSC-100 by a known method) Was used.
  • the raw material was supplied from the upper part of the reaction tube together with the carrier gas to the reactor in which the pretreated catalyst was set.
  • Butyl aldehyde as a raw material and hydrogen as a carrier gas were supplied to the reactor at predetermined flow rates.
  • the aldehyde was moved downward by contacting the reaction tube wall, heated by an electric furnace installed outside the reaction tube, evaporated inside the reaction tube, and brought into contact with the catalyst in the catalyst layer.
  • the reaction product reacted in the catalyst layer was cooled and liquefied with an acetone dry ice trap at the lower part of the reaction tube, and then collected.
  • the product mixture was collected every hour from the start of raw material supply, and the average value of the analysis results from reaction time 0 to 5 hours was defined as the reaction result.
  • the reaction product was analyzed using a capillary column (TC-WAX 60m, GL Sciences) and a gas chromatograph (GC-14B, Shimadzu Corporation) equipped with an FID detector.
  • TC-WAX 60m, GL Sciences TC-WAX 60m, GL Sciences
  • GC-14B gas chromatograph
  • FID detector gas chromatograph
  • Example 1 A gas-phase aldol condensation reaction of butyraldehyde using silica (CAriACT Q-10 BET specific surface area of 295 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was performed.
  • the reaction temperature was 200 ° C.
  • the amount of the catalyst was 0.5 g
  • butyl aldehyde as the reaction raw material was supplied to the reactor at 1.3 g / h
  • hydrogen as the carrier gas was supplied to the reactor at a flow rate of 5 cm 3 / min.
  • Table 1 The results are shown in Table 1.
  • Example 2 Example 1 was repeated except that the amount of the catalyst used was changed to 2.0 g. The results are shown in Table 1.
  • Example 3 Example 1 was repeated except that the amount of the catalyst used was changed to 4.0 g. The results are shown in Table 1.
  • Example 4 Example 1 was repeated except that ⁇ -alumina (catalyst, JRC-ALO-7 BET specific surface area, 180 m 2 / g) was used as the catalyst. The results are shown in Table 1.
  • Example 5 Example 1 was repeated except that another type of silica (CARiACT Q-3 BET specific surface area 705 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. The results are shown in Table 1.
  • Example 6 Example 1 was repeated except that another type of silica (CARiACT Q-6 BET specific surface area 401 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. The results are shown in Table 1.
  • Example 7 Example 1 was repeated except that another type of silica (CARiACT Q-15 BET specific surface area: 226 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. The results are shown in Table 1. Although the conversion was not high, the selectivity was high and it was found that it contributed to the aldol condensation.
  • silica CARiACT Q-15 BET specific surface area: 226 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.
  • Example 8 Example 1 was followed except that silica-alumina (N631HN BET specific surface area, 397 m 2 / g, manufactured by JGC Chemicals) was used as the catalyst. The results are shown in Table 1.
  • Example 1 was repeated except that zirconia (RSC-100 BET specific surface area, 106 m 2 / g, manufactured by Daiichi Kagaku Kagaku Kogyo) was used as the catalyst. The results are shown in Table 1. The selectivity was lower than that of silica or alumina.
  • zirconia RSC-100 BET specific surface area, 106 m 2 / g, manufactured by Daiichi Kagaku Kagaku Kogyo
  • Example 1 was repeated except that lithium oxide-zirconia (a catalyst prepared by impregnating and supporting lithium hydroxide on zirconia RSC-100 by a known method) was used as the catalyst. The results are shown in Table 1.
  • lithium oxide-zirconia a catalyst prepared by impregnating and supporting lithium hydroxide on zirconia RSC-100 by a known method
  • Example 9 Example 1 was repeated except that the reaction temperature was 180 ° C. The results are shown in Table 2.
  • Example 10 Example 1 was repeated except that the reaction temperature was 220 ° C. The results are shown in Table 2.
  • Example 11 Example 1 was repeated except that the reaction temperature was 240 ° C. The results are shown in Table 2.
  • Example 12 Example 1 was repeated except that the reaction temperature was 260 ° C. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The purpose of the present invention is to provide a method for efficiently producing an aldol condensation product from an aldehyde. The present invention includes a method for producing an aldol condensation product, which utilizes an aldol condensation reaction of an aldehyde, and which comprises a step wherein an aldehyde in a gaseous state and at least one catalyst selected from among silica, alumina and silica-alumina are brought into contact with each other. It is preferable that the catalyst has a BET specific surface area of from 220 m2g-1 to 380 m2g-1.

Description

アルデヒドからのアルドール縮合物製造方法Method for producing aldol condensate from aldehyde
 本発明は、アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法に関する。 The present invention relates to a method for producing an aldol condensate using an aldol condensation reaction of an aldehyde, comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina. About the method.
 塩化ビニール樹脂の可塑剤として大量に使用されているジオクチルフタレート(以下DOPと略記する。)はいわゆるフタレート系可塑剤の代表である。DOPの原料である2-エチルヘキサノールは、ノルマルブチルアルデヒドのアルドール縮合物である2-エチル-2-ヘキセナールを水添して工業的に製造されている。ノルマルブチルアルデヒドのアルドール縮合は通常、水酸化ナトリウム、又はアニオン交換樹脂といった塩基触媒が用いられる(非特許文献1)。これらの方法は各々、高BOD負荷の廃水が発生する或いは、触媒が高コストであるという問題点を有している。また、気相中、塩基触媒下で、アルデヒドの縮合反応を検討した例もあるが(非特許文献2)、反応の検討を行ったに過ぎず、原料転化率、目的物選択率が十分でなく工業化への応用が可能である反応とは言えない。 ジ オ Dioctyl phthalate (hereinafter abbreviated as DOP), which is used in large quantities as a plasticizer for vinyl chloride resin, is a representative of so-called phthalate plasticizers. 2-Ethylhexanol, a raw material for DOP, is industrially produced by hydrogenating 2-ethyl-2-hexenal, an aldol condensate of normal butyraldehyde. Aldol condensation of normal butyraldehyde generally uses a base catalyst such as sodium hydroxide or an anion exchange resin (Non-Patent Document 1). Each of these methods has the problem that high BOD load wastewater is generated or the catalyst is expensive. In some cases, the aldehyde condensation reaction was studied in the gas phase under a base catalyst (Non-Patent Document 2). However, only the reaction was studied, and the raw material conversion and the target product selectivity were sufficient. It is not a reaction that can be applied to industrialization.
 気相でのアルドール反応についての検討例は多々あるものの、特許文献1のように、ケトンを原料としており、アルデヒドを反応原料とした実施例を示している例はほとんど見られず、鎖状アルデヒドの気相アルドール縮合反応の困難さを示唆している。一方、特許文献2では、液相での固定床流通反応での鎖状アルデヒドでの検討を行っているが、アルコールの製造を目的としたものであり、反応成績が充分とは言えなかった。 Although there are many examples of studies on the aldol reaction in the gas phase, as in Patent Document 1, almost no examples showing examples using aldehydes as reaction materials are found. Suggests the difficulty of the gas-phase aldol condensation reaction of. On the other hand, Patent Literature 2 studies a chain aldehyde in a fixed bed flow reaction in a liquid phase, but aims at producing alcohol, and the reaction results were not satisfactory.
特開平6-25065号公報JP-A-6-25065 特表2011-517656号公報JP 2011-517656 A
 本発明の目的は、上記従来の技術課題を解決することであり、アルデヒドからアルドール縮合物を効率よく製造する方法を提供することである。 目的 An object of the present invention is to solve the above-mentioned conventional technical problems, and to provide a method for efficiently producing an aldol condensate from an aldehyde.
 本発明者らは鋭意検討の結果、シリカ、アルミナ及びシリカ-アルミナから選ばれるいずれか一種類以上を触媒として用い、気相でアルドール縮合反応を行うことにより、アルデヒドからアルドール縮合物を効率よく生成することを見いだし、本発明を完成するに至った。 The present inventors have conducted intensive studies and found that an aldol condensation product is efficiently produced from an aldehyde by performing an aldol condensation reaction in the gas phase using at least one selected from silica, alumina and silica-alumina as a catalyst. And found that the present invention was completed.
 本発明は、以下を包含する。
[1] アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、
 気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法。
[2] 前記触媒が220から380m-1のBET比表面積を有する、[1]に記載の製造方法。
[3] 前記触媒が250から350m-1のBET比表面積を有する、[1]に記載の製造方法。
[4] 前記触媒が酸素、アルミニウム又はケイ素以外の成分を含まない、[1]から[3]のいずれかに記載の製造方法。
[5] 前記触媒がシリカである、[1]から[3]のいずれかに記載の製造方法。
[6] 前記アルデヒドが炭素数2から6の直鎖アルデヒドである、[1]から[5]のいずれかに記載の製造方法。
[7] 前記アルデヒドが、ノルマルブチルアルデヒドである[1]から[5]のいずれかに記載の製造方法。
[8] 前記アルドール縮合物が、2-エチル-2-ヘキセナールである[1]から[7]のいずれかに記載の方法。
The present invention includes the following.
[1] A method for producing an aldol condensate using an aldol condensation reaction of an aldehyde,
A process comprising contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina.
[2] The production method according to [1], wherein the catalyst has a BET specific surface area of 220 to 380 m 2 g −1 .
[3] The production method according to [1], wherein the catalyst has a BET specific surface area of 250 to 350 m 2 g −1 .
[4] The production method according to any one of [1] to [3], wherein the catalyst contains no components other than oxygen, aluminum or silicon.
[5] The production method according to any one of [1] to [3], wherein the catalyst is silica.
[6] The production method according to any one of [1] to [5], wherein the aldehyde is a linear aldehyde having 2 to 6 carbon atoms.
[7] The production method according to any one of [1] to [5], wherein the aldehyde is normal butyraldehyde.
[8] The method according to any one of [1] to [7], wherein the aldol condensate is 2-ethyl-2-hexenal.
 本発明の製造方法によれば、アルデヒドからアルドール縮合物を効率よく製造することができる。 According to the production method of the present invention, an aldol condensate can be efficiently produced from an aldehyde.
図1は、実施例で用いた固定床常圧気相流通反応装置の概略図である。FIG. 1 is a schematic diagram of a fixed-bed normal-pressure gas-phase flow reactor used in Examples.
 本発明は、アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法である。 The present invention relates to a method for producing an aldol condensate using an aldol condensation reaction of an aldehyde, comprising a step of contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina. Is the way.
[触媒について]
(触媒成分)
 本発明における触媒はシリカ(SiO)単体、アルミナ(Al)単体、シリカ-アルミナ複合体、及びこれらを混合したものを使用することができる。
[About the catalyst]
(Catalyst component)
As the catalyst in the present invention, a simple substance of silica (SiO 2 ), a simple substance of alumina (Al 2 O 3 ), a silica-alumina composite, or a mixture thereof can be used.
 本発明で用いる触媒に、他の金属を担持させること、さらに他の酸化物と複合化させることもできるが、本発明では、他の成分(酸素、アルミニウム、ケイ素以外の成分)を含まないことが好ましい。シリカ、アルミナ、シリカ-アルミナ複合体の中では、シリカであることがさらに好ましい。なお、シリカ-アルミナ複合体は、シリカとアルミナを任意の割合で含むことができるが、シリカ成分が多い方が好ましい。
 なお、ここで「他の成分を含まない」とは、意図的に他の成分を含ませることをしないことをいい、他の成分が不可避的に含有してしまうことは許容される。
The catalyst used in the present invention can support other metals, and can be complexed with other oxides. However, in the present invention, other components (components other than oxygen, aluminum, and silicon) should not be contained. Is preferred. Among silica, alumina and a silica-alumina composite, silica is more preferable. The silica-alumina composite can contain silica and alumina at an arbitrary ratio, but preferably has a large silica component.
Here, “not containing other components” means not intentionally including other components, and it is permissible that other components are inevitably contained.
 本発明に用いる触媒の比表面積(BET比表面積)は、特に限定されるものではないが、アルドール縮合物の収率の観点から、220から380m-1であることが好ましく、250から350m-1であることがさらに好ましい。 Although the specific surface area (BET specific surface area) of the catalyst used in the present invention is not particularly limited, it is preferably from 220 to 380 m 2 g -1 and from 250 to 350 m 2 from the viewpoint of the yield of the aldol condensate. More preferably, it is 2 g -1 .
(触媒前駆体)
 本発明に用いられる触媒は、市販品、市販品を焼成したもの、アルミニウム又はケイ素の水酸化物、あるいは有機アルミニウム化合物又は有機ケイ素化合物を熱分解したもの等を用いることができ、特に限定されるものではない。
 他の成分を含有させるときには、含浸法などにより従来の技術を用いて担持させることができるが、上述したように、他の成分を含まないシリカ、アルミナ、シリカ-アルミナ触媒であることが好ましい。
(Catalyst precursor)
The catalyst used in the present invention may be a commercially available product, a product obtained by calcining a commercially available product, a hydroxide of aluminum or silicon, or a product obtained by thermally decomposing an organic aluminum compound or an organic silicon compound, and is particularly limited. Not something.
When other components are contained, they can be supported by a conventional technique such as an impregnation method. However, as described above, silica, alumina, and a silica-alumina catalyst containing no other components are preferable.
[アルドール縮合物の製造方法について]
(原料)
 原料となるアルデヒドは特に限定されないが、反応温度の範囲内(例えば、200℃から400℃)で気体状態であるアルデヒドが好ましい。アルデヒドは、直鎖のアルデヒドあるいは、分岐鎖を有するアルデヒドのいずれでもよいが、反応収率の観点から、直鎖アルデヒドが好ましく、炭素数2から6の直鎖アルデヒドがさらに好ましい。具体的には、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒドなどが挙げられる。
[Production method of aldol condensate]
(material)
The aldehyde as a raw material is not particularly limited, but an aldehyde that is in a gaseous state within a reaction temperature range (for example, 200 ° C. to 400 ° C.) is preferable. The aldehyde may be a linear aldehyde or a branched aldehyde, but from the viewpoint of reaction yield, a linear aldehyde is preferable, and a linear aldehyde having 2 to 6 carbon atoms is more preferable. Specific examples include acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, caprolaldehyde and the like.
 原料となるアルデヒドは、単一のアルデヒドを用いてよいし、複数のアルデヒドを用いてもよいが、目的とするアルドール縮合物が一つの場合、単一のアルデヒドを用いることが好ましい。 ア ル デ ヒ ド As the aldehyde as a raw material, a single aldehyde may be used or a plurality of aldehydes may be used. However, when the target aldol condensate is one, it is preferable to use a single aldehyde.
(原料の制限)
 原料のアルデヒド中の水分は、特に限定されないが、0~10重量%の範囲が好ましい。アルデヒド中の水分が10重量%を超えると反応効率が低下する場合がある。
(Limit of raw materials)
The water content in the starting aldehyde is not particularly limited, but is preferably in the range of 0 to 10% by weight. If the water content in the aldehyde exceeds 10% by weight, the reaction efficiency may decrease.
(原料の速度)
 原料のアルデヒドの供給量については、アルドール縮合物ができる程度に量を供給すればよく、特に限定されるものではないが、例えば、単位時間、単位触媒体積あたり0.1から3.0の空間速度(LHSV:Liquid Hourly Space Velocity 単位 h-1)、とすることができる。
(Raw material speed)
The supply amount of the aldehyde as a raw material may be an amount sufficient to produce an aldol condensate, and is not particularly limited. For example, a space of 0.1 to 3.0 per unit time and unit catalyst volume is used. Velocity (LHSV: Liquid Hourly Space Velocity unit h −1 ).
(生成物)
 また、これらの原料から得られるアルドール縮合物は、前記アルデヒドがアルドール縮合し、二量化することにより得られる化合物である。アルドール縮合物は、原料となるアルデヒドの種類に応じて変わるものであるが、例えば、クロトンアルデヒド、2-メチル-2-ペンテナール、2-エチル-2-ヘキセナール、2-プロピル-2-ヘプテナール、2-ブチル-2-オクテナールなどが挙げられる。
(Product)
The aldol condensate obtained from these raw materials is a compound obtained by subjecting the aldehyde to aldol condensation and dimerization. The aldol condensate varies depending on the type of aldehyde used as a raw material. Examples thereof include crotonaldehyde, 2-methyl-2-pentenal, 2-ethyl-2-hexenal, 2-propyl-2-heptenal, -Butyl-2-octenal;
(反応装置)
 本発明のアルドール縮合物の製造で使用される反応装置は、気体のアルデヒドを触媒に接触させることができれば特に限定されない。たとえば、気相流通反応装置に所定量の触媒を入れ、これを公知の方法で活性化することにより活性な触媒層を気相流通反応装置内に形成させてもよい。ここに、原料のアルデヒドを供給することによりアルドール縮合物を製造することが可能である。
(Reactor)
The reactor used in the production of the aldol condensate of the present invention is not particularly limited as long as the gaseous aldehyde can be brought into contact with the catalyst. For example, a predetermined amount of a catalyst may be put in a gas-phase flow reactor, and activated by a known method to form an active catalyst layer in the gas-phase flow reactor. Here, it is possible to produce an aldol condensate by supplying the starting aldehyde.
(反応温度)
 本発明のアルドール縮合物製造方法の反応温度は、200℃から400℃の温度範囲、すなわち、原料であるアルデヒドが気相状態として存在する温度が好適である。反応を十分に進行させるためには200℃以上が好ましく、生成物選択率を良好に保つためには400℃以下が好ましい。更に好ましい温度範囲としては220℃から300℃の範囲である。
(Reaction temperature)
The reaction temperature of the method for producing an aldol condensate of the present invention is preferably in a temperature range of 200 ° C. to 400 ° C., that is, a temperature at which the aldehyde as a raw material exists in a gas phase. The temperature is preferably 200 ° C. or higher for sufficiently proceeding the reaction, and 400 ° C. or lower for maintaining good product selectivity. A more preferred temperature range is from 220 ° C to 300 ° C.
(反応圧力)
 本発明のアルドール縮合の反応の圧力は、特に限定されるものではないが、大気圧下で行うことが好ましい。
(Reaction pressure)
The pressure for the aldol condensation reaction of the present invention is not particularly limited, but it is preferable to carry out the reaction under atmospheric pressure.
(キャリアガス)
 本発明の気相アルドール縮合反応は、原料と一緒にキャリアガスを流すことができる。キャリアガスの種類は、非酸化性ガスであることが好ましい。より好ましくは、水素ガス又は水素含有不活性ガスであり、さらに好ましくは、水素ガスである。ここで、不活性ガスとは、反応に影響しないガスのことをいい、窒素ガス、アルゴンガスなどが挙げられる。
 キャリアガスの流量は、特に限定されないが、滞留時間が長いと高次アルドール反応が進行するおそれがあるため、触媒層体積に対するキャリアガスフィード量の比(キャリアガスフィード量/触媒層体積)として、0.01~100/min程度であることが好ましい。
 なお、原料を投入する前に、触媒を前処理することが好ましい。前処理は、反応と同じキャリアガスを用いて、反応と同じ温度で、例えば10分~10時間維持することにより、行われる。
(Carrier gas)
In the gas-phase aldol condensation reaction of the present invention, a carrier gas can be flowed together with the raw materials. The type of carrier gas is preferably a non-oxidizing gas. More preferably, it is hydrogen gas or a hydrogen-containing inert gas, and even more preferably, it is hydrogen gas. Here, the inert gas refers to a gas that does not affect the reaction, and examples thereof include a nitrogen gas and an argon gas.
The flow rate of the carrier gas is not particularly limited. However, if the residence time is long, the higher order aldol reaction may proceed. Therefore, the ratio of the carrier gas feed amount to the catalyst layer volume (carrier gas feed amount / catalyst layer volume) is: It is preferably about 0.01 to 100 / min.
It is preferable to pretreat the catalyst before charging the raw materials. The pretreatment is performed by using the same carrier gas as the reaction and maintaining the same temperature as the reaction, for example, for 10 minutes to 10 hours.
実施例
 以下、実施例により本発明をさらに説明する。なお、本発明は実施例に限定されるものではない。
Examples Hereinafter, the present invention will be further described with reference to examples. The present invention is not limited to the embodiments.
(反応装置)
 実施例、比較例に用いた固定床常圧気相流通反応装置を図1に示す。反応器上部から触媒層までの内径は約17mm、全長300mmの反応器であり、その上端にキャリアガス導入口、原料流入口および熱電対導入口があり、下端にガス抜け口を有するものである。
(Reactor)
FIG. 1 shows a fixed-bed normal-pressure gas-phase flow reactor used in Examples and Comparative Examples. The reactor has an inner diameter from the upper part of the reactor to the catalyst layer of about 17 mm and a total length of 300 mm. The reactor has a carrier gas inlet, a raw material inlet, and a thermocouple inlet at the upper end, and has a gas outlet at the lower end. .
(触媒)
 触媒は、シリカ(富士シリシア化学社製 CARiACT Q-3、Q-6、Q-10、Q-15)、アルミナ(触媒学会参照触媒 JRC-ALO-7)、シリカ-アルミナ(日揮化学社製 N631HN)、ZrO(第一稀元素化学工業株式会社製 RSC-100)、3wt%LiO/ZrO(RSC-100に水酸化リチウムを公知の方法にて含侵担持して調製した触媒)を用いた。
(catalyst)
The catalyst was silica (CariACT Q-3, Q-6, Q-10, Q-15, manufactured by Fuji Silysia Chemical Ltd.), alumina (Catalyst Society of Japan, JRC-ALO-7), silica-alumina (N631HN, manufactured by JGC Chemicals, Inc.) ), ZrO 2 (RSC-100 manufactured by Daiichi Kagaku Kagaku Kogyo KK), 3 wt% Li 2 O / ZrO 2 (a catalyst prepared by impregnating and supporting lithium hydroxide on RSC-100 by a known method) Was used.
(原料)
 原料であるn-ブチルアルデヒドは特級試薬(和光純薬製 試薬特級)を、精製せずそのまま使用した。
(material)
For n-butyraldehyde as a raw material, a special-grade reagent (special-grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used without purification.
(触媒層の前処理)
 表1、表2で示した所定量の触媒を設定した反応装置に水素ガスを20ml/minの供給量で反応管に流通させた。その後、電気炉にて反応槽を反応温度まで上昇させ、その温度で1時間保持することで前処理を行った。
(Pretreatment of catalyst layer)
Hydrogen gas was passed through the reaction tube at a supply rate of 20 ml / min through the reactor in which a predetermined amount of the catalyst shown in Tables 1 and 2 was set. Thereafter, the reaction vessel was heated to a reaction temperature in an electric furnace, and maintained at that temperature for 1 hour to perform pretreatment.
(気相アルドール縮合反応)
 前処理が終了した触媒が設定された反応器に原料をキャリアガスと共に反応管上部より供給した。原料であるブチルアルデヒド及びキャリアガスである水素を各々所定の流量で反応器に供給した。アルデヒドを、反応管壁をつたわせることにより下に向かって移動させ、反応管外部に設置された電気炉により加熱し反応管内部で蒸発させて、触媒層で触媒と接触させた。触媒層で反応した反応物は反応管下部にてアセトンドライアイストラップにて冷却、液化させた後、回収した。
 原料供給開始から1時間毎に生成物混合液を回収し、反応時間0時間から5時間目までの分析結果の平均値を反応結果とした。
 反応物の分析は、キャピラリーカラム(ジーエルサイエンス製 TC-WAX 60m)とFID検出器が設置されたガスクロマトグラフ(島津製作所製 GC-14B)を用いて行った。ガスクロマトグラフィーでの分析は、検量線補正後、ブチルアルデヒドの転化率、2-エチル-2-ヘキセナール(以下2E2Hと略記)などの選択率を決定し、この値から転化率(モル%)、選択率(モル%)を求めた。
(Vapor-phase aldol condensation reaction)
The raw material was supplied from the upper part of the reaction tube together with the carrier gas to the reactor in which the pretreated catalyst was set. Butyl aldehyde as a raw material and hydrogen as a carrier gas were supplied to the reactor at predetermined flow rates. The aldehyde was moved downward by contacting the reaction tube wall, heated by an electric furnace installed outside the reaction tube, evaporated inside the reaction tube, and brought into contact with the catalyst in the catalyst layer. The reaction product reacted in the catalyst layer was cooled and liquefied with an acetone dry ice trap at the lower part of the reaction tube, and then collected.
The product mixture was collected every hour from the start of raw material supply, and the average value of the analysis results from reaction time 0 to 5 hours was defined as the reaction result.
The reaction product was analyzed using a capillary column (TC-WAX 60m, GL Sciences) and a gas chromatograph (GC-14B, Shimadzu Corporation) equipped with an FID detector. In the analysis by gas chromatography, after correcting the calibration curve, the conversion of butyraldehyde and the selectivity of 2-ethyl-2-hexenal (hereinafter abbreviated as 2E2H) were determined, and the conversion (mol%) was determined from this value. The selectivity (mol%) was determined.
実施例1
 シリカ(富士シリシア化学製 CARiACT Q-10 BET比表面積 295m/g)を用いたブチルアルデヒドの気相アルドール縮合反応を行った。反応温度200℃、触媒量0.5g、反応原料であるブチルアルデヒドは1.3g/hで、キャリアガスである水素は流速5cm/minで各々反応器に供給した。結果を表1に示した。
Example 1
A gas-phase aldol condensation reaction of butyraldehyde using silica (CAriACT Q-10 BET specific surface area of 295 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was performed. The reaction temperature was 200 ° C., the amount of the catalyst was 0.5 g, butyl aldehyde as the reaction raw material was supplied to the reactor at 1.3 g / h, and hydrogen as the carrier gas was supplied to the reactor at a flow rate of 5 cm 3 / min. The results are shown in Table 1.
実施例2
 用いる触媒の触媒量を2.0gに変更した以外は、実施例1に準じた。結果を表1に示した。
Example 2
Example 1 was repeated except that the amount of the catalyst used was changed to 2.0 g. The results are shown in Table 1.
実施例3
 用いる触媒の触媒量を4.0gに変更した以外は、実施例1に準じた。結果を表1に示した。
Example 3
Example 1 was repeated except that the amount of the catalyst used was changed to 4.0 g. The results are shown in Table 1.
実施例4
 触媒にγ-アルミナ(触媒学会参照触媒JRC-ALO-7 BET比表面積 180m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 4
Example 1 was repeated except that γ-alumina (catalyst, JRC-ALO-7 BET specific surface area, 180 m 2 / g) was used as the catalyst. The results are shown in Table 1.
実施例5
 触媒に別の種類のシリカ(富士シリシア化学製 CARiACT Q-3 BET比表面積 705m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 5
Example 1 was repeated except that another type of silica (CARiACT Q-3 BET specific surface area 705 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. The results are shown in Table 1.
実施例6
 触媒に別の種類のシリカ(富士シリシア化学製 CARiACT Q-6 BET比表面積 401m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 6
Example 1 was repeated except that another type of silica (CARiACT Q-6 BET specific surface area 401 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. The results are shown in Table 1.
実施例7
 触媒に別の種類のシリカ(富士シリシア化学製 CARiACT Q-15 BET比表面積 226m/g)を用いた以外は実施例1に準じた。結果を表1に示した。転化率は高くないが、選択率は高く、アルドール縮合に寄与していることがわかった。
Example 7
Example 1 was repeated except that another type of silica (CARiACT Q-15 BET specific surface area: 226 m 2 / g, manufactured by Fuji Silysia Chemical Ltd.) was used as the catalyst. The results are shown in Table 1. Although the conversion was not high, the selectivity was high and it was found that it contributed to the aldol condensation.
実施例8
 触媒にシリカ-アルミナ(日揮化学製 N631HN BET比表面積 397m/g)を用いた以外は実施例1に準じた。結果を表1に示した。
Example 8
Example 1 was followed except that silica-alumina (N631HN BET specific surface area, 397 m 2 / g, manufactured by JGC Chemicals) was used as the catalyst. The results are shown in Table 1.
比較例1
 触媒にジルコニア(第一稀元素化学工業製 RSC-100 BET比表面積 106m/g)を用いた以外は実施例1に準じた。結果を表1に示した。シリカやアルミナに比べて選択率が低かった。
Comparative Example 1
Example 1 was repeated except that zirconia (RSC-100 BET specific surface area, 106 m 2 / g, manufactured by Daiichi Kagaku Kagaku Kogyo) was used as the catalyst. The results are shown in Table 1. The selectivity was lower than that of silica or alumina.
比較例2
 触媒に酸化リチウム-ジルコニア(ジルコニアRSC-100に公知の方法にて水酸化リチウムを含侵担持して調製した触媒)を用いた以外は実施例1に準じた。結果を表1に示した。
Comparative Example 2
Example 1 was repeated except that lithium oxide-zirconia (a catalyst prepared by impregnating and supporting lithium hydroxide on zirconia RSC-100 by a known method) was used as the catalyst. The results are shown in Table 1.
実施例9
 反応温度を180℃にした以外は実施例1に準じた。結果を表2に示した。
Example 9
Example 1 was repeated except that the reaction temperature was 180 ° C. The results are shown in Table 2.
実施例10
 反応温度を220℃にした以外は実施例1に準じた。結果を表2に示した。
Example 10
Example 1 was repeated except that the reaction temperature was 220 ° C. The results are shown in Table 2.
実施例11
 反応温度を240℃にした以外は実施例1に準じた。結果を表2に示した。
Example 11
Example 1 was repeated except that the reaction temperature was 240 ° C. The results are shown in Table 2.
実施例12
 反応温度を260℃にした以外は実施例1に準じた。結果を表2に示した。
Example 12
Example 1 was repeated except that the reaction temperature was 260 ° C. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[符号の説明]
1.原料(原料流入口)
2.キャリアガス(キャリアガス導入口)
3.熱電対
4.熱電対カバー(上部に熱電対導入口あり)
5.反応管
6.電気炉
7.触媒層
8.ガラスウール
9.ガス抜け穴(生成物回収)
[Explanation of symbols]
1. Raw material (raw material inlet)
2. Carrier gas (carrier gas inlet)
3. Thermocouple 4. Thermocouple cover (there is a thermocouple inlet at the top)
5. Reaction tube 6. Electric furnace 7. Catalyst layer8. Glass wool9. Gas vent (product recovery)

Claims (8)

  1.  アルデヒドのアルドール縮合反応を用いたアルドール縮合物の製造方法であって、
     気体のアルデヒドと、シリカ、アルミナ及びシリカ-アルミナから選ばれる少なくとも一種の触媒とが接触する工程を含む、製造方法。
    A method for producing an aldol condensate using an aldol condensation reaction of an aldehyde,
    A process comprising contacting a gaseous aldehyde with at least one catalyst selected from silica, alumina and silica-alumina.
  2.  前記触媒が220から380m-1のBET比表面積を有する、請求項1に記載の製造方法。 The method according to claim 1, wherein the catalyst has a BET specific surface area of 220 to 380 m 2 g -1 .
  3.  前記触媒が250から350m-1のBET比表面積を有する、請求項1に記載の製造方法。 The method according to claim 1, wherein the catalyst has a BET specific surface area of 250 to 350 m 2 g -1 .
  4.  前記触媒が酸素、アルミニウム又はケイ素以外の成分を含まない、請求項1から3のいずれか一項に記載の製造方法。 製造 The production method according to any one of claims 1 to 3, wherein the catalyst contains no components other than oxygen, aluminum, or silicon.
  5.  前記触媒がシリカである、請求項1から3のいずれか一項に記載の製造方法。 製造 The production method according to any one of claims 1 to 3, wherein the catalyst is silica.
  6.  前記アルデヒドが炭素数2から6の直鎖アルデヒドである、請求項1から5のいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 5, wherein the aldehyde is a linear aldehyde having 2 to 6 carbon atoms.
  7.  前記アルデヒドが、ノルマルブチルアルデヒドである請求項1から5のいずれか一項に記載の製造方法。 (6) The production method according to any one of (1) to (5), wherein the aldehyde is normal butyraldehyde.
  8.  前記アルドール縮合物が、2-エチル-2-ヘキセナールである請求項1から7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the aldol condensate is 2-ethyl-2-hexenal.
PCT/JP2019/027841 2018-07-27 2019-07-16 Method for producing aldol condensation product from aldehyde WO2020022114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532302A JP7329219B2 (en) 2018-07-27 2019-07-16 Method for producing aldol condensate from aldehyde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-141305 2018-07-27
JP2018141305 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022114A1 true WO2020022114A1 (en) 2020-01-30

Family

ID=69180481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027841 WO2020022114A1 (en) 2018-07-27 2019-07-16 Method for producing aldol condensation product from aldehyde

Country Status (2)

Country Link
JP (1) JP7329219B2 (en)
WO (1) WO2020022114A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845076A1 (en) * 2006-04-12 2007-10-17 DSMIP Assets B.V. Process for the preparation of a ketone or an aldehyde using silica as a catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845076A1 (en) * 2006-04-12 2007-10-17 DSMIP Assets B.V. Process for the preparation of a ketone or an aldehyde using silica as a catalyst

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUN, DAOLAI ET AL.: "Amorphous Si02 catalyst for vapor-phase aldol condensation of butanal", APPLIED CATALYSIS A, GENERAL, vol. 570, 14 November 2018 (2018-11-14), pages 113 - 119, XP085556841, ISSN: 0926-860X *
SUN, DAOLAI ET AL.: "Vapor-phase self-aldol condensation of butanal over Ag-modified Ti02", APPLIED CATALYSIS A: GENERAL, vol. 524, 2016, pages 8 - 16, XP029679781, ISSN: 0926-860X, DOI: 10.1016/j.apcata.2016.05.018 *
VITCHA, JAMES F.: "Vapor Phase Aldol Reaction Acyclic Acid by the Reaction of Acetic Acid and Formaldehyde", I & EC PRODUCT RESEARCH AND DEVELOPMENT, vol. 5, no. 1, 1966, pages 50 - 53, XP008068945, DOI: 10.1021/i360017a011 *

Also Published As

Publication number Publication date
JP7329219B2 (en) 2023-08-18
JPWO2020022114A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
KR102369420B1 (en) Chromium-free hydrogenation of hydroformylation mixtures
WO2014199349A2 (en) Metal impregnated amorphous silicates for the selective conversion of ethanol to butadiene
KR101514580B1 (en) Method for manufacturing unsaturated hydrocarbon, and dehydrogenation catalyst used in said method
Tai et al. Synthesis of methacrylic acid by aldol condensation of propionic acid with formaldehyde over acid–base bifunctional catalysts
JP5989749B2 (en) Cineol
US10245583B1 (en) Use of charge-containing molecules linked with covalent bonds to enhance acetylene hydrogenation catalysts
US8293936B2 (en) Method for producing n-propyl acetate
EP2531480B1 (en) Dehydrogenation process
JP6091310B2 (en) Method for producing butadiene
US6313323B1 (en) Trimerization of formaldehyde in the gas phase
EP3408251B1 (en) Efficient synthesis of methacrolein from methanol and propionaldehyde
JP6076477B2 (en) Olefin production method and dehydration catalyst used therefor
WO2020022114A1 (en) Method for producing aldol condensation product from aldehyde
US11717807B2 (en) Method for producing conjugated diene
JP5187675B2 (en) Method for producing hydroxyketone from trivalent or higher alcohol and catalyst used therefor
TWI547478B (en) Method for producing n-propyl acetate and method for producing allyl acetate
Wang et al. Influence of support properties on the activity of basic catalysts for aldol condensation of formaldehyde and methyl acetate in a continuous-flow reactor
CN107754790B (en) Catalyst for preparing linalool, preparation method of catalyst and method for preparing linalool
EP3707117A1 (en) Method for continuous production of 2,3-butanediol
JP4359447B2 (en) Method for producing monohydroxyacetone
CA2874058C (en) Method for producing 2-(isopropylamino)ethanol
Singh et al. A comparative study on basicity based on supported K-salt catalysts for isomerization of 1-methoxy-4-(2-propene-1-yl) benzene
JP2022162225A (en) Method for producing 1-alkene-3-ol
Lin et al. Yan
CN114286722A (en) Catalyst comprising coke and process for producing dienes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532302

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840976

Country of ref document: EP

Kind code of ref document: A1