JP7326152B2 - Composition for solid-state imaging device and method for forming infrared shielding film for solid-state imaging device - Google Patents

Composition for solid-state imaging device and method for forming infrared shielding film for solid-state imaging device Download PDF

Info

Publication number
JP7326152B2
JP7326152B2 JP2019511112A JP2019511112A JP7326152B2 JP 7326152 B2 JP7326152 B2 JP 7326152B2 JP 2019511112 A JP2019511112 A JP 2019511112A JP 2019511112 A JP2019511112 A JP 2019511112A JP 7326152 B2 JP7326152 B2 JP 7326152B2
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
solvent
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019511112A
Other languages
Japanese (ja)
Other versions
JPWO2018186114A1 (en
Inventor
耕治 畠山
裕亮 村田
遵生子 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Publication of JPWO2018186114A1 publication Critical patent/JPWO2018186114A1/en
Application granted granted Critical
Publication of JP7326152B2 publication Critical patent/JP7326152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/18Obtaining compounds having oxygen atoms directly bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D153/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/025Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Filters (AREA)
  • Materials For Photolithography (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、固体撮像素子用組成物及び固体撮像素子用赤外線遮蔽膜の形成方法に関する。 TECHNICAL FIELD The present invention relates to a composition for a solid-state imaging device and a method for forming an infrared shielding film for a solid-state imaging device.

ビデオカメラ、デジタルカメラ、カメラ機能付き携帯電話等には、CCD(Charge-Coupled Device)イメージセンサやCMOS(Complementary MOS)イメージセンサ等の固体撮像素子が搭載されている。これらの固体撮像素子に備わるフォトダイオードの感度は、可視光領域から赤外線領域にわたる。このため、固体撮像素子においては、赤外線を遮断するためのフィルターが設けられている。この赤外線遮断フィルターにより、固体撮像素子の感度を人間の視感度に近づくように補正することができる。 2. Description of the Related Art Solid-state imaging devices such as CCD (Charge-Coupled Device) image sensors and CMOS (Complementary MOS) image sensors are mounted on video cameras, digital cameras, mobile phones with camera functions, and the like. The sensitivity of photodiodes provided in these solid-state imaging devices ranges from the visible light region to the infrared region. Therefore, the solid-state imaging device is provided with a filter for blocking infrared rays. This infrared cutoff filter can correct the sensitivity of the solid-state imaging device so as to approach human visual sensitivity.

上記赤外線遮断フィルターには、赤外線遮蔽剤としての有機色素や無機化合物が含有されている(特開2013-137337号公報、特開2013-151675号公報参照)。赤外線遮断フィルターは、通常、基板上に赤外線遮蔽剤を含む組成物を塗工することにより形成される。このような赤外線遮断フィルターにおいては、上記組成物の塗膜が赤外線を遮蔽する膜として機能する。 The infrared blocking filter contains an organic dye or an inorganic compound as an infrared blocking agent (see JP-A-2013-137337 and JP-A-2013-151675). An infrared blocking filter is usually formed by coating a composition containing an infrared blocking agent on a substrate. In such an infrared blocking filter, the coating film of the above composition functions as a film that blocks infrared rays.

特開2013-137337号公報JP 2013-137337 A 特開2013-151675号公報JP 2013-151675 A

固体撮像素子用組成物には、良好な可視光透過性と赤外線遮蔽性とを兼ね備える光学フィルターが形成できることが求められる。また、固体撮像素子用組成物には、分散安定性や経時安定性が高いことが求められる。これらが不十分である場合、得られる光学フィルター(赤外線遮蔽膜)における欠陥の発生や、生産性の低下を引きおこす。また、可視光透過性や赤外線遮蔽性にも影響を与える。さらに、塗膜に対して露光及び現像を行い、パターニングされた赤外線遮蔽膜を形成する場合もあるが、この場合、用いる固体撮像素子用組成物には、良好なパターニング性を有することが求められる。 Compositions for solid-state imaging devices are required to be capable of forming an optical filter having both good visible light transmittance and infrared shielding properties. Further, the composition for a solid-state imaging device is required to have high dispersion stability and long-term stability. If these are insufficient, the resulting optical filter (infrared shielding film) will have defects and productivity will be reduced. It also affects visible light transmittance and infrared shielding properties. Furthermore, the coating film may be exposed and developed to form a patterned infrared shielding film. In this case, the solid-state imaging device composition used is required to have good patterning properties. .

本発明は、以上のような事情に基づいてなされたものであり、その目的は、分散安定性及び経時安定性が高く、欠陥が少なく良好な可視光透過性と赤外線遮蔽性とを兼ね備える固体撮像素子用の光学フィルターを形成することができる固体撮像素子用組成物、及びこの固体撮像素子用組成物を用いた固体撮像素子用遮蔽膜の形成方法を提供することである。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a solid-state imaging device having high dispersion stability and long-term stability, few defects, and good visible light transmission and infrared shielding properties. An object of the present invention is to provide a composition for a solid-state imaging device capable of forming an optical filter for the device, and a method for forming a shielding film for a solid-state imaging device using this composition for a solid-state imaging device.

上記課題を解決するためになされた発明は、無機化合物、重合体、有機色素及び溶媒を含む固体撮像素子用組成物において、上記重合体のアミン価が、90mgKOH/g以上200mgKOH/g以下であり、上記溶媒が、溶解度パラメーターが8.8(cal/cm1/2以上12.0(cal/cm1/2以下の特定溶媒を含み、上記特定溶媒の上記固体撮像素子用組成物全体に対する含有量が、40質量%以上90質量%以下であり、20℃、0.1MPaにおける上記溶媒への上記有機色素の溶解度が、2質量%以上である固体撮像素子用組成物である。An invention made to solve the above problems is a composition for a solid-state imaging device containing an inorganic compound, a polymer, an organic dye and a solvent, wherein the amine value of the polymer is 90 mgKOH/g or more and 200 mgKOH/g or less. , the solvent contains a specific solvent having a solubility parameter of 8.8 (cal/cm 3 ) 1/2 or more and 12.0 (cal/cm 3 ) 1/2 or less, and the composition for a solid-state imaging device of the specific solvent A composition for a solid-state imaging device, wherein the content of the organic dye in the entire product is 40% by mass or more and 90% by mass or less, and the solubility of the organic dye in the solvent at 20°C and 0.1 MPa is 2% by mass or more. .

上記課題を解決するためになされた別の発明は、基板の一方の面側に塗膜を形成する工程を備え、上記塗膜を当該固体撮像素子用組成物により形成する固体撮像素子用赤外線遮蔽膜の形成方法である。 Another invention made to solve the above problems is an infrared shielding device for a solid-state imaging device, comprising the step of forming a coating film on one surface side of a substrate, wherein the coating film is formed from the composition for a solid-state imaging device. It is a method of forming a film.

本発明によれば、分散安定性及び経時安定性が高く、欠陥が少なく良好な可視光透過性と赤外線遮蔽性とを兼ね備える固体撮像素子用の光学フィルターを形成することができる固体撮像素子用組成物、及びこの固体撮像素子用組成物を用いた固体撮像素子用遮蔽膜の形成方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a composition for a solid-state imaging device is capable of forming an optical filter for a solid-state imaging device that has high dispersion stability and long-term stability, has few defects, and has both good visible light transmittance and infrared shielding properties. and a method for forming a shielding film for a solid-state imaging device using this composition for a solid-state imaging device.

以下、本発明の一実施形態に係る固体撮像素子用組成物及び固体撮像素子用赤外線遮蔽膜の形成方法について詳説する。 Hereinafter, a composition for a solid-state imaging device and a method for forming an infrared shielding film for a solid-state imaging device according to one embodiment of the present invention will be described in detail.

<固体撮像素子用組成物>
本発明の一実施形態に係る固体撮像素子用組成物(以下、単に「組成物」ともいう。)は、[A]無機化合物、[B]重合体、[C]有機色素及び[D]溶媒を含む。[B]重合体は、アミン価が90mgKOH/g以上200mgKOH/g以下である重合体である。[D]溶媒は、溶解度パラメーター(以下、「SP値」ともいう。)が8.8(cal/cm1/2以上12.0(cal/cm1/2以下の特定溶媒(以下、「[D1]溶媒」ともいう。)を含む。[D1]溶媒の上記固体撮像素子用組成物全体に対する含有量は、40質量%以上90質量%以下である。また、20℃、0.1MPaにおける[D]溶媒への[C]有機色素の溶解度は、2質量%以上である。
<Composition for solid-state imaging device>
A composition for a solid-state imaging device according to one embodiment of the present invention (hereinafter also simply referred to as "composition") comprises [A] an inorganic compound, [B] a polymer, [C] an organic dye and [D] a solvent including. The [B] polymer is a polymer having an amine value of 90 mgKOH/g or more and 200 mgKOH/g or less. [D] The solvent is a specific solvent having a solubility parameter (hereinafter also referred to as "SP value") of 8.8 (cal/cm 3 ) 1/2 or more and 12.0 (cal/cm 3 ) 1/2 or less ( hereinafter also referred to as "[D1] solvent"). [D1] The content of the solvent in the solid-state imaging device composition is 40% by mass or more and 90% by mass or less. Further, the solubility of the [C] organic dye in the [D] solvent at 20° C. and 0.1 MPa is 2% by mass or more.

当該組成物においては、特定のアミン価を有する[B]重合体を用いることにより、[A]無機化合物の分散性が向上する。さらに、特定の溶解度パラメーターを有する[D1]溶媒を所定量含有させることで、[A]無機化合物の分散性を高めることができる。[A]化合物の分散性が高い場合、得られる光学フィルターの可視光透過性や赤外線遮蔽性も良好なものとなる。加えて、溶解性の高い[C]有機色素と[D]溶媒とを組み合わせることで、上記可視光透過性や赤外線遮蔽性等がより改善される。従って、当該組成物によれば、分散安定性及び経時安定性が高く、欠陥が少なく良好な可視光透過性と赤外線遮蔽性とを兼ね備える固体撮像素子用の光学フィルターを形成することができる。 In the composition, the dispersibility of the [A] inorganic compound is improved by using the [B] polymer having a specific amine value. Furthermore, the dispersibility of the [A] inorganic compound can be enhanced by containing a predetermined amount of the [D1] solvent having a specific solubility parameter. [A] When the dispersibility of the compound is high, the optical filter to be obtained has good visible light transmittance and infrared shielding properties. In addition, by combining the highly soluble [C] organic dye and the [D] solvent, the above visible light transmittance, infrared shielding and the like are further improved. Therefore, according to the composition, it is possible to form an optical filter for a solid-state imaging device that has high dispersion stability and long-term stability, has few defects, and has both good visible light transmittance and infrared shielding properties.

当該組成物は、[E]重合性化合物をさらに含むことが好ましく、加えて[F]重合開始剤を含むことが好ましい。当該組成物は、さらにその他の成分を含むことができる。以下、各成分について詳説する。 Preferably, the composition further contains [E] a polymerizable compound, and additionally contains [F] a polymerization initiator. The composition may further contain other ingredients. Each component will be described in detail below.

([A]無機化合物)
[A]無機化合物は、赤外線遮蔽剤として機能する成分である。[A]無機化合物は、いわゆる顔料であってよい。[A]無機化合物は、波長800nm以上2,000nm以下の範囲に極大吸収波長を有することが好ましい。[A]無機化合物は、粒子状であり、当該組成物中に分散して存在する。
([A] inorganic compound)
[A] The inorganic compound is a component that functions as an infrared shielding agent. [A] The inorganic compound may be a so-called pigment. [A] The inorganic compound preferably has a maximum absorption wavelength in the wavelength range of 800 nm or more and 2,000 nm or less. [A] The inorganic compound is in the form of particles and is dispersed in the composition.

[A]無機化合物としては、金属又は半金属(ケイ素等)の酸化物であることが好ましい。[A]無機酸化物としては、具体的には、セシウム酸化タングステン、石英、磁鉄鉱、アルミナ、チタニア、ジルコニア、スピネル又はこれらの組み合わせであることが好ましい。これらの無機化合物は、1種を単独で、又は2種以上を混合して用いることができる。 [A] The inorganic compound is preferably an oxide of a metal or semimetal (such as silicon). [A] The inorganic oxide is preferably cesium tungsten oxide, quartz, magnetite, alumina, titania, zirconia, spinel, or a combination thereof. These inorganic compounds can be used individually by 1 type or in mixture of 2 or more types.

[A]無機化合物としては、これらの中でも、セシウム酸化タングステンが好ましい。セシウム酸化タングステンは、赤外線(特に波長が約800nm以上1,200nm以下の赤外線)に対しては吸収が高く(すなわち、赤外線に対する遮蔽性が高く)、可視光に対しては吸収が低い赤外線遮蔽剤である。よって、セシウム酸化タングステンを用いることで、得られる光学フィルターの良好な可視光透過性を維持しつつ、赤外線遮蔽性を高めることができる。 [A] As the inorganic compound, among these, cesium tungsten oxide is preferable. Cesium tungsten oxide has a high absorption of infrared rays (especially infrared rays with a wavelength of about 800 nm or more and 1,200 nm or less) (i.e., has a high shielding property against infrared rays), and an infrared shielding agent with low absorption of visible light. is. Therefore, by using cesium tungsten oxide, it is possible to improve the infrared shielding property while maintaining good visible light transmittance of the obtained optical filter.

セシウム酸化タングステンは、例えば下記式(a)で表すことができる
CsWO ・・・(a)
式(A)中、0.001≦x≦1.1である。2.2≦y≦3.0である。
Cesium tungsten oxide can be represented, for example, by the following formula (a): Cs x WO y (a)
In formula (A), 0.001≤x≤1.1. 2.2≤y≤3.0.

上記式(a)中のxが0.001以上であることにより、赤外線を十分に遮蔽することができる。xの下限は、0.01が好ましく、0.1がより好ましい。一方、xが1.1以下であることにより、セシウム酸化タングステン中に不純物相が生成されることをより確実に回避することできる。xの上限は、1が好ましく、0.5がより好ましい。 When x in the above formula (a) is 0.001 or more, infrared rays can be sufficiently shielded. The lower limit of x is preferably 0.01, more preferably 0.1. On the other hand, when x is 1.1 or less, it is possible to more reliably avoid the formation of an impurity phase in cesium tungsten oxide. The upper limit of x is preferably 1, more preferably 0.5.

上記式(a)中のyが2.2以上であることにより、材料としての化学的安定性をより向上させることができる。yの下限は、2.5が好ましい。一方、yが3.0以下であることにより赤外線を十分に遮蔽することができる。 When y in the formula (a) is 2.2 or more, the chemical stability of the material can be further improved. The lower limit of y is preferably 2.5. On the other hand, when y is 3.0 or less, infrared rays can be sufficiently shielded.

上記式(a)で表されるセシウム酸化タングステンの具体例としては、Cs0.33WO等を挙げることができる。Specific examples of the cesium tungsten oxide represented by the formula (a) include Cs 0.33 WO 3 and the like.

[A]無機化合物は微粒子であることが好ましい。[A]無機化合物の平均粒子径(D50)の上限としては、500nmが好ましく、200nmがより好ましく、50nmがさらに好ましく、30nmがよりさらに好ましく、20nmがよりさらに好ましい。平均粒子径が上記上限以下であることによって、可視光透過性をより高めることができる。一方、製造時における取り扱い容易性などの理由から、[A]無機化合物の平均粒子径は、通常、1nm以上であり、10nm以上であってもよい。なお、この平均粒子径(D50)は、当該組成物中の二次粒子径である。 [A] The inorganic compound is preferably fine particles. [A] The upper limit of the average particle size (D50) of the inorganic compound is preferably 500 nm, more preferably 200 nm, even more preferably 50 nm, even more preferably 30 nm, and even more preferably 20 nm. When the average particle size is equal to or less than the above upper limit, the visible light transmittance can be further enhanced. On the other hand, the average particle size of the [A] inorganic compound is usually 1 nm or more, and may be 10 nm or more, for reasons such as ease of handling during production. The average particle size (D50) is the secondary particle size in the composition.

[A]無機化合物は、公知の方法によって合成することもできるが、市販品として入手可能である。例えば、セシウム酸化タングステンは、住友金属鉱山社の「YMF-02」等のセシウム酸化タングステン微粒子の分散物としても入手可能である。 [A] The inorganic compound can be synthesized by a known method, and is available as a commercial product. For example, tungsten cesium oxide is also available as a dispersion of cesium tungsten oxide fine particles such as “YMF-02” from Sumitomo Metal Mining Co., Ltd.

当該組成物における全固形分に占める[A]無機化合物の含有量の下限としては、1質量%が好ましく、10質量%がより好ましく、20質量%がさらに好ましく、30質量%がよりさらに好ましい。一方、この含有量の上限としては、70質量%が好ましく、60質量%がより好ましい。[A]無機化合物の含有量を上記範囲とすることで、得られる光学フィルターの可視光透過性と赤外線遮蔽性とがより良好なバランスとなる。また、当該組成物の分散安定性や経時安定性をより良好なものとすることができる。なお、全固形分とは、[D]溶媒以外の全成分をいう。 The lower limit of the content of the [A] inorganic compound in the total solid content of the composition is preferably 1% by mass, more preferably 10% by mass, even more preferably 20% by mass, and even more preferably 30% by mass. On the other hand, the upper limit of this content is preferably 70% by mass, more preferably 60% by mass. [A] By setting the content of the inorganic compound within the above range, the visible light transmittance and infrared shielding properties of the resulting optical filter are well balanced. Moreover, the dispersion stability and aging stability of the composition can be improved. In addition, the total solid content refers to all components other than the [D] solvent.

([B]重合体)
[B]重合体は、[A]無機化合物等の分散性を高める成分である。[B]重合体は、1種の重合体からなってもよく、同一又は異なるアミン価を有する2種以上の重合体の混合物であってもよい。アミン価が0mgKOH/gである重合体は、複数種の重合体の混合物としての[B]重合体には含まれない。
([B] polymer)
The [B] polymer is a component that enhances the dispersibility of the [A] inorganic compound and the like. The [B] polymer may consist of one type of polymer, or may be a mixture of two or more types of polymers having the same or different amine values. A polymer having an amine value of 0 mgKOH/g is not included in the [B] polymer as a mixture of a plurality of types of polymers.

[B]重合体のアミン価の下限は、90mgKOH/gであり、110mgKOH/gが好ましく、130mgKOH/gがより好ましい。一方、このアミン価の上限は、200mgKOH/gである。このようなアミン価を有する重合体を用いることで、[A]無機化合物の分散性が向上し、得られる光学フィルターの可視光透過性と赤外線遮蔽性とをより高めることができる。なお、「アミン価」とは、重合体固形分1gを中和するのに必要なHClと当量のKOHのmg数である。[B]重合体として、異なるアミン価を有する複数種の重合体を混合して用いる場合、この[B]重合体のアミン価は、加重平均値とする。 [B] The lower limit of the amine value of the polymer is 90 mgKOH/g, preferably 110 mgKOH/g, more preferably 130 mgKOH/g. On the other hand, the upper limit of this amine value is 200 mgKOH/g. By using a polymer having such an amine value, the dispersibility of the [A] inorganic compound can be improved, and the visible light transmittance and infrared shielding properties of the resulting optical filter can be further enhanced. The "amine value" is the number of mg of KOH equivalent to HCl required to neutralize 1 g of polymer solid content. When a mixture of a plurality of polymers having different amine values is used as the [B] polymer, the amine value of the [B] polymer is a weighted average value.

[B]重合体は、ブロック共重合体であることが好ましい。ブロック共重合体としては、窒素原子を含む官能基を有するAブロックと、親溶媒性を有するBブロックとを有するブロック共重合体が好ましい。Aブロックの窒素原子を含む官能基は、[A]無機化合物に対する良好な吸着性を示す。従って、AブロックとBブロックとを有するブロック共重合体を用いることで、[A]無機化合物の分散性をより高めることができる。 The [B] polymer is preferably a block copolymer. As the block copolymer, a block copolymer having an A block having a functional group containing a nitrogen atom and a B block having solvent affinity is preferable. A functional group containing a nitrogen atom in the A block exhibits good adsorptivity to the [A] inorganic compound. Therefore, by using a block copolymer having an A block and a B block, the dispersibility of the [A] inorganic compound can be further enhanced.

Aブロックは、例えば下記式(1)で表わされる構造単位を有することが好ましい。 The A block preferably has a structural unit represented, for example, by the following formula (1).

Figure 0007326152000001
Figure 0007326152000001

式(1)中、Xは、2価の連結基である。Rは、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、又は置換基を有していてもよい鎖状若しくは環状の炭化水素基であるか、RとRとは、互いに結合して、これらが結合する窒素原子と共に環構造を形成する。In Formula (1), X is a divalent linking group. R 1 is a hydrogen atom or a methyl group. R 2 and R 3 are each independently a hydrogen atom, or a chain or cyclic hydrocarbon group which may have a substituent, or R 2 and R 3 are bonded to each other, They form a ring structure together with the nitrogen atom to which they are attached.

上記Xとしては、メチレン基、炭素数2~10のアルキレン基、アリーレン基、-CONH-R-(*)で表される基、-COO-R-(*)で表わされる基等を挙げることができる。R及びRは、それぞれ独立して、メチレン基、炭素数2~10のアルキレン基、又は炭素数2~10のアルキレンオキシアルキレン基である。(*)は、Nとの結合部位を示す。Xとしては、-COO-R-で表される基が好ましく、Rとしては、炭素数2~6のアルキレン基が好ましい。Examples of X include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a group represented by -CONH-R 7 -(*), a group represented by -COO-R 8 -(*), and the like. can be mentioned. R 7 and R 8 are each independently a methylene group, an alkylene group having 2 to 10 carbon atoms, or an alkyleneoxyalkylene group having 2 to 10 carbon atoms. (*) indicates the binding site with N. X is preferably a group represented by —COO—R 8 —, and R 8 is preferably an alkylene group having 2 to 6 carbon atoms.

及びRとしては、鎖状の炭化水素基が好ましく、炭素数1~5の鎖状の炭化水素基がより好ましく、メチル基、エチル基及びプロピル基がさらに好ましい。R 2 and R 3 are preferably chain hydrocarbon groups, more preferably chain hydrocarbon groups having 1 to 5 carbon atoms, and even more preferably methyl, ethyl and propyl groups.

上記式(1)で表される構造単位を与える単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等を挙げることができる。 Examples of the monomer that provides the structural unit represented by the above formula (1) include dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, diethylaminopropyl (meth)acrylate, and the like. can be mentioned.

Aブロックは、上記式(1)で表される構造単位以外の構造単位を含んでいてもよい。ブロック共重合体におけるAブロックの含有割合としては、例えば30質量%以上70質量%以下が好ましい。 The A block may contain structural units other than the structural unit represented by the above formula (1). The content of the A block in the block copolymer is preferably, for example, 30% by mass or more and 70% by mass or less.

Bブロックは、例えば下記式(2)で表わされる構造単位を有することが好ましい。 The B block preferably has a structural unit represented, for example, by the following formula (2).

Figure 0007326152000002
Figure 0007326152000002

式(2)中、Rは、それぞれ独立して、炭素数2~4のアルキレン基である。Rは、水素原子又は炭素数1~6のアルキル基である。Rは、水素原子又はメチル基である。nは、1~150の整数である。In formula (2), each R 4 is independently an alkylene group having 2 to 4 carbon atoms. R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R6 is a hydrogen atom or a methyl group. n is an integer from 1 to 150;

としては、エチレン基及びメチルエチレン基が好ましい。Rとしては、メチル基、エチル基、プロピル基及びブチル基が好ましい。nの上限は、20が好ましく、10がより好ましく、5がさらに好ましい。R 4 is preferably an ethylene group and a methylethylene group. R5 is preferably a methyl group, an ethyl group, a propyl group or a butyl group. The upper limit of n is preferably 20, more preferably 10, and even more preferably 5.

上記式(2)で表される構造単位を与える単量体としては、ポリエチレングリコール(n=1~5)メチルエーテル(メタ)アクリレート、ポリエチレングリコール(n=1~5)エチルエーテル(メタ)アクリレート、ポリエチレングリコール(n=1~5)プロピルエーテル(メタ)アクリレート、ポリプロピレングリコール(n=1~5)メチルエーテル(メタ)アクリレート、ポリプロピレングリコール(n=1~5)エチルエーテル(メタ)アクリレート、ポリプロピレングリコール(n=1~5)プロピルエーテル(メタ)アクリレート等を挙げることができる。 Examples of the monomer that provides the structural unit represented by the above formula (2) include polyethylene glycol (n=1 to 5) methyl ether (meth) acrylate, polyethylene glycol (n=1 to 5) ethyl ether (meth) acrylate. , polyethylene glycol (n = 1 to 5) propyl ether (meth) acrylate, polypropylene glycol (n = 1 to 5) methyl ether (meth) acrylate, polypropylene glycol (n = 1 to 5) ethyl ether (meth) acrylate, polypropylene Glycol (n=1 to 5) propyl ether (meth)acrylate and the like can be mentioned.

Bブロックは、上記式(2)で表される構造単位以外の構造単位を含んでいてもよい。Bブロックが含んでいてもよい他の構造単位としては、(メタ)アクリル酸エステルに由来する構造単位を挙げることができる。具体的に他の構造単位を与える単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等を挙げることができる。 The B block may contain a structural unit other than the structural unit represented by formula (2) above. Other structural units that the B block may contain include structural units derived from (meth)acrylic acid esters. Specific monomers that give other structural units include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) ) acrylate, phenyl (meth)acrylate, cyclohexyl (meth)acrylate and the like.

ブロック共重合体におけるBブロックの含有割合としては、例えば30質量%以上70質量%以下が好ましい。 The content of the B block in the block copolymer is preferably, for example, 30% by mass or more and 70% by mass or less.

[B]重合体の平均分子量の下限としては、例えば3,000であり、6,000が好ましい。一方、この上限としては、例えば30,000であり、20,000が好ましい。 [B] The lower limit of the average molecular weight of the polymer is, for example, 3,000, preferably 6,000. On the other hand, the upper limit is, for example, 30,000, preferably 20,000.

ブロック共重合体は、従来公知の方法によって合成することができる。また、ブロック共重合体及びその他の[B]重合体は、市販品を使用することもできる。[B]重合体は当該組成物中において[A]無機化合物の表面の少なくとも一部を被覆する分散剤であってよい。 A block copolymer can be synthesized by a conventionally known method. Moreover, a commercial item can also be used for a block copolymer and another [B] polymer. [B] The polymer may be a dispersant that coats at least part of the surface of the [A] inorganic compound in the composition.

[B]重合体の含有量の下限は、[A]無機化合物100質量部に対して、5質量部が好ましく、10質量部がより好ましく、20質量部がさらに好ましい。一方、この含有量の上限は、200質量部が好ましく、100質量部がより好ましく、60質量部がさらに好ましい。 [B] The lower limit of the content of the polymer is preferably 5 parts by mass, more preferably 10 parts by mass, and even more preferably 20 parts by mass with respect to 100 parts by mass of the [A] inorganic compound. On the other hand, the upper limit of this content is preferably 200 parts by mass, more preferably 100 parts by mass, and even more preferably 60 parts by mass.

([C]有機色素)
[C]有機色素は、[A]無機化合物と共に赤外線遮蔽剤として機能する成分である。[A]無機化合物と[C]有機色素とを組み合わせて用いることで、良好な可視光透過性及び赤外線遮蔽性を発揮することができる。[C]有機色素は、[D]溶媒に溶解している。
([C] organic dye)
[C] The organic dye is a component that functions as an infrared shielding agent together with the [A] inorganic compound. By using [A] an inorganic compound and [C] an organic dye in combination, good visible light transmittance and infrared shielding properties can be exhibited. [C] The organic dye is dissolved in the [D] solvent.

[C]有機色素としては、有機染料又は有機顔料を挙げることができるが、有機染料であることが好ましい。有機染料を用いることで、[D]溶媒に対する溶解性が高まり、凝集異物の発生をより抑制できる。 [C] Organic dyes include organic dyes and organic pigments, and organic dyes are preferred. By using an organic dye, [D] the solubility in the solvent is increased, and the generation of agglomerated foreign matter can be further suppressed.

20℃、0.1MPaにおける[D]溶媒への[C]有機色素の溶解度は、2質量%以上である。このため、当該組成物は、[C]有機色素の溶解性が高く、分散安定性や経時安定性が高まり、ひいては欠陥の少ない良好な特性を有する光学フィルターを得ることができる。上記溶解度は、[D]溶媒に対して最大量の[C]有機色素が溶解した溶液、すなわち飽和溶液中の[C]有機色素の濃度(質量%)をいう。[D]溶媒が、混合溶媒である場合は、混合溶媒を溶媒とする飽和溶液中の[C]有機色素の濃度である。この[C]有機色素の溶解度は、[C]有機色素と[D]溶媒との組み合わせによって達成することができる。なお、この溶解度の上限としては特に限定されないが、例えば50質量%であってよい。 The solubility of the [C] organic dye in the [D] solvent at 20° C. and 0.1 MPa is 2% by mass or more. For this reason, the composition has high solubility of the [C] organic dye, improves dispersion stability and stability over time, and can provide an optical filter having good properties with few defects. The above-mentioned solubility refers to the concentration (% by mass) of the [C] organic dye in a solution in which the maximum amount of the [C] organic dye is dissolved in the [D] solvent, that is, in a saturated solution. When the [D] solvent is a mixed solvent, it is the concentration of the [C] organic dye in the saturated solution using the mixed solvent as a solvent. The solubility of the [C] organic dye can be achieved by combining the [C] organic dye and the [D] solvent. Although the upper limit of the solubility is not particularly limited, it may be, for example, 50% by mass.

[C]有機色素は、波長600nm以上1,000nm以下の範囲に極大吸収波長を有することが好ましい。この極大吸収波長の下限は、650nmがより好ましい。一方、この上限は、900nmがより好ましく、850nmがさらに好ましい。このような極大吸収波長を有する[C]有機色素を用いることで、得られる光学フィルターの可視光透過性や赤外線遮蔽性をより良好にすることができる。 [C] The organic dye preferably has a maximum absorption wavelength in the wavelength range of 600 nm or more and 1,000 nm or less. The lower limit of this maximum absorption wavelength is more preferably 650 nm. On the other hand, this upper limit is more preferably 900 nm, still more preferably 850 nm. By using the [C] organic dye having such a maximum absorption wavelength, it is possible to improve the visible light transmittance and infrared shielding properties of the resulting optical filter.

[C]有機色素としては、従来公知の有機色素を上記溶解度を満たす範囲で適宜選択して用いることができる。[C]有機色素としては、ジイミニウム化合物、スクアリリウム化合物、シアニン化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、アミニウム化合物、イミニウム化合物、アゾ化合物、アントラキノン化合物、ポルフィリン化合物、ピロロピロール化合物、オキソノール化合物、クロコニウム化合物、ヘキサフィリン化合物又はこれらの組み合わせを用いることができる。[C]有機色素としては、フタロシアニン化合物を含むことが好ましい。フタロシアニン化合物は、色合い、耐熱性、耐光性等に優れる。 [C] As the organic dye, conventionally known organic dyes can be appropriately selected and used within a range that satisfies the above solubility. [C] Organic dyes include diiminium compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, aminium compounds, iminium compounds, azo compounds, anthraquinone compounds, porphyrin compounds, pyrrolopyrrole compounds, oxonol compounds, croconium A compound, a hexaphyrin compound, or a combination thereof can be used. [C] The organic dye preferably contains a phthalocyanine compound. Phthalocyanine compounds are excellent in color, heat resistance, light resistance, and the like.

[C]有機色素は、1種を単独で又は2種以上を組み合わせて用いることができる。当該組成物は、2種以上の[C]有機色素を含むことが好ましい。さらには、3種以上の[C]有機色素を含むことがより好ましいこともある。複数種の[C]有機色素を組み合わせて用いることで、得られる光学フィルターの可視光透過性や赤外線遮蔽性をより良好にすることができる。一方、従来、複数種の有機色素を用いる場合、分散安定性や経時安定性等が低下する場合がある。しかし、当該組成物によれば、複数種の有機色素を用いても、良好な分散安定性や経時安定性を発揮することができる。使用する[C]有機色素の種類数の上限としては特に限定されず、例えば10種であってもよく、5種であってもよく、3種であってもよい。 [C] Organic dyes can be used singly or in combination of two or more. The composition preferably contains two or more [C] organic dyes. Furthermore, it may be more preferable to contain three or more [C] organic dyes. By using a combination of a plurality of [C] organic dyes, the obtained optical filter can have better visible light transmittance and infrared shielding properties. On the other hand, conventionally, when a plurality of types of organic dyes are used, the dispersion stability, the stability over time, and the like may deteriorate. However, according to the composition, even if a plurality of types of organic dyes are used, good dispersion stability and stability over time can be exhibited. The upper limit of the number of types of [C] organic dyes to be used is not particularly limited, and may be, for example, 10 types, 5 types, or 3 types.

当該組成物における全固形分に占める[C]有機色素の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。一方、この含有量の上限としては、30質量%が好ましく、15質量%がより好ましく、10質量%がさらに好ましい。[C]有機色素の含有量を上記範囲とすることで、得られる光学フィルターの可視光透過性と赤外線遮蔽性とがより良好なバランスとなる。 The lower limit of the content of the [C] organic dye in the total solid content of the composition is preferably 0.1% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass. On the other hand, the upper limit of this content is preferably 30% by mass, more preferably 15% by mass, and even more preferably 10% by mass. [C] By setting the content of the organic dye within the above range, the visible light transmittance and infrared shielding properties of the obtained optical filter are well balanced.

([D]溶媒)
[D]溶媒は、[A]無機化合物の分散媒として機能し、かつ[C]有機色素等を溶解させる成分である。
([D] solvent)
[D] The solvent is a component that functions as a dispersion medium for [A] the inorganic compound and dissolves [C] the organic pigment and the like.

[D]溶媒は、[D1]溶媒を含む。[D1]溶媒は、SP値が8.8(cal/cm1/2以上12.0(cal/cm1/2以下の溶媒である。上記SP値の下限としては、9.5(cal/cm1/2が好ましい。一方、この上限としては、11.0(cal/cm1/2が好ましく、10.5(cal/cm1/2がより好ましい。このような特定範囲のSP値を有する[D1]溶媒を用いることで、[A]無機化合物の分散性や[C]有機色素の溶解性を高めることができる。ここで、SP値とは、R.F.Fedors,Polym.Eng.Sci.,14,147(1974)に記載の以下のFedorsの式によって求められる値である。
Fedorsの式:
SP値(δ)=(E/v)1/2=(ΣΔe/ΣΔv1/2
:蒸発エネルギー
v:モル体積
Δe:各成分の原子又は原子団の蒸発エネルギー
Δv:各原子又は原子団のモル体積
The [D] solvent includes the [D1] solvent. [D1] The solvent has an SP value of 8.8 (cal/cm 3 ) 1/2 or more and 12.0 (cal/cm 3 ) 1/2 or less. The lower limit of the SP value is preferably 9.5 (cal/cm 3 ) 1/2 . On the other hand, the upper limit is preferably 11.0 (cal/cm 3 ) 1/2 , more preferably 10.5 (cal/cm 3 ) 1/2 . By using the [D1] solvent having an SP value within such a specific range, the dispersibility of the [A] inorganic compound and the solubility of the [C] organic dye can be enhanced. Here, the SP value is the R.O. F. Fedors, Polym. Eng. Sci. , 14, 147 (1974).
Fedors formula:
SP value (δ)=(E v /v) 1/2 =(ΣΔe i /ΣΔv i ) 1/2
E v : Evaporation energy v: Molar volume Δe i : Evaporation energy of atoms or atomic groups of each component Δv i : Molar volume of each atom or atomic group

[D1]溶媒としては、例えばn-プロパノール(SP値:11.8)、1,2,5,6-テトラヒドロベンジルアルコール(SP値:11.3)、ジエチレングリコールエチルエーテル(SP値:10.9)、3-メトキシブタノール(SP値:10.9)、トリアセチン(SP値:10.2)、プロピレングリコールモノメチルエーテル(SP値:10.2)、シクロペンタノン(SP値:10.0)、γ-ブチロラクトン(SP値:9.9)、シクロヘキサノン(SP値:9.9)、プロピレングリコール-n-プロピルエーテル(SP値:9.8)、プロピレングリコール-n-ブチルエーテル(SP値:9.7)、ジプロピレングリコールメチルエーテル(SP値:9.7)、1,4-ブタンジオールジアセテート(SP値:9.6)、3-メトキシブチルアセテート(SP値:8.7)、プロピレングリコールジアセテート(SP値:9.6)、乳酸エチルアセテート(SP値:9.6)、ε-カプロラクトン(SP値:9.6)、1,3-ブチレングリコールジアセテート(SP値:9.5)、ジプロピレングリコール-n-プロピルエーテル(SP値:9.5)、1,6-ヘキサンジオールジアセテート(SP値:9.5)、ジプロピレングリコール-n-ブチルエーテル(SP値:9.4)、トリプロピレングリコールメチルエーテル(SP値:9.4)、トリプロピレングリコール-n-ブチルエーテル(SP値:9.3)、シクロヘキサノールアセテート(SP値:9.2)、ジエチレングリコールエチルエーテルアセテート(SP値:9.0)、エチレングリコールメチルエーテルアセテート(SP値:9.0)、ジエチレングリコールモノブチルエーテルアセテート(SP値:8.9)、エチレングリコールモノブチルエーテルアセテート(SP値:8.9)、トルエン(SP値:8.9)、メチルアセテート(SP値:8.8)等を挙げることができる。なお、SP値の単位((cal/cm1/2)は、適宜省略する。[D1]溶媒は、1種又は2種以上を混合して用いることができる。[D1] Examples of solvents include n-propanol (SP value: 11.8), 1,2,5,6-tetrahydrobenzyl alcohol (SP value: 11.3), diethylene glycol ethyl ether (SP value: 10.9 ), 3-methoxybutanol (SP value: 10.9), triacetin (SP value: 10.2), propylene glycol monomethyl ether (SP value: 10.2), cyclopentanone (SP value: 10.0), γ-butyrolactone (SP value: 9.9), cyclohexanone (SP value: 9.9), propylene glycol-n-propyl ether (SP value: 9.8), propylene glycol-n-butyl ether (SP value: 9. 7), dipropylene glycol methyl ether (SP value: 9.7), 1,4-butanediol diacetate (SP value: 9.6), 3-methoxybutyl acetate (SP value: 8.7), propylene glycol Diacetate (SP value: 9.6), ethyl lactate acetate (SP value: 9.6), ε-caprolactone (SP value: 9.6), 1,3-butylene glycol diacetate (SP value: 9.5 ), dipropylene glycol-n-propyl ether (SP value: 9.5), 1,6-hexanediol diacetate (SP value: 9.5), dipropylene glycol-n-butyl ether (SP value: 9.4 ), tripropylene glycol methyl ether (SP value: 9.4), tripropylene glycol-n-butyl ether (SP value: 9.3), cyclohexanol acetate (SP value: 9.2), diethylene glycol ethyl ether acetate (SP value: 9.0), ethylene glycol methyl ether acetate (SP value: 9.0), diethylene glycol monobutyl ether acetate (SP value: 8.9), ethylene glycol monobutyl ether acetate (SP value: 8.9), toluene ( SP value: 8.9), methyl acetate (SP value: 8.8), and the like. Note that the unit of the SP value ((cal/cm 3 ) 1/2 ) is omitted as appropriate. [D1] Solvents can be used singly or in combination of two or more.

当該組成物全体に対する[D1]溶媒の含有量の下限は、40質量%であり、50質量%が好ましく、60質量%がより好ましく、65質量%がさらに好ましい。[D1]溶媒の含有量を上記下限以上とすることで、[A]無機化合物の分散性や、[C]有機色素の溶解性がより高まる。一方、[D1]溶媒の含有量の上限は、90質量%であり、80質量%が好ましく、75質量%がより好ましい。[D1]溶媒の含有量を上記上限以下とすることで、十分な量の他の成分を配合することができる、すなわち、[D1]溶媒の含有量を上記範囲とすることで、当該組成物の分散安定性及び経時安定性を高めることができ、当該組成物により、欠陥が少なく良好な可視光透過性と赤外線遮蔽性とを兼ね備える固体撮像素子用の光学フィルターを形成することができる。 The lower limit of the content of the [D1] solvent relative to the entire composition is 40% by mass, preferably 50% by mass, more preferably 60% by mass, and even more preferably 65% by mass. By setting the content of the [D1] solvent to the above lower limit or more, the dispersibility of the [A] inorganic compound and the solubility of the [C] organic colorant are further enhanced. On the other hand, the upper limit of the content of the [D1] solvent is 90% by mass, preferably 80% by mass, more preferably 75% by mass. By setting the content of [D1] solvent to the above upper limit or less, a sufficient amount of other components can be blended, that is, by setting the content of [D1] solvent to the above range, the composition The dispersion stability and aging stability of the composition can be improved, and the composition can form an optical filter for a solid-state imaging device that has both good visible light transmission and infrared shielding properties with few defects.

[D]溶媒は、[D1]溶媒以外の[D2]溶媒を含んでいてもよい。[D2]溶媒は、SP値が8.8(cal/cm1/2未満又は12.0(cal/cm1/2超の溶媒である。[D2]溶媒としては、SP値が8.8(cal/cm1/2未満又は12.0(cal/cm1/2超の(ポリ)アルキレングリコールモノアルキルエーテル、(シクロ)アルキルアルコール、ケトアルコール(ポリ)アルキレングリコールモノアルキルエーテルアセテート、ケトン、ジアセテート、カルボン酸エステル、ラクタム、芳香族炭化水素等を挙げることができる。例えば、SP値が8.8(cal/cm1/2未満の(ポリ)アルキレングリコールモノアルキルエーテルとしては、プロピレングリコールモノメチルエーテルアセテート(SP値:8.7)等を挙げることができる。The [D] solvent may contain a [D2] solvent other than the [D1] solvent. [D2] Solvents are solvents with an SP value of less than 8.8 (cal/cm 3 ) 1/2 or greater than 12.0 (cal/cm 3 ) 1/2 . [D2] Solvents include ( poly )alkylene glycol monoalkyl ether , ( cyclo) Alkyl alcohols, keto alcohol (poly)alkylene glycol monoalkyl ether acetates, ketones, diacetates, carboxylic acid esters, lactams, aromatic hydrocarbons and the like can be mentioned. For example, the (poly)alkylene glycol monoalkyl ether having an SP value of less than 8.8 (cal/cm 3 ) 1/2 includes propylene glycol monomethyl ether acetate (SP value: 8.7).

[D2]溶媒のSP値としては、8.8(cal/cm1/2未満が好ましい。また、[D2]溶媒のSP値の下限としては、7(cal/cm1/2が好ましく、8(cal/cm1/2がより好ましく、8.5(cal/cm1/2がさらに好ましい。[D2] The SP value of the solvent is preferably less than 8.8 (cal/cm 3 ) 1/2 . The lower limit of the SP value of the [D2] solvent is preferably 7 (cal/cm 3 ) 1/2 , more preferably 8 (cal/cm 3 ) 1/2 , and 8.5 (cal/cm 3 ). 1/2 is more preferred.

[D]溶媒中の[D1]溶媒の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、90質量%がよりさらに好ましい。[D]溶媒は、実質的に[D1]溶媒のみから構成されていてもよい。[D]溶媒中の[D1]溶媒の含有量を上記下限以上とすることで、[A]無機化合物の分散性や[C]有機色素の溶解性がより高まり、本発明の効果がより十分に奏される。 The lower limit of the content of the [D1] solvent in the [D] solvent is preferably 50% by mass, more preferably 70% by mass, even more preferably 80% by mass, and even more preferably 90% by mass. The [D] solvent may consist essentially of the [D1] solvent. By setting the content of the [D1] solvent in the [D] solvent to the above lower limit or more, the dispersibility of the [A] inorganic compound and the solubility of the [C] organic dye are further increased, and the effect of the present invention is more sufficient. played in

[D]溶媒は、環状構造を有する溶媒を含むことが好ましい。環状構造を有する溶媒を用いることで、溶解性や分散性がより良好なものとなる。環状構造を有する溶媒は、[D1]溶媒であってもよく、[D2]溶媒であってもよいが、[D1]溶媒であることが好ましい。上記環状構造は、炭素環であってもよく、複素環であってもよい。また、上記環状構造は、多環であってもよく、単環であってもよい。また、上記環状構造は、芳香環であってもよく、脂肪環であってもよい。 [D] The solvent preferably contains a solvent having a cyclic structure. Solubility and dispersibility become better by using a solvent having a cyclic structure. The solvent having a cyclic structure may be the [D1] solvent or the [D2] solvent, but is preferably the [D1] solvent. The cyclic structure may be a carbocyclic ring or a heterocyclic ring. Moreover, the cyclic structure may be polycyclic or monocyclic. Moreover, the cyclic structure may be an aromatic ring or an alicyclic ring.

環状構造を有する溶媒としては、環状ケトン、環状エーテル、ラクトン(γ-ブチロラクトン、ε-カプロラクトン等)、ラクタム、芳香族炭化水素(トルエン等)及びこれらの組み合わせが好ましい。これらの中でも、環状ケトン、ラクトン及び芳香族炭化水素が好ましく、環状ケトン及びラクトンがより好ましい。 Preferred solvents having a cyclic structure include cyclic ketones, cyclic ethers, lactones (γ-butyrolactone, ε-caprolactone, etc.), lactams, aromatic hydrocarbons (toluene, etc.), and combinations thereof. Among these, cyclic ketones, lactones and aromatic hydrocarbons are preferred, and cyclic ketones and lactones are more preferred.

環状ケトンとしては、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン等を挙げることができる。これらの中でも、シクロペンタノン、シクロヘキサノン及びシクロヘプタノンが好ましく、シクロペンタノン及びシクロヘキサノンがより好ましい。 Examples of cyclic ketones include cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and the like. Among these, cyclopentanone, cyclohexanone and cycloheptanone are preferred, and cyclopentanone and cyclohexanone are more preferred.

環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン等を挙げることができる。 Examples of cyclic ethers include tetrahydrofuran and tetrahydropyran.

ラクトンとしては、γ-ブチロラクトン、ε-カプロラクトン等を挙げることができ、γ-ブチロラクトンが好ましい。 As the lactone, γ-butyrolactone, ε-caprolactone and the like can be mentioned, and γ-butyrolactone is preferred.

ラクタムとしては、ペンタノ-4-ラクタム、5-メチル-2-ピロリジノン、ヘキサノ-6-ラクタム、6-ヘキサンラクタム等を挙げることができる。 Examples of lactams include pentano-4-lactam, 5-methyl-2-pyrrolidinone, hexano-6-lactam, 6-hexanelactam and the like.

[D]溶媒中の環状構造を有する溶媒の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましく、90質量%がよりさらに好ましい。[D]溶媒は、実質的に環状構造を有する溶媒のみから構成されていてよい。[D]溶媒中の環状構造を有する溶媒の含有量を上記下限以上とすることで、[A]無機化合物の分散性や[C]有機色素の溶解性がより高まり、本発明の効果がより十分に奏される。 [D] The lower limit of the content of the solvent having a cyclic structure in the solvent is preferably 50% by mass, more preferably 70% by mass, still more preferably 80% by mass, and even more preferably 90% by mass. [D] The solvent may consist essentially of a solvent having a cyclic structure. [D] By setting the content of the solvent having a cyclic structure in the solvent to the above lower limit or more, the dispersibility of the [A] inorganic compound and the solubility of the [C] organic dye are further increased, and the effects of the present invention are further enhanced. played well.

当該組成物における固形分濃度([D]溶媒を除いた各成分の合計濃度)の下限としては、5質量%が好ましく、10質量%がより好ましい。一方、この固形分濃度の上限としては、50質量%が好ましく、40質量%がより好ましい。固形分濃度を上記範囲とすることにより、分散性、安定性、塗布性等がより良好なものとなる。 The lower limit of the solid content concentration ([D] the total concentration of each component excluding the solvent) in the composition is preferably 5% by mass, more preferably 10% by mass. On the other hand, the upper limit of the solid content concentration is preferably 50% by mass, more preferably 40% by mass. By setting the solid content concentration within the above range, better dispersibility, stability, coatability and the like can be obtained.

([E]重合性化合物)
当該組成物が[E]重合性化合物を含有する場合、良好な硬化性や得られる光学フィルターの良好な耐熱性等を発揮することができる。[E]重合性化合物とは、2個以上の重合可能な基を有する化合物をいう。重合可能な基としては、例えばエチレン性不飽和基、オキシラニル基、オキセタニル基、N-アルコキシメチルアミノ基等を挙げることができる。[E]重合性化合物は、重合体であっても単量体であってもよいが、単量体であることが好ましい。[E]重合性化合物としては、2個以上の(メタ)アクリロイル基を有する化合物、及び2個以上のN-アルコキシメチルアミノ基を有する化合物が好ましく、2個以上の(メタ)アクリロイル基を有する化合物がより好ましい。[E]重合性化合物は、1種又は2種以上を混合して使用することができる。
([E] polymerizable compound)
When the composition contains [E] the polymerizable compound, it is possible to exhibit good curability and good heat resistance of the resulting optical filter. [E] A polymerizable compound refers to a compound having two or more polymerizable groups. Examples of polymerizable groups include ethylenically unsaturated groups, oxiranyl groups, oxetanyl groups, N-alkoxymethylamino groups and the like. [E] The polymerizable compound may be a polymer or a monomer, but is preferably a monomer. [E] The polymerizable compound is preferably a compound having two or more (meth)acryloyl groups, and a compound having two or more N-alkoxymethylamino groups, and has two or more (meth)acryloyl groups. Compounds are more preferred. [E] Polymerizable compounds can be used singly or in combination of two or more.

2個以上の(メタ)アクリロイル基を有する化合物としては、脂肪族ポリヒドロキシ化合物と(メタ)アクリル酸との反応物等である多官能(メタ)アクリレート、カプロラクトン変性された多官能(メタ)アクリレート、アルキレンオキサイド変性された多官能(メタ)アクリレート、水酸基を有する(メタ)アクリレートと多官能イソシアネートとの反応物等である多官能ウレタン(メタ)アクリレート、水酸基を有する(メタ)アクリレートと酸無水物との反応物等であるカルボキシル基を有する多官能(メタ)アクリレート等を挙げることができる。 Compounds having two or more (meth)acryloyl groups include polyfunctional (meth)acrylates such as reaction products of aliphatic polyhydroxy compounds and (meth)acrylic acid, caprolactone-modified polyfunctional (meth)acrylates , alkylene oxide-modified polyfunctional (meth)acrylates, polyfunctional urethane (meth)acrylates such as reaction products of hydroxyl-containing (meth)acrylates and polyfunctional isocyanates, hydroxyl-containing (meth)acrylates and acid anhydrides and a polyfunctional (meth)acrylate having a carboxyl group, which is a reaction product with.

ここで、上記脂肪族ポリヒドロキシ化合物としては、例えばエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の2価の脂肪族ポリヒドロキシ化合物や、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の3価以上の脂肪族ポリヒドロキシ化合物を挙げることができる。上記水酸基を有する(メタ)アクリレートとしては、例えば2-ヒドロキシエチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールジメタクリレート等を挙げることができる。上記多官能イソシアネートとしては、例えばトリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメチレンジイソシアネート、イソホロンジイソシアネート等を挙げることができる。上記酸無水物としては、例えば無水こはく酸、無水マレイン酸、無水グルタル酸、無水イタコン酸、無水フタル酸、ヘキサヒドロ無水フタル酸等の二塩基酸の無水物や、無水ピロメリット酸、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物等の四塩基酸二無水物を挙げることができる。 Examples of the aliphatic polyhydroxy compound include divalent aliphatic polyhydroxy compounds such as ethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol; and glycerin, trimethylolpropane, pentaerythritol, dipentaerythritol, and the like. Trivalent or higher aliphatic polyhydroxy compounds can be mentioned. Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and glycerol dimethacrylate. etc. can be mentioned. Examples of the polyfunctional isocyanate include tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethylene diisocyanate, and isophorone diisocyanate. Examples of the acid anhydride include anhydrides of dibasic acids such as succinic anhydride, maleic anhydride, glutaric anhydride, itaconic anhydride, phthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, and biphenyltetracarboxylic acid. Tetrabasic acid dianhydrides such as acid dianhydrides and benzophenonetetracarboxylic acid dianhydrides can be mentioned.

2個以上の(メタ)アクリロイル基を有する化合物の具体例としては、例えばω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、エチレングリコール(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピルメタクリレート、2-(2’-ビニロキシエトキシ)エチル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2-(メタ)アクリロイロキシエチル)フォスフェート、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート、こはく酸変性ペンタエリスリトールトリアクリレート、ウレタン(メタ)アクリレート化合物等を挙げることができる。 Specific examples of compounds having two or more (meth)acryloyl groups include ω-carboxypolycaprolactone mono(meth)acrylate, ethylene glycol (meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1 , 9-nonanediol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, bisphenoxyethanol fluorene di(meth)acrylate, dimethyloltricyclode Kandi (meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl methacrylate, 2-(2'-vinyloxyethoxy)ethyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri( meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tri(2-(meth)acryloyloxyethyl)phosphate, ethylene oxide-modified dipenta Erythritol hexaacrylate, succinic acid-modified pentaerythritol triacrylate, urethane (meth)acrylate compounds and the like can be mentioned.

2個以上の(メタ)アクリロイル基を有する化合物の中でも、多官能(メタ)アクリレートが好ましく、3個以上10個以下の(メタ)アクリロイル基を有する多官能(メタ)アクリレートがより好ましい。具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート、及びジペンタエリスリトールヘキサアクリレートが好ましい。 Among compounds having two or more (meth)acryloyl groups, polyfunctional (meth)acrylates are preferred, and polyfunctional (meth)acrylates having 3 or more and 10 or less (meth)acryloyl groups are more preferred. Specifically, trimethylolpropane triacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate, and dipentaerythritol hexaacrylate are preferred.

2個以上のN-アルコキシメチルアミノ基を有する化合物としては、例えばメラミン構造、ベンゾグアナミン構造、ウレア構造を有する化合物等を挙げることができる。2個以上のN-アルコキシメチルアミノ基を有する化合物の具体例としては、N,N,N’,N’,N’’,N’’-ヘキサ(アルコキシメチル)メラミン、N,N,N’,N’-テトラ(アルコキシメチル)ベンゾグアナミン、N,N,N’,N’-テトラ(アルコキシメチル)グリコールウリル等を挙げることができる。 Examples of compounds having two or more N-alkoxymethylamino groups include compounds having a melamine structure, benzoguanamine structure, and urea structure. Specific examples of compounds having two or more N-alkoxymethylamino groups include N,N,N',N',N'',N''-hexa(alkoxymethyl)melamine, N,N,N' , N′-tetra(alkoxymethyl)benzoguanamine, N,N,N′,N′-tetra(alkoxymethyl)glycoluril and the like.

当該組成物における全固形分に占める[E]重合性化合物の含有量の下限としては、5質量部が好ましく、10質量部がより好ましく、20質量部がさらに好ましい。一方、この含有量の上限としては、60質量%が好ましく、50質量%がより好ましい。 The lower limit of the content of the [E] polymerizable compound in the total solid content of the composition is preferably 5 parts by mass, more preferably 10 parts by mass, and even more preferably 20 parts by mass. On the other hand, the upper limit of this content is preferably 60% by mass, more preferably 50% by mass.

([F]重合開始剤)
[F]重合開始剤は、[E]重合性化合物の重合反応を開始させる成分である。[F]重合開始剤としては、光重合開始剤、熱重合開始剤等を挙げることができるが、光重合開始剤が好ましい。これにより、当該組成物に感光性(感放射線性)を付与することができる。光重合開始剤とは、可視光線、紫外線、遠紫外線、電子線、X線等の放射線の露光により、[E]重合性化合物の重合を開始しうる活性種を発生する化合物をいう。[F]重合開始剤は、1種又は2種以上を混合して使用することができる。
([F] polymerization initiator)
[F] The polymerization initiator is a component that initiates the polymerization reaction of the [E] polymerizable compound. [F] Polymerization initiators include photopolymerization initiators, thermal polymerization initiators, and the like, but photopolymerization initiators are preferred. Thereby, photosensitivity (radiation sensitivity) can be imparted to the composition. The photopolymerization initiator is a compound that generates active species capable of initiating polymerization of the [E] polymerizable compound upon exposure to radiation such as visible light, ultraviolet light, deep ultraviolet light, electron beams, and X-rays. [F] The polymerization initiator can be used singly or in combination of two or more.

[F]重合開始剤としては、例えばチオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、ジアゾ系化合物、イミドスルホナート系化合物、オニウム塩系化合物等を挙げることができる。これらの中でも、チオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物又はO-アシルオキシム系化合物が好ましく、O-アシルオキシム系化合物がより好ましい。 [F] Examples of polymerization initiators include thioxanthone-based compounds, acetophenone-based compounds, biimidazole-based compounds, triazine-based compounds, O-acyloxime-based compounds, onium salt-based compounds, benzoin-based compounds, benzophenone-based compounds, and α-diketones. compounds, polynuclear quinone-based compounds, diazo-based compounds, imidosulfonate-based compounds, onium salt-based compounds, and the like. Among these, thioxanthone-based compounds, acetophenone-based compounds, biimidazole-based compounds, triazine-based compounds and O-acyloxime-based compounds are preferred, and O-acyloxime-based compounds are more preferred.

チオキサントン系化合物としては、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等を挙げることができる。 Thioxanthone compounds include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2 , 4-diisopropylthioxanthone and the like.

アセトフェノン系化合物としては、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-(4-メチルベンジル)-2-(ジメチルアミノ)-1-(4-モルフォリノフェニル)ブタン-1-オン等を挙げることができる。 Acetophenone compounds include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butane -1-one, 2-(4-methylbenzyl)-2-(dimethylamino)-1-(4-morpholinophenyl)butan-1-one and the like.

ビイミダゾール系化合物としては、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール等を挙げることができる。 Biimidazole compounds include 2,2′-bis(2-chlorophenyl)-4,4′,5,5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis(2,4 -dichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5 '-Tetraphenyl-1,2'-biimidazole and the like can be mentioned.

なお、ビイミダゾール系化合物を用いる場合、水素供与体を併用することが、感度を改良することができる点で好ましい。ここでいう「水素供与体」とは、露光によりビイミダゾール系化合物から発生したラジカルに対して、水素原子を供与することができる化合物を意味する。水素供与体としては、例えば2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール等のメルカプタン系水素供与体;4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のアミン系水素供与体を挙げることができる。 When a biimidazole-based compound is used, it is preferable to use a hydrogen donor in combination, because the sensitivity can be improved. The term "hydrogen donor" as used herein means a compound capable of donating a hydrogen atom to a radical generated from a biimidazole compound upon exposure. Examples of hydrogen donors include mercaptan hydrogen donors such as 2-mercaptobenzothiazole and 2-mercaptobenzoxazole; 4,4′-bis(dimethylamino)benzophenone and 4,4′-bis(diethylamino)benzophenone Amine-based hydrogen donors can be mentioned.

トリアジン系化合物としては、例えば特公昭57-6096号公報、特開2003-238898号公報の段落[0063]~[0065]に記載の化合物を挙げることができる。 Examples of triazine-based compounds include compounds described in paragraphs [0063] to [0065] of JP-B-57-6096 and JP-A-2003-238898.

O-アシルオキシム系化合物としては、1,2-オクタンジオン-1-〔4-(フェニルチオ)フェニル〕-2-(O-ベンゾイルオキシム)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)等を挙げることができる。O-アシルオキシム系化合物の市販品としては、NCI-831、NCI-930(以上、株式会社ADEKA社製))、OXE-03、OXE-04(以上、BASF社製)等を使用することもできる。 Examples of O-acyloxime compounds include 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-(O-benzoyloxime), ethanone-1-[9-ethyl-6-(2- methylbenzoyl)-9H-carbazol-3-yl]-1-(O-acetyloxime), ethanone-1-[9-ethyl-6-(2-methyl-4-tetrahydrofuranylmethoxybenzoyl)-9H-carbazole- 3-yl]-1-(O-acetyloxime), ethanone-1-[9-ethyl-6-{2-methyl-4-(2,2-dimethyl-1,3-dioxolanyl)methoxybenzoyl}-9H -carbazol-3-yl]-1-(O-acetyloxime) and the like. Commercially available O-acyloxime compounds include NCI-831, NCI-930 (manufactured by ADEKA Corporation), OXE-03, OXE-04 (manufactured by BASF) and the like. can.

光重合開始剤を用いる場合には、増感剤を併用することもできる。このような増感剤としては、例えば4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸2-エチルヘキシル、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコン等を挙げることができる。 When using a photoinitiator, a sensitizer can also be used together. Examples of such sensitizers include 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 4-dimethylamino Ethyl benzoate, 2-ethylhexyl 4-dimethylaminobenzoate, 2,5-bis(4-diethylaminobenzal) cyclohexanone, 7-diethylamino-3-(4-diethylaminobenzoyl) coumarin, 4-(diethylamino) chalcone, etc. can be mentioned.

[F]重合開始剤の含有量の下限は、[E]重合性化合物100質量部に対して、1質量部が好ましく、5質量部がより好ましい。一方、この含有量の上限としては、100質量部が好ましく、40質量部がより好ましい。 [F] The lower limit of the content of the polymerization initiator is preferably 1 part by mass, more preferably 5 parts by mass, per 100 parts by mass of the [E] polymerizable compound. On the other hand, the upper limit of this content is preferably 100 parts by mass, more preferably 40 parts by mass.

(バインダー樹脂)
当該組成物には、バインダー樹脂がさらに含有されていてもよい。なお、[B]重合体は、バインダー樹脂には含まれない。バインダー樹脂としては、特に限定されるものではないが、カルボキシ基、フェノール性水酸基等の酸性官能基を有する樹脂であることが好ましい。中でも、カルボキシ基を有する重合体(以下、「カルボキシ基含有重合体」とも称する。)が好ましい。カルボキシ基含有重合体としては、例えば、1個以上のカルボキシ基を有するエチレン性不飽和単量体(以下、「不飽和単量体(1)」とも称する。)と他の共重合可能なエチレン性不飽和単量体(以下、「不飽和単量体(2)」とも称する。)との共重合体を挙げることができる。
(binder resin)
The composition may further contain a binder resin. The [B] polymer is not included in the binder resin. Although the binder resin is not particularly limited, it is preferably a resin having an acidic functional group such as a carboxyl group or a phenolic hydroxyl group. Among them, a polymer having a carboxy group (hereinafter also referred to as a "carboxy group-containing polymer") is preferable. As the carboxy group-containing polymer, for example, an ethylenically unsaturated monomer having one or more carboxy groups (hereinafter also referred to as "unsaturated monomer (1)") and other copolymerizable ethylene and a copolymer with a polyunsaturated monomer (hereinafter also referred to as "unsaturated monomer (2)").

上記不飽和単量体(1)としては、例えば(メタ)アクリル酸、マレイン酸、無水マレイン酸、こはく酸モノ〔2-(メタ)アクリロイロキシエチル〕、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、p-ビニル安息香酸等を挙げることができる。 Examples of the unsaturated monomer (1) include (meth)acrylic acid, maleic acid, maleic anhydride, monosuccinic acid [2-(meth)acryloyloxyethyl], ω-carboxypolycaprolactone mono(meth) Acrylate, p-vinylbenzoic acid and the like can be mentioned.

上記不飽和単量体(2)としては、例えば
N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-位置換マレイミド、
スチレン、α-メチルスチレン、p-ヒドロキシスチレン、p-ヒドロキシ-α-メチルスチレン、p-ビニルベンジルグリシジルエーテル、アセナフチレン等の芳香族ビニル化合物、
メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ポリエチレングリコール(重合度2~10)メチルエーテル(メタ)アクリレート、ポリプロピレングリコール(重合度2~10)メチルエーテル(メタ)アクリレート、ポリエチレングリコール(重合度2~10)モノ(メタ)アクリレート、ポリプロピレングリコール(重合度2~10)モノ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン-8-イル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、パラクミルフェノールのエチレンオキサイド変性(メタ)アクリレート、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3-〔(メタ)アクリロイルオキシメチル〕オキセタン、3-〔(メタ)アクリロイルオキシメチル〕-3-エチルオキセタン等の(メタ)アクリル酸エステル、
シクロヘキシルビニルエーテル、イソボルニルビニルエーテル、トリシクロ[5.2.1.02,6]デカン-8-イルビニルエーテル、ペンタシクロペンタデカニルビニルエーテル、3-(ビニルオキシメチル)-3-エチルオキセタン等のビニルエーテル、
ポリスチレン、ポリメチル(メタ)アクリレート、ポリ-n-ブチル(メタ)アクリレート、ポリシロキサン等の重合体分子鎖の末端にモノ(メタ)アクリロイル基を有するマクロモノマー等を挙げることができる。
Examples of the unsaturated monomer (2) include N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide;
aromatic vinyl compounds such as styrene, α-methylstyrene, p-hydroxystyrene, p-hydroxy-α-methylstyrene, p-vinylbenzyl glycidyl ether, acenaphthylene;
Methyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, allyl (meth) acrylate, benzyl (meth) acrylate, polyethylene glycol (polymerization degree 2- 10) Methyl ether (meth) acrylate, polypropylene glycol (degree of polymerization 2-10) methyl ether (meth) acrylate, polyethylene glycol (degree of polymerization 2-10) mono (meth) acrylate, polypropylene glycol (degree of polymerization 2-10) mono (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, tricyclo[5.2.1.0 2,6 ]decan-8-yl (meth)acrylate, dicyclopentenyl (meth)acrylate, glycerol mono (meth) acrylate, 4-hydroxyphenyl (meth) acrylate, ethylene oxide-modified paracumylphenol (meth) acrylate, glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3-[(meth) (meth)acrylic acid esters such as acryloyloxymethyl]oxetane, 3-[(meth)acryloyloxymethyl]-3-ethyloxetane,
Vinyl ethers such as cyclohexyl vinyl ether, isobornyl vinyl ether, tricyclo[5.2.1.0 2,6 ]decan-8-yl vinyl ether, pentacyclopentadecanyl vinyl ether, 3-(vinyloxymethyl)-3-ethyloxetane ,
Examples include macromonomers having a mono(meth)acryloyl group at the end of a polymer molecular chain such as polystyrene, polymethyl(meth)acrylate, poly-n-butyl(meth)acrylate, and polysiloxane.

また、バインダー樹脂としては、側鎖に(メタ)アクリロイル基等の重合性不飽和結合を有するカルボキシル基含有重合体を用いることもできる。また、ポリシロキサン等もバインダー樹脂として用いることができる。 As the binder resin, a carboxyl group-containing polymer having a polymerizable unsaturated bond such as a (meth)acryloyl group in the side chain can also be used. Polysiloxane or the like can also be used as the binder resin.

(添加剤)
当該組成物は、必要に応じて種々の添加剤を含有することもできる。
(Additive)
The composition can also contain various additives as needed.

添加剤としては、例えば界面活性剤、密着促進剤、酸化防止剤、紫外線吸収剤、凝集防止剤、残渣改善剤、現像性改善剤等を挙げることができる。 Examples of additives include surfactants, adhesion promoters, antioxidants, ultraviolet absorbers, aggregation inhibitors, residue improvers, and developability improvers.

界面活性剤としては、フッ素界面活性剤、シリコーン界面活性剤等を挙げることができる。当該組成物における全固形分に占める界面活性剤の含有量としては、例えば0.01質量%以上5質量%以下とすることができる。 Examples of surfactants include fluorine surfactants and silicone surfactants. The content of the surfactant in the total solid content of the composition can be, for example, 0.01% by mass or more and 5% by mass or less.

密着促進剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロイロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができる。 Adhesion promoters include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(2-methoxyethoxy)silane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, and N-(2-aminoethyl). -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane silane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like.

酸化防止剤としては、2,2-チオビス(4-メチル-6-t-ブチルフェノール)、2,6-ジ-t-ブチルフェノール、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサ-スピロ[5.5]ウンデカン、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]等を挙げることができる。当該組成物における全固形分に占める酸化防止剤の含有量としては、例えば0.01質量%以上5質量%以下とすることができる。 Antioxidants include 2,2-thiobis(4-methyl-6-t-butylphenol), 2,6-di-t-butylphenol, pentaerythritol tetrakis[3-(3,5-di-t-butyl- 4-hydroxyphenyl)propionate], 3,9-bis[2-[3-(3-t-butyl-4-hydroxy-5-methylphenyl)-propionyloxy]-1,1-dimethylethyl]-2, 4,8,10-tetraoxa-spiro[5.5]undecane, thiodiethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] and the like. The antioxidant content of the total solid content in the composition may be, for example, 0.01% by mass or more and 5% by mass or less.

紫外線吸収剤としては、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、アルコキシベンゾフェノン類等を挙げることができる。 Examples of UV absorbers include 2-(3-t-butyl-5-methyl-2-hydroxyphenyl)-5-chlorobenzotriazole and alkoxybenzophenones.

凝集防止剤としては、ポリアクリル酸ナトリウム等を挙げることができる。 Examples of the aggregation inhibitor include sodium polyacrylate and the like.

残渣改善剤としては、マロン酸、アジピン酸、イタコン酸、シトラコン酸、フマル酸、メサコン酸、2-アミノエタノール、3-アミノ-1-プロパノール、5-アミノ-1-ペンタノール、3-アミノ-1,2-プロパンジオール、2-アミノ-1,3-プロパンジオール、4-アミノ-1,2-ブタンジオール等を挙げることができる。 Examples of residue improvers include malonic acid, adipic acid, itaconic acid, citraconic acid, fumaric acid, mesaconic acid, 2-aminoethanol, 3-amino-1-propanol, 5-amino-1-pentanol, 3-amino- 1,2-propanediol, 2-amino-1,3-propanediol, 4-amino-1,2-butanediol and the like can be mentioned.

現像性改善剤としては、こはく酸モノ〔2-(メタ)アクリロイロキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイロキシエチル〕、ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート等剤等を挙げることができる。 Developability improving agents include mono[2-(meth)acryloyloxyethyl] succinate, mono[2-(meth)acryloyloxyethyl] phthalate, ω-carboxypolycaprolactone mono(meth)acrylate, etc. can be mentioned.

(調製方法)
当該組成物の調製方法としては、特に限定されず、各成分を混合することによって調製することができる。例えば、まず[A]無機化合物、[B]重合体及び[D]溶媒を含有する分散液を調製し、この分散液に[C]有機色素やその他の成分を添加し、混合する方法を採用することができる。このときさらに[D]溶媒を加えてもよい。分散液又は当該組成物は、必要に応じろ過処理を施し、凝集物を除去することができる。
(Preparation method)
The method for preparing the composition is not particularly limited, and the composition can be prepared by mixing each component. For example, first, a dispersion containing [A] an inorganic compound, [B] a polymer and [D] a solvent is prepared, and [C] an organic dye and other components are added to this dispersion and mixed. can do. At this time, the [D] solvent may be added. The dispersion or the composition can be filtered to remove aggregates, if necessary.

<固体撮像素子用赤外線遮蔽膜の形成方法>
本発明の一実施形態に係る固体撮像素子用赤外線遮蔽膜の形成方法は、
基板の一方の面側に塗膜を形成する工程(工程1)
を備え、
上記塗膜を当該固体撮像素子用組成物により形成する。
<Method for Forming Infrared Shielding Film for Solid-State Image Sensor>
A method for forming an infrared shielding film for a solid-state imaging device according to an embodiment of the present invention comprises:
Step of forming a coating film on one side of the substrate (Step 1)
with
The coating film is formed from the composition for a solid-state imaging device.

当該形成方法は、
上記塗膜の少なくとも一部に放射線を照射する工程(工程2)、及び
放射線照射後の上記塗膜を現像する工程(工程3)
をさらに備えることが好ましい。
The forming method is
A step of irradiating at least part of the coating film with radiation (step 2), and a step of developing the coating film after irradiation (step 3).
is preferably further provided.

当該形成方法によれば、分散安定性及び経時安定性が高い組成物を用いることにより、欠陥が少なく良好な可視光透過性と赤外線遮蔽性とを兼ね備える固体撮像素子用の光学フィルターを形成することができる。また、当該形成方法が、工程2及び工程3を備える場合、良好なパターニング性を有する。 According to this forming method, by using a composition having high dispersion stability and long-term stability, it is possible to form an optical filter for a solid-state imaging device that has few defects and has both good visible light transmittance and infrared shielding properties. can be done. Moreover, when the said formation method is provided with the process 2 and the process 3, it has favorable patterning property.

(工程1)
工程1においては、当該組成物を用い、基板(支持体)の一方の面側に塗膜を形成する。上記基板としては、ガラス基板、合成樹脂基板等が挙げられる。なお、基板の形状は、板状に限定されるものではない。なお、後述する固体撮像素子中に赤外線遮蔽膜を組み込む場合、固体撮像素子の構成要素である透明基板、マイクロレンズ、カラーフィルター等が、上記基板に相当する。
(Step 1)
In step 1, the composition is used to form a coating film on one side of a substrate (support). Examples of the substrate include glass substrates and synthetic resin substrates. Note that the shape of the substrate is not limited to a plate shape. When an infrared shielding film is incorporated into a solid-state imaging device, which will be described later, the transparent substrate, microlenses, color filters, and the like, which are components of the solid-state imaging device, correspond to the substrate.

塗膜の形成は、通常、当該組成物の塗布により行うことができる。上記塗布は、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法(スリット塗布法)、バー塗布法等の適宜の塗布法を採用することができる。 Formation of the coating film can usually be carried out by applying the composition. Appropriate coating methods such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method (slit coating method), and a bar coating method can be employed for the coating.

塗布の後、プレベークを行って溶媒を蒸発させることで、塗膜が形成される。上記プレベークにおける加熱乾燥の条件としては、例えば70℃以上110℃以下、1分以上10分以下程度である。 After coating, pre-baking is performed to evaporate the solvent, thereby forming a coating film. The conditions for heat drying in the prebaking are, for example, 70° C. or higher and 110° C. or lower and about 1 minute or longer and 10 minutes or shorter.

(工程2)
工程2においては、上記塗膜の少なくとも一部に放射線を照射する。塗膜の露光に用いる放射線の光源としては、例えばキセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯等のランプ光源やアルゴンイオンレーザー、YAGレーザー、XeClエキシマーレーザー、窒素レーザー等のレーザー光源等を挙げることができる。露光光源として、紫外線LEDを使用することもできる。波長は、190nm以上450nm以下の範囲にある放射線が好ましい。放射線の露光量は、一般的には10J/m以上50,000J/m以下程度である。
(Step 2)
In step 2, at least part of the coating film is irradiated with radiation. Examples of the radiation source used for exposing the coating film include lamp light sources such as xenon lamps, halogen lamps, tungsten lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, medium-pressure mercury lamps, and low-pressure mercury lamps, argon ion lasers, YAG lasers, Laser light sources such as XeCl excimer lasers and nitrogen lasers can be used. An ultraviolet LED can also be used as an exposure light source. Radiation having a wavelength in the range of 190 nm or more and 450 nm or less is preferable. The exposure dose of radiation is generally about 10 J/m 2 or more and 50,000 J/m 2 or less.

(工程3)
工程3においては、放射線照射後の上記塗膜を現像する。上記現像液としては、アルカリ現像液又は有機溶媒現像液が一般的である。なお、現像後は、通常、水洗する。
(Step 3)
In step 3, the coating film after irradiation is developed. As the developer, an alkali developer or an organic solvent developer is generally used. After development, the film is usually washed with water.

アルカリ現像液としては、例えば炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド(TMAH)、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等の水溶液が好ましい。アルカリ現像液には、例えばメタノール、エタノール等の水溶性有機溶媒や界面活性剤等を適量添加することもできる。 Examples of alkaline developers include sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide (TMAH), choline, 1,8-diazabicyclo-[5.4.0]-7-undecene. , 1,5-diazabicyclo-[4.3.0]-5-nonene and the like are preferred. An appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant, or the like can be added to the alkaline developer.

有機溶媒現像液としては、アセトン、メチルエチルケトン、2-オクタノン、2ーノナノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-ヘキサノン、3-ヘキサノン、ジイソブチルケトン、メチルシクロヘキサノン、アセトフェノン、メチルアセトフェノン等のケトン類、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸ブテニル、酢酸イソアミル、蟻酸プロピル、蟻酸ブチル、蟻酸イソブチル、蟻酸アミル、蟻酸イソアミル、吉草酸メチル、ペンテン酸メチル、クロトン酸メチル、クロトン酸エチル、プロピオン酸メチル、プロピオン酸エチル、3-エトキシプロピオン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソブチル、乳酸アミル、乳酸イソアミル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、安息香酸メチル、安息香酸エチル、酢酸フェニル、酢酸ベンジル、フェニル酢酸メチル、蟻酸ベンジル、蟻酸フェニルエチル、3-フェニルプロピオン酸メチル、プロピオン酸ベンジル、フェニル酢酸エチル、酢酸2-フェニルエチル等のエステル類を好ましく用いることができる。 Examples of organic solvent developers include acetone, methyl ethyl ketone, 2-octanone, 2-nonanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-hexanone, 3-hexanone, diisobutyl ketone, methylcyclohexanone, acetophenone, and methylacetophenone. Ketones, propyl acetate, butyl acetate, isobutyl acetate, amyl acetate, butenyl acetate, isoamyl acetate, propyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, methyl valerate, methyl pentenoate, methyl crotonate, crotonic acid Ethyl, methyl propionate, ethyl propionate, ethyl 3-ethoxypropionate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, isobutyl lactate, amyl lactate, isoamyl lactate, methyl 2-hydroxyisobutyrate, 2-hydroxyisobutyric acid Esters such as ethyl, methyl benzoate, ethyl benzoate, phenyl acetate, benzyl acetate, methyl phenylacetate, benzyl formate, phenylethyl formate, methyl 3-phenylpropionate, benzyl propionate, ethyl phenylacetate, 2-phenylethyl acetate, etc. can be preferably used.

現像処理法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができる。現像条件は、常温で5秒以上300秒以下程度である。 As a development processing method, a shower development method, a spray development method, a dip (immersion) development method, a puddle (liquid puddle) development method, or the like can be applied. The developing conditions are normal temperature and about 5 seconds to 300 seconds.

上記現像により、塗膜の非露光部が溶解除去される。その後、必要に応じポストベークすることにより、所定形状にパターニングされた赤外線遮蔽膜が得られる。ポストベークの条件としては、通常180℃以上280℃以下、1分以上60分以下程度である。 By the above development, the non-exposed areas of the coating film are dissolved and removed. Thereafter, post-baking is performed as necessary to obtain an infrared shielding film patterned into a predetermined shape. The post-baking conditions are generally 180° C. or higher and 280° C. or lower and about 1 minute or longer and 60 minutes or shorter.

なお、当該組成物が、[E]重合性化合物及び[F]重合開始剤を含有しない場合は、上記形成方法と異なり、露光等の硬化処理を行わなくてもよい。また、現像処理を行わなくてもよく、この場合、パターニングされていない赤外線遮蔽膜を形成することができる。 When the composition does not contain [E] a polymerizable compound and [F] a polymerization initiator, unlike the above-described forming method, curing treatment such as exposure may not be performed. In addition, development processing may not be performed, and in this case, an infrared shielding film that is not patterned can be formed.

このようにして形成された固体撮像素子用赤外線遮蔽膜の平均膜厚の下限としては、通常0.5μmであり、1μmが好ましい。一方、この平均膜厚の上限としては、通常5μmであり、3μmが好ましい。赤外線遮蔽膜の平均膜厚が上記範囲であることによって、可視光透過性と赤外線遮蔽性とのバランスがより良好なものとなる。 The lower limit of the average film thickness of the infrared shielding film for a solid-state imaging device thus formed is usually 0.5 μm, preferably 1 μm. On the other hand, the upper limit of this average film thickness is usually 5 μm, preferably 3 μm. When the average film thickness of the infrared shielding film is within the above range, the balance between the visible light transmittance and the infrared shielding property becomes better.

上記赤外線遮蔽膜は、一構成部材として、固体撮像素子に組み込まれているものであることが好ましい。この場合、赤外線遮蔽膜が、単体で光学フィルター(赤外線カットフィルター)として機能する。固体撮像素子に赤外線遮蔽膜が組み込まれていることで、大きなプロセスマージンを獲得することなどができ好ましい。赤外線遮蔽膜が固体撮像素子に組み込まれている場合、赤外線遮蔽膜は、例えば固体撮像素子のマイクロレンズの外面側、マイクロレンズとカラーフィルターとの間、カラーフィルターとフォトダイオードとの間などに配することができる。赤外線遮蔽膜は、マイクロレンズとカラーフィルターとの間又はカラーフィルターとフォトダイオードとの間に積層されることが好ましい。 The infrared shielding film is preferably incorporated in the solid-state imaging device as one component. In this case, the infrared shielding film alone functions as an optical filter (infrared cut filter). Incorporation of the infrared shielding film in the solid-state imaging device is preferable because a large process margin can be obtained. When the infrared shielding film is incorporated in the solid-state imaging device, the infrared shielding film is arranged, for example, on the outer surface side of the microlens of the solid-state imaging device, between the microlens and the color filter, between the color filter and the photodiode, and the like. can do. The infrared shielding film is preferably laminated between the microlens and the color filter or between the color filter and the photodiode.

上記光学フィルターとしては、透明基板の表面に赤外線遮蔽膜が積層されてなるものであってもよい。上記透明基板としては、ガラスや透明樹脂等が採用される。上記透明樹脂としては、ポリカーボネート、ポリエステル、芳香族ポリアミド、ポリアミドイミド、ポリイミド等を挙げることができる。このような光学フィルターも、固体撮像素子における赤外線カットフィルターとして好適に用いられる。 The optical filter may be formed by laminating an infrared shielding film on the surface of a transparent substrate. As the transparent substrate, glass, transparent resin, or the like is adopted. Examples of the transparent resin include polycarbonate, polyester, aromatic polyamide, polyamideimide, and polyimide. Such an optical filter is also suitably used as an infrared cut filter in a solid-state imaging device.

赤外線遮蔽膜(光学フィルター)を備える固体撮像素子は、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、PCカメラ、監視カメラ、自動車用カメラ、携帯情報端末、パソコン、ビデオゲーム、医療機器等に有用である。 Solid-state imaging devices equipped with an infrared shielding film (optical filter) are used in digital still cameras, mobile phone cameras, digital video cameras, PC cameras, surveillance cameras, automobile cameras, personal digital assistants, personal computers, video games, medical equipment, etc. Useful.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、合成例により得られる重合体の特性は、下記の方法により測定した。 EXAMPLES The present invention will be specifically described below based on Examples, but the present invention is not limited to these Examples. The properties of the polymers obtained in Synthesis Examples were measured by the following methods.

[重量平均分子量(Mw)、数平均分子量(Mn)及び分散度(Mw/Mn)]
重合体のMw及びMnは、東ソー社のGPCカラム(G2000HXL 2本、G3000HXL 1本、G4000HXL 1本)を用い、下記分析条件でゲルパーミエーションクロマトグラフィー(GPC)により測定した。
分散度(Mw/Mn)は、Mw及びMnの測定結果から算出した。
(分析条件)
溶出溶媒:テトラヒドロフラン
流量:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
カラム温度:40℃
検出器:示差屈折計
標準物質:単分散ポリスチレン
[Weight average molecular weight (Mw), number average molecular weight (Mn) and dispersity (Mw/Mn)]
The Mw and Mn of the polymer were measured by gel permeation chromatography (GPC) using Tosoh GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL) under the following analysis conditions.
The degree of dispersion (Mw/Mn) was calculated from the measurement results of Mw and Mn.
(Analysis conditions)
Elution solvent: Tetrahydrofuran Flow rate: 1.0 mL/min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Column temperature: 40°C
Detector: Differential refractometer Standard substance: Monodisperse polystyrene

<合成例1>(有機色素(C-1)の合成)
特開平05-25177の段落[0020]~[0025](実施例1)に記載の方法を用いて、下記式で表されるフタロシアニン化合物である有機色素(C-1)を合成した。
<Synthesis Example 1> (Synthesis of organic dye (C-1))
An organic dye (C-1), which is a phthalocyanine compound represented by the following formula, was synthesized using the method described in paragraphs [0020] to [0025] (Example 1) of JP-A-05-25177.

Figure 0007326152000003
Figure 0007326152000003

<合成例2>(有機色素(C-2)の合成)
特開2016-204536号公報の段落[0075](実施例4)に記載の方法を用いて、下記式で表されるフタロシアニン化合物である有機色素(C-2)を合成した。
<Synthesis Example 2> (Synthesis of organic dye (C-2))
An organic dye (C-2), which is a phthalocyanine compound represented by the following formula, was synthesized using the method described in paragraph [0075] (Example 4) of JP-A-2016-204536.

Figure 0007326152000004
Figure 0007326152000004

<合成例3>(有機色素(C-3)の合成)
特開平1-228960号公報に記載の方法を用いて、下記式で表されるスクアリリウム化合物である有機色素(C-3)を合成した。
<Synthesis Example 3> (Synthesis of organic dye (C-3))
An organic dye (C-3), which is a squarylium compound represented by the following formula, was synthesized using the method described in JP-A-1-228960.

Figure 0007326152000005
Figure 0007326152000005

<合成例4>(有機色素(C-4)の合成)
特開平2-138382号公報に記載の方法を用いて、下記式で表されるフタロシアニン化合物である有機色素(C-4)を合成した。
<Synthesis Example 4> (Synthesis of organic dye (C-4))
An organic dye (C-4), which is a phthalocyanine compound represented by the following formula, was synthesized using the method described in JP-A-2-138382.

Figure 0007326152000006
Figure 0007326152000006

その他、用いた有機色素は以下のとおりである。
・有機色素(C-5):山田化学工業社の「FDN-002」(フタロシアニン化合物)
・有機色素(C-6):山田化学工業社の「FDR-004」(フタロシアニン化合物)
・有機色素(C-7):山田化学工業社の「FDN-001」(フタロシアニン化合物)
Other organic dyes used are as follows.
・ Organic dye (C-5): Yamada Chemical Industry Co., Ltd. "FDN-002" (phthalocyanine compound)
・ Organic dye (C-6): Yamada Chemical Industry Co., Ltd. "FDR-004" (phthalocyanine compound)
・ Organic dye (C-7): Yamada Chemical Industry Co., Ltd. "FDN-001" (phthalocyanine compound)

<合成例5~7>(重合体(B-1)~(B-3)の合成)
文献(Macromolecules 1992,25,p5907-5913)に記載の方法を用いて、下記表1に記載のモノマー組成比(質量比)の重合体(B-1)~(B-3)の合成を行った。顔料としての無機化合物に対する吸着性基を有するモノマー(DAMA)のブロックと、その他成分のブロックとからなるジブロック構造のポリマーが得られた。なお、反応後の溶液はメタノールを用いてクエンチを行い、得られた反応溶液を7質量%の炭酸水素ナトリウム水溶液、次いで水にて洗浄した。この後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶媒置換を行うことで、下記表1に記載の重合体溶液をいずれも収率80-82質量%で得た。表1中に、得られた各重合体のアミン価、Mw、Mw/Mn及び固形分量を示す。また、表中、DAMAはジメチルアミノエチルメタクリレート、EHMAは2-エチルヘキシルメタクリレート、nBMAはノルマルブチルメタクリレート、PME-200(日油株式会社製の「ブレンマー」)はメトキシポリエチレングリコールモノメタクリレートを表わす。具体的にPME-200は、CH=C(CH)COO(CO)-CH(n≒4)で表されるモノマーの重合体である。
<Synthesis Examples 5-7> (Synthesis of Polymers (B-1) to (B-3))
Using the method described in the literature (Macromolecules 1992, 25, p5907-5913), the polymers (B-1) to (B-3) having the monomer composition ratios (mass ratios) described in Table 1 below were synthesized. Ta. A polymer having a diblock structure was obtained, which was composed of a block of a monomer (DAMA) having an adsorptive group for an inorganic compound as a pigment and blocks of other components. The solution after the reaction was quenched with methanol, and the obtained reaction solution was washed with a 7% by mass sodium hydrogen carbonate aqueous solution and then with water. Thereafter, propylene glycol monomethyl ether acetate (PGMEA) was subjected to solvent replacement to obtain polymer solutions shown in Table 1 below with a yield of 80 to 82% by mass. Table 1 shows the amine value, Mw, Mw/Mn and solid content of each polymer obtained. In the table, DAMA is dimethylaminoethyl methacrylate, EHMA is 2-ethylhexyl methacrylate, nBMA is normal butyl methacrylate, and PME-200 (“Blemmer” manufactured by NOF Corporation) is methoxypolyethylene glycol monomethacrylate. Specifically, PME-200 is a polymer of monomers represented by CH 2 ═C(CH 3 )COO(C 2 H 4 O) n —CH 3 (n≈4).

<合成例8>(重合体(B-8)の合成)
全てのモノマーを一括で重合する以外は、合成例5~7に記載の方法と同様にして、下記表1に記載のモノマー組成比(質量比)の重合体(B-8)の合成を行った。重合体(B-8)はランダム共重合体である。
<Synthesis Example 8> (Synthesis of polymer (B-8))
A polymer (B-8) having a monomer composition ratio (mass ratio) shown in Table 1 below was synthesized in the same manner as in Synthesis Examples 5 to 7, except that all the monomers were polymerized at once. Ta. Polymer (B-8) is a random copolymer.

Figure 0007326152000007
Figure 0007326152000007

<合成例9>(セシウム酸化タングステン粉末の合成)
特許第4096205号公報の段落[0113]に記載の方法を用いて、セシウム酸化タングステン(Cs0.33WO)粉末を合成した。
<Synthesis Example 9> (Synthesis of Cesium Tungsten Oxide Powder)
A cesium tungsten oxide (Cs 0.33 WO 3 ) powder was synthesized using the method described in paragraph [0113] of Japanese Patent No. 4096205 .

以下に調製例、実施例及び比較例で用いた重合体及び溶媒を示す。
(重合体)
・B-1~B-3:上記合成例5~7で合成した表1の重合体(B-1)~(B-3)
・B-4:ビックケミー社の「BYK-LPN6919」(固形分濃度61質量%、アミン価120mgKOH/g)
・B-5:ビックケミー社の「BYK-2001」(固形分濃度46質量%、アミン価29mgKOH/g)
・B-6:ビックケミー社の「BYK-2000」(固形分濃度40質量%、アミン価4mgKOH/g)
・B-7:ビックケミー社の「BYK-LPN22102」(固形分濃度38.5質量%、アミン価23mgKOH/g)
・B-8:上記合成例8で合成した表1の重合体(B-8)
The polymers and solvents used in Preparation Examples, Examples and Comparative Examples are shown below.
(Polymer)
· B-1 to B-3: Polymers (B-1) to (B-3) in Table 1 synthesized in Synthesis Examples 5 to 7 above
・ B-4: "BYK-LPN6919" from BYK Chemie (solid content concentration 61% by mass, amine value 120 mgKOH / g)
・ B-5: "BYK-2001" from BYK Chemie (solid content concentration 46% by mass, amine value 29 mgKOH / g)
・ B-6: “BYK-2000” from BYK Chemie (solid content concentration 40% by mass, amine value 4 mgKOH / g)
・ B-7: "BYK-LPN22102" from BYK Chemie (solid content concentration 38.5% by mass, amine value 23 mgKOH / g)
· B-8: Polymer (B-8) in Table 1 synthesized in Synthesis Example 8 above

(溶媒)
CPN:シクロペンタノン(SP値:10.0)
CHN:シクロヘキサノン(SP値:9.9)
GBL:γ-ブチロラクタム(SP値:9.9)
Tol:トルエン(SP値:8.9)
PGMEA:プロピレングリコールモノメチルエーテルアセテート(SP値:8.7)
(solvent)
CPN: cyclopentanone (SP value: 10.0)
CHN: cyclohexanone (SP value: 9.9)
GBL: γ-butyrolactam (SP value: 9.9)
Tol: toluene (SP value: 8.9)
PGMEA: propylene glycol monomethyl ether acetate (SP value: 8.7)

[調製例1](分散液(X-1)の調製)
上記セシウム酸化タングステン25.00質量部、重合体(B-4)13.11質量部、及び溶媒(分散媒)としてのシクロペンタノン(CPN)61.89質量部を用意した。これらを0.1mm径のジルコニアビーズ2000質量部と共に容器に充填し、ペイントシェーカーで分散を行うことで、平均粒子径(D50)が19nmの分散液(X-1)を得た。なお、平均粒子径は、光散乱測定装置(ドイツALV社の「ALV-5000」)を用いて、DLS法により測定した。
[Preparation Example 1] (Preparation of dispersion (X-1))
25.00 parts by mass of the above cesium tungsten oxide, 13.11 parts by mass of polymer (B-4), and 61.89 parts by mass of cyclopentanone (CPN) as a solvent (dispersion medium) were prepared. These were filled in a container together with 2000 parts by mass of zirconia beads having a diameter of 0.1 mm, and dispersed with a paint shaker to obtain dispersion liquid (X-1) having an average particle diameter (D50) of 19 nm. The average particle size was measured by the DLS method using a light scattering measurement device (“ALV-5000” manufactured by ALV, Germany).

[調製例2~15](分散液(X-2)~(X-15)の調製)
表2に示す各成分を用いたこと以外は調製例1と同様にして、分散液(X-2)~(X-15)をそれぞれ得た。表2には、得られた分散液中の粒子の平均粒子径(D50)をあわせて示す。表2中のCsWOは、合成例9で得られたセシウム酸化タングステンを示す。
[Preparation Examples 2 to 15] (Preparation of dispersions (X-2) to (X-15))
Dispersions (X-2) to (X-15) were obtained in the same manner as in Preparation Example 1 except that each component shown in Table 2 was used. Table 2 also shows the average particle size (D50) of the particles in the obtained dispersion. CsWO in Table 2 indicates the cesium tungsten oxide obtained in Synthesis Example 9.

Figure 0007326152000008
Figure 0007326152000008

[実施例1]
上記分散液(X-1)50.00質量部、有機色素(C-1)0.75質量部、重合性化合物として日本化薬社の「KAYARAD DPHA」(ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートの混合物)6.26質量部、重合開始剤としてADEKA社の「NCI-930」(O-アシルオキシム系化合物)1.46質量部、界面活性剤としてネオス社の「FTX-218D」(フッ素系界面活性剤)0.02質量部、酸化防止剤としてBASF社の「Irganox1010」(フェノール系酸化防止剤)0.01質量部、及び追加の溶媒としてシクロペンタノン(CNP)41.50質量部を容器に量り取り、攪拌機で混合した。この混合物200mLを0.5μmのPTFE(ポリテトラフルオロエチレン)製フィルターを用いて0.5MPaで3分間加圧ろ過することにより、実施例1の組成物(Z-1)を得た。20℃、0.1MPaにおける有機色素(C-1)の溶媒(CPN)への溶解度は、2質量%以上であった。
ここで、溶解度は以下の方法により求めた。まず、溶媒に有機色素を添加し(このときの添加量は、溶液全体に対し10質量%に相当する量とした)、得られた溶液を50℃に加熱した後、室温(20℃)にて12時間放置した。放置後に溶け残った各有機色素の量に基づき、各染料の溶媒に対する溶解度(20℃)を算出した。
[Example 1]
50.00 parts by mass of the dispersion liquid (X-1), 0.75 parts by mass of the organic dye (C-1), and "KAYARAD DPHA" (dipentaerythritol hexaacrylate and dipentaerythritol hexaacrylate from Nippon Kayaku Co., Ltd.) as a polymerizable compound Pentaacrylate mixture) 6.26 parts by mass, ADEKA's "NCI-930" (O-acyl oxime compound) 1.46 parts by mass as a polymerization initiator, Neos Co.'s "FTX-218D" as a surfactant ( Fluorinated surfactant) 0.02 parts by weight, BASF's "Irganox 1010" (phenolic antioxidant) 0.01 parts by weight as an antioxidant, and 41.50 parts by weight of cyclopentanone (CNP) as an additional solvent Parts were weighed into a container and mixed with a stirrer. 200 mL of this mixture was filtered under pressure at 0.5 MPa for 3 minutes using a 0.5 μm PTFE (polytetrafluoroethylene) filter to obtain the composition (Z-1) of Example 1. The solubility of the organic dye (C-1) in the solvent (CPN) at 20° C. and 0.1 MPa was 2% by mass or more.
Here, the solubility was obtained by the following method. First, an organic dye was added to the solvent (the amount added at this time was an amount corresponding to 10% by mass of the entire solution), the resulting solution was heated to 50°C, and then cooled to room temperature (20°C). and left for 12 hours. Based on the amount of each organic dye remaining undissolved after standing, the solubility (20° C.) of each dye in the solvent was calculated.

[実施例2~23、比較例1~13]
各成分の組成を表3~7に示すとおりとしたこと以外は、実施例1と同様にして、実施例2~23及び比較例1~13の各組成物(Z-2)~(Z-23)、(Y-1)~(Y-13)を得た。表3~7には、用いた有機色素の用いた溶媒に対する溶解度をあわせて示す。なお、各組成物中には、重合体溶液由来の溶媒も含まれる。表中の値はこれらも考慮した値である。
[Examples 2 to 23, Comparative Examples 1 to 13]
Each composition (Z-2) to (Z- 23), (Y-1) to (Y-13) were obtained. Tables 3 to 7 also show the solubility of the organic dyes used in the solvents used. Each composition also contains a solvent derived from the polymer solution. The values in the table are values in consideration of these factors.

[評価]
得られた各組成物を用い、以下の評価を行った。評価結果を表3~7に示す。
[evaluation]
The following evaluation was performed using each obtained composition. The evaluation results are shown in Tables 3-7.

(分散安定性)
各組成物200mLを0.5μmのポリテトラフルオロエチレン(PTFE)製フィルターを用いて0.5MPaで3分間加圧ろ過した。このときのろ液の回収率に基づいて以下の基準で、分散安定性(ろ過性、析出抑制性)を評価した。A又はBの場合、分散安定性が良好であり、Aの場合、特に優れると評価した。なお、凝集物等の捕集が多く、回収率が90%未満(C)の場合、ろ過が不十分となり、生産性が著しく低下する。
A:95%以上
B:90%以上95%未満
C:90%未満
(dispersion stability)
200 mL of each composition was pressure filtered at 0.5 MPa for 3 minutes using a 0.5 μm polytetrafluoroethylene (PTFE) filter. Based on the recovery rate of the filtrate at this time, the dispersion stability (filtration property, precipitation suppressing property) was evaluated according to the following criteria. In the case of A or B, the dispersion stability was good, and in the case of A, it was evaluated as particularly excellent. If a large amount of agglomerate or the like is collected and the recovery rate is less than 90% (C), the filtration becomes insufficient, resulting in a significant drop in productivity.
A: 95% or more B: 90% or more and less than 95% C: less than 90%

以下の評価は、上記ろ過後の組成物を用いて実施した。 The following evaluations were carried out using the composition after filtration.

各組成物をガラス基板上に所定の膜厚になるようにスピンコート法にて塗布した。その後、塗膜を100℃で120秒間加熱し、i線ステッパにて1000mJ/cmとなるように露光を行った。次いで220℃で300秒間加熱することで、ガラス基板上に平均膜厚1.40~1.60μmの赤外線遮蔽膜を作製した。各平均膜厚は表3~7に示す。なお、膜厚は触針式段差計(ヤマト科学社の「アルファステップIQ」)にて測定した。次に、上記ガラス基板上に作製した赤外線遮蔽膜の各波長領域における透過率を、分光光度計(日本分光社の「V-7300」)を用いて、ガラス基板対比で測定した。得られたスペクトルより、以下のような評価基準により評価を行った。Each composition was applied on a glass substrate by a spin coating method so as to have a predetermined film thickness. After that, the coating film was heated at 100° C. for 120 seconds and exposed to 1000 mJ/cm 2 with an i-line stepper. Then, by heating at 220° C. for 300 seconds, an infrared shielding film having an average film thickness of 1.40 to 1.60 μm was formed on the glass substrate. Each average film thickness is shown in Tables 3-7. The film thickness was measured with a stylus profilometer (“Alpha Step IQ” manufactured by Yamato Kagaku Co., Ltd.). Next, the transmittance in each wavelength region of the infrared shielding film produced on the glass substrate was measured in comparison with the glass substrate using a spectrophotometer (“V-7300” manufactured by JASCO Corporation). Based on the obtained spectrum, evaluation was performed according to the following evaluation criteria.

(可視光透過性)
波長450-550nmの可視光の平均透過率を算出した。平均透過率が70%未満の場合は赤外線遮蔽膜として使用した際の固体撮像素子の感度が低下する。また、上記平均透過率について、以下の基準で評価した。
A:80%以上
B:70%以上80%未満
C:70%未満
(visible light transmittance)
The average transmittance of visible light with a wavelength of 450-550 nm was calculated. When the average transmittance is less than 70%, the sensitivity of the solid-state imaging device when used as an infrared shielding film is lowered. Moreover, the average transmittance was evaluated according to the following criteria.
A: 80% or more B: 70% or more and less than 80% C: less than 70%

(赤外線遮蔽性1)
波長700-900nmの赤外線の平均透過率を算出した。平均透過率が20%以上の場合は赤外線遮蔽膜として使用した際に固体撮像素子のノイズ量が増大する。また、上記平均透過率について、以下の基準で評価した。
A:15%未満
B:15%以上20%未満
C:20%以上
(Infrared shielding property 1)
The average transmittance of infrared rays with a wavelength of 700-900 nm was calculated. If the average transmittance is 20% or more, the amount of noise in the solid-state imaging device increases when used as an infrared shielding film. Moreover, the average transmittance was evaluated according to the following criteria.
A: Less than 15% B: 15% or more and less than 20% C: 20% or more

(赤外線遮蔽性2)
波長1200nmの赤外線の透過率については、透過性が15%未満で実用上良好な赤外線遮蔽性を示すといえる。波長1200nmの透過率について、以下の基準で評価した。
A:10%未満
B:10%以上15%未満
C:15%以上
(Infrared shielding property 2)
With respect to the transmittance of infrared rays with a wavelength of 1200 nm, it can be said that the transmittance is less than 15% and exhibits practically good infrared shielding properties. The transmittance at a wavelength of 1200 nm was evaluated according to the following criteria.
A: Less than 10% B: 10% or more and less than 15% C: 15% or more

(S/N比)
上記可視光域(450-550nm)の平均透過率(S)と赤外域(700-900nm)の平均透過率(N)の比(S/N比)をとり、実用性能について推定を行った。S/N比は数値が高いほど性能が良好であり、5以上の場合に実用レベルで使用可能と判断した。S/N比について以下の基準で評価した。
A:5以上
B:5未満
(S/N ratio)
The ratio (S/N ratio) of the average transmittance (S) in the visible light region (450-550 nm) and the average transmittance (N) in the infrared region (700-900 nm) was taken to estimate the practical performance. The higher the S/N ratio, the better the performance, and it was judged that a value of 5 or more was usable at a practical level. The S/N ratio was evaluated according to the following criteria.
A: 5 or more B: less than 5

(欠陥抑制性)
段落[0139]と同様の方法により、膜厚が1μmの硬化膜を形成した。欠陥/異物検査装置(KLA-Tencor社の「KLA 2351」)を用いて、硬化膜の欠陥密度(Defect density)を測定した。この欠陥密度の値が小さいほど、欠陥抑制性が高いと判断できる。なお、欠陥とは、サイズが1μm以上となる検出点をさす。上記欠陥密度に基づき、以下の基準で欠陥抑制性を評価した。
A:10/cm以下
B:10/cm超50/cm以下
C:50/cm
(defect suppression)
A cured film having a thickness of 1 μm was formed by the same method as in paragraph [0139]. The defect density of the cured film was measured using a defect/foreign matter inspection device (KLA-Tencor "KLA 2351"). It can be judged that the smaller the value of this defect density, the higher the defect suppressing property. A defect means a detection point having a size of 1 μm or more. Based on the above defect density, the defect suppression property was evaluated according to the following criteria.
A: 10/cm 2 or less B: More than 10/cm 2 or less than 50/cm 2 C: More than 50/cm 2

(経時安定性:増粘率)
組成物を40℃で3日間保管し、保管前後の粘度を測定した。なお、粘度は、E型粘度計(東機産業(株)製E型粘度計RE-80L)を用い、20℃に塗布液を保持した状態で測定した。保管前の粘度をV1、保管後の粘度をV2としたときに、(|V2―V1|/V1)×100の値を増粘率(%)と定義した。この増粘率に基づき、以下の基準で評価した。増粘率は数値が低いほど良好であり、10%未満の場合に実用性があると判断した。
A:5%未満
B:5%以上10%未満
C:10%以上
(Stability over time: Thickening rate)
The composition was stored at 40°C for 3 days, and the viscosity before and after storage was measured. The viscosity was measured using an E-type viscometer (E-type viscometer RE-80L manufactured by Toki Sangyo Co., Ltd.) while the coating solution was kept at 20°C. When the viscosity before storage was V1 and the viscosity after storage was V2, the value of (|V2−V1|/V1)×100 was defined as the viscosity increase rate (%). Based on this viscosity increase rate, evaluation was made according to the following criteria. The lower the numerical value of the viscosity increase rate, the better it was.
A: Less than 5% B: 5% or more and less than 10% C: 10% or more

(経時安定性:欠陥数)
組成物を40℃で3日間保管し、保管後の組成物を用いて欠陥数を測定した。測定方法及び基準は、上記「欠陥抑制性」の評価と同様とした。
(Stability over time: number of defects)
The composition was stored at 40° C. for 3 days, and the number of defects was measured using the stored composition. The measurement method and criteria were the same as those for the evaluation of "defect suppression".

(パターニング性)
組成物Z-1~Z-13、Z-17~Z-18、Z-23、Y-1~Y-8及びY-10について、スピンコート法を用いて膜厚が1μmの塗膜をシリコン基板上に形成した。次いで、100℃で120秒間加熱後、50μmのL/Sパターンを有するマスクを介してi線ステッパにて1000mJ/cmの露光を行った。露光後の基板をアセトンに浸漬して現像を行うことで非露光部を除去した。次いで220℃で300秒間加熱することでL/Sパターンを有する赤外線遮蔽膜を作製した。光学顕微鏡にて観察を行ったところ、線幅50μmのL/Sパターンが形成されていることを確認した。
(patternability)
For compositions Z-1 to Z-13, Z-17 to Z-18, Z-23, Y-1 to Y-8 and Y-10, a coating film having a thickness of 1 μm was coated with silicon using a spin coating method. formed on the substrate. After heating at 100° C. for 120 seconds, exposure was performed at 1000 mJ/cm 2 with an i-line stepper through a mask having an L/S pattern of 50 μm. The exposed substrate was immersed in acetone and developed to remove the non-exposed area. Then, by heating at 220° C. for 300 seconds, an infrared shielding film having an L/S pattern was produced. Observation with an optical microscope confirmed that an L/S pattern with a line width of 50 μm was formed.

組成物Z-14~Z-16、Z-19~Z-22及びY-9について、現像液を2.38%のTMAH溶液に変えた以外は同様の方法にて赤外線遮蔽膜を作製した。光学顕微鏡で観察したところ、50μmのL/Sパターンが形成されていることを確認した。 For compositions Z-14 to Z-16, Z-19 to Z-22 and Y-9, infrared shielding films were produced in the same manner except that the developer was changed to a 2.38% TMAH solution. Observation with an optical microscope confirmed that an L/S pattern of 50 μm was formed.

Figure 0007326152000009
Figure 0007326152000009

Figure 0007326152000010
Figure 0007326152000010

Figure 0007326152000011
Figure 0007326152000011

Figure 0007326152000012
Figure 0007326152000012

Figure 0007326152000013
Figure 0007326152000013

表3~7に示されるように、実施例1~23の組成物Z-1~Z-23は、分散安定性及び経時安定性が高く、良好なパターニング性も有することがわかる。また、これらの組成物から得られる赤外線遮蔽膜(光学フィルター)は、欠陥が少なく良好な可視光透過性と赤外線遮蔽性とを兼ね備えていることがわかる。 As shown in Tables 3 to 7, the compositions Z-1 to Z-23 of Examples 1 to 23 have high dispersion stability and long-term stability, and also have good patterning properties. In addition, it can be seen that the infrared shielding films (optical filters) obtained from these compositions have few defects and have both good visible light transmittance and infrared shielding properties.

本発明の固体撮像素子用組成物は、固体撮像素子の光学フィルター、より具体的には赤外線フィルターなどの形成材料として好適に用いることができる。
The composition for a solid-state imaging device of the present invention can be suitably used as a material for forming an optical filter, more specifically an infrared filter, for a solid-state imaging device.

Claims (9)

無機化合物、重合体、有機色素及び溶媒を含む固体撮像素子用組成物において、
上記重合体のアミン価が、130mgKOH/g以上200mgKOH/g以下であり、
上記溶媒が、溶解度パラメーターが8.8(cal/cm1/2以上12.0(cal/cm1/2以下の特定溶媒を含み、
上記特定溶媒の上記固体撮像素子用組成物全体に対する含有量が、40質量%以上90質量%以下であり、
20℃、0.1MPaにおける上記溶媒への上記有機色素の溶解度が、2質量%以上であり、
上記溶媒が、環状構造を有する溶媒を含み、
上記溶媒中の上記環状構造を有する溶媒の含有量が50質量%以上であり、
上記環状構造を有する溶媒が、環状ケトンであり、
上記重合体が、窒素原子を含む官能基を有するブロックと、親溶媒性を有するブロックとを有するブロック共重合体であり、
上記無機化合物が、セシウム酸化タングステンである固体撮像素子用組成物。
In a composition for a solid-state imaging device containing an inorganic compound, a polymer, an organic dye and a solvent,
The amine value of the polymer is 130 mgKOH/g or more and 200 mgKOH/g or less,
The solvent contains a specific solvent having a solubility parameter of 8.8 (cal/cm 3 ) 1/2 or more and 12.0 (cal/cm 3 ) 1/2 or less,
The content of the specific solvent with respect to the entire composition for a solid-state imaging device is 40% by mass or more and 90% by mass or less,
The solubility of the organic dye in the solvent at 20° C. and 0.1 MPa is 2% by mass or more,
The solvent contains a solvent having a cyclic structure,
The content of the solvent having the cyclic structure in the solvent is 50% by mass or more,
The solvent having the cyclic structure is a cyclic ketone,
The polymer is a block copolymer having a block having a functional group containing a nitrogen atom and a block having solvent affinity,
A composition for a solid-state imaging device, wherein the inorganic compound is cesium tungsten oxide .
固形分濃度が5質量%以上50質量%以下である請求項1に記載の固体撮像素子用組成物。 2. The composition for a solid-state imaging device according to claim 1, having a solid content concentration of 5% by mass or more and 50% by mass or less. 全固形分に占める上記無機化合物の含有量が1質量%以上70質量%以下である請求項1又は請求項2に記載の固体撮像素子用組成物。 3. The composition for a solid-state imaging device according to claim 1, wherein the content of the inorganic compound in the total solid content is 1% by mass or more and 70% by mass or less. 2種以上の上記有機色素を含む請求項1、請求項2又は請求項3に記載の固体撮像素子用組成物。 4. The composition for a solid-state imaging device according to claim 1, comprising two or more of the above organic dyes. 上記有機色素が、波長600nm以上1,000nm以下の範囲に極大吸収波長を有する請求項1から請求項のいずれか1項に記載の固体撮像素子用組成物。 5. The composition for a solid-state imaging device according to any one of claims 1 to 4 , wherein the organic dye has a maximum absorption wavelength in a wavelength range of 600 nm or more and 1,000 nm or less. 上記有機色素が、ジイミニウム化合物、スクアリリウム化合物、シアニン化合物、フタロシアニン化合物、ナフタロシアニン化合物、クアテリレン化合物、アミニウム化合物、イミニウム化合物、アゾ化合物、アントラキノン化合物、ポルフィリン化合物、ピロロピロール化合物、オキソノール化合物、クロコニウム化合物、ヘキサフィリン化合物又はこれらの組み合わせである請求項1から請求項のいずれか1項に記載の固体撮像素子用組成物。 The above organic dyes include diiminium compounds, squarylium compounds, cyanine compounds, phthalocyanine compounds, naphthalocyanine compounds, quaterrylene compounds, aminium compounds, iminium compounds, azo compounds, anthraquinone compounds, porphyrin compounds, pyrrolopyrrole compounds, oxonol compounds, croconium compounds, hexa 6. The composition for a solid-state imaging device according to any one of claims 1 to 5 , which is a filin compound or a combination thereof. 重合性化合物をさらに含む請求項1から請求項のいずれか1項に記載の固体撮像素子用組成物。 7. The composition for a solid-state imaging device according to claim 1 , further comprising a polymerizable compound. 基板の一方の面側に塗膜を形成する工程
を備え、
上記塗膜を請求項1から請求項のいずれか1項に記載の固体撮像素子用組成物により形成する固体撮像素子用赤外線遮蔽膜の形成方法。
A step of forming a coating film on one surface side of the substrate,
A method for forming an infrared shielding film for a solid-state imaging device, wherein the coating film is formed from the composition for a solid-state imaging device according to any one of claims 1 to 7 .
上記塗膜の少なくとも一部に放射線を照射する工程、及び
放射線照射後の上記塗膜を現像する工程
をさらに備える請求項に記載の固体撮像素子用赤外線遮蔽膜の形成方法。
The method of forming an infrared shielding film for a solid-state imaging device according to claim 8 , further comprising: irradiating at least part of the coating film with radiation; and developing the coating film after the radiation irradiation.
JP2019511112A 2017-04-07 2018-03-12 Composition for solid-state imaging device and method for forming infrared shielding film for solid-state imaging device Active JP7326152B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017077031 2017-04-07
JP2017077031 2017-04-07
PCT/JP2018/009555 WO2018186114A1 (en) 2017-04-07 2018-03-12 Composition for solid-state imaging element and method for forming infrared-shielding film for solid-state imaging element

Publications (2)

Publication Number Publication Date
JPWO2018186114A1 JPWO2018186114A1 (en) 2020-02-13
JP7326152B2 true JP7326152B2 (en) 2023-08-15

Family

ID=63712584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019511112A Active JP7326152B2 (en) 2017-04-07 2018-03-12 Composition for solid-state imaging device and method for forming infrared shielding film for solid-state imaging device

Country Status (5)

Country Link
JP (1) JP7326152B2 (en)
KR (1) KR20190132403A (en)
CN (1) CN110506224A (en)
TW (1) TWI751314B (en)
WO (1) WO2018186114A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118475857A (en) 2022-01-31 2024-08-09 富士胶片株式会社 Infrared absorbing composition, film, optical filter, solid-state imaging element, image display device, infrared sensor, and camera module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185683A (en) 2007-01-29 2008-08-14 Jsr Corp Composition for solid state imager and method for producing microlens array
JP2010286692A (en) 2009-06-12 2010-12-24 Seiko Epson Corp Ink for color filter, ink set for color filter, color filter, image display device, and electronic equipment
JP2013104905A (en) 2011-11-10 2013-05-30 Mitsubishi Chemicals Corp Colored resin composition for die coating method, color filter, liquid crystal display device and organic el display device
JP2013151675A (en) 2011-12-27 2013-08-08 Fujifilm Corp Infrared absorptive composition, infrared cut filter using the composition and method for manufacturing the same, and camera module and method for manufacturing the same
JP2014134721A (en) 2013-01-11 2014-07-24 Mitsubishi Chemicals Corp Colored resin composition for color filter, color filter, liquid crystal display device, and organic el display device
JP2014149432A (en) 2013-02-01 2014-08-21 Adeka Corp Alkali developable photosensitive composition
WO2016035695A1 (en) 2014-09-04 2016-03-10 富士フイルム株式会社 Composition, composition production method, curable composition, cured film, near-infrared cut-off filter, solid-state image-acquisition device, infrared sensor, and camera module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080179572A1 (en) * 2007-01-05 2008-07-31 Cheil Industries Inc. Photosensitive Resin Composition for Producing Color Filter and Color Filter for Image Sensor Produced Using the Composition
JP5353155B2 (en) * 2008-09-25 2013-11-27 富士ゼロックス株式会社 Image forming material
JP5695356B2 (en) * 2010-07-13 2015-04-01 株式会社カネカ Curable coating agent having near-infrared absorbing ability, and near-infrared absorbing material
KR101819582B1 (en) * 2011-01-28 2018-01-17 토요잉크Sc홀딩스주식회사 Colored composition for color filters, and color filter
KR101474795B1 (en) * 2011-12-26 2014-12-23 제일모직 주식회사 Pigment dispersion composition, photosensitive resin composition including the same and color filter using the same
JP5965639B2 (en) 2011-12-27 2016-08-10 富士フイルム株式会社 Infrared cut filter manufacturing method, infrared absorbing liquid composition used in the manufacturing method, and camera module manufacturing method
CN104903759B (en) * 2013-02-19 2017-09-22 富士胶片株式会社 Near infrared ray absorbing composition, near infrared ray cut-off filter and its manufacture method and camera module and its manufacture method
WO2016104491A1 (en) * 2014-12-26 2016-06-30 Jsr株式会社 Infrared-blocking composition, cured film, and solid-state imaging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185683A (en) 2007-01-29 2008-08-14 Jsr Corp Composition for solid state imager and method for producing microlens array
JP2010286692A (en) 2009-06-12 2010-12-24 Seiko Epson Corp Ink for color filter, ink set for color filter, color filter, image display device, and electronic equipment
JP2013104905A (en) 2011-11-10 2013-05-30 Mitsubishi Chemicals Corp Colored resin composition for die coating method, color filter, liquid crystal display device and organic el display device
JP2013151675A (en) 2011-12-27 2013-08-08 Fujifilm Corp Infrared absorptive composition, infrared cut filter using the composition and method for manufacturing the same, and camera module and method for manufacturing the same
JP2014134721A (en) 2013-01-11 2014-07-24 Mitsubishi Chemicals Corp Colored resin composition for color filter, color filter, liquid crystal display device, and organic el display device
JP2014149432A (en) 2013-02-01 2014-08-21 Adeka Corp Alkali developable photosensitive composition
WO2016035695A1 (en) 2014-09-04 2016-03-10 富士フイルム株式会社 Composition, composition production method, curable composition, cured film, near-infrared cut-off filter, solid-state image-acquisition device, infrared sensor, and camera module

Also Published As

Publication number Publication date
WO2018186114A1 (en) 2018-10-11
CN110506224A (en) 2019-11-26
TW201837123A (en) 2018-10-16
KR20190132403A (en) 2019-11-27
TWI751314B (en) 2022-01-01
JPWO2018186114A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6512349B2 (en) Dispersant and colorant dispersion
JP6265093B2 (en) Colored composition, colored cured film, display element and solid-state image sensor
JP5655551B2 (en) Coloring composition, color filter and display element
KR20160109834A (en) Colored photosensitive resin composition
CN106019845B (en) Colored photosensitive resin composition, color filter and image display device
KR102558721B1 (en) Composition for solid-state imaging device, infrared shielding film, and solid-state imaging device
TW201039059A (en) Colored curable composition for color filter, color filter and method for producing the same, and solid state imaging device
JP7326152B2 (en) Composition for solid-state imaging device and method for forming infrared shielding film for solid-state imaging device
JP2010262027A (en) Colored radiation-sensitive composition, color filter and color liquid crystal display element
JP6954194B2 (en) Infrared absorption composition
JP5590294B2 (en) Coloring composition, color filter and color liquid crystal display element
JPWO2020080218A1 (en) Coloring composition, film, color filter, manufacturing method of color filter, solid-state image sensor and image display device
JP7143431B2 (en) Coloring composition, film, color filter, method for producing color filter, structure, solid-state imaging device, and image display device
WO2021039409A1 (en) Curable composition, cured product, color filter, solid-state imaging element and image display device
JP2014026278A (en) Colored photosensitive resin composition
TW201815739A (en) Colored photosensitive resin composition, color filter and image display device capable of improving the storage stability of a colored photosensitive resin composition containing a specific solvent by the inclusion of the specific solvent
KR102386493B1 (en) Colored photosensitive resin composition, color filter and image display device using the same
JP6852571B2 (en) Dispersion liquid for solid-state image sensor, its manufacturing method, curable composition for solid-state image sensor, infrared shielding film and solid-state image sensor
KR102713146B1 (en) Infrared absorbing composition
JP2018177916A (en) Purification method of infrared absorption composition and method of manufacturing infrared absorption composition
JP7424300B2 (en) Composition for optical sensors
JP7403662B2 (en) Resin compositions, films, optical filters, solid-state imaging devices, and image display devices
JP7143432B2 (en) Coloring composition, film, color filter, method for producing color filter, solid-state imaging device, and image display device
KR20120043926A (en) A colored photosensitive resin composition
JP2018180176A (en) Refining method of infrared absorbing composition and manufacturing method of infrared absorbing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220201

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220601

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221213

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230307

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230802

R150 Certificate of patent or registration of utility model

Ref document number: 7326152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150