JP7322567B2 - Modular multilevel cascade converter - Google Patents

Modular multilevel cascade converter Download PDF

Info

Publication number
JP7322567B2
JP7322567B2 JP2019135768A JP2019135768A JP7322567B2 JP 7322567 B2 JP7322567 B2 JP 7322567B2 JP 2019135768 A JP2019135768 A JP 2019135768A JP 2019135768 A JP2019135768 A JP 2019135768A JP 7322567 B2 JP7322567 B2 JP 7322567B2
Authority
JP
Japan
Prior art keywords
phase
voltage
zero
axis
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135768A
Other languages
Japanese (ja)
Other versions
JP2021019482A (en
Inventor
一伸 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2019135768A priority Critical patent/JP7322567B2/en
Publication of JP2021019482A publication Critical patent/JP2021019482A/en
Application granted granted Critical
Publication of JP7322567B2 publication Critical patent/JP7322567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、三相交流の系統に連系するシングルスター・ブリッジセル(SSBC)のモジュラー・マルチレベル・カスケード変換器(MMCC)の技術に関する。 The present invention relates to a single star bridge cell (SSBC) modular multi-level cascade converter (MMCC) technology interconnected to a three-phase AC system.

図1にシングルスター・ブリッジセル(SSBC)のモジュラー・マルチレベル・カスケード変換器(MMCC)の構成を示す。この回路の特徴は図2に示すブリッジセルBをカスケード接続したモジュールで各アームを構成する点にあり、ブリッジセルBの接続台数を増加することでより高い電圧を扱うことができる。MMCC-SSBCはトランスレスで高圧系統に連系することができ、無効電力補償装置としての応用が想定されている。 FIG. 1 shows the configuration of a single star bridge cell (SSBC) modular multilevel cascade converter (MMCC). A feature of this circuit is that each arm is configured by a module in which the bridge cells B shown in FIG. The MMCC-SSBC can be connected to a high-voltage system without a transformer, and is expected to be used as a reactive power compensator.

しかし、MMCC-SSBCには、不平衡電圧系統に連系したり逆相電流を出力した場合、すなわち逆相電力を出力すると相間セルコンデンサ電圧のバランスが崩れるという問題点がある。このアンバランスは、スイッチング素子やセルコンデンサに印加される電圧が過大になる、MMCC-SSBCから出力される電圧波形・電流波形にひずみが生じトランスの焼損、力率改善用コンデンサの過熱や絶縁破壊、電動機のうなりや遮断器の誤動作など他の機器への悪影響といった問題を引き起こす。このアンバランスを改善する方法として、特許文献1、および、非特許文献1が開示されている。 However, MMCC-SSBC has a problem that inter-phase cell capacitor voltages become unbalanced when connected to an unbalanced voltage system or when a reversed-phase current is output, that is, when reversed-phase power is output. This imbalance causes excessive voltage applied to switching elements and cell capacitors, distorted voltage and current waveforms output from MMCC-SSBC, burnout of transformers, overheating and breakdown of power factor improvement capacitors. , causes problems such as motor hum and circuit breaker malfunction, which adversely affect other devices. Patent Document 1 and Non-Patent Document 1 disclose methods for improving this imbalance.

特開2013-5694号公報JP 2013-5694 A

吉井剣,井上重徳,赤木泰文、「6.6kVトランスレス・カスケードPWM STATCOM」、2007年、電学論D、127巻、8号、p.781-788Ken Yoshii, Shigenori Inoue, Yasufumi Akagi, "6.6 kV Transformerless Cascade PWM STATCOM", 2007, Dengaku Ron D, Vol. 127, No. 8, p. 781-788 石塚智嗣,根津一嘉,佐藤之彦,山口浩,片岡昭雄、「無損失共振器を適用した電圧形PWM整流回路の電源電流制御」、平成8年、電学論D、116巻、8号、p.883-884Satoshi Ishizuka, Kazuyoshi Nezu, Yukihiko Sato, Hiroshi Yamaguchi, Akio Kataoka, "Power supply current control of voltage source PWM rectifier circuit applying lossless resonator", 1996, Theory of Electrical Engineering D, Vol.116, No.8 , p. 883-884

特許文献1は逆相電圧・逆相電流を検出してセルコンデンサ電圧バランス維持に最適な零相電圧を計算し重畳するフィードフォワード制御である。零相電圧を使用し余計な逆相電流を出力しないため、系統に擾乱を与えることなくバランスを維持できるという特長がある。 Patent document 1 is a feedforward control that detects the negative-phase voltage and the negative-phase current, calculates and superimposes the optimum zero-phase voltage for maintaining the cell capacitor voltage balance. Since it uses zero-sequence voltage and does not output extra reverse-sequence current, it has the advantage of maintaining balance without disturbing the system.

しかし、電圧不平衡が大きくなるほど、また出力する逆相電流が大きくなるほど重畳すべき零相電圧の振幅も増加する。MMCC-SSBCはより大きな振幅の電圧を出力する必要があり、このためにはカスケード接続するブリッジセルBの台数やセルコンデンサ電圧を増加しなければならず、コストや損失が増加してしまう。 However, the amplitude of the zero-sequence voltage to be superimposed increases as the voltage imbalance increases and as the negative-sequence current to be output increases. The MMCC-SSBC needs to output a voltage with a larger amplitude, which requires an increase in the number of cascade-connected bridge cells B and cell capacitor voltages, resulting in an increase in cost and loss.

一方で、セルコンデンサ電圧バランスが崩れた際にバランス補正に適した逆相電流を意図的に出力する方法が非特許文献1にて開示されている。しかし、バランス補正に適した逆相電流が系統に対して適切とは限らず、系統の電圧不平衡を悪化させてしまう恐れがあり、他の連系装置、特にモータや発電機に対して損失増加・発熱・振動や騒音の増加・寿命低下といった悪影響を及ぼす。MMCC-SSBCの都合で指令値とは異なる勝手な逆相電流を出力することは望ましくない。 On the other hand, Non-Patent Document 1 discloses a method of intentionally outputting a reverse-phase current suitable for balance correction when the cell capacitor voltage balance is lost. However, the negative-sequence current that is suitable for balance correction is not always appropriate for the grid, and may exacerbate the voltage imbalance of the grid. Adverse effects such as increased heat generation, increased vibration and noise, and shortened service life. For the convenience of MMCC-SSBC, it is not desirable to output an arbitrary reversed-phase current different from the command value.

以上示したようなことから、モジュラー・マルチレベル・カスケード変換器において、セルコンデンサの電圧バランスを一定に保つと共に、適した零相電圧、逆相電圧を使用することが課題となる。 As described above, it is a problem to keep the voltage balance of the cell capacitors constant and to use suitable zero-phase voltage and negative-phase voltage in the modular multi-level cascade converter.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、複数台のブリッジセルユニットを直列接続して1相のモジュールを構成し、このモジュールを3台有する3相のモジュラー・マルチレベル・カスケード変換器であって、セルコンデンサ電圧のバランス制御に必要な零相電圧の振幅が上限値以下の場合は前記零相電圧を補正零相電圧として出力し、前記零相電圧の振幅が前記上限値よりも大きい場合は前記上限値を前記補正零相電圧として出力する零相電圧演算部と、前記零相電圧が前記上限値よりも大きい場合、前記補正零相電圧を重畳した上でセルコンデンサ電圧のバランス制御に必要な補正逆相電流指令値を重畳した電流指令値を出力する電流指令値演算部と、前記補正零相電圧および前記電流指令値に基づいてゲート信号を生成する電流制御部と、を備えたことを特徴とする。 The present invention has been devised in view of the above-described conventional problems, and one aspect of the present invention is to configure a single-phase module by connecting a plurality of bridge cell units in series, and to configure a three-phase module having three units of this module. wherein the zero-phase voltage is output as a corrected zero-phase voltage when the amplitude of the zero-phase voltage required for balance control of the cell capacitor voltage is equal to or less than the upper limit value, and the zero-phase voltage is a zero-phase voltage calculator that outputs the upper limit value as the corrected zero-phase voltage when the voltage amplitude is greater than the upper limit value; and the corrected zero-phase voltage when the zero-phase voltage is greater than the upper limit value A current command value calculation unit that outputs a current command value superimposed and superimposed with a corrected reverse-phase current command value necessary for balance control of the cell capacitor voltage; and a gate signal based on the corrected zero-phase voltage and the current command value. and a current control unit that generates

また、その一態様として、前記モジュラー・マルチレベル・カスケード変換器の出力電圧・出力電流および重畳する前記補正零相電圧が(3)式,(4)式で定義される時、前記零相電圧演算部は、逆相電流指令値を入力せず、正相q軸電流指令値、および、正相d軸電圧、および、逆相d軸電圧、および、逆相q軸電圧に基づいて前記零相電圧を演算して前記補正零相電圧を出力し、前記電流指令値演算部は、(6)式に基づいて前記補正逆相電流指令値である補正逆相d軸電流指令値,補正逆相q軸電流指令値を演算することを特徴とする。 Further, as one aspect thereof, when the output voltage/output current of the modular multi-level cascade converter and the corrected zero-phase voltage to be superimposed are defined by equations (3) and (4), the zero-phase voltage The calculation unit does not input the negative-phase current command value, and calculates the zero based on the positive-phase q-axis current command value, the positive-phase d-axis voltage, the negative-phase d-axis voltage, and the negative-phase q-axis voltage. The phase voltage is calculated to output the corrected zero-phase voltage. It is characterized by calculating a phase q-axis current command value.

Figure 0007322567000001
Figure 0007322567000001

Figure 0007322567000002
Figure 0007322567000002

Figure 0007322567000003
Figure 0007322567000003

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V1q:正相q軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d’:補正零相d軸電圧
V0q’:補正零相q軸電圧
ωt:系統電圧の位相
iu,iv,iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I1q*:正相q軸電流指令値
I2d*’:補正逆相d軸電流指令値
I2q*’:補正逆相q軸電流指令値。
Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V1q: Positive phase q-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis Voltage V0d': Corrected zero-phase d-axis voltage V0q': Corrected zero-phase q-axis voltage ωt: System voltage phase iu, iv, iw: U-phase output current, V-phase output current, W-phase output current I1q: Positive-phase q-axis current I2d: Negative-phase d-axis current I2q: Negative-phase q-axis current I1q*: Positive-phase q-axis current command value I2d*': Corrected negative-phase d-axis current command value I2q*': Corrected negative-phase q-axis Current command value.

また、他の態様として、前記モジュラー・マルチレベル・カスケード変換器の出力電圧・出力電流がおよび重畳する前記補正零相電圧が(3)式,(4)式で定義される時、前記零相電圧演算部は、逆相d軸電流指令値、および、逆相q軸電流指令値、および、正相q軸電流指令値、および、正相d軸電圧、および、逆相d軸電圧、および、逆相q軸電圧に基づいて前記零相電圧を演算して前記補正零相電圧を出力し、前記電流指令値演算部は、(6)式に基づいて前記補正逆相電流指令値である補正逆相d軸電流指令値,補正逆相q軸電流指令値を演算することを特徴とする。 Further, as another aspect, when the corrected zero-phase voltage on which the output voltage/output current of the modular multilevel cascade converter is superimposed is defined by equations (3) and (4), the zero-phase The voltage calculator calculates a negative-phase d-axis current command value, a negative-phase q-axis current command value, a positive-phase q-axis current command value, a positive-phase d-axis voltage, a negative-phase d-axis voltage, and , the zero-phase voltage is calculated based on the negative-phase q-axis voltage to output the corrected zero-phase voltage, and the current command value calculation unit calculates the corrected negative-phase current command value based on equation (6). A corrected anti-phase d-axis current command value and a corrected anti-phase q-axis current command value are calculated.

Figure 0007322567000004
Figure 0007322567000004

Figure 0007322567000005
Figure 0007322567000005

Figure 0007322567000006
Figure 0007322567000006

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V1q:正相q軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d’:補正零相d軸電圧
V0q’:補正零相q軸電圧
ωt:系統電圧の位相
iu,iv,iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I1q*:正相q軸電流指令値
I2d*’:補正逆相d軸電流指令値
I2q*’:補正逆相q軸電流指令値。
Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V1q: Positive phase q-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis Voltage V0d': Corrected zero-phase d-axis voltage V0q': Corrected zero-phase q-axis voltage ωt: System voltage phase iu, iv, iw: U-phase output current, V-phase output current, W-phase output current I1q: Positive-phase q-axis current I2d: Negative-phase d-axis current I2q: Negative-phase q-axis current I1q*: Positive-phase q-axis current command value I2d*': Corrected negative-phase d-axis current command value I2q*': Corrected negative-phase q-axis Current command value.

また、その一態様として、前記モジュラー・マルチレベル・カスケード変換器の出力可能な電圧振幅が定格電圧振幅の1.5倍に満たない場合、前記零相電圧演算部は、線間短絡が発生したときに前記上限値を零とすることを特徴とする。 Further, as one aspect thereof, when the voltage amplitude that can be output from the modular multi-level cascade converter is less than 1.5 times the rated voltage amplitude, the zero-phase voltage calculation unit detects that a line-to-line short circuit has occurred. The upper limit is sometimes set to zero.

本発明によれば、モジュラー・マルチレベル・カスケード変換器において、セルコンデンサの電圧バランスを一定に保つと共に、適した零相電圧、逆相電圧を使用することが可能となる。 According to the present invention, it is possible to keep the voltage balance of the cell capacitors constant and use suitable zero-phase voltage and negative-phase voltage in the modular multi-level cascade converter.

MMCC-SSBCの構成を示す概略図。Schematic diagram showing the configuration of MMCC-SSBC. ブリッジセルの構成を示す概略図。Schematic which shows the structure of a bridge cell. 実施形態1~3における電流制御部を示すブロック図。FIG. 3 is a block diagram showing a current control unit according to Embodiments 1 to 3; 実施形態1における零相電圧演算部のブロック図。4 is a block diagram of a zero-phase voltage calculator in the first embodiment; FIG. 実施形態1~3における電流指令値演算部のブロック図。FIG. 2 is a block diagram of a current command value calculator in Embodiments 1 to 3; 実施形態2における零相電圧演算部のブロック図。FIG. 10 is a block diagram of a zero-phase voltage calculator according to the second embodiment; 実施形態3における零相電圧演算部のブロック図。FIG. 11 is a block diagram of a zero-phase voltage calculator in Embodiment 3; 零相電圧の重畳量とバランスに必要な逆相電流振幅の関係図。FIG. 4 is a relational diagram between the amount of superimposed zero-phase voltage and the negative-sequence current amplitude required for balance.

以下、本願発明におけるモジュラー・マルチレベル・カスケード変換器の実施形態1~3を図1~図8に基づいて詳述する。 Embodiments 1 to 3 of the modular multilevel cascade converter according to the present invention will be described in detail below with reference to FIGS. 1 to 8. FIG.

[実施形態1]
本実施形態1では、零相電圧によるバランス制御と逆相電流によるバランス制御を併用してセルコンデンサ電圧をバランスさせる方法を示す。零相電圧を優先的に使用し、指令に対して重畳できる零相電圧の振幅が不足した場合に限り逆相電流を出力することで、系統に与える擾乱をできる限り小さくする。
[Embodiment 1]
Embodiment 1 shows a method of balancing the cell capacitor voltages by using both balance control based on the zero-phase voltage and balance control based on the negative-phase current. By preferentially using the zero-sequence voltage and outputting the reverse-sequence current only when the amplitude of the zero-sequence voltage that can be superimposed on the command is insufficient, the disturbance given to the system is minimized.

本実施形態1のモジュラー・マルチレベル・カスケード変換器(直列多重インバータ装置)は、例えば、図1に示す回路に適用することを想定している。図1において、符号25は三相交流の系統電源であり、系統電圧はVsである。複数台のブリッジセルBのユニットが直列接続されて1相のモジュールを構成する。このモジュールを3台有し、系統の各相にリアクトルを介して接続される。すなわち、各相(3相)に1相あたりn台のブリッジセルBが接続され、3相合計では3n台のブリッジセルBが接続される。 The modular multi-level cascade converter (serial multiple inverter device) of the first embodiment is assumed to be applied to the circuit shown in FIG. 1, for example. In FIG. 1, reference numeral 25 denotes a three-phase alternating current system power supply, and the system voltage is Vs. A plurality of bridge cell B units are connected in series to form a one-phase module. It has three modules and is connected to each phase of the system via a reactor. That is, n bridge cells B are connected to each phase (three phases), and 3n bridge cells B are connected in total for the three phases.

図2に示すように、ブリッジセルBは、第1半導体スイッチング素子S1の一端が、一方の接続端子に接続される。第2半導体スイッチング素子S2の一端は第1半導体スイッチング素子S1の一端に接続される。第3半導体スイッチング素子S3は、第1半導体スイッチング素子S1の他端と他方の接続端子との間に接続される。第4半導体スイッチング素子S4は、第2半導体スイッチング素子S2の他端と他方の接続端子との間に接続される。セルコンデンサCは、第1,第3半導体スイッチング素子S1,S3の接続点と第2,第4半導体スイッチング素子S2,S4の接続点との間に接続される。 As shown in FIG. 2, in the bridge cell B, one end of the first semiconductor switching element S1 is connected to one connection terminal. One end of the second semiconductor switching element S2 is connected to one end of the first semiconductor switching element S1. The third semiconductor switching element S3 is connected between the other end of the first semiconductor switching element S1 and the other connection terminal. The fourth semiconductor switching element S4 is connected between the other end of the second semiconductor switching element S2 and the other connection terminal. The cell capacitor C is connected between the connection point of the first and third semiconductor switching elements S1 and S3 and the connection point of the second and fourth semiconductor switching elements S2 and S4.

図3にMMCC-SSBCの電流制御部のブロック図を示す。ローパスフィルタLPFは、各相の出力電流検出信号iu,iv,iwからノイズやスイッチングリプルなどを除去する。3相2相変換器1は、ローパスフィルタLPFの出力結果を3相2相変換し、2相の出力電流検出信号Ia,Ibを出力する。 FIG. 3 shows a block diagram of the current controller of the MMCC-SSBC. The low-pass filter LPF removes noise, switching ripples, etc. from the output current detection signals iu, iv, and iw of each phase. A three-to-two phase converter 1 converts the output result of the low-pass filter LPF into three-to-two phases and outputs two-phase output current detection signals Ia and Ib.

減算器2a,2bは、後述する3相2相変換された固定座標上の電流指令値Ia*,Ib*と2相の出力電流検出信号Ia,Ibとの偏差を演算する。P(比例)R(共振)アンプPRは、減算器2a,2bの出力を増幅する。Rアンプは非特許文献2に記述があり、特定の周波数に対してゲインが無限大となる。この周波数を系統電源周波数とすることにより、正相電流および逆相電流両方の偏差を零にすることができる。2相3相変換器3は、PRアンプPRの出力を2相3相変換し、各相の出力電圧指令値を出力する。 Subtractors 2a and 2b calculate deviations between current command values Ia* and Ib* on fixed coordinates after three-phase to two-phase conversion and two-phase output current detection signals Ia and Ib, which will be described later. A P (proportional) R (resonant) amplifier PR amplifies the outputs of the subtractors 2a and 2b. The R amplifier is described in Non-Patent Document 2, and has an infinite gain with respect to a specific frequency. By using this frequency as the system power supply frequency, the deviation of both the positive-sequence current and the negative-sequence current can be made zero. A two-to-three-phase converter 3 converts the output of the PR amplifier PR into two-to-three phases and outputs an output voltage command value for each phase.

加算器4は、後述する積V0d’cosωt,V0q’sinωtを足し合わせ、補正零相電圧を算出する。加算器5u,5v,5wは、2相3相変換器3から出力された各相の出力電圧指令値に、加算器4の出力である補正零相電圧をそれぞれ加算する。このほか、セルコンデンサ電圧バランスフィードバック制御によって得られた零相電圧を加算する場合もある。 The adder 4 adds the products V0d'cos ωt and V0q'sin ωt, which will be described later, to calculate a corrected zero-phase voltage. The adders 5u, 5v, and 5w add the corrected zero-phase voltage, which is the output of the adder 4, to the output voltage command value of each phase output from the two-to-three-phase converter 3, respectively. In addition, the zero-phase voltage obtained by cell capacitor voltage balance feedback control may be added.

PWM変調器PWMは、補正零相電圧を重畳した各相の出力電圧指令値と、各ブリッジセルBに対応したキャリア三角波とを比較し、各ブリッジセルBのゲート信号を得る。得られたゲート信号は、図1の各ブリッジセルBに入力される。 The PWM modulator PWM compares the output voltage command value of each phase superimposed with the corrected zero-phase voltage and the carrier triangular wave corresponding to each bridge cell B, and obtains the gate signal of each bridge cell B. FIG. The obtained gate signal is input to each bridge cell B in FIG.

図4に本実施形態1の零相電圧演算部27のブロック図を示す。 FIG. 4 shows a block diagram of the zero-phase voltage calculator 27 of the first embodiment.

PLL(Phase Locked Loop)は、系統電圧検出信号Vsから位相ωtを求める。ローパスフィルタLPFは、系統電圧検出信号Vsからノイズやスイッチングリプルなどを除去する。 A PLL (Phase Locked Loop) obtains the phase ωt from the system voltage detection signal Vs. The low-pass filter LPF removes noise, switching ripples, etc. from the system voltage detection signal Vs.

dq変換器6は、ローパスフィルタLPFを適用した後の系統電圧検出信号Vsを位相ωtに基づいてdq変換を行う。移動平均フィルタMAVE1,MAVE2は、dq変換器6の出力から、電圧不平衡に起因する基本波周波数の2倍の脈動を除去する。移動平均フィルタMAVE1,MAVE2の出力が、正相d軸電圧V1d,正相q軸電圧V1qとなる。正相q軸電圧V1qはPLLが正常に動作している限り定常時は通常零となるが、系統電圧に変動が生じた場合などには値を持つ場合がある。 The dq converter 6 dq-converts the system voltage detection signal Vs to which the low-pass filter LPF has been applied based on the phase ωt. The moving average filters MAVE1 and MAVE2 remove pulsations at twice the fundamental frequency caused by voltage imbalance from the output of the dq converter 6. FIG. The outputs of the moving average filters MAVE1 and MAVE2 are the positive phase d-axis voltage V1d and the positive phase q-axis voltage V1q. The positive phase q-axis voltage V1q is normally zero in normal operation as long as the PLL operates normally, but may have a value when the system voltage fluctuates.

乗算器7は、位相ωtを-1倍する。dq変換器8は、ローパスフィルタLPFを適用した系統電圧検出信号Vsを位相-ωtに基づいてdq変換を行う。移動平均フィルタMAVE3,MAVE4は、dq変換器8の出力から、正相電圧に起因する基本波周波数の2倍の脈動を除去する。移動平均フィルタMAVE3,MAVE4の出力が、逆相d軸電圧V2d,逆相q軸電圧V2qとなる。 A multiplier 7 multiplies the phase ωt by −1. The dq converter 8 dq-converts the system voltage detection signal Vs to which the low-pass filter LPF is applied based on the phase -ωt. The moving average filters MAVE3 and MAVE4 remove from the output of the dq converter 8 the pulsation at twice the fundamental frequency caused by the positive phase voltage. The outputs of the moving average filters MAVE3 and MAVE4 are the anti-phase d-axis voltage V2d and the anti-phase q-axis voltage V2q.

演算器9は、正相d軸電圧V1d,逆相d軸電圧V2d,逆相q軸電圧V2qの他、外部から入力される正相q軸電流指令値I1q*を入力する。演算器9は、正相d軸電圧V1d,逆相d軸電圧V2d,逆相q軸電圧V2q,正相q軸電流指令値I1q*に基づいて、特許文献1に基づきセルコンデンサ電圧のバランスに適切な零相d軸電圧V0d,零相q軸電圧V0qを出力する。(1)式において、V1は正相電圧,V2は逆相電圧,I1は正相電流,I2は逆相電流とする。 The computing unit 9 receives a positive phase q-axis current command value I1q* input from outside in addition to the positive phase d-axis voltage V1d, the negative phase d-axis voltage V2d, the negative phase q-axis voltage V2q. Based on the positive phase d-axis voltage V1d, the negative phase d-axis voltage V2d, the negative phase q-axis voltage V2q, and the positive phase q-axis current command value I1q*, the calculator 9 balances the cell capacitor voltage based on Patent Document 1. Appropriate zero-phase d-axis voltage V0d and zero-phase q-axis voltage V0q are output. In equation (1), V1 is a positive sequence voltage, V2 is a negative sequence voltage, I1 is a positive sequence current, and I2 is a negative sequence current.

Figure 0007322567000007
Figure 0007322567000007

また、正相電流と逆相電流の位相差φは0deg,60deg,120deg,180deg,240deg,300degから最も近い位相差を選択した値とし、位相差φが0deg,180degの時(2-1)式、位相差φが120deg,300degの時(2-2)式、位相差φが60deg,240degの時(2-3)式に基づいて零相d軸電圧V0d,零相q軸電圧V0qを算出しても良い。 The phase difference φ between the positive-phase current and the negative-phase current is the value selected from 0deg, 60deg, 120deg, 180deg, 240deg, and 300deg, and when the phase difference φ is 0deg and 180deg (2-1) The zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q are calculated based on the formula (2-2) when the phase difference φ is 120deg and 300deg, and the formula (2-3) when the phase difference φ is 60deg and 240deg. You can calculate.

Figure 0007322567000008
Figure 0007322567000008

a’:正相電流と逆相電流の振幅比
a:補正振幅比
ただし、a=a’(φ=0deg,120deg,240deg)
a=-a’(φ=60deg,180deg,300deg)
また、位相差φが0deg,60deg,120deg,180deg,240deg,300degでない場合、最も近い2つの位相差φから(2-1)式,(2-2)式,(2-3)式により2つの零相d軸電圧V0d,零相q軸電圧V0qを求め、その2つの零相d軸電圧V0d,零相q軸電圧V0qの補間により零相d軸電圧V0d,零相q軸電圧V0qを決定してもよい。
a': Amplitude ratio of positive phase current and negative phase current a: Correction amplitude ratio where a = a' (φ = 0deg, 120deg, 240deg)
a = -a' (φ = 60deg, 180deg, 300deg)
If the phase difference φ is not 0 deg, 60 deg, 120 deg, 180 deg, 240 deg, or 300 deg, 2 Two zero-phase d-axis voltage V0d and zero-phase q-axis voltage V0q are obtained, and the two zero-phase d-axis voltage V0d and zero-phase q-axis voltage V0q are interpolated to obtain zero-phase d-axis voltage V0d and zero-phase q-axis voltage V0q. may decide.

ただし、(2-1)式では、a=a’(φ<90deg,270deg<φ),a=-a’(90deg<φ<270deg),(2-2)式では、a=a’(30deg<φ<210deg),a=-a’(φ<30deg,210deg<φ),(2-3)式では、a=a’(150deg<φ<330deg),a=-a’(φ<150deg,330deg<φ)とする。 However, in formula (2-1), a = a' (φ<90deg, 270deg<φ), a = -a' (90deg<φ<270deg), and in formula (2-2), a = a' ( 30deg<φ<210deg), a=-a'(φ<30deg, 210deg<φ), In the formula (2-3), a=a'(150deg<φ<330deg), a=-a'(φ< 150deg, 330deg<φ).

また、位相差φが30deg,90deg,150deg,210deg,270deg,330degの時に補正係数を2/√3とし、位相差φが0deg,60deg,120deg,180deg,240deg,300degの時に補正係数を1とし、間の位相差φにおいては補正係数を線形補間により求めたゲインGiを(2-1)式,(2-2)式,(2-3)式の正相d軸電圧V1dに依存する項に乗算してもよい。 The correction coefficient is set to 2/√3 when the phase difference φ is 30deg, 90deg, 150deg, 210deg, 270deg and 330deg, and the correction coefficient is set to 1 when the phase difference φ is 0deg, 60deg, 120deg, 180deg, 240deg and 300deg. , the gain Gi obtained by linear interpolation of the correction coefficient in the phase difference φ between , is the term dependent on the positive phase d-axis voltage V1d in the equations (2-1), (2-2), and (2-3). can be multiplied by

このとき、正相電流に対する逆相電流の振幅比aは零である。位相差φはどの値に設定しても同じ結果が得られる。 At this time, the amplitude ratio a of the negative-phase current to the positive-phase current is zero. The same result can be obtained no matter what value the phase difference φ is set to.

上記では、零相d軸電圧V0d,零相q軸電圧V0qの演算方法の例を説明したが、演算器9での零相d軸電圧V0d,零相q軸電圧V0qは他の方法により求めても良い。 An example of the method of calculating the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q has been described above. can be

乗算器10d,10qは、零相d軸電圧V0d,零相q軸電圧V0qの自乗を求める。加算器11は、乗算器10d,10qの出力を足し合わせる。平方根演算器12は、加算器11の出力の平方根を求める。この平方根演算器12の出力が、電圧指令値に重畳する零相電圧の振幅√(V0d2+V0q2)となる。 Multipliers 10d and 10q obtain the squares of the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q. Adder 11 adds the outputs of multipliers 10d and 10q. A square root calculator 12 obtains the square root of the output of the adder 11 . The output of the square root calculator 12 is the amplitude √(V0d 2 +V0q 2 ) of the zero-phase voltage superimposed on the voltage command value.

除算器13は、零相電圧の振幅の上限を指定する上限値V0limを零相電圧の振幅√(V0d2+V0q2)で除算し、零相電圧の振幅√(V0d2+V0q2)に対する零相電圧の振幅の上限値V0limの比率を求める。 The divider 13 divides the upper limit value V0lim that specifies the upper limit of the amplitude of the zero-phase voltage by the amplitude of the zero-phase voltage √(V0d 2 +V0q 2 ) to obtain the zero-phase voltage for the amplitude √(V0d 2 +V0q 2 ) of the zero-phase voltage. A ratio of the upper limit value V0lim of the voltage amplitude is obtained.

減算器14は、零相電圧の振幅の上限値V0limから零相電圧の振幅√(V0d2+V0q2)を減算する。比較器15は、減算器14の出力と0とを比較し、減算器14の出力がマイナス、すなわち上限値V0limよりも零相電圧の振幅√(V0d2+V0q2)が大きい場合に1を出力し、それ以外の場合0を出力する。スイッチ16は、比較器15の出力が1ならば零相電圧の振幅に対する上限値V0limの比率(除算器13の出力)を出力し、0ならば1を出力する。乗算器17d,17qは、零相d軸電圧V0d,零相q軸電圧V0qとスイッチ16の出力を乗算する。乗算器17d,17qの出力が補正零相電圧V0d’,V0q’となる。 The subtractor 14 subtracts the amplitude of the zero-phase voltage √(V0d 2 +V0q 2 ) from the upper limit value V0lim of the amplitude of the zero-phase voltage. The comparator 15 compares the output of the subtractor 14 with 0, and outputs 1 when the output of the subtractor 14 is negative, that is, when the zero-phase voltage amplitude √(V0d 2 +V0q 2 ) is greater than the upper limit value V0lim. and 0 otherwise. The switch 16 outputs the ratio of the upper limit value V0lim to the amplitude of the zero-phase voltage (the output of the divider 13) if the output of the comparator 15 is 1, and outputs 1 if the output is 0. Multipliers 17d and 17q multiply the output of the switch 16 by the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q. Outputs of the multipliers 17d and 17q are corrected zero-phase voltages V0d' and V0q'.

補正零相電圧V0d’,V0q’は、演算器9より得られた零相電圧の振幅√(V0d2+V0q2)が上限値V0limより小さければ、V0d’=V0d,V0q’=V0qとなる。零相電圧の振幅√(V0d2+V0q2)が上限値V0limより大きければ、補正零相電圧V0d’,V0q’の振幅は上限値V0limに等しい値に制限され、位相は零相d軸電圧V0d,零相q軸電圧V0qに等しく変化しない。 The corrected zero-phase voltages V0d' and V0q' are V0d'=V0d and V0q'=V0q if the amplitude √(V0d 2 +V0q 2 ) of the zero-phase voltage obtained from the calculator 9 is smaller than the upper limit value V0lim. If the amplitude of the zero-phase voltage √(V0d 2 +V0q 2 ) is greater than the upper limit value V0lim, the amplitudes of the corrected zero-phase voltages V0d′ and V0q′ are limited to values equal to the upper limit value V0lim, and the phase is set to the zero-phase d-axis voltage V0d. , the zero-phase q-axis voltage V0q does not change.

図5に本実施形態1の電流指令値演算部28のブロック図を示す。図5の補正零相電圧V0d’,V0q’は図4により求めた値である。正相d軸電流指令値I1d*は有効電力に相当し、無効電力補償装置では零である。ただし、セルコンデンサ電圧バランスフィードバック制御によって装置の定常損失分が入る場合がある。この場合も正相d軸電流指令値I1d*はほぼ零である。 FIG. 5 shows a block diagram of the current command value calculator 28 of the first embodiment. Corrected zero-phase voltages V0d' and V0q' in FIG. 5 are values obtained from FIG. The positive phase d-axis current command value I1d* corresponds to active power and is zero in the reactive power compensator. However, the steady-state loss of the device may be included due to the cell capacitor voltage balance feedback control. Also in this case, the positive phase d-axis current command value I1d* is approximately zero.

演算器18は、補正零相d軸電圧V0d’,補正零相q軸電圧V0q’,正相d軸電圧V1d,正相q軸電圧V1q,逆相d軸電圧V2d,逆相q軸電圧V2q,正相q軸電流指令値I1q*を入力し、(6)式により補正逆相電流指令値(補正逆相d軸電流指令値I2d*’,補正逆相q軸電流指令値I2q*’)を求める。 The calculator 18 calculates a corrected zero-phase d-axis voltage V0d', a corrected zero-phase q-axis voltage V0q', a positive phase d-axis voltage V1d, a positive phase q-axis voltage V1q, a negative phase d-axis voltage V2d, and a negative phase q-axis voltage V2q. , the positive-phase q-axis current command value I1q* is input, and the corrected negative-phase current command value (corrected negative-phase d-axis current command value I2d*', corrected negative-phase q-axis current command value I2q*') is obtained by equation (6). Ask for

dq逆変換器19は、正相d軸電流指令値I1d*,正相q軸電流指令値I1q*を位相ωtに基づいてdq逆変換を行い、固定座標上の値に変換する。乗算器20は位相ωtに-1を乗算する。dq逆変換器21は、補正逆相d軸電流指令値I2d*’,補正逆相q軸電流指令値I2q*’を位相-ωtに基づいてdq逆変換を行い、固定座標上の値に変換する。加算器22a,22bは、dq逆変換器19,21の出力を足し合わせる。加算器22a,22bの出力が固定座標上の電流指令値Ia*,Ib*となる。 The dq inverse converter 19 performs dq inverse conversion on the positive phase d-axis current command value I1d* and the positive phase q-axis current command value I1q* based on the phase ωt to convert them into values on fixed coordinates. A multiplier 20 multiplies the phase ωt by -1. The dq inverse converter 21 performs dq inverse transformation on the corrected anti-phase d-axis current command value I2d*' and the corrected anti-phase q-axis current command value I2q*' based on the phase -ωt to convert them into values on fixed coordinates. do. Adders 22a and 22b add the outputs of the dq inverse transformers 19 and 21 together. The outputs of the adders 22a and 22b become the current command values Ia* and Ib* on the fixed coordinates.

乗算器cosは、補正零相d軸電圧V0d’と位相ωtを入力し、位相ωtに対応する余弦値と補正零相d軸電圧V0d’との積V0d’cosωtを出力する。乗算器sinは、補正零相q軸電圧V0q’と位相ωtを入力し、位相ωtに対応する正弦値と補正零相q軸電圧V0q’との積V0q’sinωtを出力する。図3の加算器4において積V0d’cosωt,V0q’sinωtを足し合わせ、図3の加算器5u,5v,5wにおいて零相電圧として各相の電圧指令値に加算する。 The multiplier cos inputs the corrected zero-phase d-axis voltage V0d' and the phase ωt, and outputs the product V0d'cosωt of the cosine value corresponding to the phase ωt and the corrected zero-phase d-axis voltage V0d'. The multiplier sin inputs the corrected zero-phase q-axis voltage V0q' and the phase ωt, and outputs the product V0q'sinωt of the sine value corresponding to the phase ωt and the corrected zero-phase q-axis voltage V0q'. Adder 4 in FIG. 3 adds the products V0d'cos ωt and V0q'sin ωt, and adders 5u, 5v, and 5w in FIG.

図5の乗算器cos,sin,図3の加算器4は零相電圧演算部27に含まれるものとする。 It is assumed that the multipliers cos and sin in FIG. 5 and the adder 4 in FIG.

本実施形態1は、不平衡電圧系統において逆相電流指令値が零の時(逆相電流指令値を入力しない時)に、セルコンデンサ電圧のバランス維持のため重畳する零相電圧の振幅を上限値V0limに制限する零相電圧演算部27と、振幅を制限された零相電圧を重畳したときにセルコンデンサ電圧のバランス維持に必要な逆相電流を求める電流指令値演算部28からなる。各相の電圧Vu,Vv,Vwを(3)式,各相の電流iu,iv,iwを(4)式のように定義する。 In the first embodiment, when the negative-phase current command value is zero in the unbalanced voltage system (when the negative-phase current command value is not input), the amplitude of the superimposed zero-phase voltage is set to the upper limit in order to maintain the balance of the cell capacitor voltage. It consists of a zero-sequence voltage calculator 27 that limits the value to V0lim and a current command value calculator 28 that obtains the negative-sequence current required to maintain the balance of the cell capacitor voltage when the amplitude-limited zero-sequence voltage is superimposed. Voltages Vu, Vv, and Vw of each phase are defined by equation (3), and currents iu, iv, and iw of each phase are defined by equation (4).

Figure 0007322567000009
Figure 0007322567000009

Figure 0007322567000010
Figure 0007322567000010

V1dは正相d軸電圧,V1qは正相q軸電圧である。PLLが有効で制御システムが系統電圧の位相に同期しているならば、正相q軸電圧V1qは定常状態において零である。V2d,V2q,V0d’,V0q’はそれぞれ逆相d軸電圧、逆相q軸電圧、補正零相d軸電圧、補正零相q軸電圧である。電流についても同様であり、I1q,I2d,I2qはそれぞれ正相q軸電流、逆相d軸電流、逆相q軸電流である。各相の基本波1周期あたりの有効電力は以下の(5)式となる。各相の基本波1周期あたりの有効電力はそれぞれ等しい値とする。 V1d is a positive phase d-axis voltage, and V1q is a positive phase q-axis voltage. If the PLL is enabled and the control system is synchronized with the phase of the system voltage, the positive phase q-axis voltage V1q is zero in steady state. V2d, V2q, V0d', and V0q' are the anti-phase d-axis voltage, anti-phase q-axis voltage, corrected zero-phase d-axis voltage, and corrected zero-phase q-axis voltage, respectively. The same applies to currents, and I1q, I2d, and I2q are positive-phase q-axis current, negative-phase d-axis current, and negative-phase q-axis current, respectively. The active power per cycle of the fundamental wave of each phase is given by the following equation (5). It is assumed that the active power per cycle of the fundamental wave of each phase is the same value.

Figure 0007322567000011
Figure 0007322567000011

(5)式を満たす逆相d軸電流I2d,逆相q軸電流I2qを求めると、以下の(6)式が得られる。 When the anti-phase d-axis current I2d and the anti-phase q-axis current I2q that satisfy the equation (5) are obtained, the following equation (6) is obtained.

Figure 0007322567000012
Figure 0007322567000012

補正零相d軸電圧V0d’,補正零相q軸電圧V0q’が演算器9によって得られた零相d軸電圧V0d,零相q軸電圧V0qに等しい場合、(6)式より得られる補正逆相d軸電流I2d*’,補正逆相q軸電流I2q*’は零になる。 When the corrected zero-phase d-axis voltage V0d' and the corrected zero-phase q-axis voltage V0q' are equal to the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q obtained by the calculator 9, the correction obtained from the equation (6) is The anti-phase d-axis current I2d*' and the corrected anti-phase q-axis current I2q*' become zero.

すなわち、上限値V0limに対して零相d軸電圧V0d,零相q軸電圧V0qが小さければ、MMCC-SSBCの出力する逆相電流は零となり、零相電圧のみでセルコンデンサ電圧のバランス制御を行う。上限値V0limの方が小さければ、重畳する零相電圧の振幅を上限値V0limに制限した上で(6)式によって求められる逆相電流を併用してセルコンデンサ電圧のバランス制御を行う。 That is, if the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q are smaller than the upper limit value V0lim, the negative-sequence current output by the MMCC-SSBC becomes zero, and the balance control of the cell capacitor voltage is performed only by the zero-phase voltage. conduct. If the upper limit value V0lim is smaller, the amplitude of the superimposed zero-sequence voltage is limited to the upper limit value V0lim, and then the negative-sequence current obtained by the equation (6) is used together to control the balance of the cell capacitor voltages.

本実施形態1により、逆相電流単独でバランス制御を行うよりも逆相電流振幅を小さくすることができる。また、特許文献1や(2-1)式,(2-2)式,(2-3)式同様に適切な逆相電流をフィードフォワードで出力するため、フィードバックとは異なり系統電圧が変動した場合でもセルコンデンサ電圧のアンバランスを小さくすることができる。 According to the first embodiment, the amplitude of the negative-phase current can be made smaller than when the balance control is performed using only the negative-phase current. In addition, in order to output an appropriate negative-sequence current by feedforward as in Patent Document 1, formulas (2-1), formulas (2-2), and formulas (2-3), the system voltage fluctuates unlike feedback. Even in this case, the unbalance of the cell capacitor voltage can be reduced.

重畳する零相電圧の振幅は、上限値V0limにより制限することができる。上限値V0limはあらかじめ設計した固定値とすることができ、例えば系統電圧実効値の定格(最大値)をV1,セルコンデンサ電圧定格(最大値)をVc,1相あたりのブリッジセルBの数をnとしたときに、(7)式により求めることができる。 The amplitude of the superimposed zero-phase voltage can be limited by the upper limit value V0lim. The upper limit value V0lim can be a fixed value designed in advance. For example, the system voltage effective value rating (maximum) is V1, the cell capacitor voltage rating (maximum) is Vc, and the number of bridge cells B per phase It can be obtained by the formula (7), where n.

Figure 0007322567000013
Figure 0007322567000013

余裕を見て(7)式よりも小さな値としてもよい。上限値V0limは可変値としてもよく、現在の系統電圧振幅を(7)式のV1に代入して決定するほか、図3の2相3相変換器3から出力される電圧指令値正弦波の振幅から求める方法、図3のPWM変調器PWMに入力される電圧指令値振幅が1よりも小さければ上限値V0limを少しずつ増加し1を超えていたら減少させる方法もある。 It may be set to a value smaller than the expression (7) with some margin. The upper limit value V0lim may be a variable value, and in addition to being determined by substituting the current system voltage amplitude for V1 in equation (7), the voltage command value sine wave output from the two-phase three-phase converter 3 in FIG. There is also a method of obtaining from the amplitude, and a method of gradually increasing the upper limit value V0lim if the voltage command value amplitude input to the PWM modulator PWM of FIG.

上限値V0limは零としてもよく、この場合は零相電圧を重畳せず逆相電流のみでセルコンデンサ電圧のバランス制御を行う。上限値V0limを零とすることにより、3相4線式で零相電圧を重畳すると零相電流が流れてしまう場合でも、本実施形態1を適用することが可能となる。ただし、逆相電流も少し流れてしまう。 The upper limit value V0lim may be zero. In this case, the balance control of the cell capacitor voltage is performed only with the negative-phase current without superimposing the zero-phase voltage. By setting the upper limit value V0lim to zero, the first embodiment can be applied even when a zero-phase current flows when a zero-phase voltage is superimposed in a three-phase four-wire system. However, a small amount of reverse-sequence current also flows.

(6)式では、正相電圧と補正零相電圧の振幅が等しいときに分母が零となり、セルコンデンサ電圧のバランス制御に適切な逆相電流を求めることができない。しかし、このときMMCC-SSBCは定格の2倍の振幅の電圧を出力できることを示し、特許文献1の段落[0049]よりMMCC-SSBCは任意の逆相電流を単独で出力しても零相電圧によるセルコンデンサ電圧をバランスさせることができる。 In equation (6), the denominator becomes zero when the amplitudes of the positive-sequence voltage and the corrected zero-sequence voltage are equal, and a negative-sequence current suitable for balance control of the cell capacitor voltage cannot be obtained. However, at this time, the MMCC-SSBC shows that it can output a voltage with twice the rated amplitude, and according to paragraph [0049] of Patent Document 1, the MMCC-SSBC outputs a zero-phase voltage even if an arbitrary negative-phase current is output alone. can balance the cell capacitor voltage due to

このようなセルコンデンサ電圧やブリッジセルBの台数が十分多い設計ならば、特許文献1の段落[0051]より正相電流と逆相電流の振幅が等しくならないようにすれば問題なく運転でき、本実施形態1を適用する必要がない。その反面、コストや損失は大幅に増加してしまう。本実施形態1では、セルコンデンサ電圧やブリッジセルBの台数の余裕が小さい設計の装置に適用することを想定したものであるため、(6)式で分母が零となることはない。 If the cell capacitor voltage and the number of bridge cells B are sufficiently large, it can be operated without problems if the amplitudes of the positive-phase current and the negative-phase current are not equal according to paragraph [0051] of Patent Document 1. There is no need to apply the first embodiment. On the other hand, costs and losses will increase significantly. Since the first embodiment is intended to be applied to a device designed with a small margin in the cell capacitor voltage and the number of bridge cells B, the denominator in equation (6) never becomes zero.

以上示したように、本実施形態1によれば、MMCC-SSBCにおいて零相電圧と逆相電流を併用することにより各セルコンデンサCの電圧バランスを一定に保つことができる。 As described above, according to the first embodiment, the voltage balance of each cell capacitor C can be kept constant by using both the zero-phase voltage and the negative-phase current in the MMCC-SSBC.

零相電圧を優先的に使用し、零相電圧の振幅√(V0d2+V0q2)が外部から設定できる上限値V0limに達した場合のみ逆相電流を併用するため、逆相電流の流出を最小限に抑えることができる。 The zero-phase voltage is preferentially used, and the negative-phase current is used only when the amplitude √(V0d 2 +V0q 2 ) of the zero-phase voltage reaches the upper limit value V0lim that can be set externally. can be kept to a limit.

また、MMCC-SSBCが出力できる電圧振幅に余裕がなくてもセルコンデンサ電圧をバランスできるため、ブリッジセルBの台数を少なくしブリッジセルBの直流電圧を下げることができ、コストや損失を抑えることができる。 In addition, since the cell capacitor voltage can be balanced even if there is no margin in the voltage amplitude that the MMCC-SSBC can output, the number of bridge cells B can be reduced and the DC voltage of the bridge cells B can be reduced, thereby suppressing costs and losses. can be done.

また、フィードフォワード制御のため、系統電圧や電流指令値が急変した場合でもセルコンデンサ電圧の変動が小さくなり、セルコンデンサ容量を小さくでき、小型化やコスト削減ができる。 In addition, because of feedforward control, fluctuations in the cell capacitor voltage are reduced even when the system voltage or current command value changes suddenly, and the capacity of the cell capacitor can be reduced, resulting in miniaturization and cost reduction.

[実施形態2]
図6に本実施形態2の零相電圧演算部27のブロック図を示す。実施形態1との違いは、逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*を外部から入力できるようにし、演算器9において逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*に基づいて、特許文献1や(2-1)式,(2-2)式,(2-3)式を演算する点である。
[Embodiment 2]
FIG. 6 shows a block diagram of the zero-phase voltage calculator 27 of the second embodiment. The difference from the first embodiment is that the reverse phase d-axis current command value I2d* and the reverse phase q-axis current command value I2q* can be input from the outside, and the calculator 9 calculates the reverse phase d-axis current command value I2d* and the reverse phase q-axis current command value I2q*. The point is that the equations (2-1), (2-2), and (2-3) described in Patent Document 1 are calculated based on the phase q-axis current command value I2q*.

乗算器cos,sinと電流指令値演算部28は、実施形態1と同じく図5を使用する。 The multipliers cos, sin and the current command value calculator 28 use FIG. 5 as in the first embodiment.

次に本実施形態2の動作を説明する。本実施形態2では、正相d軸電圧V1d,逆相d軸電圧V2d,逆相q軸電圧V2q,正相q軸電流指令値I1q*の他に外部からの逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*を用いて、零相d軸電圧V0d,零相q軸電圧V0qを計算する。また、振幅を上限値V0limに制限した上で改めて補正逆相d軸電流指令値I2d*’,補正逆相q軸電流指令値I2q*’を(6)式により計算し直す。 Next, the operation of the second embodiment will be explained. In the second embodiment, in addition to a positive phase d-axis voltage V1d, a negative phase d-axis voltage V2d, a negative phase q-axis voltage V2q, and a positive phase q-axis current command value I1q*, a negative phase d-axis current command value I2d from outside is applied. *, the negative-phase q-axis current command value I2q* is used to calculate the zero-phase d-axis voltage V0d and the zero-phase q-axis voltage V0q. Also, after limiting the amplitude to the upper limit value V0lim, the corrected anti-phase d-axis current command value I2d*' and the corrected anti-phase q-axis current command value I2q*' are recalculated using equation (6).

演算器9から出力される零相電圧の振幅√(V0d2+V0q2)が上限値V0limよりも小さければ、図5の(6)式による演算器18から出力される補正逆相d軸電流指令値I2d*’,補正逆相q軸電流指令値I2q*’は逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*に一致し、MMCC-SSBCは逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*通りの逆相電流を出力する。 If the amplitude √(V0d 2 +V0q 2 ) of the zero-phase voltage output from the calculator 9 is smaller than the upper limit value V0lim, the corrected anti-phase d-axis current command output from the calculator 18 according to the equation (6) in FIG. The value I2d*' and the corrected anti-phase q-axis current command value I2q*' match the anti-phase d-axis current command value I2d* and the anti-phase q-axis current command value I2q*. A negative-phase current is output according to the value I2d* and the negative-phase q-axis current command value I2q*.

零相電圧の振幅√(V0d2+V0q2)が上限値V0limよりも大きい場合、上限値V0limの範囲内でできる限り逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*に近い補正逆相d軸電流指令値I2d*’,補正逆相q軸電流指令値I2q*’が演算器18から出力される。 When the zero-phase voltage amplitude √(V0d 2 +V0q 2 ) is greater than the upper limit value V0lim, the negative-phase d-axis current command value I2d* and the negative-phase q-axis current command value I2q* are adjusted as much as possible within the range of the upper limit value V0lim. A corrected anti-phase d-axis current command value I2d*' and a corrected anti-phase q-axis current command value I2q*', which are close to each other, are output from the calculator .

零相電圧の振幅√(V0d2+V0q2)が上限値V0limよりもさらに大きい場合は逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*が無視され、セルコンデンサ電圧のバランス制御に必要な補正逆相d軸電流指令値I2d*’,補正逆相q軸電流指令値I2q*’が計算されMMCC-SSBCから出力される。 If the zero-phase voltage amplitude √(V0d 2 +V0q 2 ) is greater than the upper limit value V0lim, the negative-phase d-axis current command value I2d* and the negative-phase q-axis current command value I2q* are ignored, and the balance of the cell capacitor voltage is maintained. A corrected anti-phase d-axis current command value I2d*' and a corrected anti-phase q-axis current command value I2q*' required for control are calculated and output from the MMCC-SSBC.

以上より、MMCC-SSBCから出力できる電圧振幅に余裕がある場合は逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*通りの逆相電流を出力し、余裕が不足する場合はなるべく逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*に近いが振幅の小さい逆相電流を出力し、余裕がほとんどない場合は逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*を無視してセルコンデンサ電圧のバランス制御に必要な逆相電流を出力する、という動作を実現することができる。 From the above, when there is a margin in the voltage amplitude that can be output from the MMCC-SSBC, the negative phase current is output according to the negative phase d-axis current command value I2d* and the negative phase q-axis current command value I2q*. outputs a negative-phase current that is close to the negative-phase d-axis current command value I2d* and the negative-phase q-axis current command value I2q* as much as possible but has a small amplitude. It is possible to realize the operation of ignoring the negative-phase q-axis current command value I2q* and outputting the negative-phase current required for balance control of the cell capacitor voltage.

本実施形態2の演算器9に(2-1)式,(2-2)式,(2-3)式を適用する場合、入力は逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*ではなく正相電流に対する逆相電流の振幅比a’と正相電流に対する逆相電流の位相差φとする必要がある。これは、以下の(8)式により計算することができる。 When formulas (2-1), (2-2), and (2-3) are applied to the computing unit 9 of Embodiment 2, the inputs are the reverse phase d-axis current command value I2d*, the reverse phase q-axis Instead of the current command value I2q*, it is necessary to use the amplitude ratio a' of the negative-sequence current to the positive-sequence current and the phase difference φ of the negative-sequence current to the positive-sequence current. This can be calculated by the following equation (8).

Figure 0007322567000014
Figure 0007322567000014

本実施形態2は、MMCC-SSBCが出力できる電圧振幅に余裕がある場合は外部から入力された逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*に等しい逆相電流を出力することができる。電圧振幅の余裕があまりない場合においても、振幅は小さくなるが、なるべく逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*に近い逆相電流を出力することができる。電圧振幅の余裕がほとんどない場合は逆相d軸電流指令値I2d*,逆相q軸電流指令値I2q*とは異なる逆相電流を出力するが、実施形態1と同様に零相電圧を優先的に使用するため、意図しない逆相電流の流出を最小限に抑えることができる。 In the second embodiment, when there is a margin in the voltage amplitude that the MMCC-SSBC can output, a negative-phase current equal to the negative-phase d-axis current command value I2d* and the negative-phase q-axis current command value I2q* input from the outside is generated. can be output. Even if the voltage amplitude does not have much margin, it is possible to output a negative-phase current that is as close as possible to the negative-phase d-axis current command value I2d* and the negative-phase q-axis current command value I2q*, although the amplitude is small. When there is almost no voltage amplitude margin, a reversed-phase current different from the reversed-phase d-axis current command value I2d* and the reversed-phase q-axis current command value I2q* is output, but priority is given to the zero-phase voltage as in the first embodiment. Therefore, unintended outflow of negative-sequence current can be minimized.

[実施形態3]
図7に本実施形態3の零相電圧演算部27のブロック図を示す。実施形態2とは以下の点が異なる。
[Embodiment 3]
FIG. 7 shows a block diagram of the zero-phase voltage calculator 27 of the third embodiment. The following points are different from the second embodiment.

RMS演算器23a,23b,23cは、系統電圧検出信号VsのUV線間電圧VsUV,VW線間電圧VsVW,WU線間電圧VsWUの実効値を求める。比較器24a,24b,24cは、RMS演算器23a,23b,23cの出力があらかじめ設定した閾値Vthよりも大きいか否かを判定する。 The RMS calculators 23a, 23b, and 23c obtain effective values of the UV line voltage VsUV, the VW line voltage VsVW, and the WU line voltage VsWU of the system voltage detection signal Vs. The comparators 24a, 24b, 24c determine whether or not the outputs of the RMS calculators 23a, 23b, 23c are greater than a preset threshold value Vth.

AND素子25は、UV線間電圧VsUV,VW線間電圧VsVW,WU線間電圧VsWUの3つすべての実効値が閾値Vthよりも大きいときに1を出力し、それ以外のとき0を出力する。スイッチ26は、AND素子25の出力が1ならば上限値V0limを、0ならば0を出力する。スイッチ26の出力が本実施形態3における零相電圧振幅の上限値となる。 The AND element 25 outputs 1 when all three effective values of the UV line voltage VsUV, the VW line voltage VsVW, and the WU line voltage VsWU are greater than the threshold value Vth, and outputs 0 otherwise. . The switch 26 outputs the upper limit value V0lim if the output of the AND element 25 is 1, and outputs 0 if the output is 0. The output of the switch 26 is the upper limit value of the zero-phase voltage amplitude in the third embodiment.

ここで、振幅を制限された零相電圧を重畳することによる、セルコンデンサ電圧バランス制御に必要な逆相電流振幅の低減効果を検証する。簡単化のため外部からの逆相電流指令値を零、V1d=1,V1q=0,I2d=I2q=0の条件で(5)式を満たす補正零相d軸電圧V0d’,補正零相q軸電圧V0q’を求めると、(9)式が得られる。 Here, the effect of reducing the negative-sequence current amplitude required for cell capacitor voltage balance control by superimposing a zero-sequence voltage whose amplitude is limited will be verified. For simplification, the negative phase current command value from the outside is set to zero, V1d = 1, V1q = 0, I2d = I2q = 0, and the corrected zero phase d-axis voltage V0d' and the corrected zero phase q that satisfy the equation (5) are calculated. Equation (9) is obtained by obtaining the axial voltage V0q'.

Figure 0007322567000015
Figure 0007322567000015

ここで、逆相d軸電圧V2d,逆相q軸電圧V2q,補正零相d軸電圧V0d’,補正零相q軸電圧V0q’を(10)式のように定義する。 Here, the negative-phase d-axis voltage V2d, the negative-phase q-axis voltage V2q, the corrected zero-phase d-axis voltage V0d', and the corrected zero-phase q-axis voltage V0q' are defined as in equation (10).

Figure 0007322567000016
Figure 0007322567000016

xは本来出力すべき零相電圧の振幅に対して実際に出力した零相電圧の振幅の比であり、(11)式に相当する。 x is the ratio of the amplitude of the zero-phase voltage that is actually output to the amplitude of the zero-phase voltage that should be output, and corresponds to equation (11).

Figure 0007322567000017
Figure 0007322567000017

V1d=1,V1q=0および(11)式を(6)式に代入すると、以下の(12)式となる。 Substituting V1d=1, V1q=0 and equation (11) into equation (6) yields equation (12) below.

Figure 0007322567000018
Figure 0007322567000018

正相電流に対する(12)式により得られる逆相電流の振幅比を(13)式により求める。 The amplitude ratio of the negative-sequence current obtained by the formula (12) with respect to the positive-sequence current is obtained by the formula (13).

Figure 0007322567000019
Figure 0007322567000019

図8にx,V2,θを変化させたときの(13)式のプロット結果を示す。横軸はxであり、0において零相電圧を使用せず逆相電流のみでコンデンサバランス制御を行う場合、1で適切な零相電圧を重畳した場合を示す。縦軸は、MMCC-SSBCが出力する正相電流の振幅を基準としたコンデンサバランス制御に必要な逆相電流の振幅比を表す。 FIG. 8 shows plot results of the equation (13) when x, V2, and .theta. are changed. The horizontal axis is x, where 0 indicates the case where capacitor balance control is performed using only the negative-phase current without using the zero-phase voltage, and 1 indicates the case where an appropriate zero-phase voltage is superimposed. The vertical axis represents the amplitude ratio of the negative-sequence current required for capacitor balance control based on the amplitude of the positive-sequence current output by the MMCC-SSBC.

V2は系統電圧に重畳する逆相電圧の振幅であり、増加するほど不平衡が大きくなり1で正相電圧の振幅と等しくなる。θは逆相電圧の位相である。この図8より、xが増加するほど、すなわち重畳する零相電圧の振幅が増加するほど必要な逆相電流振幅が小さくなることがわかる。また、V2が増加するほど、すなわち電圧不平衡が悪化するほど必要な逆相電流振幅が大きくなることがわかる。 V2 is the amplitude of the negative-sequence voltage superimposed on the system voltage. θ is the phase of the negative sequence voltage. It can be seen from FIG. 8 that the necessary negative-sequence current amplitude decreases as x increases, that is, as the amplitude of the superimposed zero-sequence voltage increases. Also, it can be seen that the required negative-sequence current amplitude increases as V2 increases, that is, as the voltage imbalance deteriorates.

しかし、θ=0,V2=1においてのみ、xを増加しても必要な逆相電流の振幅が全く変化しない。この状態に当てはまる条件として、他にθ=±2π/3(120deg,240deg)があり、これは線間短絡に該当する。 However, only at θ=0 and V2=1, increasing x does not change the amplitude of the required anti-sequence current at all. Another condition applicable to this state is θ=±2π/3 (120 deg, 240 deg), which corresponds to line-to-line short circuit.

本実施形態3は、以上の検証結果を反映し線間短絡が発生したら逆相電流のみでコンデンサ電圧のバランス制御を行う。各線間電圧の実効値を検出し、閾値Vthと比較して3相いずれかの実効値が閾値Vthより小さければ零相電圧の上限値V0limを零にする。これにより、零相電圧を使用せず逆相電流のみでセルコンデンサ電圧のバランス制御が行われる。 In the third embodiment, reflecting the above verification results, balance control of the capacitor voltage is performed only with the reverse-phase current when a line-to-line short circuit occurs. The effective value of each line voltage is detected and compared with the threshold value Vth, and if the effective value of any one of the three phases is smaller than the threshold value Vth, the upper limit value V0lim of the zero-phase voltage is set to zero. As a result, the balance control of the cell capacitor voltage is performed using only the negative-phase current without using the zero-phase voltage.

本実施形態3により、線間短絡発生時に効果のない零相電圧重畳を行わなくなるため、電圧指令値の振幅がキャリア三角波の振幅よりも大きくなる過変調を避けることができ、電圧・電流波形のTHD(Total Harmonic Distortion)増加の恐れを低減することができる。 According to the third embodiment, ineffective zero-sequence voltage superimposition is not performed when a short circuit occurs between lines. Therefore, overmodulation in which the amplitude of the voltage command value becomes larger than the amplitude of the carrier triangular wave can be avoided, and the voltage/current waveform can be changed. It is possible to reduce the risk of an increase in THD (Total Harmonic Distortion).

特許文献1および(2-1)式,(2-2)式,(2-3)式より、MMCC-SSBCが定格(最大)電圧の1.5倍の振幅の電圧を出力できるならばx=1とすることができ、線間短絡発生時において零相電圧だけでバランス制御を行うことができる。この場合は本実施形態3を適用する必要がない。本実施形態3は、MMCC-SSBCが出力できる電圧振幅が定格(最大)電圧の1.5倍に満たない場合に適用することを想定している。 From Patent Document 1 and formulas (2-1), (2-2), and (2-3), if the MMCC-SSBC can output a voltage with an amplitude 1.5 times the rated (maximum) voltage, x = 1, and balance control can be performed using only the zero-phase voltage when a line-to-line short circuit occurs. In this case, there is no need to apply the third embodiment. The third embodiment is assumed to be applied when the voltage amplitude that the MMCC-SSBC can output is less than 1.5 times the rated (maximum) voltage.

以上示したように、本実施形態3は実施形態1,2と同様の作用効果を奏する。また、線間短絡が発生した場合では最適な振幅よりも小さい零相電圧を重畳しても、セルコンデンサ電圧のバランス制御に必要な逆相電流を低減することはできない。本実施形態3では、線間短絡が発生したときには零相電圧を重畳しないため、過変調による電圧・電流THDの増加の恐れを低減することができる。 As described above, the third embodiment has the same effects as those of the first and second embodiments. Further, when a line-to-line short circuit occurs, even if a zero-phase voltage having an amplitude smaller than the optimum amplitude is superimposed, it is not possible to reduce the negative-phase current required for balance control of the cell capacitor voltages. In the third embodiment, since the zero-phase voltage is not superimposed when a line-to-line short circuit occurs, it is possible to reduce the risk of an increase in voltage/current THD due to overmodulation.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail only with respect to the specific examples described above, it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are, of course, covered by the claims.

LPF…ローパスフィルタ
7,10d,10q,17d,17q,20,cos,sin…乗算器
6,8…dq変換器
MAVE1,MAVE2,MAVE3,MAVE4…移動平均フィルタ
9,18…演算器
11,22a,22b…加算器
12…平方根演算器
13…除算器
14…減算器
15…比較器
16…スイッチ
19,21…dq逆変換器
27…零相電圧演算部
28…電流指令値演算部
LPF... Low-pass filter 7, 10d, 10q, 17d, 17q, 20, cos, sin... Multiplier 6, 8... dq converter MAVE1, MAVE2, MAVE3, MAVE4... Moving average filter 9, 18... Calculator 11, 22a, 22b... Adder 12... Square root operator 13... Divider 14... Subtractor 15... Comparator 16... Switch 19, 21... dq inverse converter 27... Zero phase voltage calculator 28... Current command value calculator

Claims (4)

複数台のブリッジセルユニットを直列接続して1相のモジュールを構成し、このモジュールを3台有する3相のモジュラー・マルチレベル・カスケード変換器であって、
セルコンデンサ電圧の相間バランス制御に必要な零相電圧の振幅が上限値以下の場合は前記零相電圧を補正零相電圧として出力し、前記零相電圧の振幅が前記上限値よりも大きい場合は前記上限値を前記補正零相電圧として出力する零相電圧演算部と、
前記零相電圧が前記上限値よりも大きい場合、前記補正零相電圧を重畳した上でセルコンデンサ電圧の相間バランス制御に必要な補正逆相電流指令値を重畳した電流指令値を出力する電流指令値演算部と、
前記電流指令値に基づいて各相の出力電圧指令値を生成し、前記各相の出力電圧指令値に前記補正零相電圧を加算した値と各前記ブリッジセルユニットに対応したキャリア三角波とを比較して各前記ブリッジセルユニットのゲート信号を生成する電流制御部と、
を備えたことを特徴とするモジュラー・マルチレベル・カスケード変換器。
A three-phase modular multi-level cascade converter having three modules, wherein a plurality of bridge cell units are connected in series to form a one-phase module,
When the amplitude of the zero-phase voltage required for phase-to-phase balance control of the cell capacitor voltage is equal to or less than the upper limit, the zero-phase voltage is output as a corrected zero-phase voltage, and when the amplitude of the zero-phase voltage is greater than the upper limit a zero-phase voltage calculator that outputs the upper limit value as the corrected zero-phase voltage;
When the zero-sequence voltage is greater than the upper limit value, a current command outputting a current command value superimposed with the corrected zero-sequence voltage and then superimposed with a corrected reverse-sequence current command value necessary for phase-to-phase balance control of the cell capacitor voltage is output. a value calculator;
An output voltage command value for each phase is generated based on the current command value, and a value obtained by adding the corrected zero-phase voltage to the output voltage command value for each phase is compared with a carrier triangular wave corresponding to each bridge cell unit. a current control unit for generating a gate signal for each bridge cell unit by
A modular multi-level cascade converter, comprising:
前記モジュラー・マルチレベル・カスケード変換器の出力電圧・出力電流および重畳する前記補正零相電圧が(3)式,(4)式で定義される時、
前記零相電圧演算部は、正相q軸電流指令値、および、正相d軸電圧、および、逆相d軸電圧、および、逆相q軸電圧に基づいて前記零相電圧である零相d軸電圧、零相q軸電圧を演算して、前記零相d軸電圧、前記零相q軸電圧に基づいて前記補正零相電圧である補正零相d軸電圧および補正零相q軸電圧を出力し、
前記電流指令値演算部は、(6)式に基づいて前記補正逆相電流指令値である補正逆相d軸電流指令値,補正逆相q軸電流指令値を演算することを特徴とする請求項1記載のモジュラー・マルチレベル・カスケード変換器。
Figure 0007322567000020

Figure 0007322567000021

Figure 0007322567000022

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V1q:正相q軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d’:補正零相d軸電圧
V0q’:補正零相q軸電圧
ωt:系統電圧の位相
iu,iv,iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I1q*:正相q軸電流指令値
I2d*’:補正逆相d軸電流指令値
I2q*’:補正逆相q軸電流指令値
When the output voltage/output current of the modular multilevel cascade converter and the corrected zero-phase voltage to be superimposed are defined by equations (3) and (4),
The zero-phase voltage calculator calculates the zero-phase voltage based on the positive-phase q-axis current command value, the positive-phase d-axis voltage, the negative-phase d-axis voltage, and the negative-phase q-axis voltage. A d-axis voltage and a zero-phase q-axis voltage are calculated, and a corrected zero-phase d-axis voltage and a corrected zero-phase q-axis voltage are calculated based on the zero-phase d-axis voltage and the zero-phase q-axis voltage. and
The current command value calculation unit calculates a corrected negative-phase d-axis current command value and a corrected negative-phase q-axis current command value, which are the corrected negative-phase current command values, based on equation (6). A modular multi-level cascade converter according to claim 1.
Figure 0007322567000020

Figure 0007322567000021

Figure 0007322567000022

Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V1q: Positive phase q-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis Voltage V0d': Corrected zero-phase d-axis voltage V0q': Corrected zero-phase q-axis voltage ωt: System voltage phase iu, iv, iw: U-phase output current, V-phase output current, W-phase output current I1q: Positive-phase q-axis current I2d: Negative-phase d-axis current I2q: Negative-phase q-axis current I1q*: Positive-phase q-axis current command value I2d*': Corrected negative-phase d-axis current command value I2q*': Corrected negative-phase q-axis Current command value
前記モジュラー・マルチレベル・カスケード変換器の出力電圧・出力電流がおよび重畳する前記補正零相電圧が(3)式,(4)式で定義される時、
前記零相電圧演算部は、逆相d軸電流指令値、および、逆相q軸電流指令値、および、正相q軸電流指令値、および、正相d軸電圧、および、逆相d軸電圧、および、逆相q軸電圧に基づいて前記零相電圧である零相d軸電圧、零相q軸電圧を演算して、前記零相d軸電圧、前記零相q軸電圧に基づいて前記補正零相電圧である補正零相d軸電圧および補正零相q軸電圧を出力し、
前記電流指令値演算部は、(6)式に基づいて前記補正逆相電流指令値である補正逆相d軸電流指令値,補正逆相q軸電流指令値を演算することを特徴とする請求項1記載のモジュラー・マルチレベル・カスケード変換器。
Figure 0007322567000023

Figure 0007322567000024

Figure 0007322567000025

Vu,Vv,Vw:U相の出力電圧,V相の出力電圧,W相の出力電圧
V1d:正相d軸電圧
V1q:正相q軸電圧
V2d:逆相d軸電圧
V2q:逆相q軸電圧
V0d’:補正零相d軸電圧
V0q’:補正零相q軸電圧
ωt:系統電圧の位相
iu,iv,iw:U相の出力電流,V相の出力電流,W相の出力電流
I1q:正相q軸電流
I2d:逆相d軸電流
I2q:逆相q軸電流
I1q*:正相q軸電流指令値
I2d*’:補正逆相d軸電流指令値
I2q*’:補正逆相q軸電流指令値
When the output voltage/output current of the modular multi-level cascade converter and the corrected zero-phase voltage superimposed are defined by equations (3) and (4),
The zero-phase voltage calculation unit calculates a negative-phase d-axis current command value, a negative-phase q-axis current command value, a positive-phase q-axis current command value, a positive-phase d-axis voltage, and a negative-phase d-axis current command value. A zero-phase d-axis voltage and a zero-phase q-axis voltage, which are the zero-phase voltage, are calculated based on the voltage and the negative-phase q-axis voltage, and based on the zero-phase d-axis voltage and the zero-phase q-axis voltage, outputting a corrected zero-phase d-axis voltage and a corrected zero-phase q-axis voltage, which are the corrected zero-phase voltage ;
The current command value calculation unit calculates a corrected negative-phase d-axis current command value and a corrected negative-phase q-axis current command value, which are the corrected negative-phase current command values, based on equation (6). A modular multi-level cascade converter according to claim 1.
Figure 0007322567000023

Figure 0007322567000024

Figure 0007322567000025

Vu, Vv, Vw: U-phase output voltage, V-phase output voltage, W-phase output voltage V1d: Positive phase d-axis voltage V1q: Positive phase q-axis voltage V2d: Negative phase d-axis voltage V2q: Negative phase q-axis Voltage V0d': Corrected zero-phase d-axis voltage V0q': Corrected zero-phase q-axis voltage ωt: System voltage phase iu, iv, iw: U-phase output current, V-phase output current, W-phase output current I1q: Positive-phase q-axis current I2d: Negative-phase d-axis current I2q: Negative-phase q-axis current I1q*: Positive-phase q-axis current command value I2d*': Corrected negative-phase d-axis current command value I2q*': Corrected negative-phase q-axis Current command value
前記モジュラー・マルチレベル・カスケード変換器の出力可能な電圧振幅が定格電圧振幅の1.5倍に満たない場合、前記零相電圧演算部は、線間短絡が発生したときに前記上限値を零とすることを特徴とする請求項2または3記載のモジュラー・マルチレベル・カスケード変換器。 When the voltage amplitude that can be output from the modular multi-level cascade converter is less than 1.5 times the rated voltage amplitude, the zero-phase voltage calculator reduces the upper limit value to zero when a line-to-line short circuit occurs. 4. A modular multi-level cascade converter according to claim 2 or 3, characterized in that:
JP2019135768A 2019-07-24 2019-07-24 Modular multilevel cascade converter Active JP7322567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135768A JP7322567B2 (en) 2019-07-24 2019-07-24 Modular multilevel cascade converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135768A JP7322567B2 (en) 2019-07-24 2019-07-24 Modular multilevel cascade converter

Publications (2)

Publication Number Publication Date
JP2021019482A JP2021019482A (en) 2021-02-15
JP7322567B2 true JP7322567B2 (en) 2023-08-08

Family

ID=74563805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135768A Active JP7322567B2 (en) 2019-07-24 2019-07-24 Modular multilevel cascade converter

Country Status (1)

Country Link
JP (1) JP7322567B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025549A (en) 2004-07-08 2006-01-26 Tokyo Electric Power Co Inc:The Power supply device and power system equipped with the same
JP2011223761A (en) 2010-04-12 2011-11-04 Hitachi Ltd Power conversion device
JP2013005694A (en) 2011-06-21 2013-01-07 Central Research Institute Of Electric Power Industry Reactive power compensation unit, reactive power compensation method and reactive power compensation program
JP2015043660A (en) 2013-08-26 2015-03-05 三菱電機株式会社 Power conversion apparatus
WO2015102060A1 (en) 2014-01-06 2015-07-09 三菱電機株式会社 Electric power conversion device
JP2017169272A (en) 2016-03-14 2017-09-21 東洋電機製造株式会社 Reactive power compensation device
JP2019024281A (en) 2017-07-24 2019-02-14 富士電機株式会社 Reactive power compensation device and control method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025549A (en) 2004-07-08 2006-01-26 Tokyo Electric Power Co Inc:The Power supply device and power system equipped with the same
JP2011223761A (en) 2010-04-12 2011-11-04 Hitachi Ltd Power conversion device
JP2013005694A (en) 2011-06-21 2013-01-07 Central Research Institute Of Electric Power Industry Reactive power compensation unit, reactive power compensation method and reactive power compensation program
JP2015043660A (en) 2013-08-26 2015-03-05 三菱電機株式会社 Power conversion apparatus
WO2015102060A1 (en) 2014-01-06 2015-07-09 三菱電機株式会社 Electric power conversion device
JP2017169272A (en) 2016-03-14 2017-09-21 東洋電機製造株式会社 Reactive power compensation device
JP2019024281A (en) 2017-07-24 2019-02-14 富士電機株式会社 Reactive power compensation device and control method therefor

Also Published As

Publication number Publication date
JP2021019482A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP5542609B2 (en) Reactive power compensator
JP5800154B2 (en) Power converter and control method thereof
JP5877648B2 (en) Distributed power system
WO2011129223A1 (en) Power converter
US20140268970A1 (en) Matrix converter and method for controlling matrix converter
WO2011129222A1 (en) Power converter
KR101639192B1 (en) Apparatus for compensating reactive power
JP2012055148A (en) Harmonic current restraint apparatus of electric power conversion system and harmonic current restraint method
JP6730946B2 (en) Power converter controller
JP2012205325A5 (en)
JP6615012B2 (en) Reactive power compensator
US9755551B2 (en) Power conversion device
JP6544170B2 (en) Control device for 3-level inverter
JP7322566B2 (en) Modular multilevel cascade converter
JP5580095B2 (en) Grid-connected inverter device
JP3822910B2 (en) Reduction of power line harmonics by hybrid parallel active / passive filter system with square wave inverter and DC bus control
JP2018148709A (en) Controller of multilevel power conversion circuit
Feng et al. Improved reference generation of active and reactive power for matrix converter with model predictive control under input disturbances
JP5953881B2 (en) 3-level rectifier controller
JP7010162B2 (en) Modular multi-level cascade converter
Anu et al. STATCOM based controller for a three phase system feeding single phase loads
JP6909867B2 (en) Voltage compensator
JP7322567B2 (en) Modular multilevel cascade converter
JP2017103973A (en) Voltage compensation device
JP2009153297A (en) Controller of self-excited converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7322567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150