JP7324955B1 - 工業用マグネトロン - Google Patents

工業用マグネトロン Download PDF

Info

Publication number
JP7324955B1
JP7324955B1 JP2023004067A JP2023004067A JP7324955B1 JP 7324955 B1 JP7324955 B1 JP 7324955B1 JP 2023004067 A JP2023004067 A JP 2023004067A JP 2023004067 A JP2023004067 A JP 2023004067A JP 7324955 B1 JP7324955 B1 JP 7324955B1
Authority
JP
Japan
Prior art keywords
coolant
channel
anode
cooling block
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023004067A
Other languages
English (en)
Inventor
礼司 虎井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2023004067A priority Critical patent/JP7324955B1/ja
Application granted granted Critical
Publication of JP7324955B1 publication Critical patent/JP7324955B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microwave Tubes (AREA)

Abstract

Figure 0007324955000001
【課題】出力の大きな工業用マグネトロンにおいて、陽極円筒体と磁石を効果的に冷却し、性能低下や陽極円筒体の故障を抑制して連続的に運転することができる工業用マグネトロンおよび工業用マグネトロンの製造方法を提供する。
【解決手段】工業用マグネトロン100は、陽極円筒体3と、陽極円筒体3の上下に配設されて磁場を供給する環状の永久磁石4a,4bと、陽極円筒体3の外周に柱状に配設される冷却ブロック200と、を備える工業用マグネトロン100であって、冷却ブロック200は、陽極円筒体3に接触する部分である陽極円筒体接触部200cと、永久磁石4a,4bに接触する部分である永久磁石接触部200dと、を有し、1つの冷却ブロックで陽極円筒体3および永久磁石4a,4bをともに冷却する。
【選択図】図1A

Description

本発明は、高出力型の工業用マグネトロンに関する。
一般に工業用マグネトロンは、高周波出力を効率良く発生できることから、レーダ装置、医療機器、電子レンジ等の調理器、半導体製造装置またはその他のマイクロ波応用機器等の分野で広く用いられている。半導体装置用や産業加熱用としては、高出力のマイクロ波が要求される。
マグネトロンは、カソード(陰極)とアノード(陽極)間に印加する高電圧を発生させる高電圧直流電源、電子を放出させるためのフィラメントを規定温度に加熱する電源、それらの制御回路およびマイクロ波エネルギーを取り出すための導波管およびそれらを収容する筐体などを含んで構成される。
マグネトロンは、陽極円筒体(アノード)の中央に配された陰極(カソード)と、磁石を含んで構成し、陰極にはヒータが巻かれており、そこに所定電流を印加することにより、陰極から熱電子が放出される。熱電子は、陽極円筒体側に引き寄せられるが、磁石により形成される磁場によって陰極のまわりを回転運動しながら周回し、この振動を陽極側に設けた空洞で共振させ、出力部(アンテナ)からそのエネルギーを電波(マイクロ波)として取り出す。
しかしながら、熱電子の一部は陽極円筒体に衝突し、そのエネルギーが熱に変換されて発熱する。発熱が継続することで、磁石の性能低下を招き、さらに陽極円筒体を破損することとなる。
家庭用の電子レンジなどに使用される出力の小さなマグネトロンにおいては発熱量も小さいので、空冷により冷却することで対応することが可能である。ところが、出力の大きな工業用マグネトロンにおいては、空冷では対応できず、水冷等液状媒体を使用して冷却することが必要となる。
その方法としては、冷却ブロックの周囲に冷媒管を配設し、液状冷媒を供給する方法があり、さらに冷却能力を高めることが必要なときは、陽極円筒体の周囲に配設された冷却ブロックにより陽極円筒体を強制的に冷却し発熱を抑制するものがある。具体的には、冷却ブロック内に陽極円筒体を周回するように冷媒流路を設けて液状冷媒を冷却ブロック内に流通し、陽極円筒体を直接冷却する。
特許文献1には、環状の連続部分の両端部が互いに対向する環状形状を有する一体的な部材であって、陽極円筒体を囲むように陽極円筒体の外周面に締結されるとともに、内部に冷却液の循環通路を有して陽極円筒体を冷却する冷却ブロックを備えるマグネトロンが記載されている。
特開2016-207603号公報
特許文献1に記載のマグネトロンにおいては、効果的に陽極円筒体を冷却することができる。しかしながら、出力の大きな工業用マグネトロンの場合、陽極円筒体での発熱が磁石に伝達し、磁石の温度上昇が生じる。出力の大きな工業用マグネトロンの場合、磁石の温度上昇に対しては、陽極円筒体の冷却だけでは冷却能力が不足することが分かった。
本発明は、このような事情に鑑みてなされたものであり、出力の大きな工業用マグネトロンにおいて、陽極円筒体と磁石を効果的に冷却し、性能低下や陽極円筒体の故障を抑制して連続的に運転することができる工業用マグネトロンを提供することを課題とする。
上記課題を解決するために、本発明の工業用マグネトロンの製造方法は、陽極円筒体と、前記陽極円筒体の上下に配設されて磁場を供給する環状の永久磁石と、前記陽極円筒体の外周に柱状に配設される冷却ブロックと、を備える工業用マグネトロンであって、前記冷却ブロックは、前記陽極円筒体に接触する陽極円筒体接触部と、前記永久磁石に接触する永久磁石接触部と、を有し、1つの冷却ブロックで前記陽極円筒体および前記永久磁石をともに冷却する前記工業用マグネトロンを本生産する前段階のサンプル品製造段階において、前記工業用マグネトロンを試験動作させて、前記陽極円筒体の発熱位置の特定と発熱量の計測を行い、前記発熱位置と前記発熱量に応じて、冷媒流路の配設位置と、前記冷媒流路の周回数と、を設定することを特徴とする。
本発明によれば、出力の大きな工業用マグネトロンにおいて、陽極円筒体と磁石を効果的に冷却し、性能低下や陽極円筒体の故障を抑制して連続的に運転することができる工業用マグネトロンを提供することができる。
本発明の第1の実施形態に係る工業用マグネトロンの構成を示す縦断面図である。 図1Aの要部拡大図である。 本発明の第1の実施形態に係る工業用マグネトロンの冷却ブロックの構造を示す斜視図である。 本発明の第1の実施形態に係る工業用マグネトロンの陽極円筒体を1回周回する一段の冷媒流路を有する冷却ブロックの構成を示す斜視図である。 本発明の第1の実施形態に係る工業用マグネトロンの冷媒流路の配置位置を模式的に示す図である。 本発明の第1の実施形態に係る工業用マグネトロンの冷媒流路の配置位置を模式的に示す図である。 本発明の第1の実施形態に係る工業用マグネトロンの冷媒流路の配置位置を模式的に示す図である。 本発明の第1の実施形態に係る工業用マグネトロンの冷媒流路の配置位置を模式的に示す図である。 本発明の第2の実施形態に係る工業用マグネトロンの構成を示す縦断面図である。 本発明の第2の実施形態に係る工業用マグネトロンの陽極円筒体を複数回周回する冷媒流路を有する冷却ブロックの構成を示す斜視図である。 本発明の第2の実施形態に係る工業用マグネトロンの冷媒流路の加工形成を示す図である。 図6の三段流路構成を有する冷却ブロックにおける冷媒の流れを示す斜視図である。 本発明の第2の実施形態に係る工業用マグネトロンの複数回周回する冷媒流路の配置位置を模式的に示す図である。 本発明の第2の実施形態に係る工業用マグネトロンの複数回周回する冷媒流路の配置位置を模式的に示す図である。 本発明の第2の実施形態に係る工業用マグネトロンの複数回周回する冷媒流路の配置位置を模式的に示す図である。 本発明の第2の実施形態に係る工業用マグネトロンの複数回周回する冷媒流路の配置位置を模式的に示す図である。 本発明の第2の実施形態に係る工業用マグネトロンの複数回周回する冷媒流路の配置位置を模式的に示す図である。 本発明の第2の実施形態に係る工業用マグネトロンの複数回周回する冷媒流路の配置位置を模式的に示す図である。 本発明の第3の実施形態に係る工業用マグネトロンの冷却ブロックの構造を示す斜視図である。 本発明の第3の実施形態に係る工業用マグネトロンの内壁面にらせん溝を有する冷媒流路の構造を説明する図である。 本発明の第3の実施形態に係る工業用マグネトロンの冷媒流路の液状媒体の流通を説明する図である。 本発明の第3の実施形態に係る工業用マグネトロンの冷媒流路の液状媒体の流通を説明する図である。
以下、本発明の実施形態について図面を参照して詳細に説明する。
(第1の実施形態)
図1Aは、本発明の第1の実施形態に係る工業用マグネトロンの構成を示す縦断面図である。図1Bは、図1Aの要部拡大図である。本実施形態は、陽極円筒体を一回だけ周回する冷媒流路を備える工業用マグネトロンに適用した例である。
[全体構成]
図1Aに示すように、工業用マグネトロン100は、概ね出力が2kWの低出力タイプから15kW程度の高出力タイプのものである。低出力タイプのものであれば、冷媒が、冷媒流路を1回周回する構成でも十分に冷却することができる。
工業用マグネトロン100は、熱放出源として螺旋状に形成された陰極フィラメント1と、陰極フィラメント1の周囲に配置された複数枚の陽極ベイン2と、陽極ベイン2を支持する陽極円筒体3(陽極円筒)と、陽極円筒3の上下端に配置された円環状の一対の永久磁石4a,4bと、を含む。陽極ベイン2および陽極円筒3は、蝋付け等による固着または押出し成形法により一体化され、陽極部の一部を構成している。
なお、「周回」とは、「そのまわりをまわること。そこを巡ること。また、そのまわり。周囲」などの意であるが、本明細書では、図1Aのように、冷媒流路210が陽極円筒体3の周囲を360度回るものでなくとも、冷媒流路210が陽極円筒体3の周りを巡っているので、図1Aのような態様も周回(陽極円筒体の周囲を周回)という。ちなみに、図1Aの例では周回の数は1回であり、後記する図8の例では2箇所で折り返しているので周回の数は3回である。
複数枚の陽極ベイン2は、陰極フィラメント1を中心として放射状に配置されている。陰極フィラメント1と陽極ベイン2との間には、作用空間が形成されている。隣り合う2枚の陽極ベイン2と陽極円筒3とで囲まれた領域は、共振空洞となっている。
陽極円筒体3と永久磁石4a,4bとの間にはそれぞれ、軟鉄などの強磁性体からなる一対の磁極5a,5bが配置されている。
陽極ベイン2には、アンテナリード7が電気的に接続されている。アンテナリード7の他端は、排気管8と共に封止切りされている。アンテナリード7と排気管8とは、電気的に接続されている。また、排気管8は、チョーク部9、アンテナカバー10および排気管サポート12とともに、マグネトロンアンテナ13を構成している。マグネトロンアンテナ13は、円筒絶縁体11に支持されている。
陰極フィラメント1は、陰極リードであるセンターリード23およびサイドリード24に接続されている。このほか、陰極フィラメント1の周囲には、上側エンドシールド21、下側エンドシールド22、入力側セラミック25、陰極端子26およびスペーサ27が配置されている。スペーサ27は、陰極フィラメント1の断線を防止する機能を有している。スペーサ27は、スリーブ28により所定位置に固定されている。これらの部品により陰極部が構成されている。陰極部の周囲には、ベイン2が配置されている。
チョークコイル31は、貫通コンデンサ32の一端と接続されている。貫通コンデンサ32は、入力部のフィルタケース33に取り付けられている。貫通コンデンサ32の他端には、陰極加熱用導線35が設けられ、これを介して電源に接続される。
フィルタケース33は、その底部を蓋体34により高周波的に塞がれている。帽子状の上下端封止金属41、42および金属ガスケット43は、上側ヨーク44と電気的に接続されている。
工業用マグネトロン100は、陽極円筒体(アノード)の中央に配された陰極(カソード)と、磁石を含んで構成し、陰極にはヒータが巻かれており、そこに所定電流を印加することにより、陰極から熱電子が放出される。熱電子は、陽極円筒体側に引き寄せられるが、磁石により形成される磁場によって陰極のまわりを回転運動しながら周回し、この振動を陽極側に設けた空洞で共振させ、出力部(アンテナ)からそのエネルギーを電波(マイクロ波)として取り出す。
工業用マグネトロン100は、陽極円筒体3と、陽極円筒体3の上下に配設されて磁場を供給する環状の永久磁石4a,4bと、陽極円筒体3の外周に柱状に配設される冷却ブロック200と、を備える。
本実施形態は、冷却ブロック200内に冷媒流路210を設け、陽極円筒体を直接冷却する構造をさらに改善するものである。本明細書において、直接冷却するとは、陽極円筒体の周囲に所定距離離間して冷媒を流通して冷却することをいう。
[冷却ブロック200]
冷却ブロック200は、冷却ブロック本体の外壁部200aと、冷却ブロック中心部分において陽極円筒体3の側壁面3aに密着するとともに、永久磁石4a,4bの外壁面40a,40bに接触する内壁面200bと、を有する。
詳細には、図1Bに示すように、冷却ブロック200は、陽極円筒体3に接触する部分である陽極円筒体接触部200cと、永久磁石4a,4bに接触する部分である永久磁石接触部200dと、を有し、1つの冷却ブロックで陽極円筒体3および永久磁石4a,4bをともに冷却する。
陽極円筒体接触部200cは、冷却ブロック200の内壁面200bのうち、陽極円筒体3の側壁面3aに密着する円筒形状部分である。
永久磁石接触部200dは、冷却ブロック200の内壁面200bのうち、永久磁石4a,4bの外壁面40a,40bの角部Aの両面が接触する部分である。
本実施形態では、陽極円筒体接触部200cと永久磁石接触部200dは、共に冷却ブロック200の内壁面200bに形成されているが、冷却ブロック200が、陽極円筒体3に接触する陽極円筒体接触部200cと、永久磁石4a,4bに接触する永久磁石接触部200dと、を有するものであればどのようなものでもよい。例えば、陽極円筒体接触部200cは、陽極円筒体3の側壁面3aの少なくとも一部を覆うものでもよい。
また、本実施形態では、永久磁石接触部200dは、永久磁石4a,4bの外壁面40a,40bの角部A、すなわちリング状の永久磁石4a,4bの外周面40a1,40b1と、その外周面40a1,40b1に繋がる永久磁石4a,4b同士の対向面40a2,40b2との2面に接触する。これにより、冷却ブロック200の永久磁石接触部200dは、永久磁石4a,4bの外壁面40a,40bの角部Aにおいて、2面で接触することで、永久磁石4a,4bを効果的に冷却することができる。この場合、永久磁石接触部200dは、上記外周面40a1,40b1または、上記対向面40a2,40b2のいずれか一方に接触する構成でもよい。さらに、永久磁石接触部200dは、上記外周面40a1,40b1の角部Aに対向する他方の角部Bをも回り込んで、永久磁石4a,4bの外周部を包み込む構成でもよい。
このように、冷却ブロック200は、陽極円筒体接触部200cと、永久磁石接触部200dと、を有し、陽極円筒体接触部200cが陽極円筒体3の側壁面3aに密着するとともに、永久磁石接触部200dが永久磁石4a,4bの外壁面40a,40bに接触する。冷却ブロック200は、陽極円筒体3と永久磁石4a,4bを内壁面200bで覆うことで、陽極円筒体3および永久磁石4a,4bを、1つの冷却ブロックで同時に冷却するように構成する。
なお、冷却ブロック200の外壁部200aは、永久磁石4a,4bのヨークとしての機能を持たせるものでもよい。
冷却ブロック200は、さらに冷却能力を高めるために、冷却ブロック200内に液状冷媒を流通する冷媒流路210を配設する。すなわち、冷却ブロック200は、陽極円筒体3の周囲を周回して陽極円筒体3を直接冷却するように液状冷媒を流通させる冷媒流路210を配設する。
冷却ブロック200は、陽極円筒体3を少なくとも一回周回する冷媒流路210を有し、冷媒流路210が周回する位置によって陽極円筒体3に対する冷却能力を調整する。
陽極円筒体3の側壁面3aには、冷却ブロック200の内壁面200b(内周面側)の陽極円筒体接触部200cが密着した状態で配置される。このとき、冷却ブロック200の内壁面200b(永久磁石側)の永久磁石接触部200dは、永久磁石4a,4bの外壁面40a,40bに接触する。これにより、冷却ブロック200は、陽極円筒体接触部200cが陽極円筒体3の側壁面3aに密着し、かつ、永久磁石接触部200dが永久磁石4a,4bの外壁面40a,40bにも接触することで、1つの冷却ブロックで陽極円筒体3および永久磁石4a,4bをともに冷却する構造となっている。
冷却ブロック200は、工業用マグネトロン100の陽極円筒体3の外周部に配置され、柱状に形成される。なお、製造加工上、冷却ブロック200は四角柱を採用している。
冷却ブロック200は、熱伝導率が高くかつ加工性が高いアルミニウム材(Al)で形成されている。また、冷却ブロック200の内部には、冷却媒体(冷媒)が流通する冷媒流路210が設けられている。
冷却ブロック200は、ヨーク6に複数の取り付けネジ46により固定されている。なお、冷却ブロック200は、アルミニウム材に代えて、銅材(Cu)で形成してもよい。
また、冷媒は、通常、水、特に純水またはイオン交換水が好適に用いられる。また、冷媒は、クーラント(エチレングリコールを含む水溶液)等であってもよい。
図2は、冷却ブロック200の構造を示す斜視図である。
図2に示すように、冷却ブロック200は、四角柱状であり、陽極円筒体挿入部201(空間または貫通孔)(図3)、スリット202(隙間)、およびスリット202の両側に設けた凸部203を備える。冷却ブロック200は、陽極円筒体挿入部201(図3)から陽極円筒体3(図1A)を挿入し、陽極円筒体3の外周壁を冷却ブロック200の内壁面に密着させる。冷却ブロック200は、陽極円筒体3(図1A)を配置した後、凸部203の両端をボルト280aおよびナット280bでねじ止め固定する。なお、ボルト280aおよびナット280bは、締結手段280を構成する。
図3は、陽極円筒体3を1回周回する一段の冷媒流路210を有する冷却ブロック200の構成を示す斜視図である。
図3に示すように、冷却ブロック200は、四角柱状のアルミニウム材であり、陽極円筒体挿入部201およびスリット202(隙間)を有する。
スリット202の両側に設けた凸部203は、陽極円筒体3の外周壁と冷却ブロック200とを密着させるため、ボルトを貫通させて締め付けるためのものである。
なお、冷却ブロック200は、他の断面形状(例えば、円形)を有する柱状体であってもよいが、穴あけ等の加工を含む製造が容易であることから、四角柱状のものが望ましい。
また、以下の説明においては、便宜上、柱状体の中心軸、すなわち陽極円筒体挿入部201の中心軸の方向を「鉛直方向」と呼ぶことにする。ただし、これはあくまでも便宜的な表現であり、冷却ブロック200の設置の仕方によっては、当該中心軸が重力の方向を基準として水平方向、または鉛直方向に対して斜め方向であってもよい。
<冷媒流路210>
・冷媒流路210の配置
冷媒流路210は、陽極円筒体3の周囲を周回して陽極円筒体3を直接冷却するように液状冷媒を流通させる。
冷媒流路210は、四角柱状の冷却ブロック200の内部で、陽極円筒体3の外周面を周回するように、コの字型に配置されている。
冷媒流路210の一方端部は、開口部であり、外部に配置された冷媒貯蔵タンク(図示省略)に接続するための接続口210aとして使用し、冷媒流路210の他方端部は、接続口210bであり、冷媒貯蔵タンクに接続するための接続口210bとして使用する。接続口210aおよび接続口210bは、四角柱状の冷却ブロック200の同一の側面に設けられている。運用においては、導入口(接続口210a)には液状冷媒を供給するための冷媒貯蔵タンク等から液状冷媒を供給する供給路(図示省略)を接続し、排出口(接続口210b)には液状冷媒を冷媒貯蔵タンク等に回収する回収路(図示省略)を接続することになる。
・一回だけ周回する冷媒流路の配置位置
陽極円筒体3の最も発熱量の大きい部分を周回するように冷媒流路210を配設することで、冷媒流路210の陽極円筒体3に対する相対的な冷却能力を最大化できることを示す。
図4A-図4Dは、一回だけ周回する冷媒流路の配置位置を模式的に示す図である。
図4Aは、最大発熱部が陽極円筒体3の上部に分布しており、冷媒流路210を陽極円筒体3の上部を周回させている。
図4Bは、最大発熱部が陽極円筒体3の中央部に分布しており、冷媒流路210を陽極円筒体3の中央部を周回させている。
図4Cは、最大発熱部が陽極円筒体3の下部に分布しており、冷媒流路210を陽極円筒体3の下部を周回させている。
図4Dは、最大発熱部が陽極円筒体3の斜めに分布しており、冷媒流路210を陽極円筒体3に対して斜めに周回させている。
このように、陽極円筒体3を周回する冷媒流路210の位置によって、陽極円筒体3に対して冷却能力を調整することができる。
[第1の実施形態の効果]
以上説明したように、第1の実施形態に係る工業用マグネトロン100(図1A)は、陽極円筒体3と、陽極円筒体3の上下に配設されて磁場を供給する環状の永久磁石4a,4bと、陽極円筒体3の外周に柱状に配設される冷却ブロック200と、を備える工業用マグネトロン100であって、冷却ブロック200は、陽極円筒体3に接触する部分である陽極円筒体接触部200cと、永久磁石4a,4bに接触する部分である永久磁石接触部200dと、を有し、1つの冷却ブロックで陽極円筒体3および永久磁石4a,4bをともに冷却する。
特許文献1に記載のマグネトロンは、「陽極筒体を囲むように陽極筒体の外周面に締結されるとともに、内部に冷却液の循環通路を有して陽極筒体を冷却する冷却ブロック」を備える。このため、この冷却ブロックは、直接的には陽極円筒のみを冷却する構造となっている。しかしながら、出力の大きな工業用マグネトロンの場合、磁石の温度上昇に対しては、陽極円筒体の冷却だけでは冷却能力が不足することが分かった。
そこで、本実施形態の工業用マグネトロン100は、冷却ブロック200が、陽極円筒体3と永久磁石4a,4bの少なくとも一部を覆い、陽極円筒体3および永久磁石4a,4bをともに冷却する。この構成により、出力の大きな工業用マグネトロンにおいて、陽極円筒体3での発熱が永久磁石4a,4bに伝達し、永久磁石4a,4bが温度上昇する場合であっても、冷却ブロック200は、内壁面200bのうち、陽極円筒体接触部200cが陽極円筒体3の側壁面3aに密着するとともに、永久磁石接触部200dが永久磁石4a,4bの外壁面40a,40bに接触することで、陽極円筒体3および永久磁石4a,4bを、1つの冷却ブロックで同時に冷却することができる。これにより、陽極円筒体3からの永久磁石4a,4bへの熱伝達を抑制して永久磁石4a,4bに温度変化を発生させない。したがって、陽極円筒体3と永久磁石4a,4bを効果的に冷却し、性能低下や陽極円筒体の故障を抑制して連続的に運転することができる。その結果、2kWから15kWの高出力の範囲で運用しても発熱による影響を抑制した工業用マグネトロンを提供することができる。
工業用マグネトロン100(図1A)において、冷却ブロック200は、陽極円筒体3の側壁面3aに密着する内壁面200bを有し、内壁面200bのうち、陽極円筒体接触部200cが陽極円筒体3の側壁面3aに密着するとともに、永久磁石接触部200dが永久磁石4a,4bの外壁面40a,40bに接触する。
この構成により、永久磁石4a,4bは、陽極円筒体3から伝達した熱を、永久磁石4a,4bの外壁面40a,40bの外周面40a1,40b1および対向面40a2,40bを介して、冷却ブロック200の永久磁石接触部200d、さらに冷却ブロック200本体に放熱することができ、陽極円筒体3と永久磁石4a,4bを効果的に冷却することができる。
ちなみに、特許文献1に記載のマグネトロンの冷却ブロックは、陽極円筒体の側壁面のみを冷却する構造であるため、本実施形態の冷却ブロック200のように、冷却ブロック200の内壁面200b(永久磁石側)が永久磁石4a,4bの外壁面40a,40bに接触する構造ではない。このため、本実施形態のように、陽極円筒体3から永久磁石4a,4bに伝達した熱を、永久磁石4a,4bの外壁面40a,40bの外周面40a1,40b1および対向面40a2,40b、冷却ブロック200の永久磁石接触部200dを介して、冷却ブロック200本体に放熱し、陽極円筒体3と永久磁石4a,4bの双方を効果的に冷却するという特有の効果は奏しない。
工業用マグネトロン100(図1A)において、冷却ブロック200は、陽極円筒体3の周囲を周回して陽極円筒体3を直接冷却するように液状冷媒を流通させる冷媒流路210を配設する。
この構成により、冷却ブロック200は、冷媒流路210によってさらに冷却能力を高めることができる。冷却ブロック200の冷却能力が高まるので、陽極円筒体3と永久磁石4a,4bをより効果的に冷却することができる。
工業用マグネトロン100(図1A)において、冷却ブロック200は、陽極円筒体3を少なくとも一回周回する冷媒流路210を有し、冷媒流路210が周回する位置によって陽極円筒体3に対する冷却能力を調整する。
また、工業用マグネトロン100を本生産する前段階のサンプル品製造段階において、工業用マグネトロン100を試験動作させて、陽極円筒体3の発熱位置の特定と発熱量の計測を行い、発熱位置と発熱量に応じて、冷媒流路210の配設位置と、冷媒流路210の周回数と、を設定する。
このようにすることにより、陽極円筒体3を周回する冷媒流路の配設位置と、冷媒流路210の周回数とによって、陽極円筒体3に対して冷却能力を調整することができる。すなわち、どのような出力の工業用マグネトロンであっても、工業用マグネトロン100を本生産する前段階のサンプル品製造段階において、工業用マグネトロン100を試験動作させて、陽極円筒体3の発熱位置の特定と発熱量の計測を行い、発熱位置と発熱量に応じて、冷媒流路210の配設位置を設定するので、将来的な出力変更や適用条件の変更、取り替え(置換)があっても対応することができ、汎用性を格段に向上させることができる。
(第2の実施形態)
1回の周回では冷却能力が不足する場合に対応する冷媒流路の構成について述べる。
図5は、本発明の第2の実施形態に係る工業用マグネトロンの構成を示す縦断面図である。本実施形態は、陽極円筒体を複数回周回する冷媒流路を備える工業用マグネトロンに適用した例である。図1Aと同一構成部分には同一符号を付して重複箇所の説明を省略する。
図5に示す工業用マグネトロン100の冷却ブロック200Aは、陽極円筒体3を複数回周回する冷媒流路210を備える。
図6は、陽極円筒体を複数回周回する冷媒流路210を有する冷却ブロック200Aの構成を示す斜視図である。図2と同一構成部分には同一符号を付して重複箇所の説明を省略する。
図6に示すように、冷却ブロック200Aは、内部に、鉛直方向の異なる位置に冷媒を流通させる二つ以上の流路を有している。鉛直方向の異なる位置というのは、上下の位置関係であって、最も上の位置を上段とし、最も下の位置を下段とし、その中間の位置を中段とする。
冷却ブロック200Aは、内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の冷媒流路210を有し、冷媒流路210の配設する位置、および/または、冷媒流路210の周回数により陽極円筒体3に対する冷却能力を調整する。
冷却ブロック200Aは、冷媒流路210(上段流路210c,210d,210e、中間流路(以下「中段流路」ともいう。)210g,210h,210i、下段流路210k,210l,210mおよび接続流路210f,210j)を備え、上段流路210c,210d,210eと、中段流路210g,210h,210iと、下段流路210k,210l,210mとの三段流路配置である。
冷却ブロック200Aは、内部に、鉛直方向の異なる位置(高さ)に上段流路210c,210d,210e、中段流路210g,210h,210iおよび下段流路210k,210l,210mが設けられている。
上段流路210c,210d,210eと中段流路210g,210h,210iとは、接続流路210fを設けて接続し、中段流路210g,210h,210iと下段流路210k,210l,210mとは接続流路210jを設けて接続する。接続流路210fは、上段流路210eと中段流路210gとが最も短い距離で接続する、すなわち接続流路210fが上段流路と中段流路に共に直交するように、鉛直方向に配置されることが望ましい。同様に、接続流路210jは、中段流路210iと下段流路210kとが最も短い距離、すなわち中段流路と下段流路に共に直交するように、鉛直方向に配置されることが望ましい。ただし、接続流路210f,210jの向きは、これに限定されるものではなく、鉛直方向に対して斜めに配置されていてもよい。
よって、冷却ブロック200Aは、上段流路210c,210d,210e、中段流路210g,210h,210i、および下段流路210k,210l,210mは、接続流路210f,210jにより直列に接続され、一本の流路を構成している。
上段流路210c,210d,210e、中段流路210g,210h,210i、および下段流路210k,210l,210mは、それぞれの流路の中心軸が同一の水平面に位置するようにコの字形状に形成されている。すなわち、上段流路210c,210d,210e、中段流路210g,210h,210i、および下段流路210k,210l,210mは、陽極円筒体3(図7)の外周面を周回するようにコの字型に配置され、鉛直方向にそれぞれの流路が所定の間隔を保って配置されている。上段流路210c,210d,210e、中段流路210g,210h,210i、および下段流路210k,210l,210mは、冷却ブロック200Aを上方から見たとき、コの字形状が重なるように配置されていることが望ましい。
上段流路210cは端部(開口部)である接続口210aを有し、下段流路210mは端部(開口部)である接続口210bを有する。上段流路210cの接続口210aと下段流路210mの接続口210bとは、冷却ブロック200Aの同一側面側に配置されている。上段流路210cの接続口210aと下段流路210mの接続口210bとは、外部に配置された冷媒貯蔵タンク(図示省略)に接続するための接続口として使用される。
このように、複数回周回する冷媒流路210の構成では、最上段冷媒流路(上段流路210c,210d,210e)と最下段冷媒流路(下段流路210k,210l,210m)と中間冷媒流路(中段流路210g,210h,210i)と配設位置、または、中間冷媒流路(中段流路210g,210h,210i)の周回数、によって陽極円筒体3に対する冷却能力を調整することが可能である。
・冷媒流路210の加工形成
図7は、冷媒流路210の加工形成を示す図である。図7は、図6の上段流路210c,210d,210e、中段流路210g,210h,210i、下段流路210k,210l,210mおよび接続流路210f,210jのうち、下段流路210k,210l,210mの加工形成を例にとる。
下段流路210k,210l,210mの形成においては、まず、冷却ブロック200Aの一つの側面からドリルによる切削加工を行う(下段流路210m)。この際、ドリルの先端が該当側面に対向する側面を貫通しないように切削加工を行う。なお、下段流路210k,210l,210mの間隔は、設計段階において陽極円筒体3の発熱量等を考慮して適宜設定する。
次に、該当側面に隣接する側面(直交する側面)の所定の位置(鉛直方向の同じ高さ)に同様に切削加工を行う(下段流路210l)。この場合、切削加工は、下段流路210lが下段流路210mの最奥部に接続するように行う。この時点で、下段流路210mと入口付近から下段流路210lが接続される。
次に、下段流路210kは、入口付近から下段流路210lの最奥部に接続するように切削加工を行う。この時点で、下段流路210lと入口付近から下段流路210kが接続される。
上記の加工により、下段流路210k,210l,210mが連通し、コの字形の流路が形成される。
次に、冷却ブロック200Aの下底面からドリルによる切削加工により、接続流路210j(図6)を形成する。これにより、中段流路210g,210h,210iと下段流路210k,210l,210mとが連通する。
ここで、上段流路210c,210d,210eと、中段流路210g,210h,210iについても、同様のドリルによる切削加工で、既にらせん溝加工が完了している。ちなみに、らせんとは、巻貝のからのようにぐるぐると巻いているものや旋回した筋をいう。
なお、上段流路210c,210d,210e、中段流路210g,210h,210i、下段流路210k,210l,210mの間隔は、設計段階において陽極円筒体3の発熱量等を考慮して適宜設定する。
最後に、冷媒を導入する接続口210bおよび冷媒を回収する接続口(図示していない)以外の開口部を、閉止部材211、212により閉止する終端処理を行う。なお、閉止部材211、212は、適切な位置まで埋め込むためのネジ部材を使用することが望ましい。具体的には、閉止部材211、212は、沈みプラグを用いることが望ましく、シールテープを巻いたものを用いることにより、冷媒の圧力が高い場合でも液漏れを防止することができ、信頼性の高い製品とすることができる。沈みプラグを用いることにより、冷却ブロック200Aの流路内に異物等が滞留し、流路抵抗が増加した場合等に、沈みプラグを取り外して流路内を清掃することが容易となる。ただし、閉止部材211、212を溶接して固定することも考えられる。溶接によれば、更に確実に液漏れを防止することができるからである。
上述の加工および組み立ての方法は、三段流路構成の場合について説明したが、一段流路、二段流路構成の場合も、四段以上の流路構成の場合も同様である。
・冷媒の流れ
図8は、図6の三段流路構成を有する冷却ブロックにおける冷媒の流れを示す斜視図である。図8の太矢印は、冷媒の流れを表わす。
図8に示すように、冷媒貯蔵タンク(図示省略)から冷媒供給路(図示省略)および上段流路210cの接続口210a(導入口)を介して導入した冷媒を、上段流路210c,210d,210eによりマグネトロン本体内部の陽極円筒体3(図5)を冷却した後に、接続流路210fにより中段流路210g,210h,210iに移送し、中段流路210g,210h,210iにより陽極円筒体3を冷却した後に、接続流路210jにより下段流路210k,210l,210mに移送し、下段流路210k,210l,210mにより陽極円筒体3を冷却した後に、下段流路210mの接続口210b(排出口)および冷媒回収流路を介して、冷媒貯蔵タンクに回収する処理を行う。これを1回の冷却処理とし、この冷却処理を繰り返す。
冷媒は、上段流路210cの接続口210aから導入され、コの字形状の上段流路210c,210d,210eを通過し、接続流路210fを介して中段流路210gに流入し、コの字形状の中段流路210g,210h,210iを通過し、更に接続流路210jを介して下段流路210kに流入し、コの字形状の下段流路210k,210l,210mを通過し、下段流路210mの接続口210bから流出する。
図8では、まず上段流路210c,210d,210eにより陽極円筒体3を周回して冷却し、この時点において陽極円筒体3の熱影響を受けた冷媒を中段流路210g,210h,210iに移送し、中段流路210g,210h,210iにより陽極円筒体3を周回して冷却し、この時点においてさらに陽極円筒体3の熱影響を受けた冷媒を下段流路210k,210l,210mより陽極円筒体3を周回して冷却することになるので、所定の吐出圧により各冷却流路を周回させることができる。
・複数回周回する冷媒流路を備える冷却ブロック200Aの冷媒能力の調整
基本的には、陽極円筒体3の最も発熱量の大きい部分を周回するように冷媒流路210を配設することで、冷媒流路210の陽極円筒体3に対する相対的な冷却能力を最大化できるように調整する。
冷却ブロック200Aの冷媒能力は、
(1)冷媒流路の断面積、
(2)冷媒流路の配設位置、
(3)冷媒流路の周回数、のいずれか、またはこれらの組合せにより調整することができる。
ドリルの条件を変えない場合、冷媒能力は、(2)冷媒流路の配設位置と(3)冷媒流路の周回数により調整可能である。以下、順に説明する。
図9A-図9Fは、複数回周回する冷媒流路の配置位置を模式的に示す図である。
図9Aは、最大発熱部が陽極円筒体3の上部および下部に分布しており、最上段冷媒流路(例えば、図6の上段流路210c,210d,210e)および最下段冷媒流路(例えば、図6の下段流路210k,210l,210m)を陽極円筒体3の上部および下部を周回させている。この場合、二段流路構成である。
図9Bは、最大発熱部が陽極円筒体3の中央部に分布しており、最上段冷媒流路(例えば、図6の上段流路210c,210d,210e)および最下段冷媒流路(例えば、図6の下段流路210k,210l,210m)を陽極円筒体3の中央部を周回させている。この場合、二段流路構成である。
図9Cは、最大発熱部が陽極円筒体3の中央部に分布しており、しかも高出力タイプである。高出力タイプの発熱量に対応した三段流路構成とし、最上段冷媒流路(例えば、図8の上段流路210c,210d,210e)、中間冷媒流路(例えば、図8の中段流路210g,210h,210i)、および最下段冷媒流路(例えば、図8の下段流路210k,210l,210m)を陽極円筒体3の中央部を周回させている。
図9Dは、最大発熱部が陽極円筒体3の上部に分布しており、しかも高出力タイプである。高出力タイプの発熱量に対応した三段流路構成とし、中間冷媒流路(例えば、図6の中段流路210g,210h,210i)を、最上段冷媒流路(例えば、図6の上段流路210c,210d,210e)に近づけて配置し、最上段冷媒流路(例えば、図6の上段流路210c,210d,210e)、中間冷媒流路(例えば、図6の中段流路210g,210h,210i)、および最下段冷媒流路(例えば、図6の下段流路210k,210l,210m)を陽極円筒体3に周回させている。
図9Eは、高出力タイプの発熱量に対応した三段流路構成である。図9Cと異なる点は、図9Eの中段流路210g,210h,210iは、陽極円筒体3の中央部を斜めに周回させている。図9Eの中段流路210g,210h,210iの形成において、冷却ブロック200Aの一つの側面から斜め方向にタッピングドリルによる切削加工を行う。したがって、図9Eの中段流路210g,210h,210iは、最上段冷媒流路(例えば、図6の上段流路210c,210d,210e)と最下段冷媒流路(例えば、図6の下段流路210k,210l,210m)との間を、らせんを描くように陽極円筒体3を周回して接続される。補足すると、内部をらせん溝加工がされた流路がらせんを描くように陽極円筒体3を周回して接続される。
中段流路210g,210h,210iを斜めに周回させる構成を採ることで、冷媒流路の段数を増やすことなく、高出力タイプの発熱量に対応させることができる。
図9Fは、高出力タイプの発熱量に対応した四段流路構成である。中間冷媒流路を二段、すなわち上段の中間冷媒流路210oおよび下段の中間冷媒流路210pを備える。最上段冷媒流路(例えば、図6の上段流路210c,210d,210e)、上段の中間冷媒流路210o、下段の中間冷媒流路210p、および最下段冷媒流路(例えば、図6の下段流路210k,210l,210m)を陽極円筒体3に周回させている。
[第2の実施形態の効果]
第2の実施形態に係る工業用マグネトロン100(図5)は、冷却ブロック200A(図6)が、内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の冷媒流路210を有し、冷媒流路210の配設する位置、および/または、冷媒流路210の周回数により陽極円筒体3に対する冷却能力を調整する。
また、第1の実施形態と同様に、工業用マグネトロン100を本生産する前段階のサンプル品製造段階において、工業用マグネトロン100を試験動作させて、陽極円筒体3の発熱位置の特定と発熱量の計測を行い、発熱位置と発熱量に応じて、冷媒流路210の配設位置と、冷媒流路210の周回数と、を設定する。
このように、冷却ブロック200Aは、冷媒流路210を二つ以上備えることで、陽極円筒体3の発熱量が大きくなっても十分に冷却して性能低下や陽極円筒体3の故障を抑制できる。その結果、2kWから15kWの高出力の範囲で運用しても発熱による影響を抑制した工業用マグネトロンを提供することができる。
また、冷却ブロック200Aは、冷媒流路210の配置位置の工夫によって、冷媒流路の段数を抑制しつつ、発熱量に対処することができる。冷媒流路の段数が少ない場合、冷却ブロックの構成が簡略化され、製造コスト、メンテナンスの削減が期待できる。
また、どのような出力の工業用マグネトロンであっても、工業用マグネトロン100を本生産する前段階のサンプル品製造段階において、工業用マグネトロン100を試験動作させて、陽極円筒体3の発熱位置の特定と発熱量の計測を行い、発熱位置と発熱量に応じて、冷媒流路210の配設位置と、冷媒流路210の周回数と、を設定するので、将来的な出力変更や適用条件の変更、取り替え(置換)があっても対応することができ、汎用性を格段に向上させることができる。
第2の実施形態に係る工業用マグネトロン100(図5)において、冷却ブロック200Aは、内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の冷媒流路210を有し、二つ以上の冷媒流路210同士は、内壁面にらせん溝220を有する接続流路210f,210jによって接続される。
このようにすることにより、二つ以上の冷媒流路210および接続流路210f,210jは、いずれもドリルによる切削加工により形成される。二つ以上の冷媒流路210は、接続流路210f,210jにより直列に接続され、一本の流路を構成することができる。なお、製造上の観点から、冷媒流路と接続流路とは直交していることが望ましい。
第2の実施形態に係る工業用マグネトロン100(図5)において、冷却ブロック200Aは、内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の冷媒流路210を有し、二つ以上の冷媒流路210のうち、鉛直方向の最も上部に位置するものを上段流路と呼び、鉛直方向の最も下部に位置するものを下段流路と呼ぶ場合に、上段流路および下段流路のそれぞれの一方の端部には、接続口210a,210bが設けられ、上段流路の接続口210aから冷媒を導入し、下段流路の接続口210bから冷媒を排出する構成、または、下段流路の接続口210bから冷媒を導入し、上段流路の接続口210aから冷媒を排出する構成を有する。
このようにすることにより、接続口210a,210bに、冷媒供給路(図示省略)および冷媒貯蔵タンク(図示省略)を接続することができる。例えば、冷媒貯蔵タンク(図示省略)から冷媒供給路(図示省略)を経由して供給された冷媒を接続口210a(導入口)に導入することができる。また、接続口210b(排出口)および冷媒回収流路を介して、冷媒貯蔵タンクに回収することができる。
第2の実施形態に係る工業用マグネトロン100(図5)において、冷却ブロック200Aは、上段流路と下段流路の鉛直方向の中間の位置に配される中間流路(例えば、図8の中段流路210g,210h,210i)を備え、中間流路の配設する位置、および/または、中間流路の配置数により陽極円筒体3に対する冷却能力を調整する。
このようにすることにより、中間流路を備えることで、三段以上の冷媒流路による一本の流路を構成することができる(例えば、図9C参照)。また、中間流路を備えることで、例えば、図9C-図9Fに示すように、発熱部に対して中間流路の配置位置による自由度が拡がる。中間流路を発熱部に対応させることで、冷媒流路の段数を抑制しつつ、発熱量に対処することができる。その結果、陽極円筒体3の発熱量がより大きくなっても十分に冷却して性能低下や陽極円筒体の故障を抑制できる。
第2の実施形態に係る工業用マグネトロン100(図5)において、中間流路は、鉛直方向の上部に位置するものを上段中間流路と呼び、鉛直方向の下部に位置するものを下段中間流路と呼ぶ場合に、上段中間流路と下段中間流路とは、直接接続しないように位置をずらして配設し、陽極円筒体3の周回後に接続流路210f,210jによって接続される。
このようにすることにより、上段中間流路と下段中間流路とは、直接接続しないように位置をずらして配設することで、陽極円筒体3の熱影響を受けた冷媒を中間流路に移送する際、陽極円筒体をくまなく周回して冷却させることができ、冷却効果を高めるこができる。
また、第2の実施形態に係る工業用マグネトロン100(図5)において、中間流路は、上段流路と下段流路との間を、らせんを描くように陽極円筒体3を周回して接続される斜めの流路としてもよい。このようにすることにより、例えば、図9Eに示すように、中間流路を発熱部に対応させることができ、冷媒流路の段数を抑制しつつ、発熱量に対処することができる。
第2の実施形態に係る工業用マグネトロン100(図5)において、冷却ブロック200Aの柱状は、四角柱であって、上段流路と、下段流路と、中間流路とは、四角柱の所定面からコの字型に形成されて陽極円筒体3を周回し、上段流路と、下段流路とは、接続口210a,210bと異なる端部が閉止され、中間流路の両端部は、それぞれ閉止される。
このようにすることにより、冷却ブロックの柱状は、四角柱とすることで、穴あけ等の加工を含む製造が容易である。また、四角柱は、冷媒流路をコの字型に形成する場合の親和性が高い。さらに、コの字型の冷媒流路は、タッピングドリルによる切削加工で、らせん溝加工することも容易である。これらのことから、製造コストの低減を図ることができる。
(第3の実施形態)
図10は、本発明の第3の実施形態に係る工業用マグネトロンの冷却ブロック200Bの構造を示す斜視図である。図2と同一構成部分には同一符号を付して重複箇所の説明を省略する。
図10に示す工業用マグネトロン100の冷却ブロック200Bは、陽極円筒体3を一回だけ周回する冷媒流路210を備える。
冷却ブロック200Bの冷媒流路210は、内壁面にらせん溝220を有する円筒状の流路である。
工業用マグネトロン100は、出力が大きく陽極円筒体からの発熱量も大きくなるため、冷却ブロック200による冷却効果を高める必要がある。冷却効果を高めるために、冷媒流路210の内壁面にらせん溝220を設ける。
らせん溝220を有する冷媒流路210は、らせん溝を有しない冷媒流路に対して、冷媒供給路としての冷媒接触面積が大きくなること、さらに、冷媒の滞留時間が長くなることの2つが利点となる。このため、らせん溝220を有する冷媒流路210は、単位時間当たりの冷媒の供給量が同じであっても、冷却能力を大きくすることが可能となる。
なお、以降は、内壁面にらせん溝220を有する冷媒流路210を単に冷媒流路といい、内壁面にらせん溝を有しない冷媒流路を従来型冷媒流路という。
図11は、内壁面にらせん溝220を有する冷媒流路210の構造を説明する図である。
図11に示すように、らせん溝220は、所定のピッチと、内径と、呼び径と、から構成される。らせん溝のピッチ、内径、呼び径の大きさについては、工業用マグネトロン100を生産する前段階のサンプル品製造段階において、工業用マグネトロン100を試験動作させて、陽極円筒体3の発熱位置の特定と発熱量の計測を行い、発熱位置と発熱量に応じて設定する。
冷却ブロック200B(図10)内には、図11に示すらせん溝220を有する冷媒流路210が配設される。
らせん溝220は、製造加工上、冷媒流路210をドリルで切削して円筒状の孔を形成し、さらに、タッピングドリル(らせん溝加工用ドリル)を用いて、らせん溝加工を施す。または、タッピングドリルで直接、らせん溝を開孔してもよい。
図12Aおよび図12Bは、冷媒流路の液状媒体の流通を説明する図である。図12Aは、冷媒流路210の液状媒体の流通を示し、図12Bは、従来型冷媒流路の液状媒体の流通を示す。
図12Aに示すように、冷媒流路210の場合、液状媒体が直線状に流通するとともに(図12Aの矢印a)、らせん状に回転(旋回)しながら流通する(図12Aの矢印b)。
一方、図12Bに示すように、従来型冷媒流路の場合、液状媒体が直線状に流通する(図12Bの矢印a)。
このように、本実施形態の冷媒流路210では、液状媒体がらせん溝220に沿って旋回しながら流通する動きが加わる。液状媒体が、らせん溝220に沿って旋回しながら流れることで、冷媒の滞留時間が長くなり、単位時間当たりの冷媒の供給量が同じであっても、冷却能力を大きくすることが可能となる。
・冷媒流路210と従来型冷媒流路との比較
従来型冷媒流路では、ドリル切削した場合、冷媒流路の断面が円形状であり、伝熱面積の観点からは効果が小さい。
これに対し、冷媒流路210は、従来型冷媒流路のように断面が円形状でありながら、らせん溝220によって冷媒接触面積を大きくすることができる。換言すれば、冷媒流路の断面積を大きくすることなく冷媒接触面積を大きくすることができる。また、供給された冷媒が、らせん溝220に沿って旋回しながら流れることで、冷媒の滞留時間が長くなる。これらのことにより、冷媒流路210は、単位時間当たりの冷媒の供給量が同じであっても、冷却能力を大きくすることが可能となる。
冷却ブロック200Bによる冷却効果を高める他の方法として、冷媒流路の断面積を、さらに大きくして単位時間当たりの冷媒流量を大きくすること、第2の実施形態のように同じ断面積の流路で冷媒流路の本数を増やして伝熱面積を大きくすることが考えられる。
上述したように、本実施形態では、らせん溝220によって冷媒接触面積を大きくすることができるので、従来型冷媒流路と同じ断面積であっても、単位時間当たりの冷媒流量をより大きくすることができる。つまり、冷媒流路の断面積を大きくしなくても冷媒流路の断面積を大きくしたのと同様の効果を得ることができる。
また、冷媒接触面を大きくして、伝熱面積を大きくすることができるので、冷媒流路の本数を増やすことなく、あるいはより少ない冷媒流路の本数で構成することができる。
なお、冷媒流路の本数を増やした場合は、一流路当たりの単位時間当たりの冷媒流量は変化しないが、伝熱面積が流路本数に比例して増える。また、陽極円筒体3に対して近い位置を流れる冷媒の直接対向する面積が大きくなるため、冷却効果を高めることができる。
[第3の実施形態の効果]
第3の実施形態に係る工業用マグネトロン100の冷却ブロック200Bは、内壁面にらせん溝220を有する冷媒流路210を備える。
この構成により、らせん溝220を有する冷媒流路210は、らせん溝を有しない従来型冷媒流路に対して、冷媒供給路としての冷媒接触面積が大きくなること、さらに、冷媒の滞留時間が長くなることが利点となる。このため、単位時間当たりの冷媒の供給量が同じであっても、冷却能力を大きくすることが可能となる。したがって、陽極円筒体3の発熱量が大きくなっても十分に冷却して性能低下や陽極円筒体の故障を抑制できる。その結果、2kWから15kWの高出力の範囲で運用しても発熱による影響を抑制した工業用マグネトロンを提供することができる。
なお、本発明は、上記各実施形態に記載した構成に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、適宜その構成を変更することができる。
例えば、冷媒流路の配置位置、段数、形状、接続口の位置などは一例であってどのようなものを適用してもよい。
上記した各実施形態例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 陰極フィラメント
2 陽極ベイン
3 陽極円筒体
3a 陽極円筒体の側壁面
4a,4b 永久磁石
5a,5b 磁極
6 ヨーク
7 アンテナリード
8 排気管
9 チョーク部
10 アンテナカバー
40a,40b 永久磁石の外壁面
40a1,40b1 永久磁石が冷却ブロックの永久磁石接触部に接触する外周面
40a2,40b2 永久磁石が冷却ブロックの永久磁石接触部に接触する対向面
100 工業用マグネトロン
200,200A,200B 冷却ブロック
200a 冷却ブロックの外壁部
200b 冷却ブロックの内壁面
200c 冷却ブロックの陽極円筒体接触部
200d 冷却ブロックの永久磁石接触部
201 陽極円筒体挿入部
202 スリット
210 冷媒流路
210c,210d,210e 上段流路
210g,210h,210i,210o,210p 中段流路
210c,210d,210e 下段流路
210f,210j 接続流路
210a,210b 接続口
211,212 閉止部材

Claims (11)

  1. 陽極円筒体と、前記陽極円筒体の上下に配設されて磁場を供給する環状の永久磁石と、前記陽極円筒体の外周に柱状に配設される冷却ブロックと、を備える工業用マグネトロンであって、前記冷却ブロックは、前記陽極円筒体に接触する陽極円筒体接触部と、前記永久磁石に接触する永久磁石接触部と、を有し、1つの冷却ブロックで前記陽極円筒体および前記永久磁石をともに冷却する前記工業用マグネトロンを本生産する前段階のサンプル品製造段階において、前記工業用マグネトロンを試験動作させて、前記陽極円筒体の発熱位置の特定と発熱量の計測を行い、前記発熱位置と前記発熱量に応じて、冷媒流路の配設位置と、前記冷媒流路の周回数と、を設定する
    ことを特徴とする工業用マグネトロンの製造方法。
  2. 前記冷却ブロックは、
    前記陽極円筒体の側壁面に密着するとともに、前記永久磁石の外壁面に接触する内壁面を有する
    ことを特徴とする請求項1に記載の工業用マグネトロンの製造方法
  3. 前記冷却ブロックは、
    前記陽極円筒体の周囲を周回して前記陽極円筒体を直接冷却するように液状冷媒を流通させる冷媒流路を配設する
    ことを特徴とする請求項1に記載の工業用マグネトロンの製造方法
  4. 前記冷却ブロックは、
    前記陽極円筒体を少なくとも一回周回する前記冷媒流路を有し、
    前記冷媒流路が周回する位置によって前記陽極円筒体に対する冷却能力を調整する
    ことを特徴とする請求項3に記載の工業用マグネトロンの製造方法
  5. 前記冷却ブロックは、
    内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の前記冷媒流路を有し、
    前記冷媒流路の配設する位置、および/または、前記冷媒流路の周回数により前記陽極円筒体に対する冷却能力を調整する
    ことを特徴とする請求項3に記載の工業用マグネトロンの製造方法
  6. 前記冷却ブロックは、
    内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の前記冷媒流路を有し、
    二つ以上の前記冷媒流路同士は、接続流路によって接続される
    ことを特徴とする請求項3に記載の工業用マグネトロンの製造方法
  7. 前記冷却ブロックは、
    内部に鉛直方向の異なる位置に、冷媒を流通させる二つ以上の前記冷媒流路を有し、
    二つ以上の前記冷媒流路のうち、鉛直方向の最も上部に位置するものを上段流路と呼び、鉛直方向の最も下部に位置するものを下段流路と呼ぶ場合に、
    前記上段流路および前記下段流路のそれぞれの一方の端部には、接続口が設けられ、
    前記上段流路の前記接続口から前記冷媒を導入し、前記下段流路の前記接続口から前記冷媒を排出する構成、または、前記下段流路の前記接続口から前記冷媒を導入し、前記上段流路の前記接続口から前記冷媒を排出する構成を有する
    ことを特徴とする請求項6に記載の工業用マグネトロンの製造方法
  8. 前記冷却ブロックは、
    前記上段流路と前記下段流路の鉛直方向の中間の位置に配される中間流路を備え、
    前記中間流路の配設する位置、および/または、前記中間流路の配置数により前記陽極円筒体に対する冷却能力を調整する
    ことを特徴とする請求項7に記載の工業用マグネトロンの製造方法
  9. 前記中間流路は、鉛直方向の上部に位置するものを上段中間流路と呼び、鉛直方向の下部に位置するものを下段中間流路と呼ぶ場合に、
    前記上段中間流路と前記下段中間流路とは、直接接続しないように位置をずらして配設し、前記陽極円筒体の周回後に前記接続流路によって接続される
    ことを特徴とする請求項8に記載の工業用マグネトロンの製造方法。
  10. 前記冷却ブロックの前記柱状は、四角柱であって、前記上段流路と、前記下段流路と、前記中間流路とは、前記四角柱の所定面からコの字型に形成されて前記陽極円筒体を周回し、
    前記上段流路と、前記下段流路とは、前記接続口と異なる端部が閉止され、
    前記中間流路の両端部は、それぞれ閉止される
    ことを特徴とする請求項8に記載の工業用マグネトロンの製造方法
  11. 前記冷媒流路は、
    内壁面にらせん溝を有する
    ことを特徴とする請求項3に記載の工業用マグネトロンの製造方法
JP2023004067A 2023-01-13 2023-01-13 工業用マグネトロン Active JP7324955B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023004067A JP7324955B1 (ja) 2023-01-13 2023-01-13 工業用マグネトロン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023004067A JP7324955B1 (ja) 2023-01-13 2023-01-13 工業用マグネトロン

Publications (1)

Publication Number Publication Date
JP7324955B1 true JP7324955B1 (ja) 2023-08-10

Family

ID=87519565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023004067A Active JP7324955B1 (ja) 2023-01-13 2023-01-13 工業用マグネトロン

Country Status (1)

Country Link
JP (1) JP7324955B1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378953U (ja) * 1976-12-03 1978-06-30
JPS5789256U (ja) * 1980-11-20 1982-06-02
CN2791869Y (zh) * 2005-02-23 2006-06-28 佛山市美的日用家电集团有限公司 一种水冷式磁控管
JP2022132708A (ja) * 2021-03-01 2022-09-13 株式会社日立パワーソリューションズ 冷却ブロック及び工業用マグネトロン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378953U (ja) * 1976-12-03 1978-06-30
JPS5789256U (ja) * 1980-11-20 1982-06-02
CN2791869Y (zh) * 2005-02-23 2006-06-28 佛山市美的日用家电集团有限公司 一种水冷式磁控管
JP2022132708A (ja) * 2021-03-01 2022-09-13 株式会社日立パワーソリューションズ 冷却ブロック及び工業用マグネトロン

Similar Documents

Publication Publication Date Title
CN107887241B (zh) 磁控管
US11011339B2 (en) Magnetron
US12000627B2 (en) Cooling block and industrial magnetron
CN104616951A (zh) 旋转阳极型x射线管组件
US9717137B2 (en) X-ray housing having integrated oil-to-air heat exchanger
JP7324955B1 (ja) 工業用マグネトロン
EP1355340B1 (en) Magnetron
JP7324954B1 (ja) 工業用マグネトロンの製造方法
KR101089233B1 (ko) X선관의 방열부재
US20240242914A1 (en) Industrial magnetron
US20240242915A1 (en) Method for manufacturing industrial magnetron
CN118352207A (zh) 工业用磁控管的制造方法
JP5497496B2 (ja) マグネトロン及びマイクロ波利用機器
KR20000035553A (ko) 마그네트론장치 및 그 제조방법
CN118352208A (zh) 工业用磁控管的制造方法
KR100765948B1 (ko) 마그네트론의 냉각장치
CN103430274B (zh) 电子管
JP2005209426A (ja) マグネトロン
JP2004134160A (ja) マグネトロン
KR101042329B1 (ko) 마그네트론 냉각장치
JPH08315758A (ja) X線管
JPH0554805A (ja) マグネトロン
GB2259181A (en) Magnetron
GB2271021A (en) Magnetron
KR100192290B1 (ko) 마그네트론의 안테나

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7324955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150