JP2007152268A - Sludge reducing device - Google Patents

Sludge reducing device Download PDF

Info

Publication number
JP2007152268A
JP2007152268A JP2005353105A JP2005353105A JP2007152268A JP 2007152268 A JP2007152268 A JP 2007152268A JP 2005353105 A JP2005353105 A JP 2005353105A JP 2005353105 A JP2005353105 A JP 2005353105A JP 2007152268 A JP2007152268 A JP 2007152268A
Authority
JP
Japan
Prior art keywords
sludge
cavitation
pipe
shock wave
wave generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005353105A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
高橋  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SLIM TECNO KK
Original Assignee
SLIM TECNO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SLIM TECNO KK filed Critical SLIM TECNO KK
Priority to JP2005353105A priority Critical patent/JP2007152268A/en
Publication of JP2007152268A publication Critical patent/JP2007152268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for efficiently reducing excess sludge produced in the treatment of organic sewage. <P>SOLUTION: In the sludge reducing device, a cavitation generation device is disposed in the middle of a pipe extended from a sedimentation tank to an aerobic biological treatment tank and a solubilization device for solubilizing excess sludge by cavitation generated in the cavitation generation device is disposed, wherein the cavitation generation device is composed of: a transfer pressure pump; a funnel type shock wave generating pipe which becomes thicker on the downstream side; a pipe for crushing microorganism connected to the shock wave generating pipe; and a low pressure generation facilitating plate disposed between the shock wave generating pipe and the pipe for crushing microorganism. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機性汚水の処理において発生する余剰汚泥を減量化するための汚泥減量化処理装置並びにその汚泥減量化処理装置を備えた汚水処理システムに係る。   The present invention relates to a sludge reduction treatment apparatus for reducing excess sludge generated in the treatment of organic sewage and a sewage treatment system including the sludge reduction treatment apparatus.

図4は, 微生物細胞の構造図である。細胞膜は菌体の外側をとりかこむ膜状構造で,内側から細胞質膜, 細胞壁, 粘液層あるいは莢膜になっている。細胞壁は細胞質の外側にあるかたい膜である。何層もの様々な膜に守られながら, 生命現象は安全に進行する。従来の汚泥処理は, 生きた汚泥細胞であれ,斃死した汚泥細胞であれ, 強固な細胞膜につつまれた完全態での汚泥細胞を処理していた。これでは脱水も, 生物処理も不完全なままで終了せざるを得ない。もし, ここで細胞膜が破壊されれば, 細胞内の水分も簡単に脱水できる。のみならず,細胞質も外に出てくるから, 当然に処理の対象となる。図4にある細胞質は, 細胞膜に包まれた複雑なコロイド系である。細胞質内にはリボゾームのような代謝と関係の深い顆粒および貯蔵物質である多糖類, 脂質などの顆粒が含まれる。これらの栄養物質が細胞膜を破って外に飛びだせば,他の微生物の基質となりうるので, 新たな生物処理の展開が期待できる。汚泥の細胞膜破壊, この工程こそ新たな生物処理,すなわち汚泥成分の生分解→消散→消滅という画期的なプロセスの出発点になる。即ち、汚水の生物処理工程は,微生物が汚水中の有機物や無機物を分解しつつ基質として摂取するプロセスであり,この微生物の塊(フロック)が汚泥である。生物処理の最終は, 汚泥の脱水工程と次の汚泥ケーキ製造工程であるが,脱水されたとはいえ脱水ケーキの水分は80%もある。どんなに優秀な脱水機でも, せいぜい70%程度の含水率である。これは,細胞外の水分が脱水されただけで, 細胞内には,水分がたっぷりと残存しているからである。これまで、この余剰汚泥の処理方法としては、一般には、脱水後に埋め立、海洋投棄、焼却処分等がされている。しかしながら、これらの方法では多大の経費と設備が必要であるため、新たな余剰汚泥処理方法の提案が要求されていた。   FIG. 4 is a structural diagram of microbial cells. The cell membrane is a membranous structure that surrounds the outside of the microbial cell, and forms a cytoplasmic membrane, cell wall, mucus layer, or capsule from the inside. The cell wall is a hard membrane outside the cytoplasm. The life phenomenon proceeds safely while being protected by various layers of various films. The conventional sludge treatment treats sludge cells in a complete state wrapped in a strong cell membrane, whether living sludge cells or dying sludge cells. With this, dehydration and biological treatment must be completed incompletely. If the cell membrane is destroyed here, the water in the cell can be easily dehydrated. Not only that, but the cytoplasm is also exposed to the outside, so it is of course subject to processing. The cytoplasm in FIG. 4 is a complex colloidal system wrapped in a cell membrane. The cytoplasm contains granules that are closely related to metabolism such as ribosomes and granules such as polysaccharides and lipids that are storage substances. If these nutrients break through the cell membrane and jump out, they can be used as substrates for other microorganisms, so new biological treatment can be expected. Sludge cell membrane destruction, this process is the starting point for a new biological treatment, that is, an innovative process of biodegradation → dissipation → elimination of sludge components. That is, the biological treatment process of sewage is a process in which microorganisms ingest organic substances and inorganic substances in sewage as a substrate while decomposing organic substances and inorganic substances, and the microbial mass (floc) is sludge. The final biological treatment is the sludge dewatering process and the next sludge cake manufacturing process. Although dehydrated, the water content of the dewatered cake is as high as 80%. No matter how good the dehydrator, the water content is about 70% at most. This is because a lot of moisture remains in the cells only after the extracellular moisture has been dehydrated. So far, as a method for treating this surplus sludge, generally, after dehydration, landfill, ocean dumping, incineration and the like have been performed. However, since these methods require a large amount of expenses and facilities, a proposal for a new surplus sludge treatment method has been required.

この要求に応える余剰汚泥処理方法として、これまで、オゾン処理法、高温性微生物処理法、機械的処理法、キャビテーション処理法等が提案されている。その中のキャビテーション処理法の一つとして特許文献1に開示されているものがある。このものに開示されている処理方法は、好気性生物処理槽において発生した汚泥を汚泥可溶化処理装置において可溶化処理槽とこの可溶化処理槽内に噴射口が臨むように配設されたノズルと、汚泥を加圧して上記ノズルに供給し、この汚泥をノズルの噴射口から可溶化処理槽内に噴射させることによりキャビテーションによる汚泥の可溶化を行わせる加圧ポンプとを備えている汚泥可溶化処理装置により汚泥の一部を可溶化して生物分解性を高める。そして、この汚泥を再び好気性生物処理槽に戻すことより、余剰汚泥を大幅に削減できるようにしている。 As an excess sludge treatment method that meets this requirement, an ozone treatment method, a high-temperature microorganism treatment method, a mechanical treatment method, a cavitation treatment method, and the like have been proposed so far. One of the cavitation processing methods among them is disclosed in Patent Document 1. The treatment method disclosed in this article is a solubilization treatment tank for sludge generated in an aerobic biological treatment tank and a nozzle disposed so that an injection port faces the solubilization treatment tank. And a pressurizing pump that pressurizes the sludge and supplies it to the nozzle, and injects the sludge into the solubilization treatment tank from the nozzle injection port to solubilize the sludge by cavitation. A part of the sludge is solubilized by the solubilization device to enhance biodegradability. Then, by returning this sludge to the aerobic biological treatment tank again, the excess sludge can be greatly reduced.

具体的には、沈殿槽から好気性生物処理槽に延びる配管の途中に可溶化処理槽を設置して該可溶化処理槽内ノズルにてキャビテーション(液体の局所的で且つ急激な圧力低下)を発生させ、これによって余剰汚泥を可溶化するようにしている。つまり、可溶化処理槽内に噴射口が臨むように配設されたノズルと、汚泥を加圧して上記ノズルに供給し、この汚泥をノズルの噴射口から可溶化処理槽内に噴射させることにより、キャビテーションを発生させ、これによって余剰汚泥を構成する微生物細胞が破壊され、可溶化が起こるようになっている。
特開2003−10890号公報
Specifically, a solubilization tank is installed in the middle of a pipe extending from the sedimentation tank to the aerobic biological treatment tank, and cavitation (local and rapid pressure drop of the liquid) is performed by the nozzle in the solubilization tank. The excess sludge is solubilized by this. In other words, the nozzle disposed so that the injection port faces the solubilization tank and the sludge are pressurized and supplied to the nozzle, and the sludge is injected into the solubilization tank from the nozzle injection port. Then, cavitation is generated, so that the microbial cells constituting the excess sludge are destroyed and solubilization occurs.
JP 2003-10890 A

ところが、上記公報に開示されている処理方法において微生物細胞の破壊を十分に行うためには、可溶化処理槽を設け、該可溶化処理槽内ノズルにてキャビテーションを発生させるなど処理装置全体として大型化を避けることができなかった。 However, in order to sufficiently destroy microbial cells in the treatment method disclosed in the above publication, a solubilization treatment tank is provided, and cavitation is generated by the nozzle in the solubilization treatment tank. Could not be avoided.

また、該可溶化処理装置内で使用する加圧ポンプの圧力は、3MPa以上に設定されており、省エネ効果には問題があり、更に大きな設備費用負担となるため、限られた市場となっている。 In addition, the pressure of the pressure pump used in the solubilization processing apparatus is set to 3 MPa or more, and there is a problem with the energy saving effect, and it becomes a large equipment cost burden, so it becomes a limited market. Yes.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、装置全体の大型化を回避し且つ汚泥をキャビテーション効果によって確実に可溶化できるようにすることにある。 This invention is made | formed in view of this point, The place made into the objective is to avoid the enlargement of the whole apparatus, and to make it possible to solubilize sludge reliably by a cavitation effect.

上記目的を達成するために請求項1記載の発明によれば、好気性生物処理槽において発生した汚泥を沈殿槽から好気性生物処理槽に延びる配管の途中にキャビテーション発生装置を設け、該キャビテーション発生装置で発生するキャビテーションにより余剰汚泥を、可溶化装置を設けた汚泥減量化処理装置において、前記キャビテーション発生装置は、移送加圧ポンプと、衝撃波発生配管と、衝撃波発生配管に接続される微生物破砕用配管と、衝撃波発生配管及び微生物破砕用配管の間に配置される低圧発生促進板とで構成したことにより、汚泥を効果的に減量化させることを可能とした。   In order to achieve the above object, according to the first aspect of the present invention, a cavitation generator is provided in the middle of a pipe extending the sludge generated in the aerobic biological treatment tank from the sedimentation tank to the aerobic biological treatment tank. In the sludge reduction processing apparatus provided with a solubilization device for surplus sludge by cavitation generated in the device, the cavitation generation device is used for crushing microorganisms connected to a transfer pressure pump, a shock wave generation pipe, and a shock wave generation pipe By comprising the piping and the low-pressure generation promoting plate disposed between the shock wave generating piping and the microorganism crushing piping, sludge can be effectively reduced.

また、請求項2記載の発明によれば、前記移送加圧ポンプはホースポンプとしたので、シューがホースより離れるときの弾性回復力による真空の発生で流体を吸引するため汚泥を容易に移送加圧することを可能とした。   Further, according to the invention of claim 2, since the transfer pressurizing pump is a hose pump, sludge is easily transferred to attract fluid by generating a vacuum by elastic recovery force when the shoe is separated from the hose. It was possible to press.

更に、請求項3記載の発明によれば、発生させるキャビテーション径を微生物細胞と同程度としたので、確実に微生物細胞を破壊することができ、より効率的に汚泥を減量化させることを可能とした。   Furthermore, according to the invention described in claim 3, since the cavitation diameter to be generated is approximately the same as that of microbial cells, the microbial cells can be surely destroyed, and sludge can be reduced more efficiently. did.

この発明によれば、汚泥は、移送加圧ポンプによって所定圧力まで昇圧され、水流が漏斗部を通過する際、ジェット水流に変化し、その水流により、低温沸騰によるキャビテーションが発生する。このキャビテーションが破裂する際のエネルギーと、衝突板にぶつかる衝撃の複合作用により汚泥を構成する微生物細胞が破壊され可溶化が起こる。又、微生物破砕用配管により、より強大な衝撃波となり微生物の細胞膜を効果的に破壊する効果を創出する。同時に比較的中圧ポンプの使用が可能とし、装置自体を小型化することが可能となる。   According to the present invention, the sludge is pressurized to a predetermined pressure by the transfer pressurization pump, and when the water flow passes through the funnel portion, it changes to a jet water flow, and cavitation due to low-temperature boiling occurs due to the water flow. Microbial cells constituting sludge are destroyed and solubilized by the combined action of the energy when this cavitation bursts and the impact that hits the collision plate. In addition, the microorganism crushing pipe creates a stronger shock wave and effectively destroys the microbial cell membrane. At the same time, a relatively medium pressure pump can be used, and the apparatus itself can be miniaturized.

上記移送加圧ポンプとしては具体的には、ホースポンプが採用される。これにより汚泥を比較的容易に中圧域(0.3Mpa〜1.0Mpa)にすることが可能となり実用的である。 Specifically, a hose pump is employed as the transfer pressure pump. As a result, the sludge can be brought into the medium pressure range (0.3 Mpa to 1.0 Mpa) relatively easily, which is practical.

また、発生させるキャビテーション径を微生物細胞と同程度とすることで、キャビテーションが破裂する際に微生物細胞を確実に破壊することが可能となり、効率的に可溶化を行うことが可能となる。 Further, by setting the cavitation diameter to be generated to be approximately the same as that of the microbial cell, it is possible to reliably destroy the microbial cell when the cavitation is ruptured, and it is possible to efficiently solubilize.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、汚泥減量化処理装置の概略構成を示すブロック図である。この図に示すように、汚泥減量化処理装置は、汚泥流れ方向の上流側から下流側に亘って、有機性汚水9を、好気性生物処理槽1で処理し、沈殿槽2で固液分離して処理水10と返送汚泥11を得る排水処理工程で処理し、返送汚泥11として可溶化装置3に導入して、返送汚泥を可溶化及び分解処理を行った後、排水処理工程の生物処理槽1に返送して、溶解性有機物及び汚泥分の生物分解を行っている。 FIG. 1 is a block diagram showing a schematic configuration of a sludge reduction treatment apparatus. As shown in this figure, the sludge reduction treatment apparatus treats organic sewage 9 in the aerobic biological treatment tank 1 from the upstream side to the downstream side in the sludge flow direction, and solid-liquid separation in the sedimentation tank 2. Then, it is treated in a wastewater treatment process to obtain treated water 10 and return sludge 11, introduced into the solubilizer 3 as return sludge 11, solubilized and decomposed return sludge, and then biological treatment in the wastewater treatment process It returns to the tank 1 and performs biodegradation of soluble organic matter and sludge.

可溶化装置3に導入された返送汚泥11は、移送加圧ポンプとしてのホースポンプ4により衝撃波発生配管5内に導き、返送汚泥11を増速し、その後配管5を広げ管内圧を下げることでキャビテーションを発生させる。また、衝撃波発生配管5の直後には低圧発生促進板6を配置することでよりその効率を上げる。低圧発生促進板6により微細で均一な気泡流とすることができ、それにより効果的に微生物を破砕することができ、可溶化処理を効率的に行うことができる。なお、図3に示すように衝突板7を設けた場合には、発生したキャビテーションを衝突板7に衝突させることで微生物を破砕させることができる。 The return sludge 11 introduced into the solubilizer 3 is guided into the shock wave generating pipe 5 by the hose pump 4 as a transfer pressurizing pump, the return sludge 11 is accelerated, and then the pipe 5 is expanded to lower the pipe internal pressure. Causes cavitation. Further, the efficiency is further improved by arranging the low pressure generation promoting plate 6 immediately after the shock wave generating pipe 5. The low-pressure generation promoting plate 6 can make a fine and uniform bubbling flow, whereby the microorganisms can be effectively crushed and the solubilization treatment can be performed efficiently. In addition, when the collision plate 7 is provided as shown in FIG. 3, the microorganisms can be crushed by causing the generated cavitation to collide with the collision plate 7.

移送加圧ポンプ4の吸い込み側に前処理としてフィルターを備えてもよく、その場合には、汚泥中の比較的大きなゴミ、毛などの難可溶物を除去することができる。なお、移送加圧ポンプ4の吸い込み側は、沈殿槽2の層域より吸い込むようにした方が底層の沈殿物を吸い込むことがなく好ましい。 A filter may be provided as a pretreatment on the suction side of the transfer pressurization pump 4, and in that case, relatively insoluble materials such as relatively large dust and hair in the sludge can be removed. In addition, it is preferable that the suction side of the transfer pressurization pump 4 is sucked from the layer region of the sedimentation tank 2 because the sediment in the bottom layer is not sucked.

また、移送加圧ポンプ4の吸い込み側に前処理として加熱装置を設けてもよく、その場合には、汚泥を構成する微生物細胞の細胞膜の強度低下が加熱に伴って促進され、可溶化処理器でのキャビテーションによる微生物細胞の破壊が容易に行われることになり、あるいは、汚泥を加熱することにより汚泥の圧力が上昇し、移送加圧ポンプの負荷低減につながる。この加熱手段として、具体的には配管に電気ヒータを用いている。 Further, a heating device may be provided as a pretreatment on the suction side of the transfer pressurization pump 4, and in that case, a decrease in the strength of the cell membrane of the microbial cells constituting the sludge is promoted with heating, and the solubilizer The microbial cells can be easily destroyed by cavitation at this point, or the sludge pressure increases by heating the sludge, leading to a reduction in the load on the transfer pressurization pump. Specifically, an electric heater is used for the piping as the heating means.

可溶化装置3の詳細構成を図2に示す。衝撃波発生配管5は、二つの漏斗5a、5bを相対させ、出口部には低圧発生促進板6を設ける。入口側漏斗5aで返送汚泥11を増速し、出口側漏斗5bで配管径を急激に広げることで配管内を低圧化されるが、低圧発生促進板6の存在によりより低圧にすることができ、これにより微細なキャビテーションを発生させることができる。このためにキャビテーションと返送汚泥11との気液二相流の流動様式は、均一に分散した気泡流となる。この気泡流は微生物破砕用配管8内を通過する際、キャビテーションとワムシやイタチ虫等の微生物とが接触し、微生物を破砕する。これにより微生物細胞が微細化されて可溶化される。なお微生物破砕用配管8は二重管として、キャビテーションによる磨耗で配管に穴が空いたとしても、外部に返送汚泥11が流れ出すのを防ぐよう構成している。 A detailed configuration of the solubilizer 3 is shown in FIG. The shock wave generating pipe 5 has two funnels 5a and 5b facing each other, and a low pressure generation promoting plate 6 is provided at the outlet. The return sludge 11 is accelerated at the inlet-side funnel 5a and the pipe diameter is abruptly widened at the outlet-side funnel 5b, so that the pressure in the pipe can be reduced. As a result, fine cavitation can be generated. For this reason, the flow mode of the gas-liquid two-phase flow between the cavitation and the return sludge 11 is a uniformly dispersed bubble flow. When this bubbly flow passes through the microorganism crushing pipe 8, cavitation and microorganisms such as rotifer and weasel insect come into contact with each other to crush the microorganisms. Thereby, microbial cells are refined and solubilized. Note that the microorganism crushing pipe 8 is configured as a double pipe so as to prevent the return sludge 11 from flowing out even if a hole is formed in the pipe due to wear due to cavitation.

仮に、低圧発生促進板6が無い場合には、キャビテーションの径が大きくなるために、キャビテーションと返送汚泥11との気液二相流の流動様式は、スラグ流やフロス流や環状噴霧となってしまう。このため、発生したキャビテーションと微生物との接触機会が減り十分に微生物を破砕することができない。 If there is no low pressure generation promotion plate 6, the diameter of the cavitation becomes large, and the flow mode of the gas-liquid two-phase flow between the cavitation and the return sludge 11 is slag flow, floss flow or annular spray. End up. For this reason, the contact opportunity between the generated cavitation and the microorganism is reduced, and the microorganism cannot be sufficiently crushed.

なお、低圧発生促進板6の細口部6aの直径は出口側漏斗5bの直径の1/6〜1/2程度が望ましく、細すぎると返送汚泥11が詰まりやすく、太すぎるとキャビテーションの径が大きくなり、気泡流を得られなくなるため、微生物との接触機会が減るために、微生物の破砕が十分に行われない。 The diameter of the narrow opening 6a of the low pressure generation promoting plate 6 is preferably about 1/6 to 1/2 of the diameter of the outlet funnel 5b. If it is too thin, the return sludge 11 is likely to be clogged, and if it is too thick, the diameter of the cavitation is large. As a result, the bubble flow cannot be obtained, and the opportunity for contact with the microorganisms is reduced, so that the microorganisms are not sufficiently crushed.

また、低圧発生促進板6と衝突板7との距離は、細口部6aの直径の1/2〜2程度が望ましく、近すぎると返送汚泥7が詰まりやすく、長すぎるとキャビテーションの消滅のための増幅配管が長く必要となり装置全体が大型化する。本発明は、キャビテーションと微生物との接触時間を長くし、微細なキャビテーションを発生させ返送汚泥との気液二層流を気泡流の状態として接触機会を増やすことで微生物の細胞膜破壊を効果的に行わせることが主旨であり、その主旨を逸脱しない範囲での変更は可能である。 Further, the distance between the low pressure generation promoting plate 6 and the collision plate 7 is preferably about 1/2 to 2 of the diameter of the narrow mouth portion 6a. If the distance is too close, the return sludge 7 is likely to be clogged, and if too long, the cavitation disappears. Amplification piping is required for a long time, and the entire apparatus becomes large. In the present invention, the contact time between the cavitation and the microorganisms is lengthened, the fine liquid cavitation is generated, the gas-liquid two-layer flow with the returned sludge is made into a bubble flow state, and the contact opportunity is increased, thereby effectively preventing the destruction of the microbial cell membrane. The main purpose is to make it change, and changes can be made without departing from the spirit.

例えば、安全装置として配管内(例えばポンプ4と衝撃波発生配管5の間)に圧力センサーを設け、該圧力センサーにより異常圧を検知した際にはポンプ4の駆動を停止するように構成することもできる。また、流量センサー(例えば圧力センサーの近傍)及び絞り弁(例えばポンプ4と衝撃波発生配管5の間で、流量センサーの上流)を配管内設けることで、衝撃波発生配管5内へ流入する流量及び流速を最適にコントロールすることができる。また、タイマーを設け、メンテナンス時期にはポンプを停止し、表示灯等を点灯させることで、定期的なメンテナンスを促すように構成することもできる。 For example, a pressure sensor may be provided as a safety device in a pipe (for example, between the pump 4 and the shock wave generating pipe 5), and the pump 4 may be stopped when an abnormal pressure is detected by the pressure sensor. it can. In addition, by providing a flow sensor (for example, in the vicinity of the pressure sensor) and a throttle valve (for example, between the pump 4 and the shock wave generating pipe 5 and upstream of the flow sensor) in the pipe, the flow rate and flow velocity flowing into the shock wave generating pipe 5 Can be controlled optimally. In addition, a timer can be provided so that periodic maintenance can be promoted by stopping the pump at the maintenance time and turning on an indicator lamp or the like.

本形態による汚泥の可溶化処理を確認するために行った実験結果について以下に説明する。本実験例では、加圧ポンプの最適圧力に調整(0.9Mpa)後、可溶化処理装置3を1回又は5回通過した汚泥及び通過しない汚泥それぞれについて遠心分離後、上水に対し溶解性COD(化学的酸素要求量)を計測した。この溶解性CODは、その値が高いほど汚泥の可溶化が進んでいることを示す。表1にその実験結果を示す。 The experimental results conducted to confirm the sludge solubilization treatment according to this embodiment will be described below. In this experimental example, after adjusting to the optimum pressure of the pressure pump (0.9 Mpa), the sludge that passed through the solubilization apparatus 3 once or five times and the sludge that did not pass through were each centrifuged, and then soluble in clean water. COD (chemical oxygen demand) was measured. This solubility COD shows that solubilization of sludge progresses, so that the value is high. Table 1 shows the experimental results.

汚泥の上水に対する溶解性CODを比較した表である。 It is the table | surface which compared the soluble COD with respect to the water of sludge.

これら実験結果により、本形態の可溶化処理器5により、汚泥の可溶化を確実に行うことができることが確認された。又、余剰汚泥を引き抜くこともなく曝気槽内MLSS濃度の上昇もなく、本装置導入前に比べ汚泥減量率は82%であり、汚泥の減量化が促進されることも確認された。 From these experimental results, it was confirmed that the solubilization processor 5 of this embodiment can surely solubilize sludge. In addition, the excess sludge was not pulled out and the MLSS concentration in the aeration tank was not increased, and the sludge reduction rate was 82% compared with that before the introduction of this apparatus, confirming that the sludge reduction was promoted.

以上に説明したように、本発明によれば、下水、農村集落排水及び各種有機廃水処理施設等への利用が可能である。 As described above, according to the present invention, it can be used for sewage, rural village drainage, various organic wastewater treatment facilities, and the like.

汚泥減量化処理装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the sludge reduction processing apparatus. 可溶化処理装置の概略を示した断面図である。It is sectional drawing which showed the outline of the solubilization processing apparatus. 可溶化処理装置の別実施例の概略を示した断面図である。It is sectional drawing which showed the outline of another Example of the solubilization processing apparatus. 微生物細胞の構造図であるIt is a structural diagram of microbial cells

符号の説明Explanation of symbols

1、好気性生物処理槽 2、沈殿槽 3、可溶化装置 4、移送加圧ポンプ 5、衝撃波発生配管 6、低圧発生促進板 6a、細口部 7、衝突板 8、微生物破砕用配管
1, aerobic biological treatment tank 2, sedimentation tank 3, solubilizer 4, transfer pressurization pump 5, shock wave generation pipe 6, low pressure generation promotion plate 6a, narrow mouth portion 7, collision plate 8, pipe for microorganism crushing

Claims (3)

好気性生物処理槽において発生した汚泥を沈殿槽から好気性生物処理槽に延びる配管の途中にキャビテーション発生装置を設け、該キャビテーション発生装置で発生するキャビテーションにより余剰汚泥を可溶化する可溶化装置を設けた汚泥減量化処理装置において、前記キャビテーション発生装置は、移送加圧ポンプと、衝撃波発生配管と、衝撃波発生配管に接続される微生物破砕用配管と、衝撃波発生配管及び微生物破砕用配管の間に配置される低圧発生促進板とで構成したことを特徴とする汚泥減量化処理装置 A cavitation generator is installed in the middle of the pipe that extends sludge generated in the aerobic biological treatment tank from the sedimentation tank to the aerobic biological treatment tank, and a solubilizer is provided to solubilize excess sludge by cavitation generated in the cavitation generator. In the sludge reduction processing apparatus, the cavitation generator is disposed between the transfer pressurization pump, the shock wave generating pipe, the microorganism crushing pipe connected to the shock wave generating pipe, and the shock wave generating pipe and the microorganism crushing pipe. Sludge reduction treatment device characterized by comprising a low pressure generation promotion plate 請求項1記載の汚泥減量化処理装置において、前記移送加圧ポンプはホースポンプとしたことを特徴とする汚泥減量化処理装置 2. The sludge reduction processing apparatus according to claim 1, wherein the transfer pressure pump is a hose pump. 請求項1又は請求項2記載の汚泥減量化処理装置において、発生させるキャビテーション径を微生物細胞と同程度としたことを特徴とする汚泥減量化処理装置




3. The sludge reduction treatment apparatus according to claim 1 or 2, wherein the generated cavitation diameter is approximately the same as that of microbial cells.




JP2005353105A 2005-12-07 2005-12-07 Sludge reducing device Pending JP2007152268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353105A JP2007152268A (en) 2005-12-07 2005-12-07 Sludge reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353105A JP2007152268A (en) 2005-12-07 2005-12-07 Sludge reducing device

Publications (1)

Publication Number Publication Date
JP2007152268A true JP2007152268A (en) 2007-06-21

Family

ID=38237290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353105A Pending JP2007152268A (en) 2005-12-07 2005-12-07 Sludge reducing device

Country Status (1)

Country Link
JP (1) JP2007152268A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478804B1 (en) * 2009-03-31 2010-06-09 学校法人東邦大学 Organic sludge treatment method
KR101046622B1 (en) 2010-05-12 2011-07-25 삼창엔텍 주식회사 Device for pretreatment the sludge using parallel-serial venture tube
CN103497791A (en) * 2013-09-18 2014-01-08 煤炭科学研究总院 Novel sludge coal-water slurry and preparation method thereof
CN108002676A (en) * 2018-01-11 2018-05-08 太原卫安环保科技股份有限公司 Hydrodynamic cavitation cooperates with the integration of micro- alkali process biochemical sludge to subtract mud machine and processing system
JP2019013874A (en) * 2017-07-05 2019-01-31 株式会社アクト Sludge volume reduction method, sludge volume reduction device and waste water purification system
CN109626502A (en) * 2018-12-05 2019-04-16 江苏大学 A kind of cavitation generator for sewage degradation
JP2020049464A (en) * 2018-09-28 2020-04-02 株式会社石垣 Sewage purification system and sludge solubilizing method
CN111675467A (en) * 2020-06-17 2020-09-18 湖州南浔盛兴再生资源有限公司 Pretreatment process for sludge carbonization
JP7101858B1 (en) * 2021-12-24 2022-07-15 Jfe環境テクノロジー株式会社 Sewage sludge volume reduction device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478804B1 (en) * 2009-03-31 2010-06-09 学校法人東邦大学 Organic sludge treatment method
JP2010234233A (en) * 2009-03-31 2010-10-21 Toho Univ Foundation Organic sludge treatment method
KR101046622B1 (en) 2010-05-12 2011-07-25 삼창엔텍 주식회사 Device for pretreatment the sludge using parallel-serial venture tube
CN103497791A (en) * 2013-09-18 2014-01-08 煤炭科学研究总院 Novel sludge coal-water slurry and preparation method thereof
JP2019013874A (en) * 2017-07-05 2019-01-31 株式会社アクト Sludge volume reduction method, sludge volume reduction device and waste water purification system
CN108002676A (en) * 2018-01-11 2018-05-08 太原卫安环保科技股份有限公司 Hydrodynamic cavitation cooperates with the integration of micro- alkali process biochemical sludge to subtract mud machine and processing system
CN108002676B (en) * 2018-01-11 2023-12-12 山西卫安环保科技股份有限公司 Hydrodynamic cavitation cooperated micro-alkali biochemical sludge treatment integrated sludge reduction machine and treatment system
JP2020049464A (en) * 2018-09-28 2020-04-02 株式会社石垣 Sewage purification system and sludge solubilizing method
CN109626502A (en) * 2018-12-05 2019-04-16 江苏大学 A kind of cavitation generator for sewage degradation
CN109626502B (en) * 2018-12-05 2021-09-10 江苏大学 Cavitation generator for sewage degradation
CN111675467A (en) * 2020-06-17 2020-09-18 湖州南浔盛兴再生资源有限公司 Pretreatment process for sludge carbonization
JP7101858B1 (en) * 2021-12-24 2022-07-15 Jfe環境テクノロジー株式会社 Sewage sludge volume reduction device

Similar Documents

Publication Publication Date Title
JP2007152268A (en) Sludge reducing device
JP4990101B2 (en) Microorganism crusher
JP5916971B2 (en) Sludge treatment apparatus and sludge treatment method
WO1999033552A1 (en) Vapor/liquid mixer and polluted water purification apparatus using the mixer
KR101266482B1 (en) Activated sludge disintegration apparatus using microbubble and ultrasonification
JP2004267940A (en) Method and apparatus for mixing/reacting gas with liquid
JP3775654B2 (en) Method and apparatus for reducing excess sludge in biological treatment of organic sewage
JP5064338B2 (en) Wastewater treatment equipment
JP3558609B2 (en) Sewage treatment system and sewage treatment method
CN109071269A (en) The processing method and its device of oily waste liquor
JP2008043841A (en) Apparatus for treatment of sludge
JP2009233637A (en) Sludge treatment apparatus and sludge treatment method
KR100403652B1 (en) Apparatus for disslving ozone in water
JP2005125297A (en) Sludge reducing apparatus and sewage treating system equipped with the sludge reducing apparatus
KR100528104B1 (en) Method of improving the quality of water using micro-bubble ozone
JP5604003B2 (en) Ballast underwater aquatic organism killing device
EP1544171A1 (en) Process for reducing sludge from water treatment by oxygenation and mechanical action
KR101005508B1 (en) A waste water disposal plant having electricity processor and ultrasonic reactor
JP2004049938A (en) Sludge treatment apparatus and method
KR100949346B1 (en) Apparatus for treating Sludge
CN103787526A (en) Method for removing blue-green algae by using microbubble hydrodynamic cavitation enhanced coagulation
KR100849165B1 (en) Apparatus for making sludge fine-grained
JP4851403B2 (en) Sludge volume reduction processing method and apparatus
JP2003305499A (en) Method and apparatus for reducing volume of excess sludge
JP2003053392A (en) Method of solubilizing organic sludge and equipment used for the same