JP7327082B2 - Cell wall breaking device and sludge treatment device using the cell wall breaking device - Google Patents

Cell wall breaking device and sludge treatment device using the cell wall breaking device Download PDF

Info

Publication number
JP7327082B2
JP7327082B2 JP2019195949A JP2019195949A JP7327082B2 JP 7327082 B2 JP7327082 B2 JP 7327082B2 JP 2019195949 A JP2019195949 A JP 2019195949A JP 2019195949 A JP2019195949 A JP 2019195949A JP 7327082 B2 JP7327082 B2 JP 7327082B2
Authority
JP
Japan
Prior art keywords
steam
cell wall
pressure
liquid substance
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019195949A
Other languages
Japanese (ja)
Other versions
JP2020080858A (en
Inventor
繁則 松本
治貴 浦部
謙年 林
以昌 山口
志勲 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Publication of JP2020080858A publication Critical patent/JP2020080858A/en
Application granted granted Critical
Publication of JP7327082B2 publication Critical patent/JP7327082B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

本発明は、汚泥等に含まれる微生物等の細胞壁を破壊する細胞壁破壊装置及び該微生物等の細胞壁破壊装置を用いた汚泥処理装置に関する。 TECHNICAL FIELD The present invention relates to a cell wall breaking device for breaking cell walls of microorganisms contained in sludge and the like, and a sludge treatment apparatus using the cell wall breaking device for microorganisms.

汚泥等に含まれる微生物の細胞壁破壊装置に関連する技術として、例えば特許文献1には、「汚泥に含まれる微生物の細胞壁を破壊して汚泥を可溶化する生物汚泥の処理装置であって、汚泥が流通する管路内に複数の抵抗体が配設され、汚泥と撹拌用気体とを攪拌して微生物の細胞壁に物理的に損傷を加える撹拌手段と、管路内を流通する汚泥を加熱して微生物の細胞壁破壊を促進する加熱手段とを備えたことを特徴とする生物汚泥の処理装置。」(特許文献1の請求項1参照)が開示されている。 As a technology related to the cell wall destruction apparatus for microorganisms contained in sludge, for example, Patent Document 1 describes "A biological sludge treatment apparatus for solubilizing sludge by breaking the cell walls of microorganisms contained in sludge, wherein the sludge is A plurality of resistors are arranged in the pipeline through which the sludge flows, and the stirring means that agitates the sludge and the stirring gas to physically damage the cell walls of the microorganisms, and heats the sludge that flows through the pipeline. a biological sludge treatment apparatus characterized by comprising a heating means for promoting cell wall destruction of microorganisms by means of a heating means” (see claim 1 of Patent Document 1).

上記の特許文献1に開示の装置において、微生物の細胞壁に物理的損傷を加える攪拌手段の具体的な構成として、「タンク2と静止型混合器3との間で汚泥を循環させながら、静止型混合器3で所要の時間に渡って連続的に汚泥と空気とが撹拌される。これにより、汚泥中の微生物の細胞壁に物理的に損傷を加えることができる。ここでは、加圧された空気が静止型混合器3の上流側で汚泥中に注入される。」(特許文献1の段落[0020]参照)という構成を採用している。 In the apparatus disclosed in Patent Document 1 above, as a specific configuration of the stirring means that physically damages the cell walls of microorganisms, "While circulating sludge between the tank 2 and the static mixer 3, static The sludge and air are continuously agitated for a required time in the mixer 3. This can physically damage the cell walls of microorganisms in the sludge. is injected into the sludge on the upstream side of the static mixer 3" (see paragraph [0020] of Patent Document 1).

また、特許文献2には、「有機物を含む排水を生物処理槽にて微生物により有機物分解することにより発生した汚泥に水撃圧を加えて前記生物処理槽へ返送する返送手段を有する汚泥処理装置。」(特許文献2の請求項1参照)が開示されている。 そして、特許文献2の実施の形態において、水撃圧等について「水撃圧Pa=0.5~1MPa、排水弁作動時間Δt=0.05~0.1秒(昇圧速度Pa/Δt=5~20MPa/秒)、弁室設定角度α=20~40°、排水弁取付角度θ=60°~80°、水撃サイクルta=1~3秒としている。」と記載されている。 In addition, in Patent Document 2, "a sludge treatment apparatus having a return means for returning to the biological treatment tank by applying a water hammer pressure to the sludge generated by decomposing organic matter in the biological treatment tank in the wastewater containing organic matter. .” (see claim 1 of Patent Document 2). Then, in the embodiment of Patent Document 2, regarding the water hammer pressure, etc., "water hammer pressure Pa = 0.5 to 1 MPa, drain valve operating time Δt = 0.05 to 0.1 seconds (increasing speed Pa / Δt = 5 ~20 MPa/sec), valve chamber setting angle α = 20 to 40°, drain valve mounting angle θ = 60° to 80°, water hammer cycle ta = 1 to 3 seconds.

さらに、特許文献3には、「微細藻類に蓄積された油分を分離する油分分離装置であって、
水蒸気を生成する水蒸気生成手段と、蒸気エジェクタとを備え、
前記蒸気エジェクタは、前記微細藻類の懸濁液を吸引する第1開口部、前記水蒸気が流入する第2開口部、前記懸濁液と前記水蒸気とが混合される内室、前記第1開口部と前記内室とを連通する第1流路、前記第2開口部と前記内室とを連通する第2流路、及び前記内室に連通して前記懸濁液と前記水蒸気との混合物が流出する第3流路を有し、前記水蒸気を前記第2開口部から前記内室へ噴出させることにより前記内室に発生する負圧を利用して前記第1開口部から前記懸濁液を吸引し、前記懸濁液と前記水蒸気とを混合させて前記懸濁液中の微細藻類に蓄積された油分を分離することを特徴とする油分分離装置。」(特許文献3の請求項1参照)が開示されている。
Furthermore, in Patent Document 3, "an oil separation device for separating oil accumulated in microalgae,
comprising steam generating means for generating steam and a steam ejector,
The steam ejector includes a first opening for sucking the suspension of microalgae, a second opening for flowing the water vapor, an inner chamber for mixing the suspension and the water vapor, and the first opening. and the inner chamber, a second flow passage communicating between the second opening and the inner chamber, and a mixture of the suspension and the water vapor communicating with the inner chamber. The suspension has a third flow path for outflow, and the suspension is discharged from the first opening using the negative pressure generated in the inner chamber by jetting the water vapor from the second opening to the inner chamber. An oil separation device characterized by sucking and mixing the suspension and the water vapor to separate oil accumulated in microalgae in the suspension. ” (see claim 1 of Patent Document 3).

特開2003-340493号公報JP-A-2003-340493 特開2014-486号公報Japanese Unexamined Patent Application Publication No. 2014-486 特開2017-79621号公報JP 2017-79621 A

しかし、各特許文献に開示の装置にはそれぞれ以下に示すような課題がある。
特許文献1に関し、静止型混合器内で適切に乱流を発生させて連続的に汚泥と空気とを撹拌するためには、静止型混合器内を流通する液状物質を一定の流速/圧力に維持するための大きなポンプ動力を必要とする。
また、加熱手段としての電熱ヒータで液状物質を所定温度まで加熱するにも大きな電力を必要とする。
このように、特許文献1の技術は、消費エネルギーが大きく効率の良い処理方法とは言い難い。
However, the devices disclosed in each patent document have the following problems.
Regarding Patent Document 1, in order to appropriately generate turbulence in the static mixer and continuously agitate sludge and air, the liquid substance flowing in the static mixer is kept at a constant flow rate / pressure. Requires large pump power to maintain.
Also, a large amount of electric power is required to heat the liquid substance to a predetermined temperature with an electric heater as a heating means.
As described above, the technique of Patent Document 1 consumes a large amount of energy and cannot be said to be an efficient treatment method.

また、特許文献2に関し、ポンプの圧力を水撃装置で水撃圧にしているため、ポンプに水撃圧の影響を与えないためのアキュムレータをポンプと水撃装置の間に設置する必要があり、またポンプを使用しない場合であっても相当する水頭差が得られるタンクを必要とするため、装置が大型化する。さらに、水撃作用により発生する振動は装置の故障を誘発するという問題に対する措置や水撃音を緩和する措置等がさらに必要となるといった問題もある。 In addition, regarding Patent Document 2, since the pressure of the pump is set to the water hammer pressure by the water hammer, it is necessary to install an accumulator between the pump and the water hammer to prevent the water hammer pressure from affecting the pump. Also, even if a pump is not used, a tank capable of obtaining a corresponding water head difference is required, resulting in an increase in the size of the apparatus. Furthermore, there is also the problem that it is necessary to take measures against the problem that the vibration generated by the water hammer action induces failure of the device and measures to reduce the sound of the water hammer.

さらに、特許文献3に関し、蒸気エジェクタを用いることで装置のコンパクト化、低エネルギー化、耐久性向上化という効果はあるものの、蒸気エジェクタ内の圧力の変化は減圧に関するものであり、液状物質の加圧による細胞壁破壊の効果は期待できない。 Furthermore, regarding Patent Document 3, although the use of a steam ejector has the effects of making the device compact, reducing energy consumption, and improving durability, the change in pressure inside the steam ejector is related to decompression, and the pressure of the liquid substance is increased. The effect of cell wall destruction by pressure cannot be expected.

本発明はかかる課題を解決するためになされたものであり、消費エネルギーが小さく、装置のコンパクト化が可能で、かつ細胞壁破壊効果の高い微生物等の細胞壁破壊装置及び該細胞壁破壊装置を用いた汚泥処理装置を提供することを目的としている。 The present invention has been made in order to solve such problems, and has a low energy consumption, a compact device, and a cell wall disrupting device for microorganisms, etc., which has a high cell wall disrupting effect, and sludge using the cell wall disrupting device. The object is to provide a processing device.

(1)本発明に係る細胞壁破壊装置は、水蒸気を導入する蒸気導入口及び液状物質を導入する液状物質導入口が設けられた流入部と、前記水蒸気と前記液状物質とが混合する下流側に向かって縮径する混合部と、該混合部の最下流部にあるのど部に連続して混合流体が昇圧される下流側に向かって拡径する昇圧部とを有し、前記蒸気導入口から導入された水蒸気を前記液状物質導入口から導入された液状物質に接触させることで前記水蒸気を凝縮させて前記水蒸気と前記液状物質の混合流体の昇圧を行う蒸気インジェクタを有し、
前記液状物質導入口に微生物等の有機物を含む液状物質を供給する液状物質供給手段と、前記蒸気導入口に水蒸気を供給する水蒸気供給手段と、前記蒸気インジェクタから排出される混合流体を後処理部へ送り出す送出管部とを備えたことを特徴とするものである。
(1) The cell wall disruption apparatus according to the present invention comprises an inflow part provided with a steam inlet for introducing steam and a liquid substance inlet for introducing a liquid substance, and a downstream side where the steam and the liquid substance are mixed. A mixing section whose diameter decreases toward the mixing section, and a pressurizing section which expands in diameter toward the downstream side continuously from the throat section at the most downstream portion of the mixing section, where the mixed fluid is pressurized, and from the steam introduction port. a steam injector for contacting the introduced steam with the liquid substance introduced from the liquid substance introduction port to condense the steam to increase the pressure of the mixed fluid of the steam and the liquid substance;
liquid material supply means for supplying a liquid material containing organic matter such as microorganisms to the liquid material introduction port; steam supply means for supplying steam to the steam introduction port; It is characterized by comprising a delivery pipe section for delivering to.

(2)また、上記(1)に記載のものにおいて、前記送出管部に設けられて送出管部に送出される混合流体の圧力を制御する圧力制御弁と、前記混合部の圧力を検知する第1圧力検知部と、前記昇圧部の下流端以降の圧力を検知する第2圧力検知部と、前記第1圧力検知部と前記第2圧力検知部の検知圧力を入力してこれらの圧力差が0.2MPa以上になるように前記圧力制御弁を制御する制御部とを備えたことを特徴とするものである。 (2) In addition, in the apparatus described in (1) above, a pressure control valve is provided in the delivery pipe portion for controlling the pressure of the mixed fluid delivered to the delivery pipe portion, and the pressure in the mixing portion is detected. A first pressure detection unit, a second pressure detection unit that detects pressure after the downstream end of the pressure increasing unit, and a pressure difference between the detected pressures of the first pressure detection unit and the second pressure detection unit. and a control unit for controlling the pressure control valve so that the pressure becomes 0.2 MPa or more.

(3)また、上記(1)に記載のものにおいて、前記送出管部に設けられて送出管部に送出される混合流体の圧力を制御する圧力制御弁をさらに有し、
前記水蒸気供給手段は、供給する蒸気の圧力と流量を調整する機能をさらに有し、
前記液状物質供給手段は、蒸気インジェクタに供給する液状物質の流量を調整する機能をさらに有し、
前記蒸気インジェクタの出口での混合流体を亜臨界状態(温度150~200℃、圧力0.5~2MPa)にするようにしたことを特徴とするものである。
(3) In addition, the apparatus according to (1) above further includes a pressure control valve provided in the delivery pipe portion for controlling the pressure of the mixed fluid delivered to the delivery pipe portion,
The steam supply means further has a function of adjusting the pressure and flow rate of the steam to be supplied,
The liquid substance supply means further has a function of adjusting the flow rate of the liquid substance supplied to the steam injector,
It is characterized in that the mixed fluid at the outlet of the steam injector is in a subcritical state (temperature 150-200°C, pressure 0.5-2 MPa).

(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、前記蒸気インジェクタは、前記液状物質導入口から導入される主流に対して接線方向となる副流を導入する副液状物質導入口を有し、
前記液状物質供給手段は、前記副液状物質導入口に微生物等の有機物を含む液状物質を供給する副液状物質供給手段を備えていることを特徴とするものである。
(4) In addition, in any one of the above (1) to (3), the steam injector introduces a secondary flow that is tangential to the main flow introduced from the liquid substance inlet. having a liquid substance inlet,
The liquid material supply means is characterized by comprising a secondary liquid material supply means for supplying a liquid material containing organic matter such as microorganisms to the secondary liquid material introduction port.

(5)また、上記(1)乃至(4)のいずれかに記載のものにおいて、前記送出管部に、混合流体を減圧してキャビテーションを発生させる流体ノズルを設けたことを特徴とするものである。 (5) In addition, in any one of the above (1) to (4), the delivery pipe portion is provided with a fluid nozzle for depressurizing the mixed fluid to generate cavitation. be.

(6)また、上記(1)乃至(5)のいずれかに記載のものにおいて、前記送出管部に、混合流体を一時的に貯留する貯留槽を設けたことを特徴とするものである。 (6) In addition, in any one of the above (1) to (5), the delivery pipe portion is provided with a storage tank for temporarily storing the mixed fluid.

(7)また、上記(1)乃至(6)のいずれかに記載のものにおいて、前記送出管部に、混合流体を加熱する加熱手段を設けたことを特徴とするものである。 (7) In addition, in any one of the above (1) to (6), the delivery pipe portion is provided with heating means for heating the mixed fluid.

(8)本発明に係る汚泥処理装置は、上記(1)乃至(7)のいずれかに記載の細胞壁破壊装置を備えた汚泥処理装置であって、
最終沈殿池の沈殿物を濃縮する濃縮装置と、汚泥からメタンガスを発生させる消化槽とを有し、前記細胞壁破壊装置を、前記濃縮装置と前記消化槽との間に配設し、前記濃縮装置で濃縮された濃縮汚泥に対して細胞壁破壊処理を行って前記消化槽に送り出すようにしたことを特徴とするものである。
(8) A sludge treatment apparatus according to the present invention is a sludge treatment apparatus comprising the cell wall breaking device according to any one of (1) to (7) above,
It has a concentration device for concentrating the sediment in the final sedimentation tank and a digestion tank for generating methane gas from the sludge, wherein the cell wall breaking device is disposed between the concentration device and the digestion tank, and the concentration device The thickened sludge is subjected to a cell wall destruction treatment and sent to the digestion tank.

(9)また、上記(8)に記載のものにおいて、前記消化槽から排出された消化汚泥に対して細胞壁破壊処理を行う前記細胞壁破壊装置をさらに設け、該細胞壁破壊装置によって前記消化汚泥を処理した後、前記消化槽に戻すか又は脱水機以降のプロセスに送り出すようにしたことを特徴とするものである。 (9) In addition, in the method described in (8) above, the cell wall breaking device is further provided for performing a cell wall breaking treatment on the digested sludge discharged from the digestion tank, and the digested sludge is treated by the cell wall breaking device. After that, it is returned to the digestion tank or sent to the process after the dehydrator.

(10)また、上記(1)乃至(7)のいずれかに記載の細胞壁破壊装置を備えた汚泥処理装置であって、
汚泥からメタンガスを発生させる消化槽を有し、該消化槽から排出された消化汚泥に対して前記細胞壁破壊装置によって細胞壁破壊処理を行って前記消化槽に戻すか又は脱水機以降のプロセスに送り出すようにしたことを特徴とするものである。
(10) A sludge treatment apparatus comprising the cell wall disruption apparatus according to any one of (1) to (7) above,
It has a digestion tank that generates methane gas from the sludge, and the digested sludge discharged from the digestion tank is subjected to cell wall destruction treatment by the cell wall destruction device and returned to the digestion tank or sent to the process after the dehydrator. It is characterized by

本発明の細胞壁破壊装置によれば、蒸気インジェクタを有することで、消費エネルギーが小さく、装置のコンパクト化が可能で、かつ微生物等の細胞壁破壊効果を高めることができる。 According to the cell wall disrupting device of the present invention, by having a steam injector, energy consumption is small, the device can be made compact, and the cell wall disrupting effect of microorganisms can be enhanced.

本発明の実施の形態1に係る微生物の細胞壁破壊装置の説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a microbial cell wall disruption device according to Embodiment 1 of the present invention; 図1に示した微生物の細胞壁破壊装置における要部の作用の説明図である。FIG. 2 is an explanatory diagram of the action of the main part of the apparatus for destroying the cell walls of microorganisms shown in FIG. 1; 本発明の実施の形態2に係る汚泥処理装置の構成を説明する説明図である。It is an explanatory view explaining the composition of the sludge treatment equipment concerning Embodiment 2 of the present invention. 図3に示した汚泥処理装置の効果を説明するグラフである。4 is a graph for explaining the effect of the sludge treatment apparatus shown in FIG. 3; 本発明の実施の形態4に係る有機物の細胞壁破壊装置の説明図である。FIG. 10 is an explanatory diagram of an organic cell wall disruption device according to Embodiment 4 of the present invention. 本発明の実施の形態4に係る有機物の細胞壁破壊装置の他の態様の説明図である。FIG. 10 is an explanatory diagram of another aspect of the device for breaking down the cell wall of organic matter according to Embodiment 4 of the present invention. 本発明の実施の形態5に係る有機物の細胞壁破壊装置の説明図である。FIG. 10 is an explanatory diagram of an organic cell wall destruction apparatus according to Embodiment 5 of the present invention.

[実施の形態1]
本実施の形態に係る微生物の細胞壁破壊装置1は、図1、2に示すように、蒸気導入口3と液状物質導入口5を有する蒸気インジェクタ7と、液状物質導入口5に微生物を含む液状物質を供給する液状物質供給手段9と、蒸気導入口3に水蒸気を供給する水蒸気供給手段11と、蒸気インジェクタ7から排出される混合流体を後処理部へ送り出す送出管部13と、送出管部13に設けられて圧力を制御する圧力制御弁15と、第1圧力検知部17と、第2圧力検知部19と、第1圧力検知部17と第2圧力検知部19の圧力を検知してこれらの圧力差が0.2MPa以上になるように圧力制御弁15を制御する第1制御部21を備えている。
以下、各構成を詳細に説明する。
[Embodiment 1]
As shown in FIGS. 1 and 2, the microbial cell wall disruption apparatus 1 according to the present embodiment includes a steam injector 7 having a steam inlet 3 and a liquid substance inlet 5, and a liquid substance containing microorganisms in the liquid substance inlet 5. liquid substance supply means 9 for supplying a substance; steam supply means 11 for supplying steam to the steam inlet 3; delivery pipe portion 13 for delivering the mixed fluid discharged from the steam injector 7 to the post-treatment portion; A pressure control valve 15 provided in 13 for controlling pressure, a first pressure detection unit 17, a second pressure detection unit 19, and the pressures of the first pressure detection unit 17 and the second pressure detection unit 19 are detected. A first control unit 21 is provided to control the pressure control valve 15 so that the pressure difference therebetween is 0.2 MPa or more.
Each configuration will be described in detail below.

<蒸気インジェクタ>
蒸気インジェクタ7は、水蒸気を導入する蒸気導入口3と、液状物質の主流を導入する主液状物質導入口23及び液状物質の副流を導入する副液状物質導入口25からなる液状物質導入口5とを有し、蒸気導入口3から導入された水蒸気を蒸気噴出口27から噴出し、液状物質導入口5から導入されノズル29の先端から噴出される液状物質に接触させることで水蒸気を凝縮させて水蒸気と液状物質の混合流体の昇圧を行う装置である。
副液状物質導入口25は、主液状物質導入口23から導入される主流に対して接線方向となる方向に副流を噴射して旋回流を形成するものである。
<Steam injector>
The steam injector 7 has a liquid material introduction port 5 consisting of a vapor introduction port 3 for introducing water vapor, a main liquid substance introduction port 23 for introducing the main flow of the liquid substance, and a secondary liquid substance introduction port 25 for introducing the secondary flow of the liquid substance. The steam introduced from the steam introduction port 3 is ejected from the steam ejection port 27 and brought into contact with the liquid substance introduced from the liquid substance introduction port 5 and ejected from the tip of the nozzle 29 to condense the steam. It is a device that pressurizes a mixed fluid of water vapor and a liquid substance.
The secondary liquid material inlet 25 injects a secondary stream in a direction tangential to the main stream introduced from the main liquid material inlet 23 to form a swirling flow.

蒸気インジェクタ7の内部をその機能で分割すると、図2に示すように、水蒸気及び液状物質が流入する流入部と、水蒸気と液状物質とが混合する下流側に向かって縮径する混合部と、混合部の最下流部にあるのど部31に連続して下流側に向かった拡径して昇圧する昇圧部と、昇圧部の下流側の流出部となる。 If the inside of the steam injector 7 is divided according to its function, as shown in FIG. 2, an inflow part into which steam and liquid substances flow, a mixing part whose diameter decreases toward the downstream side where steam and liquid substances are mixed, The throat portion 31 at the most downstream portion of the mixing portion is continuously connected to the pressure increasing portion that expands in diameter toward the downstream side to increase the pressure, and the outflow portion on the downstream side of the pressure increasing portion.

このような構造を有する蒸気インジェクタ7の作用を説明すると、蒸気導入口3から導入された水蒸気を混合部に噴出し、液状物質導入口5から導入されて噴出する液状物質と直接接触することで水蒸気の保有する運動エネルギーを液状物質に受け渡すと同時に水蒸気の凝縮により液状物質を加熱し、下流の昇圧部において流体のもつ運動エネルギーが圧力エネルギーに変換されることで、導入される水蒸気および液状物質いずれの圧力よりも高圧になる。 Explaining the operation of the steam injector 7 having such a structure, the steam introduced from the steam inlet 3 is ejected into the mixing section, and is brought into direct contact with the ejected liquid material introduced from the liquid material inlet 5. The kinetic energy possessed by the water vapor is transferred to the liquid substance, and at the same time, the liquid substance is heated by condensation of the water vapor. Higher pressure than any substance.

蒸気インジェクタ7ののど部31にはドレン管33が接続されており、ドレン管33は後述する貯留タンク37に接続されている。
ドレン管33は、起動時において、混合部(特にのど部31)に滞留するドレン(凝縮した温液状物質)を抜き出して、水蒸気を混合部に供給しやすくして、起動時における水蒸気の連続的な凝縮を円滑にできるようにするものである。
上記のドレン管33の機能を発揮するため、ドレン管33には開閉弁35が設けられており、この開閉弁35は蒸気インジェクタ7の混合部の圧力が昇圧部の下流端以降で圧力制御弁15の上流側の圧力より一定値以上高くなった場合に開放する。
A drain pipe 33 is connected to the throat portion 31 of the steam injector 7, and the drain pipe 33 is connected to a storage tank 37 which will be described later.
The drain pipe 33 extracts the drain (condensed hot liquid substance) remaining in the mixing section (especially the throat section 31) at the time of startup, and facilitates the supply of steam to the mixing section, so that the steam can be continuously supplied at the time of startup. It is intended to enable smooth condensation.
In order to exhibit the function of the drain pipe 33, the drain pipe 33 is provided with an on-off valve 35. The on-off valve 35 is a pressure control valve when the pressure in the mixing portion of the steam injector 7 is at or after the downstream end of the pressure increasing portion. When the pressure on the upstream side of 15 becomes higher than a certain value, the valve is opened.

<液状物質供給手段>
液状物質供給手段9は、蒸気インジェクタ7の液状物質導入口5に微生物を含む液状物質を供給するものであり、種々の装置から構成される。
本実施の形態の液状物質供給手段9は、図1に示すように、微生物を含む液状物質を受け入れて貯留する貯留タンク37と、貯留タンク37から液状物質を蒸気インジェクタ7に供給する主供給管39と、主供給管39に設けられて流量を計測する流量計41と、主供給管39に液状物質を送り出すポンプ(図示なし)と、主供給管39から分岐して蒸気インジェクタ7の副液状物質導入口25に供給する副供給管43とを備えている。
<Liquid substance supplying means>
The liquid substance supply means 9 supplies the liquid substance containing microorganisms to the liquid substance introduction port 5 of the steam injector 7, and is composed of various devices.
As shown in FIG. 1, the liquid substance supply means 9 of the present embodiment includes a storage tank 37 that receives and stores a liquid substance containing microorganisms, and a main supply pipe that supplies the liquid substance from the storage tank 37 to the steam injector 7. 39, a flow meter 41 provided in the main supply pipe 39 to measure the flow rate, a pump (not shown) for sending liquid substances to the main supply pipe 39, and a sub-supply pipe 43 for supplying to the substance introduction port 25 .

副供給管43を設けた理由は、副供給管43から蒸気インジェクタ7の副液状物質導入口25に液状物質を供給することで、液状物質の流れを旋回流とするためである。
液状物質の流れを旋回流にする理由は以下の通りである。
汚泥等の液状物質は、水に比べると粘性が高いため、液状物質導入口5から導入されてノズル29から噴出する液状物質の噴流と水蒸気流の接触面において水蒸気の凝縮熱が液状物質噴流の中心方向に伝わりにくく、液状物質噴流と水蒸気流の接触面の温度が上昇しやすい。このことは液状物質噴流と水蒸気流の接触面での水蒸気の凝縮の抑制につながる。このため、液状物質噴流と水蒸気流との運動量やエネルギーの交換が少なくなり、蒸気インジェクタ7の大型化や混合部から昇圧部にかけての昇圧が小さくなる可能性がある。
このような問題は、液状物質噴流を旋回流とすることで、液状物質噴流の全体と蒸気流との接触を促進することで解消される。なお、液状物質噴流の全体と水蒸気流との接触が促進されるメカニズムについては後述する。
The reason for providing the sub-supply pipe 43 is to supply the liquid substance from the sub-supply pipe 43 to the sub-liquid substance inlet 25 of the steam injector 7, thereby turning the flow of the liquid substance into a swirling flow.
The reason why the flow of the liquid substance is swirl is as follows.
Since liquid substances such as sludge have a higher viscosity than water, the condensation heat of the water vapor is applied to the liquid substance jet at the contact surface between the liquid substance jet introduced from the liquid substance inlet 5 and ejected from the nozzle 29 and the steam flow. It is difficult to propagate toward the center, and the temperature of the contact surface between the liquid substance jet and the steam flow tends to rise. This leads to suppression of water vapor condensation on the contact surface between the liquid substance jet and the water vapor flow. For this reason, the exchange of momentum and energy between the jet of liquid substance and the steam flow is reduced, and there is a possibility that the size of the steam injector 7 will be increased and the pressurization from the mixing section to the pressurization section will be reduced.
Such a problem can be solved by making the liquid substance jet a swirling flow to promote contact between the entire liquid substance jet and the steam flow. The mechanism by which the contact between the entire liquid substance jet and the water vapor flow is promoted will be described later.

貯留タンク37には液状物質の温度を計測する温度計45が設けられている。
また、主供給管39には主液状物質導入口23に供給する液状物質の流量を調整するための主流量制御弁47が設けられ、副供給管43には副液状物質導入口25に供給する液状物質の流量を調整する副流量制御弁49が設けられている。
なお、貯留タンク37は必須ではなく、省略することが可能であり、また貯留タンク37を設けておいて、必要に応じて使用したりバイパスしたりするようにしてもよい。なお、貯留タンク37を省略したり、あるいはバイパスしたりする場合には、ドレン管33は送出管部13における圧力制御弁15の下流側に接続すればよい。
The storage tank 37 is provided with a thermometer 45 for measuring the temperature of the liquid substance.
The main supply pipe 39 is provided with a main flow control valve 47 for adjusting the flow rate of the liquid substance supplied to the main liquid substance introduction port 23 , and the sub supply pipe 43 is provided with the sub liquid substance introduction port 25 . A secondary flow control valve 49 is provided for adjusting the flow rate of the liquid substance.
Note that the storage tank 37 is not essential and can be omitted, and the storage tank 37 may be provided and used or bypassed as necessary. When the storage tank 37 is omitted or bypassed, the drain pipe 33 may be connected to the downstream side of the pressure control valve 15 in the delivery pipe portion 13 .

<水蒸気供給手段>
水蒸気供給手段11は、蒸気インジェクタ7の蒸気導入口3に水蒸気を供給するものであり、例えばボイラ等の蒸気発生器からの水蒸気を蒸気導入口3に供給するための蒸気供給管51と、蒸気供給管51に設けられて水蒸気の流量を計測する流量計53とを備えている。蒸気供給管51には、温度計55と圧力計57が設けられている。
<Water vapor supply means>
The steam supply means 11 supplies steam to the steam inlet 3 of the steam injector 7. For example, a steam supply pipe 51 for supplying steam from a steam generator such as a boiler to the steam inlet 3; A flowmeter 53 is provided in the supply pipe 51 and measures the flow rate of steam. The steam supply pipe 51 is provided with a thermometer 55 and a pressure gauge 57 .

<送出管部>
送出管部13は、蒸気インジェクタ7から排出される液状物質と水蒸気の混合流体を、例えば汚泥処理装置の消化槽等の後処理部へ送り出す配管等である。
<Delivery pipe part>
The delivery pipe portion 13 is a pipe or the like for delivering a mixed fluid of a liquid substance and steam discharged from the steam injector 7 to a post-treatment portion such as a digestion tank of a sludge treatment apparatus.

<圧力制御弁>
圧力制御弁15は、送出管部13に設けられて送り出される混合流体の圧力を調整するものである。圧力制御弁15は、第1制御部21によってその開度が調整される。
<Pressure control valve>
The pressure control valve 15 is provided in the delivery pipe portion 13 and adjusts the pressure of the mixed fluid delivered. The opening of the pressure control valve 15 is adjusted by the first controller 21 .

<第1圧力検知部>
第1圧力検知部17は、蒸気インジェクタ7における混合部の圧力を検知するものであり、検出値を第1制御部21に送信する。第1圧力検知部17は、混合部であればほぼ圧力が同じになるので、どの位置であってもよく、例えばのど部31に設ける。
<First pressure detector>
The first pressure detector 17 detects the pressure of the mixing section in the steam injector 7 and transmits the detected value to the first controller 21 . The first pressure detection unit 17 may be provided at any position, for example, in the throat 31 because the pressure is substantially the same in the mixing unit.

<第2圧力検知部>
第2圧力検知部19は、蒸気インジェクタ7における昇圧部の下流端以降の圧力を検知するものである。第2圧力検知部19を設ける位置は、昇圧部の下流端以降で圧力制御弁15の上流側であればよく、例えば送出管部13に設けてもよい。
<Second pressure detector>
The second pressure detection section 19 detects the pressure after the downstream end of the pressure increasing section in the steam injector 7 . The position where the second pressure detection part 19 is provided may be on the upstream side of the pressure control valve 15 after the downstream end of the pressure increasing part.

<第1制御部>
第1制御部21は、第1圧力検知部17と第2圧力検知部19の圧力を入力してこれらの圧力差が0.2MPa以上になるように圧力制御弁15を制御するものである。
本実施の形態では、第1圧力検知部17の検知信号を入力して主流量制御弁47及び副流量制御弁49を制御する第2制御部59が設けられている。
<First control section>
The first control unit 21 inputs the pressures of the first pressure detection unit 17 and the second pressure detection unit 19 and controls the pressure control valve 15 so that the pressure difference between them becomes 0.2 MPa or more.
In the present embodiment, a second control section 59 is provided that inputs the detection signal of the first pressure detection section 17 and controls the main flow control valve 47 and the sub flow control valve 49 .

なお、本発明は蒸気インジェクタ7がインジェクタとして作動することを前提としており、そのためには、水蒸気供給手段11や液状物質供給手段9に設置している各計器の値に基づいて、蒸気インジェクタ7に供給する液状物質及び水蒸気の流量を調整する必要があり、これらの制御は図示しない主制御手段によって行われることになるが、この点は、本願発明の前提事項であり、本願発明の特徴とは直接関わらないので、詳細な説明は省略している。 The present invention is based on the premise that the steam injector 7 operates as an injector. It is necessary to adjust the flow rates of the liquid substance and steam to be supplied, and these controls are performed by main control means (not shown). Since it is not directly related, detailed description is omitted.

以上のように構成された本実施の形態の微生物の細胞壁破壊装置1の動作について説明する。
貯留タンク37に貯留された微生物を含む液状物質は図示しないポンプによって主供給管39に送り出され、主供給管39及び副供給管43を通じて蒸気インジェクタ7に導入される。
The operation of the microbial cell wall disruption apparatus 1 of the present embodiment configured as described above will be described.
A liquid substance containing microorganisms stored in the storage tank 37 is sent to the main supply pipe 39 by a pump (not shown) and introduced into the steam injector 7 through the main supply pipe 39 and the sub-supply pipe 43 .

蒸気インジェクタ7における流入部において、主液状物質導入口23には主供給管39からの液状物質が供給され、副液状物質導入口25には副供給管43からの液状物質がそれぞれ導入される。また、蒸気導入口3には、蒸気供給管51から供給される水蒸気が導入される。
主液状物質導入口23から導入された主流は蒸気インジェクタ7の軸線方向に流れ、副液状物質導入口25から導入された副流は主流に対して直交する接線方向に流れて、主流に対して旋回流を形成する。したがって、副液状物質導入口25よりも下流側では、上流側から軸線方向に流れてきた液状物質も旋回流の影響を受け、液状物質全体が旋回流を形成してノズル29の先端から噴出する。
主流および副流の流量は、主流量調整弁47および副流量調整弁49のそれぞれの開度が第2制御部59によって調整されることにより制御される。
At the inflow portion of the steam injector 7, the main liquid substance inlet 23 is supplied with the liquid substance from the main supply pipe 39, and the secondary liquid substance inlet 25 is introduced with the liquid substance from the auxiliary supply pipe 43. Also, steam supplied from a steam supply pipe 51 is introduced into the steam inlet 3 .
The main stream introduced from the main liquid material inlet 23 flows in the axial direction of the steam injector 7, and the substream introduced from the secondary liquid material inlet 25 flows in the tangential direction orthogonal to the main stream. Form a swirling flow. Therefore, on the downstream side of the secondary liquid material introduction port 25 , the liquid material flowing in the axial direction from the upstream side is also affected by the swirling flow, and the entire liquid material forms a swirling flow and is ejected from the tip of the nozzle 29 . .
The flow rates of the main flow and the secondary flow are controlled by adjusting the respective opening degrees of the main flow control valve 47 and the secondary flow control valve 49 by the second controller 59 .

蒸気導入口3から導入された水蒸気は、ノズル29の外周を軸線方向に流れて、混合部において液状物質と混合される。
流入部における液状物質及び水蒸気の圧力は、図2に示すように、液状物質が約0.1MPaで、水蒸気が約0.15MPaである。
The steam introduced from the steam inlet 3 flows axially along the outer circumference of the nozzle 29 and is mixed with the liquid substance in the mixing section.
As shown in FIG. 2, the pressure of the liquid substance and steam in the inflow part is about 0.1 MPa for the liquid substance and about 0.15 MPa for the steam.

混合部では、液状物質に水蒸気が直接接触して凝縮し、減圧すると共に加熱(50°C~80°C程度)される。そして、混合部では水蒸気の運動量が液状物質に効率よく受け渡され、のど部31に向かって加速される。
混合部における混合流体の圧力は、図2に示すように、0.03MPa程度まで減圧され、さらに凝縮する水蒸気による加熱と衝突によって液状物質に含まれる微生物の細胞壁が破壊される。
In the mixing section, water vapor comes into direct contact with the liquid substance and is condensed. In the mixing section, the momentum of the water vapor is efficiently transferred to the liquid substance and accelerated toward the throat section 31 .
The pressure of the mixed fluid in the mixing section is reduced to about 0.03 MPa, as shown in FIG. 2, and the cell walls of the microorganisms contained in the liquid substance are destroyed by heating and collision with the condensing water vapor.

本実施の形態では、液状物質に旋回流を生じさせているため、液状物質が汚泥等の流体塊を含む場合には以下のような作用により、微生物の細胞壁破壊効果が促進される。
液状物質に旋回速度成分が付与され遠心力が作用する状態になると、汚泥噴流の中心付近にある密度の大きい流体塊が汚泥噴流の周縁部へ移動し水蒸気流との接触が促進され、他方、水蒸気の凝縮により温度上昇し密度が小さくなった流体塊が噴流の中心方向に移動するという動きが生ずる。
このように、液状物質を旋回流とすることで、水蒸気と接触する液状物質の流体塊の温度が低く維持されやすくなるため水蒸気の凝縮が促進され、凝縮に伴う微生物の加熱と衝突によって細胞壁破壊効果を促進できる。
In the present embodiment, a swirling flow is generated in the liquid substance, and therefore, when the liquid substance contains a fluid mass such as sludge, the effect of destroying the cell walls of microorganisms is promoted by the following action.
When a centrifugal force is applied by imparting a swirling velocity component to the liquid substance, the dense fluid mass near the center of the sludge jet moves to the periphery of the sludge jet, promoting contact with the steam flow. Condensation of water vapor causes the mass of fluid whose temperature has risen and whose density has decreased to move toward the center of the jet.
In this way, by making the liquid material swirling, the temperature of the fluid mass of the liquid material in contact with the water vapor is easily maintained at a low temperature, which promotes the condensation of the water vapor. can promote effectiveness.

なお、旋回速度成分の付与は、蒸気インジェクタ7における混合部に設置した第1圧力検知部17の圧力をあらかじめ設定した(あるいは液状物質と水蒸気の流入条件から演算した)目標値になるように、第2制御部59によって主流量制御弁47及び副流量制御弁49を制御する。具体的には、第1圧力検知部17の圧力が目標値よりも高ければ、旋回速度成分を増すために副流量制御弁49の開度を大きくして副流の流量を多くする。 The swirling speed component is imparted so that the pressure of the first pressure detection unit 17 installed in the mixing unit of the steam injector 7 becomes a preset target value (or calculated from the inflow conditions of the liquid substance and steam). The second controller 59 controls the main flow control valve 47 and the sub flow control valve 49 . Specifically, if the pressure detected by the first pressure detector 17 is higher than the target value, the opening of the secondary flow control valve 49 is increased to increase the flow rate of the secondary flow in order to increase the swirling speed component.

のど部31を通過して昇圧部に入ると、流路が拡大することにより、運動エネルギーが圧力エネルギーに変換されて急激な圧力上昇(加圧)、具体的には圧力差0.2MPa以上、より好ましくは圧力差0.3MPa以上が生じ、微生物の細胞壁破壊が促進される(図2参照)。
これに対して、蒸気エジェクタの場合、図2に示すように、流出部の圧力は流入部の圧力よりも低くなり、加圧による細胞壁破壊を期待することはできない。
When it passes through the throat 31 and enters the pressurizing section, the flow path expands, and the kinetic energy is converted into pressure energy, resulting in a rapid pressure increase (pressurization). Preferably, a pressure difference of 0.3 MPa or more is generated to promote cell wall destruction of microorganisms (see FIG. 2).
On the other hand, in the case of a steam ejector, as shown in FIG. 2, the pressure at the outflow portion is lower than the pressure at the inflow portion, and it cannot be expected that the cell walls will be broken by pressurization.

第1制御部21は、第1圧力検知部17と第2圧力検知部19の検出圧力を常時入力して、圧力差が0.2MPa以上になるように、圧力制御弁15の開度を制御する。具体的には、圧力差が小さくなる傾向にある場合には、圧力制御弁15を絞り、圧力差が大きく成りすぎる傾向にある場合には、圧力制御弁15の開度を大きくする制御を行う。
なお、蒸気インジェクタ7の昇圧部における急激な圧力上昇(0.2MPa以上)が見られる場合の昇圧部における液状物質の流速は20m/s程度以上の高速な流れで、急激な圧力上昇が見られる昇圧部の長さは100mm程度であるので、昇圧部における昇圧速度は40MPa/s程度以上となる。このように、蒸気インジェクタ7は昇圧部において大きな昇圧速度を得ることが可能なため、細胞壁破壊効果を促進できる。
The first control unit 21 constantly inputs the detected pressures of the first pressure detection unit 17 and the second pressure detection unit 19, and controls the opening of the pressure control valve 15 so that the pressure difference is 0.2 MPa or more. . Specifically, when the pressure difference tends to decrease, the pressure control valve 15 is throttled, and when the pressure difference tends to become too large, control is performed to increase the opening of the pressure control valve 15. .
When a rapid pressure increase (0.2 MPa or more) is observed in the pressurizing section of the steam injector 7, the flow velocity of the liquid substance in the pressurizing section is a high-speed flow of about 20 m/s or more. Since the length of the portion is about 100 mm, the pressure increasing speed in the pressure increasing portion is about 40 MPa/s or more. In this way, the steam injector 7 can obtain a high pressure increase speed in the pressure increase section, and therefore can promote the cell wall breaking effect.

細胞壁破壊がされた処理後流体である液状物質は、送出管部13を通じて後処理設備に送出される。 The liquid substance, which is the post-treatment fluid in which the cell walls have been broken, is delivered to the post-treatment equipment through the delivery pipe portion 13 .

以上のように、本実施の形態によれば、蒸気インジェクタ7を用いて、微生物を含む液状物質の細胞壁破壊を行うようにしたので、消費エネルギーが小さく、装置のコンパクト化が実現され、かつ効率的かつ効果的に細胞壁破壊を行うことができる。 As described above, according to the present embodiment, the steam injector 7 is used to break the cell walls of the liquid substance containing microorganisms, so that the energy consumption is small, the device can be made compact, and the efficiency is improved. It is possible to effectively and effectively perform cell wall disruption.

[実施の形態2]
実施の形態1で説明した微生物の細胞壁破壊装置1の好適な適用例として、汚泥処理装置における消化槽でのメタンガス発生を促進するために、消化槽に入る前に濃縮汚泥に含まれる微生物の細胞壁の破壊に適用することが考えられる。
本実施の形態においては、このような汚泥処理装置への適用例について、図3に基づいて説明する。
[Embodiment 2]
As a suitable application example of the microbial cell wall destruction apparatus 1 described in Embodiment 1, in order to promote methane gas generation in a digestion tank in a sludge treatment apparatus, the cell walls of microorganisms contained in thickened sludge are removed before entering the digestion tank. It can be applied to the destruction of
In this embodiment, an example of application to such a sludge treatment apparatus will be described with reference to FIG.

図3は、例えば下水処理場における汚泥処理装置の装置構成と処理の流れを示すものであり、一般的な設備と同様に、沈砂池61、最初沈殿池63、反応タンク65、最終沈殿池67、調整池69、濃縮装置71、消化槽73、濃縮槽75を備えている。
本実施の形態の特徴として、濃縮装置71と消化槽73との間に微生物の細胞壁破壊を行うための蒸気インジェクタ7を含む第1細胞壁破壊装置77を設けている。さらに、本実施の形態では、消化槽73から排出される消化汚泥を受け入れて消化汚泥に含まれている微生物の細胞壁破壊を行う蒸気インジェクタ7を含む第2細胞壁破壊装置79も設置されている。
FIG. 3 shows the device configuration and treatment flow of a sludge treatment apparatus in a sewage treatment plant, for example. , a regulating pond 69 , a thickening device 71 , a digesting tank 73 and a thickening tank 75 .
As a feature of this embodiment, a first cell wall breaking device 77 including a steam injector 7 for breaking the cell walls of microorganisms is provided between the concentration device 71 and the digestion tank 73 . Furthermore, in this embodiment, a second cell wall breaking device 79 is also installed that includes a steam injector 7 that receives the digested sludge discharged from the digestion tank 73 and breaks the cell walls of microorganisms contained in the digested sludge.

図3に基づいて処理の流れを説明する。
下水が沈砂池61に流入して、沈砂池61で沈砂がされた下水が最初沈殿池63に流入する。最初沈殿池63では上澄み水が反応タンク65に移送され、沈殿した汚泥は濃縮槽75に移送される。濃縮槽75で濃縮された汚泥は消化槽73に移送される。
一方、反応タンク65に移送された上澄み水は微生物等により分解浄化され、最終沈殿池67に移送される。ここで、最終沈殿池67で沈殿した余剰汚泥は機械式の濃縮装置71に移送され、上澄み水は調整池69で消毒やpH調整された後放流される。
The flow of processing will be described based on FIG.
Sewage flows into a sedimentation basin 61, and the sewage sedimented in the sedimentation basin 61 flows into a primary sedimentation basin 63. - 特許庁In the primary sedimentation tank 63 , the supernatant water is transferred to the reaction tank 65 and the precipitated sludge is transferred to the thickening tank 75 . The sludge thickened in the thickening tank 75 is transferred to the digesting tank 73 .
On the other hand, the supernatant water transferred to the reaction tank 65 is decomposed and purified by microorganisms or the like and transferred to the final sedimentation tank 67 . Here, the excess sludge precipitated in the final sedimentation tank 67 is transferred to the mechanical thickener 71, and the supernatant water is discharged after disinfection and pH adjustment in the adjustment tank 69.

濃縮装置71で濃縮された濃縮汚泥は、実施の形態1で説明した微生物の細胞壁破壊装置1の構成機器である貯留タンク37に貯留される。貯留タンク37に貯留された濃縮汚泥は、実施の形態1で説明したように、蒸気インジェクタ7の作用によって微生物の細胞壁が破壊される。なお、本実施の形態では、蒸気インジェクタ7に水蒸気を供給する水蒸気供給手段11として、ガスエンジンの排熱回収ボイラが利用されており、ここで発生する水蒸気が蒸気インジェクタ7に供給される。 The thickened sludge thickened by the thickener 71 is stored in the storage tank 37, which is a component of the microbial cell wall destruction apparatus 1 described in the first embodiment. In the thickened sludge stored in the storage tank 37, the cell walls of microorganisms are destroyed by the action of the steam injector 7, as described in the first embodiment. In the present embodiment, an exhaust heat recovery boiler of a gas engine is used as the steam supply means 11 for supplying steam to the steam injector 7 , and the steam generated here is supplied to the steam injector 7 .

蒸気インジェクタ7から送出された汚泥は、消化槽73においてメタン発酵を行ってメタンガスが取りだされ、取りだされたメタンガスはガスエンジン等に供給される。蒸気インジェクタ7から送出される汚泥は、細胞壁破壊が効果的に行われているので、消化槽73におけるメタン発酵が効率的に行われ、多量のメタンガスを取りだすことができる。
消化槽73でメタンガスが取りだされた消化汚泥は脱水機以降のプロセスに送られて処理される。
The sludge delivered from the steam injector 7 undergoes methane fermentation in the digestion tank 73 to extract methane gas, which is supplied to a gas engine or the like. Since cell walls are effectively destroyed in the sludge delivered from the steam injector 7, methane fermentation is efficiently performed in the digestion tank 73, and a large amount of methane gas can be extracted.
Digested sludge from which methane gas is taken out in the digestion tank 73 is sent to processes after the dehydrator and treated.

なお、消化槽73から排出される消化汚泥の全部または一部を第2細胞壁破壊装置79に導入して、再度、消化槽73に戻すか、あるいは脱水機以降のプロセスに送り出すようにしてもよい。
消化汚泥を第2細胞壁破壊装置79に導入して消化槽73に戻す目的は、消化汚泥には細胞壁破壊がされていない微生物が残留していることがあり、これを再度、蒸気インジェクタ7で細胞壁破壊を行うことで、メタンガスのさらなる採取効果を向上させるためである。
また、消化汚泥を第2細胞壁破壊装置79に導入してから脱水機以降のプロセスに送出する目的は、消化汚泥に含まれている細胞壁破壊がされていない微生物の細胞壁破壊をすることで、脱水機での脱水効率を向上させるためである。
All or part of the digested sludge discharged from the digestion tank 73 may be introduced into the second cell wall breaking device 79 and returned to the digestion tank 73 again, or sent to the processes after the dehydrator. .
The purpose of introducing the digested sludge into the second cell wall breaking device 79 and returning it to the digestion tank 73 is that microorganisms that have not undergone cell wall breaking may remain in the digested sludge. This is to improve the effect of further collecting methane gas by performing destruction.
In addition, the purpose of introducing the digested sludge into the second cell wall breaking device 79 and then sending it to the process after the dehydrator is to break the cell walls of microorganisms contained in the digested sludge that have not been broken. This is to improve the dehydration efficiency in the machine.

本実施の形態の汚泥処理装置は、消化槽73において、濃縮装置71で濃縮された汚泥からのメタンガスの採取効率を向上させることができる。
また、消化槽73から排出される消化汚泥に対して、蒸気インジェクタ7を含む第2細胞壁破壊装置79によって微生物の細胞壁破壊を行って、再度、消化槽73に戻すようにすれば、メタンガスのさらなる採取効果を向上させることができる。
さらに、消化槽73から排出される消化汚泥に対して、蒸気インジェクタ7を含む第2細胞壁破壊装置79によって微生物の細胞壁破壊を行って、脱水機による脱水を行うようにすれば、脱水効率を向上させることができる。
The sludge treatment apparatus of the present embodiment can improve the efficiency of collecting methane gas from the sludge thickened by the thickener 71 in the digestion tank 73 .
In addition, if the digested sludge discharged from the digestion tank 73 is subjected to cell wall destruction of microorganisms by the second cell wall destruction device 79 including the steam injector 7 and returned to the digestion tank 73 again, further methane gas is generated. It can improve the collection effect.
Furthermore, if the digested sludge discharged from the digestion tank 73 is subjected to cell wall destruction by the second cell wall destruction device 79 including the steam injector 7, and dehydration is performed by the dehydrator, the dehydration efficiency is improved. can be made

図4に示すグラフは、本発明の効果を示す実験結果のグラフであり、縦軸が蒸気インジェクタ7による処理をしていない汚泥と処理をした汚泥とのメタンガス発生比を示しており、横軸は第1圧力検知部17と第2圧力検知部19の圧力差を示している。
図4のグラフに示されるように、圧力差が0.2MPa以上で蒸気インジェクタ7による処理をするとメタンガス発生率が1.3倍以上になっていることが分かる。このことから、圧力差を0.2MPa以上にすることで、蒸気インジェクタ7によって微生物の細胞壁破壊を効果的に行えることが実証された。
The graph shown in FIG. 4 is a graph of the experimental results showing the effect of the present invention, the vertical axis shows the methane gas generation ratio between the sludge that has not been treated by the steam injector 7 and the sludge that has been treated, and the horizontal axis. indicates the pressure difference between the first pressure detector 17 and the second pressure detector 19 .
As shown in the graph of FIG. 4, when the pressure difference is 0.2 MPa or more and the treatment by the steam injector 7 is performed, the methane gas generation rate is 1.3 times or more. From this, it was demonstrated that the steam injector 7 can effectively destroy the cell walls of microorganisms by setting the pressure difference to 0.2 MPa or more.

なお、実施の形態2で説明した汚泥処理装置は、図3に示すように、第1細胞壁破壊装置77と第2細胞壁破壊装置79の両方を備えたものであったが、本発明の汚泥処理装置は、第1細胞壁破壊装置77と第2細胞壁破壊装置79のいずれか一方のみを有すものも含まれる。 The sludge treatment apparatus described in Embodiment 2 was provided with both the first cell wall breaking apparatus 77 and the second cell wall breaking apparatus 79 as shown in FIG. The device includes one having only one of the first cell wall breaking device 77 and the second cell wall breaking device 79 .

[実施の形態3]
実施の形態1においては、細胞壁破壊装置1が、蒸気インジェクタ7を有することで、消費エネルギーが小さく、装置のコンパクト化が可能で、かつ微生物の細胞壁破壊効果を高めることができるとしていた。また、特に混合部と昇圧部の下流端以降の圧力差を0.2MPa以上とすることで、細胞壁破壊効果を促進できるとしていた。
本実施の形態では、図1に示した蒸気インジェクタ7を用いた細胞壁破壊装置1の作動条件を工夫し、蒸気インジェクタ7の出口における混合流体を亜臨界状態にして、亜臨界状態における有機物の溶解作用と強い加水分解作用を利用することで細胞壁破壊効果をさらに促進するものである。
なお、実施の形態1では、微生物を含む液状物質を処理対象としていたが、汚泥中には微生物以外の有機物も含まれ、有機物を分解するにも本発明は有効である。そこで、本実施の形態では、処理対象を、有機物を含む液状物質として説明する。
[Embodiment 3]
In the first embodiment, the cell wall disrupting device 1 has the steam injector 7, so that energy consumption is small, the device can be made compact, and the cell wall disrupting effect of microorganisms can be enhanced. In addition, it is said that the cell wall breaking effect can be accelerated by setting the pressure difference between the mixing section and the downstream end of the pressurizing section to 0.2 MPa or more.
In this embodiment, the operating conditions of the cell wall disruption device 1 using the steam injector 7 shown in FIG. It further promotes the cell wall destruction effect by utilizing the action and strong hydrolysis action.
In Embodiment 1, liquid substances containing microorganisms were treated, but sludge also contains organic substances other than microorganisms, and the present invention is also effective in decomposing organic substances. Therefore, in the present embodiment, the object to be processed will be described as a liquid substance containing an organic substance.

ここで、亜臨界状態について、亜臨界水を例に挙げて簡単に説明する。
水の温度・圧力を374℃、22MPaにすると、水(液体)でも水蒸気(気体)でもない状態、すなわち臨界状態となる。この温度・圧力を水の臨界点といい、臨界点より高温高圧の領域を超臨界状態と呼び、臨界点よりもやや低い温度・圧力の領域を亜臨界状態と呼ぶ。
亜臨界状態は概ね150~300℃、0.5~10MPaの範囲と定められ、本発明では、蒸気インジェクタ7を利用することで、温度150~200℃、圧力0.5~2MPaの亜臨界状態を実現するものである。
Here, the subcritical state will be briefly described by taking subcritical water as an example.
When the temperature and pressure of water are 374°C and 22 MPa, it enters a state that is neither water (liquid) nor water vapor (gas), that is, a critical state. This temperature and pressure is called the critical point of water, the region of higher temperature and pressure than the critical point is called the supercritical state, and the region of temperature and pressure slightly lower than the critical point is called the subcritical state.
The subcritical state is generally defined as a range of 150 to 300°C and 0.5 to 10 MPa. In the present invention, the steam injector 7 is used to achieve a subcritical state with a temperature of 150 to 200°C and a pressure of 0.5 to 2 MPa. is.

細胞壁破壊装置1に蒸気インジェクタ7を用いることで、有機物を含む液状物質は蒸気インジェクタ7内部で蒸気との接触・蒸気の凝縮により加熱されると同時にその運動エネルギーを受け取り、その後、有機物を含む液状物質の運動エネルギーは圧力に変換される。つまり蒸気インジェクタ7により、有機物を含む液状物質を加熱と同時に昇圧して亜臨界状態となる。 By using the steam injector 7 in the cell wall disruption device 1, the liquid substance containing organic matter is heated by contact with steam and condensation of the steam inside the vapor injector 7, and at the same time receives the kinetic energy, and then the liquid substance containing organic matter is heated. The kinetic energy of matter is converted into pressure. In other words, the steam injector 7 heats and pressurizes the liquid substance containing the organic matter, thereby bringing it into a subcritical state.

液状物質を蒸気インジェクタ7出口で亜臨界状態(温度150~200℃、圧力0.5~2MPa)にするための、蒸気インジェクタ7に供給する蒸気と液状物質の条件を、液状物質の温度が25℃の場合について、下記の表1に示す。 In order to make the liquid substance subcritical at the outlet of the steam injector 7 (temperature 150-200°C, pressure 0.5-2 MPa), the conditions for the steam and the liquid substance supplied to the steam injector 7 are set to 25°C. The cases are shown in Table 1 below.

Figure 0007327082000001
Figure 0007327082000001

表1に示されるように、液状物質の温度が25℃の場合、
・液状物質圧力=0.5~1.6MPa
・蒸気圧力=2~3MPa(飽和蒸気)
・蒸気/液状物質(質量流量比)=0.24~0.38
となる。
蒸気インジェクタ7の出口の混合流体の圧力は、図1に示す圧力制御弁15によって制御できる。
また、蒸気の圧力と流量は、例えば蒸気を供給するボイラと蒸気インジェクタ7入口の間の蒸気供給管51に圧力調整弁、流量調整弁を設けて制御することができる。さらに、蒸気の温度はボイラの運転条件によって制御できる。
また、液状物質の圧力と流量は、液状物質を蒸気インジェクタ7に供給するポンプと流量調整弁で制御できる。また、液状物質の温度は、貯留タンク37の温度管理によって行うことができる。
As shown in Table 1, when the temperature of the liquid substance is 25°C,
・Liquid substance pressure = 0.5 to 1.6 MPa
・Steam pressure = 2 to 3 MPa (saturated steam)
・Steam/liquid substance (mass flow ratio) = 0.24 to 0.38
becomes.
The pressure of the mixed fluid at the outlet of the steam injector 7 can be controlled by the pressure control valve 15 shown in FIG.
Also, the pressure and flow rate of steam can be controlled by, for example, providing a pressure control valve and a flow rate control valve in the steam supply pipe 51 between the boiler that supplies steam and the inlet of the steam injector 7 . Additionally, the temperature of the steam can be controlled by the operating conditions of the boiler.
Also, the pressure and flow rate of the liquid substance can be controlled by a pump that supplies the liquid substance to the steam injector 7 and a flow control valve. Also, the temperature of the liquid substance can be controlled by temperature control of the storage tank 37 .

このように、本実施の形態によれば、実施の形態1において述べた、消費エネルギーが小さく、装置のコンパクト化が可能で、かつ微生物の細胞壁破壊効果を高めることができるという効果に加えて、亜臨界状態による有機物の溶解作用と強い加水分解作用を利用することで細胞壁破壊効果、有機物の分解効果をさらに促進できる。 As described above, according to the present embodiment, in addition to the effects described in Embodiment 1 that energy consumption is small, the apparatus can be made compact, and the cell wall destruction effect of microorganisms can be enhanced, By utilizing the dissolution action and strong hydrolysis action of organic matter in the subcritical state, the cell wall breaking effect and the decomposition effect of organic matter can be further promoted.

[実施の形態4]
本実施の形態の有機物の細胞壁破壊装置81は、図5に示すように、蒸気インジェクタ7で有機物を含む液状物質を所定温度・圧力まで昇温昇圧して亜臨界状態の混合流体とした後、減圧して後工程に流送するシステムとして構成したものである。
図5において、図1と同一部分には同一の符号を付してある。また、図1では図示を省略していた、液状物質を供給するポンプ83、液状物質の供給流量を調整する流量調整弁85、及び蒸気供給手段としてのボイラ87を図示している。また、液状物質の主供給管39には温度計89、圧力計91を設置し、蒸気インジェクタ7の出口には温度計93を設置している。
なお、図1において示していた制御線や制御部については、図面の煩雑化を避けるために図示を省略している。
[Embodiment 4]
As shown in FIG. 5, the apparatus 81 for destroying the cell walls of organic matter according to the present embodiment uses the steam injector 7 to raise the temperature and pressure of the liquid substance containing the organic matter to a predetermined temperature and pressure to form a mixed fluid in a subcritical state. It is configured as a system for depressurizing and transferring to the post-process.
In FIG. 5, the same reference numerals are given to the same parts as in FIG. Also shown are a pump 83 for supplying the liquid substance, a flow control valve 85 for adjusting the supply flow rate of the liquid substance, and a boiler 87 as steam supply means, which are not shown in FIG. A thermometer 89 and a pressure gauge 91 are installed in the main supply pipe 39 for the liquid substance, and a thermometer 93 is installed at the outlet of the steam injector 7 .
Note that control lines and control units shown in FIG. 1 are omitted in order to avoid complication of the drawing.

本実施の形態の有機物の細胞壁破壊装置81は、後工程へ移送される前の送出管部において、図5に示すように、流体ノズル95を配置し、流体ノズル95内部の流動現象で減圧とキャビテーションなどを発生させ、有機物の可溶化を促進させるようにしている。
キャビテーションは流体が持つ静圧がその流体の飽和圧力より低い時に発生し、また、流体の液温が高いほど飽和圧力は高い。
口径を絞って静圧を動圧に変換する圧力降下を利用してキャビテーションを発生できる流体ノズルとして、例えばベンチュリノズルを適用できる。
As shown in FIG. 5, the apparatus 81 for destroying the cell walls of organic matter according to the present embodiment has a fluid nozzle 95 arranged in the delivery pipe before being transported to the post-process, and the flow phenomenon inside the fluid nozzle 95 reduces the pressure. Cavitation or the like is generated to promote the solubilization of organic substances.
Cavitation occurs when the static pressure of a fluid is lower than the saturation pressure of the fluid, and the higher the temperature of the fluid, the higher the saturation pressure.
A venturi nozzle, for example, can be applied as a fluid nozzle capable of generating cavitation using a pressure drop that converts static pressure into dynamic pressure by narrowing the aperture.

また、後工程において混合流体が高温である必要がない場合には、混合流体の有する熱を有効利用するのが好ましく、本実施の形態では、図5に示すように、第1熱交換器97を利用してボイラ給水に混合流体の熱を回収するようにしている。 Further, when the mixed fluid does not need to be at a high temperature in the post-process, it is preferable to effectively utilize the heat of the mixed fluid. In the present embodiment, as shown in FIG. is used to recover the heat of the mixed fluid to the boiler feed water.

本実施の形態によれば、実施の形態3の効果に加えて、流体ノズル95による可溶化の促進が期待でき、また亜臨界状態の熱を有効利用できる。 According to the present embodiment, in addition to the effects of the third embodiment, acceleration of solubilization by the fluid nozzle 95 can be expected, and subcritical heat can be effectively utilized.

亜臨界状態となった混合流体は、減圧された後、後工程へ移送されるが、図6に示すように、送出管部13に配置された流体ノズル95に入る前に、一定時間(例:5~90分)混合流体を一時的に貯留できる一時貯留タンク99を設け、亜臨界状態を所定時間維持することにより、可溶化を促進するようにしてもよい。 The mixed fluid in the subcritical state is decompressed and transferred to the post-process, but as shown in FIG. : 5 to 90 minutes) A temporary storage tank 99 capable of temporarily storing the mixed fluid may be provided to maintain the subcritical state for a predetermined time, thereby promoting solubilization.

[実施の形態5]
実施の形態3、4では、蒸気インジェクタ7の出口、あるいは流体ノズル95の入り口において亜臨界状態になるものであったが、運転条件等によっては蒸気インジェクタ7の出口での温度が低くて混合流体が亜臨界状態に至らない場合もある。
そこで、本実施の形態の有機物の細胞壁破壊装置101では、蒸気インジェクタ7で昇圧後に所定温度に加熱して混合流体を亜臨界状態にするようにしたものである。
[Embodiment 5]
In Embodiments 3 and 4, the outlet of the steam injector 7 or the inlet of the fluid nozzle 95 is in a subcritical state. may not reach the subcritical state.
Therefore, in the organic matter cell wall destruction apparatus 101 of the present embodiment, the mixed fluid is heated to a predetermined temperature after being pressurized by the steam injector 7 to bring the mixed fluid into a subcritical state.

蒸気インジェクタ7の出口において混合流体を加熱する加熱手段としては、ボイラ蒸気を利用することが考えられ、図7に示すように、混合流体とボイラ蒸気を第2熱交換器103によって熱交換することで液状物質を加熱する。 Boiler steam may be used as a heating means for heating the mixed fluid at the outlet of the steam injector 7. As shown in FIG. to heat the liquid substance.

作動例として、蒸気インジェクタ7に流入する蒸気を2MPaの飽和蒸気、蒸気インジェクタ7に流入する有機物を含む液状物質の温度25℃、圧力0.3MPa、蒸気と有機物を含む液状物質の質量流量比(蒸気/有機物)0.2のとき、蒸気インジェクタ7出口の混合流体は130℃、2MPaの高温高圧状態となる。この状態の混合流体を、ボイラ蒸気を利用した第2熱交換器103で所定温度(例えば180℃)まで加熱することで亜臨界状態にする。 As an operation example, the steam flowing into the steam injector 7 is saturated steam of 2 MPa, the temperature of the liquid material containing organic matter flowing into the steam injector 7 is 25°C, the pressure is 0.3 MPa, and the mass flow ratio of the steam and the liquid material containing organic matter (steam / organic matter) is 0.2, the mixed fluid at the outlet of the steam injector 7 is in a high temperature and high pressure state of 130°C and 2 MPa. The mixed fluid in this state is heated to a predetermined temperature (for example, 180° C.) in the second heat exchanger 103 using boiler steam, thereby making it subcritical.

本実施の形態では、蒸気インジェクタ7の出口において混合流体を加熱する加熱手段として第2熱交換器103を設けたことにより、作動条件等によって蒸気インジェクタ7の出口において混合流体の温度が亜臨界状態に至らない場合であっても、加熱手段による加熱によって混合流体を亜臨界状態にして可溶化を促進できる。 In this embodiment, by providing the second heat exchanger 103 as a heating means for heating the mixed fluid at the outlet of the steam injector 7, the temperature of the mixed fluid at the outlet of the steam injector 7 becomes subcritical depending on the operating conditions. Even if it does not reach , the mixed fluid can be brought to a subcritical state by heating with a heating means to promote solubilization.

なお、図1や図7に示した例に、図6に示した一時貯留タンク99を設けてもよい。また、上記の説明では、送出管部13に流体ノズル95や一時貯留タンク99を設けたり、あるいは第1熱交換器97、第2熱交換器103を設けたりすることは、混合流体を亜臨界状態にすることを特定していない実施の形態1においても有機物の可溶化の観点から効果が期待できる。 Note that the temporary storage tank 99 shown in FIG. 6 may be provided in the examples shown in FIGS. Further, in the above description, providing the fluid nozzle 95 and the temporary storage tank 99 in the delivery pipe section 13, or providing the first heat exchanger 97 and the second heat exchanger 103 can be used to convert the mixed fluid into a subcritical fluid. Even in Embodiment 1 in which the condition is not specified, an effect can be expected from the viewpoint of solubilization of organic matter.

1 微生物の細胞壁破壊装置
3 蒸気導入口
5 液状物質導入口
7 蒸気インジェクタ
9 液状物質供給手段
11 水蒸気供給手段
13 送出管部
15 圧力制御弁
17 第1圧力検知部
19 第2圧力検知部
21 第1制御部
23 主液状物質導入口
25 副液状物質導入口
27 蒸気噴出口
29 ノズル
31 のど部
33 ドレン管
35 開閉弁
37 貯留タンク
39 主供給管
41 流量計(主供給管)
43 副供給管
45 温度計(貯留タンク)
47 主流量制御弁
49 副流量制御弁
51 蒸気供給管
53 流量計(蒸気供給管)
55 温度計(蒸気供給管)
57 圧力計(蒸気供給管)
59 第2制御部
61 沈砂池
63 最初沈殿池
65 反応タンク
67 最終沈殿池
69 調整池
71 濃縮装置
73 消化槽
75 濃縮槽
77 第1細胞壁破壊装置
79 第2細胞壁破壊装置
81 有機物の細胞壁破壊装置(実施の形態4)
83 ポンプ
85 流量調整弁
87 ボイラ
89 温度計(主供給管)
91 圧力計(主供給管)
93 温度計(蒸気インジェクタ出口)
95 流体ノズル
97 第1熱交換器
99 一時貯留タンク
101 有機物の細胞壁破壊装置(実施の形態5)
103 第2熱交換器
1 Microorganism Cell Wall Destruction Device 3 Steam Inlet 5 Liquid Substance Inlet 7 Steam Injector 9 Liquid Substance Supplying Means 11 Steam Supplying Means 13 Delivery Pipe Portion 15 Pressure Control Valve 17 First Pressure Detector 19 Second Pressure Detector 21 First First Pressure Detector Control part 23 Main liquid material inlet 25 Secondary liquid material inlet 27 Steam jet 29 Nozzle 31 Throat 33 Drain pipe 35 On-off valve 37 Storage tank 39 Main supply pipe 41 Flow meter (main supply pipe)
43 Sub-supply pipe 45 Thermometer (storage tank)
47 main flow control valve 49 secondary flow control valve 51 steam supply pipe 53 flow meter (steam supply pipe)
55 thermometer (steam supply pipe)
57 pressure gauge (steam supply pipe)
( Embodiment 4)
83 pump 85 flow control valve 87 boiler 89 thermometer (main supply pipe)
91 pressure gauge (main supply pipe)
93 thermometer (steam injector outlet)
95 Fluid Nozzle 97 First Heat Exchanger 99 Temporary Storage Tank 101 Organic Cell Wall Destruction Apparatus (Fifth Embodiment)
103 second heat exchanger

Claims (9)

水蒸気を導入する蒸気導入口及びポンプで送り出された液状物質を導入する液状物質導入口が設けられた流入部と、前記液状物質導入口から導入されて蒸気インジェクタの軸線方向に流れる主流に対して直交する接線方向に副流を噴射して旋回流を形成する副液状物質導入口と、前記水蒸気と前記液状物質とが混合する下流側に向かって縮径する混合部と、該混合部の最下流部にあるのど部に連続して混合流体が昇圧される下流側に向かって拡径する昇圧部とを有し、前記蒸気導入口から導入された水蒸気を前記液状物質導入口から導入された液状物質に接触させることで前記水蒸気を凝縮させて前記水蒸気と前記液状物質の混合流体の昇圧を行う蒸気インジェクタを有し、
前記液状物質導入口に微生物等の有機物を含む液状物質を供給する液状物質供給手段と、前記蒸気導入口に水蒸気を供給する水蒸気供給手段と、前記蒸気インジェクタから排出される混合流体を後処理部へ送り出す送出管部とを備えたことを特徴とする細胞壁破壊装置。
For the inflow part provided with a steam inlet for introducing steam and a liquid material inlet for introducing the liquid material sent out by the pump , and for the main stream introduced from the liquid material inlet and flowing in the axial direction of the steam injector A sub-liquid substance inlet that injects sub-streams in orthogonal tangential directions to form a swirling flow, a mixing section that decreases in diameter toward the downstream side where the water vapor and the liquid substance are mixed, and a maximum of the mixing section. and a pressurizing portion that expands in diameter toward the downstream side and continuously pressurizes the mixed fluid in the throat portion in the downstream portion, and the steam introduced from the steam inlet is introduced from the liquid substance inlet. a vapor injector for increasing the pressure of a mixed fluid of the water vapor and the liquid substance by contacting the liquid substance to condense the water vapor;
liquid material supply means for supplying a liquid material containing organic matter such as microorganisms to the liquid material introduction port; steam supply means for supplying steam to the steam introduction port; A cell wall disruption device characterized by comprising a delivery pipe section for delivering to.
前記送出管部に設けられて送出管部に送出される混合流体の圧力を制御する圧力制御弁と、前記混合部の圧力を検知する第1圧力検知部と、前記昇圧部の下流端以降の圧力を検知する第2圧力検知部と、前記第1圧力検知部と前記第2圧力検知部の検知圧力を入力してこれらの圧力差が0.2MPa以上になるように前記圧力制御弁を制御する制御部とを備えたことを特徴とする請求項1記載の細胞壁破壊装置。 A pressure control valve provided in the delivery pipe portion for controlling the pressure of the mixed fluid delivered to the delivery pipe portion, a first pressure detection portion for detecting the pressure in the mixing portion, The pressure control valve is controlled so that the pressure difference between the second pressure detection unit and the pressure detected by the first pressure detection unit and the second pressure detection unit is 0.2 MPa or more. 2. The cell wall disruption device according to claim 1, further comprising a controller. 前記送出管部に設けられて送出管部に送出される混合流体の圧力を制御する圧力制御弁をさらに有し、
前記水蒸気供給手段は、供給する蒸気の圧力と流量を調整する機能をさらに有し、
前記液状物質供給手段は、蒸気インジェクタに供給する液状物質の流量を調整する機能をさらに有し、
前記蒸気インジェクタの出口での混合流体を亜臨界状態(温度150~200℃、圧力0.5~2MPa)にするようにしたことを特徴とする請求項1記載の細胞壁破壊装置。
further comprising a pressure control valve provided in the delivery pipe for controlling the pressure of the mixed fluid delivered to the delivery pipe;
The steam supply means further has a function of adjusting the pressure and flow rate of the steam to be supplied,
The liquid substance supply means further has a function of adjusting the flow rate of the liquid substance supplied to the steam injector,
2. The cell wall disruption apparatus according to claim 1, wherein the mixed fluid at the outlet of said steam injector is in a subcritical state (temperature: 150-200° C., pressure: 0.5-2 MPa).
前記送出管部に、混合流体を減圧してキャビテーションを発生させる流体ノズルを設けたことを特徴とする請求項1乃至3のいずれか一項に記載の細胞壁破壊装置。 4. The cell wall disrupting device according to any one of claims 1 to 3, wherein a fluid nozzle for depressurizing the mixed fluid to generate cavitation is provided in the delivery pipe. 前記送出管部に、混合流体を一時的に貯留する貯留槽を設けたことを特徴とする請求項1乃至4のいずれか一項に記載の細胞壁破壊装置。 5. The cell wall disrupting device according to any one of claims 1 to 4, wherein the delivery pipe portion is provided with a storage tank for temporarily storing the mixed fluid. 前記送出管部に、混合流体を加熱する加熱手段を設けたことを特徴とする請求項1乃至5のいずれか一項に記載の細胞壁破壊装置。 6. The cell wall disruption device according to any one of claims 1 to 5, wherein the delivery pipe portion is provided with heating means for heating the mixed fluid. 請求項1乃至6のいずれかに記載の細胞壁破壊装置を備えた汚泥処理装置であって、
最終沈殿池の沈殿物を濃縮する濃縮装置と、汚泥からメタンガスを発生させる消化槽とを有し、前記細胞壁破壊装置を、前記濃縮装置と前記消化槽との間に配設し、前記濃縮装置で濃縮された濃縮汚泥に対して細胞壁破壊処理を行って前記消化槽に送り出すようにしたことを特徴とする汚泥処理装置。
A sludge treatment apparatus comprising the cell wall disruption apparatus according to any one of claims 1 to 6,
It has a concentration device for concentrating the sediment in the final sedimentation tank and a digestion tank for generating methane gas from the sludge, wherein the cell wall breaking device is disposed between the concentration device and the digestion tank, and the concentration device A sludge treatment apparatus characterized in that the thickened sludge concentrated in (1) is subjected to a cell wall destruction treatment and sent to the digestion tank.
前記消化槽から排出された消化汚泥に対して細胞壁破壊処理を行う前記細胞壁破壊装置をさらに設け、該細胞壁破壊装置によって前記消化汚泥を処理した後、前記消化槽に戻すか又は脱水機以降のプロセスに送り出すようにしたことを特徴とする請求項7記載の汚泥処理装置。 The cell wall breaking device is further provided for performing cell wall breaking treatment on the digested sludge discharged from the digestion tank, and after the digested sludge is treated by the cell wall breaking device, it is returned to the digestion tank or the process after the dehydrator. 8. The sludge treatment apparatus according to claim 7, characterized in that the sludge is sent out to. 請求項1乃至6のいずれかに記載の細胞壁破壊装置を備えた汚泥処理装置であって、
汚泥からメタンガスを発生させる消化槽を有し、該消化槽から排出された消化汚泥に対して前記細胞壁破壊装置によって細胞壁破壊処理を行って前記消化槽に戻すか又は脱水機以降のプロセスに送り出すようにしたことを特徴とする汚泥処理装置。
A sludge treatment apparatus comprising the cell wall disruption apparatus according to any one of claims 1 to 6,
It has a digestion tank that generates methane gas from the sludge, and the digested sludge discharged from the digestion tank is subjected to cell wall destruction treatment by the cell wall destruction device and returned to the digestion tank or sent to the process after the dehydrator. A sludge treatment device characterized by:
JP2019195949A 2018-11-20 2019-10-29 Cell wall breaking device and sludge treatment device using the cell wall breaking device Active JP7327082B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216931 2018-11-20
JP2018216931 2018-11-20

Publications (2)

Publication Number Publication Date
JP2020080858A JP2020080858A (en) 2020-06-04
JP7327082B2 true JP7327082B2 (en) 2023-08-16

Family

ID=70904481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195949A Active JP7327082B2 (en) 2018-11-20 2019-10-29 Cell wall breaking device and sludge treatment device using the cell wall breaking device

Country Status (1)

Country Link
JP (1) JP7327082B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447775B2 (en) 2020-12-02 2024-03-12 Jfeエンジニアリング株式会社 steam injector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119997A (en) 2000-10-13 2002-04-23 Hitachi Kiden Kogyo Ltd Method and apparatus for solubilizing sludge
JP2005169242A (en) 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Treating method of organic matter-containing water or sludge separated therefrom and its treatment system
JP2007537036A (en) 2004-05-11 2007-12-20 メタフィル エーエス Ballast water system
JP2008173628A (en) 2006-12-18 2008-07-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Microorganism crushing apparatus
JP2016087578A (en) 2014-11-07 2016-05-23 株式会社ピーシーエス Contaminant separation volume reduction system and method
JP2017079621A (en) 2015-10-26 2017-05-18 公立大学法人兵庫県立大学 Oil separation apparatus and oil separation method
JP2016028800A5 (en) 2014-07-25 2017-08-31
WO2018159311A1 (en) 2017-03-01 2018-09-07 公立大学法人兵庫県立大学 Method and device for recovering useful substance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472125B2 (en) 2014-07-25 2019-02-20 国立大学法人豊橋技術科学大学 Disposal method of organic waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119997A (en) 2000-10-13 2002-04-23 Hitachi Kiden Kogyo Ltd Method and apparatus for solubilizing sludge
JP2005169242A (en) 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Treating method of organic matter-containing water or sludge separated therefrom and its treatment system
JP2007537036A (en) 2004-05-11 2007-12-20 メタフィル エーエス Ballast water system
JP2008173628A (en) 2006-12-18 2008-07-31 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Microorganism crushing apparatus
JP2016028800A5 (en) 2014-07-25 2017-08-31
JP2016087578A (en) 2014-11-07 2016-05-23 株式会社ピーシーエス Contaminant separation volume reduction system and method
JP2017079621A (en) 2015-10-26 2017-05-18 公立大学法人兵庫県立大学 Oil separation apparatus and oil separation method
WO2018159311A1 (en) 2017-03-01 2018-09-07 公立大学法人兵庫県立大学 Method and device for recovering useful substance

Also Published As

Publication number Publication date
JP2020080858A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP6328183B2 (en) Energy efficient systems and processes for sludge thermal hydrolysis
JPH04256428A (en) Method and device for treating plurality of fluids by impulse wave and method for using said treating device
WO2004033920A1 (en) Jet pump
JP7327082B2 (en) Cell wall breaking device and sludge treatment device using the cell wall breaking device
KR100866620B1 (en) Sludge pretreatment installation using hydrodynamic cavitation
TW201224376A (en) Apparatus and method for utilizing thermal energy
JP2008168221A (en) Method for generating microbubble and microbubble generating device
WO2002040412A1 (en) Apparatus and method for applying an oxidant in a hydrothermal oxidation process
JP2007152268A (en) Sludge reducing device
SK46795A3 (en) Device for gas dissolving
JP5347133B2 (en) Sludge treatment method and sludge treatment system
JP3819732B2 (en) Gas dissolving device
KR101162533B1 (en) Venturi Tube Having Mocro Bubble Generator and Sludge Treatment Equipment Using the Venturi Tube
JPH10225696A (en) Pressurization type ozone treating device
Mizgiryov et al. Using hydrodynamic cavitators for wastewater post-treatment and desinfection
RU2396216C1 (en) Device for water disinfection
PL241087B1 (en) Method for removing dissolved gas from the stream that supplies an evaporator
JP2016215100A (en) Multistage microbial cell disruptor
JP2004049938A (en) Sludge treatment apparatus and method
JP2020049464A (en) Sewage purification system and sludge solubilizing method
SU1549570A1 (en) Hydrodynamic homogenizer/mixer
KR100849165B1 (en) Apparatus for making sludge fine-grained
JP7276086B2 (en) Device for promoting solubilization of organic matter
JP7276034B2 (en) Sludge solubilization promotion device
JP3684449B1 (en) Water and sewage ozone sterilization treatment apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R150 Certificate of patent or registration of utility model

Ref document number: 7327082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150