JP7318517B2 - Composite particles for negative electrode active material - Google Patents
Composite particles for negative electrode active material Download PDFInfo
- Publication number
- JP7318517B2 JP7318517B2 JP2019229330A JP2019229330A JP7318517B2 JP 7318517 B2 JP7318517 B2 JP 7318517B2 JP 2019229330 A JP2019229330 A JP 2019229330A JP 2019229330 A JP2019229330 A JP 2019229330A JP 7318517 B2 JP7318517 B2 JP 7318517B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- particles
- porous
- active material
- voids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本開示は、負極活物質用複合粒子に関する。 The present disclosure relates to composite particles for negative electrode active materials.
全固体電池は、正極層および負極層の間に固体電解質層を有する電池であり、可燃性の有機溶媒を含む電解液を有する液系電池に比べて、安全装置の簡素化が図りやすいという利点を有する。また、全固体電池の中でも全固体リチウムイオン電池は、リチウムイオンの移動を伴う電池反応を利用するためエネルギー密度が高いため注目されている。 All-solid-state batteries are batteries that have a solid electrolyte layer between the positive electrode layer and the negative electrode layer. Compared to liquid-based batteries, which have an electrolyte containing a flammable organic solvent, the advantage is that it is easier to simplify the safety device. have In addition, among all-solid-state batteries, all-solid-state lithium-ion batteries are attracting attention because of their high energy density due to the use of battery reactions involving movement of lithium ions.
電池の負極層に用いられる負極活物質として、Siを含有する活物質(Si含有活物質)が知られている。Si含有活物質は、体積当たりの理論容量が大きいという利点を有するが、その反面、充放電による体積変化が大きい。特許文献1では、炭素系負極活物質と、多孔性SiOx粒子(0≦x<2)とを含んでなる負極活物質が開示されており、上記SiOx粒子の表面、または表面及び内部に多数の気孔を含むことにより、体積膨張率を減少させ、電池の寿命を向上させる記載がある。 An active material containing Si (Si-containing active material) is known as a negative electrode active material used in the negative electrode layer of a battery. The Si-containing active material has the advantage of having a large theoretical capacity per volume, but on the other hand, it undergoes a large change in volume due to charging and discharging. Patent Document 1 discloses a negative electrode active material comprising a carbon-based negative electrode active material and porous SiOx particles (0≦x<2), and a large number of It is described that the inclusion of pores reduces the volume expansion rate and improves the life of the battery.
特許文献1の多孔性SiOx粒子を含有する負極活物質は、スラリー製造時に気孔(空隙)にバインダーが侵入し、溶媒乾燥して負極層を得た後にも気孔にバインダーが残存することとなり、充電に伴う体積膨張率の緩和効果が十分でない。
本開示は、上記実情に鑑みてなされものであり、充電に伴う体積膨張が小さい負極活物質を得ることができる負極活物質用の複合粒子を提供することを主目的とする。
In the negative electrode active material containing porous SiOx particles of Patent Document 1, the binder enters the pores (voids) during slurry production, and the binder remains in the pores even after the solvent is dried to obtain the negative electrode layer. The effect of mitigating the volume expansion rate associated with is not sufficient.
The present disclosure has been made in view of the above circumstances, and a main object of the present disclosure is to provide composite particles for a negative electrode active material that can obtain a negative electrode active material with small volume expansion due to charging.
上記課題を解決するために、本開示においては、負極活物質用の複合粒子であって、多孔質Si粒子と、上記多孔質Si粒子の空隙内に充填された昇華性充填剤とを有する、複合粒子を提供する。 In order to solve the above problems, the present disclosure provides composite particles for a negative electrode active material, comprising porous Si particles and a sublimable filler filled in the voids of the porous Si particles. A composite particle is provided.
本開示によれば、充電に伴う体積膨張が小さい負極活物質を付与可能な複合粒子を提供することができる。 ADVANTAGE OF THE INVENTION According to this indication, the composite particle which can provide the negative electrode active material with a small volume expansion accompanying charge can be provided.
本開示における負極活物質用の複合粒子は、充放電に伴う膨張収縮が小さい負極活物質を得ることができるという効果を奏する。 The composite particles for a negative electrode active material according to the present disclosure have the effect of being able to obtain a negative electrode active material that undergoes little expansion and contraction during charging and discharging.
以下、本開示における複合粒子について、詳細に説明する。 The composite particles in the present disclosure will be described in detail below.
A.複合粒子
本開示における複合粒子は、負極活物質として使用される。図1(a)は、本開示における複合粒子の一例を示す概略図、図1(b)は、本開示における複合粒子に使用される、多孔質Si粒子単体の概略図である。図1(b)に示すように、多孔質Si粒子1は複数の空隙(気孔)Pを有する。本開示における複合粒子10は、図1(a)に示すように、多孔質Si粒子1と、多孔質Si粒子1の空隙Pに充填された昇華性充填剤2とを有する。
A. Composite Particles Composite particles in the present disclosure are used as a negative electrode active material. FIG. 1(a) is a schematic diagram showing an example of composite particles in the present disclosure, and FIG. 1(b) is a schematic diagram of a single porous Si particle used for the composite particles in the present disclosure. As shown in FIG. 1(b), the porous Si particle 1 has a plurality of voids (pores) P. As shown in FIG. Composite particles 10 in the present disclosure have porous Si particles 1 and sublimable fillers 2 filled in voids P of porous Si particles 1, as shown in FIG. 1(a).
従来、空隙を有する多孔質Si粒子と、溶媒、バインダー等とを混合したスラリーを使用して負極合材層を形成することにより、充電に伴う体積膨張率を緩和する試みがなされていた。図3は、空隙を有する多孔質Si粒子11を活物質として製造したスラリー16、負極合材層17の状態を示す概略図である。従来の空隙を有する多孔質Si粒子11は、溶媒及びバインダー13、固体電解質14、導電材15等と混合してスラリー16を製造した際に、溶媒に溶解したバインダー13が多孔質Si粒子11の空隙に侵入する(図3(a))。スラリーを塗布、溶媒を乾燥して形成した負極合材層17は、多孔質Si粒子11の空隙(特には、孔内表面)にバインダー13’が残存する(図3(b))。そのため、充放電時において空隙がバインダー13’により圧迫されてしまい、多孔質Si粒子の空隙による体積膨張収縮の緩和効果が十分ではない。 Conventionally, attempts have been made to reduce the volume expansion rate associated with charging by forming a negative electrode mixture layer using a slurry obtained by mixing porous Si particles having voids, a solvent, a binder, and the like. FIG. 3 is a schematic diagram showing the state of a slurry 16 and a negative electrode mixture layer 17 produced using porous Si particles 11 having voids as an active material. Conventional porous Si particles 11 having voids are mixed with solvent and binder 13, solid electrolyte 14, conductive material 15, etc. to produce slurry 16, and binder 13 dissolved in the solvent dissolves porous Si particles 11. It penetrates into the void (Fig. 3(a)). In the negative electrode mixture layer 17 formed by applying the slurry and drying the solvent, the binder 13' remains in the voids (in particular, the inner surface of the pores) of the porous Si particles 11 (FIG. 3(b)). Therefore, the voids are pressed by the binder 13' during charging and discharging, and the effect of alleviating volume expansion and contraction due to the voids of the porous Si particles is not sufficient.
また、空隙を有する多孔質Si粒子を活物質としてスラリーを製造した場合、多孔質Si粒子の比表面積が大きく、バインダーを大量に使用する必要がある。更に、空隙に溶媒が侵入するため、中実粒子を使用した場合に比べて溶媒の消費量が多いという問題がある。 Moreover, when a slurry is produced using porous Si particles having voids as an active material, the specific surface area of the porous Si particles is large, and a large amount of binder must be used. Furthermore, since the solvent penetrates into the voids, there is a problem that the amount of solvent consumed is large compared to the case where solid particles are used.
これに対し、図1(a)に示すように、本開示における複合粒子10は、多孔質Si粒子1の空隙が昇華性充填剤2により埋められたものであるため、本開示における複合粒子10を溶媒やバインダー3等と混合してスラリー6を製造した際に、溶媒及びバインダー3が多孔質Si粒子の空隙に侵入することを抑制することができる(図2(a))。従って、スラリーを塗布、乾燥して合材層形成層7Aを形成した後(図2(b))、昇華性充填剤2を昇華させることにより、多孔質Si粒子1の空隙Pを維持した合材層7Bを形成することができる(図2(c))。そのため、本開示における複合粒子によれば、充放電時において多孔質Si粒子の空隙がバインダーにより圧迫されることを防ぐことができ、体積膨張収縮が小さい負極活物質を付与することができる。そのため、これを使用した全固体電池はサイクル特性が改善される。なお、図2中、4は固体電解質、5は導電材を示す。 On the other hand, as shown in FIG. 1A, the composite particles 10 according to the present disclosure are those in which the voids of the porous Si particles 1 are filled with the sublimation filler 2, so the composite particles 10 according to the present disclosure is mixed with the solvent, the binder 3, etc. to produce the slurry 6, the solvent and the binder 3 can be prevented from entering the pores of the porous Si particles (Fig. 2(a)). Therefore, after the slurry is applied and dried to form the mixture layer forming layer 7A (FIG. 2(b)), the sublimation filler 2 is sublimated to maintain the voids P of the porous Si particles 1. A material layer 7B can be formed (FIG. 2(c)). Therefore, according to the composite particles of the present disclosure, it is possible to prevent the voids of the porous Si particles from being pressed by the binder during charging and discharging, and it is possible to provide a negative electrode active material with small volume expansion and contraction. Therefore, an all-solid-state battery using this has improved cycle characteristics. In FIG. 2, 4 indicates a solid electrolyte and 5 indicates a conductive material.
更に、本開示における複合粒子は、多孔質Si粒子の空隙が充填されているため、中実粒子を使用した場合とほぼ同量の溶媒でスラリー化することができ、また、中実粒子を使用した場合とほぼ同量のバインダーで結着力の向上を図ることができる。そのため、溶媒やバインダーの使用量を低減することができる。 Furthermore, since the composite particles in the present disclosure are filled with voids in the porous Si particles, they can be slurried with almost the same amount of solvent as when solid particles are used, and solid particles can be used. The binding force can be improved with approximately the same amount of binder. Therefore, the amount of solvent and binder used can be reduced.
1.多孔質Si粒子
多孔質Si粒子は、一次粒子であり、少なくとも表面、通常は、表面及び内部に複数の空隙を有し、活物質としての機能を有する。本開示における複合粒子を用いれば、空隙が維持された多孔質Si粒子を含む負極合材層を形成することができるため、充電に伴う体積膨張が小さい負極活物質を付与することができる。その結果、電池のサイクル特性の向上を図ることができる。
1. Porous Si Particles Porous Si particles are primary particles, have a plurality of voids at least on the surface, usually on the surface and inside, and function as an active material. By using the composite particles of the present disclosure, it is possible to form a negative electrode mixture layer containing porous Si particles in which voids are maintained, so that a negative electrode active material with small volume expansion due to charging can be applied. As a result, it is possible to improve the cycle characteristics of the battery.
多孔質Si粒子は、空隙率が、例えば3%以上であり、5%以上であってもよく、10%以上であってもよく、20%以上であってもよい。一方で空隙の割合は、例えば60%以下であり、50%以下であってもよく、40%以下であってもよく、30%以下であってもよい。多孔質Si粒子中の空隙率の算出方法は、特に限定されないが、例えば、多孔質Si粒子の断面の走査型電子顕微鏡(SEM)画像を観測し、空隙率(%)=100×(空隙部面積)/(粒子面積)により算出することができる。多孔質Si粒子の平均一次粒子径は、例えば50nm以上であり、100nm以上であってもよく、150nm以上であってもよい。一方、多孔質Si粒子の平均一次粒子径は、例えば3000nm以下であり、1500nm以下であってもよく、1000nm以下であってもよい。平均一次粒子径は、例えばSEMによる観察によって求めることができる。 Porosity of the porous Si particles is, for example, 3% or more, may be 5% or more, may be 10% or more, or may be 20% or more. On the other hand, the ratio of voids is, for example, 60% or less, may be 50% or less, may be 40% or less, or may be 30% or less. The method for calculating the porosity in the porous Si particles is not particularly limited. area)/(particle area). The average primary particle size of the porous Si particles is, for example, 50 nm or more, may be 100 nm or more, or may be 150 nm or more. On the other hand, the average primary particle size of the porous Si particles is, for example, 3000 nm or less, may be 1500 nm or less, or may be 1000 nm or less. The average primary particle size can be determined, for example, by SEM observation.
多孔質Si粒子の比表面積は、特に限定されないが、20m2/g以上100m2/g以下であってもよい。多孔質Si粒子の比表面積は、例えば、窒素ガスを用いた定容量式吸着法により測定した表面積をBET法で解析したBET比表面積とすることができる。 The specific surface area of the porous Si particles is not particularly limited, but may be 20 m 2 /g or more and 100 m 2 /g or less. The specific surface area of the porous Si particles can be, for example, the BET specific surface area obtained by analyzing the surface area measured by the constant volume adsorption method using nitrogen gas by the BET method.
多孔質Si粒子は、例えば、Si元素およびLi元素を含有する前駆体を準備する準備工程と、上記前駆体からLi元素を抽出して上述した多孔質Si粒子を得るLi抽出工程と、を有する方法により得ることができる。 The porous Si particles have, for example, a preparation step of preparing a precursor containing Si element and Li element, and a Li extraction step of extracting Li element from the precursor to obtain the porous Si particles described above. method.
2.昇華性充填剤
本開示における昇華性充填剤は、多孔質Si粒子の空隙に充填されている。昇華性充填剤としては、例えば、減圧乾燥(真空乾燥)により昇華可能なものが挙げられる。
2. Sublimable Filler The sublimable filler in the present disclosure is filled in the voids of the porous Si particles. Examples of sublimable fillers include those that can be sublimated by drying under reduced pressure (vacuum drying).
また、昇華性充填剤は、溶媒と反応しないことが好ましい。さらに、多孔質Si粒子の空隙に容易に充填可能なものであることが好ましい。これらの条件を満たすものとして、昇華性充填剤としては、硫黄が好ましい。
硫黄は、加熱することにより溶融し、蒸気圧以上に減圧することにより、容易に多孔質Si粒子の空隙内に充填可能である。なお、硫黄の融点は119.5℃、蒸気圧は10Pa(135℃)である。
Also, the sublimable filler preferably does not react with the solvent. Furthermore, it is preferable that the voids of the porous Si particles can be easily filled. Sulfur is preferable as a sublimable filler that satisfies these conditions.
Sulfur is melted by heating and can be easily filled into the pores of the porous Si particles by reducing the pressure to a level higher than the vapor pressure. Note that sulfur has a melting point of 119.5°C and a vapor pressure of 10 Pa (135°C).
3.複合粒子
本開示における複合粒子は、多孔質Si粒子の空隙内に昇華性充填剤が充填されたものである。以下、複合粒子の製造方法について説明する。まず、多孔質Si粒子と昇華性充填剤を混合し、昇華性充填剤の融点以上に加熱して昇華性充填剤を融解させる。次に、混合物を撹拌しながら、減圧して、多孔質Si粒子の空隙内に昇華性充填剤を充填する。次いで、減圧状態のまま混合物を室温まで冷却し、多孔質Si粒子の空隙内で充填剤を凝固させることにより、複合粒子を得ることができる。減圧による充填条件は、昇華性充填剤を融解させつつ、蒸発あるいは昇華させないため、融点以上、蒸気圧以上とすることができる。
3. Composite Particles The composite particles in the present disclosure are porous Si particles filled with a sublimable filler in the voids. A method for producing composite particles will be described below. First, porous Si particles and a sublimable filler are mixed and heated to the melting point of the sublimable filler or higher to melt the sublimable filler. Next, while stirring the mixture, the pressure is reduced to fill the sublimation filler into the voids of the porous Si particles. Then, the mixture is cooled to room temperature while the pressure is reduced to solidify the filler in the voids of the porous Si particles, thereby obtaining composite particles. Filling conditions under reduced pressure can be the melting point or higher and the vapor pressure or higher in order to melt the sublimable filler without evaporating or sublimating it.
多孔質Si粒子と昇華性充填剤との混合比は、多孔質Si粒子における空隙:昇華性充填剤の体積比が、例えば、100:80~100:120、特には、100:100程度となるような混合比とすることができる。 The mixing ratio of the porous Si particles and the sublimable filler is such that the volume ratio of voids in the porous Si particles to the sublimable filler is, for example, 100:80 to 100:120, particularly about 100:100. A mixing ratio such as
複合粒子の比表面積は、特に限定されないが、多孔質Si粒子の比表面積よりも小さくすることができ、例えば、10m2/g以上80m2/g以下であってもよい。 The specific surface area of the composite particles is not particularly limited, but can be smaller than the specific surface area of the porous Si particles, and may be, for example, 10 m 2 /g or more and 80 m 2 /g or less.
B.負極用スラリー
本開示においては、上述した複合粒子を有する負極用スラリーを提供することもできる。負極用スラリーは、本開示における複合粒子と、溶媒と、バインダー、必要に応じ更に、固体電解質、導電材等を含む。複合粒子については、上述した通りである。
B. Negative Electrode Slurry The present disclosure can also provide a negative electrode slurry having the composite particles described above. The negative electrode slurry contains the composite particles of the present disclosure, a solvent, a binder, and, if necessary, a solid electrolyte, a conductive material, and the like. The composite particles are as described above.
溶媒としては、例えば、酪酸ブチル、ジブチルエーテル、酢酸エチル等のエステル、ジイソブチルケトン(DIBK)、メチルケトン、メチルプロピルケトン等のケトン、キシレン、ベンゼン、トルエン等の芳香族炭化水素、ヘプタン、ジメチルブタン、メチルヘキサン等のアルカン、トリブチルアミン、アリルアミン等のアミンが挙げられる。 Examples of solvents include esters such as butyl butyrate, dibutyl ether and ethyl acetate; ketones such as diisobutyl ketone (DIBK), methyl ketone and methyl propyl ketone; aromatic hydrocarbons such as xylene, benzene and toluene; Examples include alkanes such as methylhexane, and amines such as tributylamine and allylamine.
負極用スラリーにおける溶媒の割合は、負極用スラリーの固形成分を100重量部とした場合に、例えば60重量部以上であり、70重量部以上であってもよい。一方、スラリーにおける溶媒の割合は、スラリーの固形成分を100重量部とした場合に、例えば120重量部以下であり、110重量部以下であってもよい。 The ratio of the solvent in the negative electrode slurry is, for example, 60 parts by weight or more, and may be 70 parts by weight or more, when the solid component of the negative electrode slurry is 100 parts by weight. On the other hand, the ratio of the solvent in the slurry is, for example, 120 parts by weight or less, and may be 110 parts by weight or less, when the solid component of the slurry is 100 parts by weight.
バインダーとしては、例えば、ゴム系バインダー、フッ化物系バインダーが挙げられる。バインダーの含有量は、負極用スラリーに含まれる全固形分100質量%中、1質量%以上、5質量%以下であることが好ましい。 Examples of binders include rubber-based binders and fluoride-based binders. The content of the binder is preferably 1% by mass or more and 5% by mass or less based on 100% by mass of the total solid content contained in the negative electrode slurry.
負極用スラリーは、必要に応じて、固体電解質を含有していてもよい。上記固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等の無機固体電解質が挙げられ、中でも、硫化物固体電解質が好ましい。硫化物固体電解質としては、例えば、Li元素、X元素(Xは、P、Si、Ge、Sn、B、Al、Ga、Inの少なくとも一種である)、および、S元素を含有する固体電解質が挙げられる。また、硫化物固体電解質は、O元素およびハロゲン元素の少なくとも一方をさらに含有していてもよい。 The negative electrode slurry may contain a solid electrolyte, if necessary. Examples of the solid electrolyte include inorganic solid electrolytes such as sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, and halide solid electrolytes, among which sulfide solid electrolytes are preferred. Examples of sulfide solid electrolytes include solid electrolytes containing Li element, X element (X is at least one of P, Si, Ge, Sn, B, Al, Ga, and In), and S element. mentioned. Moreover, the sulfide solid electrolyte may further contain at least one of the O element and the halogen element.
負極用スラリーは、必要に応じて、電子伝導性を向上するために導電材を含有していてもよい。導電材としては、例えば、VGCF(気相法炭素繊維)等のカーボンナノチューブ及びカーボンナノファイバー等の炭素材料等が挙げられる。 The negative electrode slurry may optionally contain a conductive material to improve electronic conductivity. Examples of the conductive material include carbon materials such as carbon nanotubes such as VGCF (vapor grown carbon fiber) and carbon nanofibers.
C.負極合材層の製造方法
本開示においては、上述した負極スラリーを用いた負極合材層の製造方法を提供することができる。具体的には、上記負極用スラリーを塗布して塗布膜を形成する塗布工程と、上記塗布膜から上記溶媒を除去する乾燥工程と、上記複合粒子から上記昇華性充填剤を除去する充填剤除去工程と、を有する負極合材層の製造方法を提供することができる。
C. Method for Producing Negative Electrode Mixed Material Layer In the present disclosure, it is possible to provide a method for producing a negative electrode mixed material layer using the negative electrode slurry described above. Specifically, a coating step of coating the negative electrode slurry to form a coating film, a drying step of removing the solvent from the coating film, and a filler removal of removing the sublimable filler from the composite particles. It is possible to provide a method for manufacturing a negative electrode mixture layer comprising the steps of:
塗布工程においては、上記負極用スラリーを、例えば、負極集電体の表面に、アプリケータ等を用いて塗工することで塗布膜を形成することができる。また、乾燥工程においては、上記塗布膜から、上記溶媒を乾燥することで、合材層形成層を形成する。乾燥工程は、溶媒の種類によって決定されるが、例えば、温風乾燥で行うことができる。また、充填剤除去工程においては、合材層形成層中の複合粒子から昇華性充填剤を昇華して除去することで、負極合材層を形成する。 In the coating step, the coating film can be formed by coating the negative electrode slurry on the surface of the negative electrode current collector using an applicator or the like, for example. In the drying step, the mixture layer forming layer is formed by drying the solvent from the coating film. The drying process is determined by the type of solvent, but can be carried out, for example, by hot air drying. Further, in the filler removing step, the sublimable filler is sublimated and removed from the composite particles in the mixture layer forming layer, thereby forming the negative electrode mixture layer.
D.全固体電池
本開示においては、上述した負極合材層の製造方法により得られた負極合材層を有する全固体電池を提供することもできる。全固体電池は、通常、正極合材層と、負極合材層と、正極合材層および負極合材層の間に形成された固体電解質層とを有する。さらに、全固体電池は、正極合材層の集電を行う正極集電体と、負極合材層の集電を行う負極集電体とを有する。
D. All-solid-state battery In the present disclosure, it is also possible to provide an all-solid-state battery having the negative electrode mixture layer obtained by the method for manufacturing the negative electrode mixture layer described above. An all-solid-state battery usually has a positive electrode mixture layer, a negative electrode mixture layer, and a solid electrolyte layer formed between the positive electrode mixture layer and the negative electrode mixture layer. Furthermore, the all-solid-state battery has a positive electrode current collector that collects current for the positive electrode mixture layer and a negative electrode current collector that collects current for the negative electrode mixture layer.
全固体電池は、全固体リチウム電池であることが好ましい。また、本開示における全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でも二次電池であることが好ましい。繰り返し充放電でき、例えば車載用電池として有用だからである。 The all-solid battery is preferably an all-solid lithium battery. In addition, the all-solid-state battery in the present disclosure may be a primary battery or a secondary battery, but is preferably a secondary battery. This is because they can be repeatedly charged and discharged, and are useful, for example, as batteries for vehicles.
なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示における特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示における技術的範囲に包含される。 Note that the present disclosure is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present disclosure and produces the same effect is the present invention. It is included in the technical scope of the disclosure.
(実施例)
[複合粒子の製造]
ポーラスSi(空隙率50%、28m2/g)と硫黄を重量比53:47で混合し、125℃に加熱して硫黄を融解させた。次に、混合物を撹拌しながら0.05MPaで10分間減圧してSi空隙内に硫黄を充填した。最後に、減圧状態のまま混合物を室温まで冷却し、充填状態で硫黄を凝固させ目的の硫黄充填ポーラスSi(複合粒子)を得た。なお、硫黄量は、Si空隙に対し体積比1:1となるようにした。減圧による充填条件は、硫黄を融解させつつ、蒸発あるいは昇華させないため、融点(119.5℃)以上、蒸気圧(135℃において10Pa)以上となるようにした。
(Example)
[Production of Composite Particles]
Porous Si (porosity 50%, 28 m 2 /g) and sulfur were mixed at a weight ratio of 53:47 and heated to 125° C. to melt the sulfur. Next, the mixture was evacuated at 0.05 MPa for 10 minutes while stirring to fill the Si voids with sulfur. Finally, the mixture was cooled to room temperature while the pressure was reduced, and sulfur was solidified in the filling state to obtain the desired sulfur-filled porous Si (composite particles). The amount of sulfur was adjusted to a volume ratio of 1:1 with respect to the Si voids. Filling conditions under reduced pressure were set to a melting point (119.5° C.) or higher and a vapor pressure (10 Pa at 135° C.) or higher in order to melt sulfur without evaporating or sublimating it.
[正極構造体の作製]
活物質(LiNi1/3Mn1/3Co1/3O2)及び硫化物固体電解質(LiI-LiO2-Li2S-P2S5)の重量比率が活物質:硫化物固体電解質=70:30となるように混合し、これを正極合材層100重量部に対して97.0重量部となるように秤量した。次に、正極合材層100重量部に対してPVDFバインダーが1重量部、導電助剤(気相成長炭素繊維、昭和電工株式会社製)が2重量部となるように秤量した。さらに、溶媒として固形分率が65wt%となるように酪酸ブチルを添加し、超音波ホモジナイザー(株式会社SMT製 UH-50)を用いて1分間に亘って混練することにより正極用スラリーを作製した。その後、アルミニウム箔の表面に、アプリケータを用いて、正極用スラリーを塗工し、110℃で60分間に亘って温風乾燥させる過程を経て正極合材層を形成し、正極集電体及び正極合材層を有する正極構造体を作製した。
[Fabrication of positive electrode structure]
The weight ratio of the active material (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) and the sulfide solid electrolyte (LiI—LiO 2 —Li 2 SP 2 S 5 ) is active material:sulfide solid electrolyte= They were mixed at a ratio of 70:30 and weighed to 97.0 parts by weight with respect to 100 parts by weight of the positive electrode mixture layer. Next, 1 part by weight of the PVDF binder and 2 parts by weight of the conductive aid (vapor growth carbon fiber, manufactured by Showa Denko KK) were weighed with respect to 100 parts by weight of the positive electrode mixture layer. Furthermore, butyl butyrate was added as a solvent so that the solid content was 65 wt%, and kneaded for 1 minute using an ultrasonic homogenizer (manufactured by SMT Co., Ltd. UH-50) to prepare a positive electrode slurry. . After that, the positive electrode slurry is applied to the surface of the aluminum foil using an applicator, and dried with hot air at 110 ° C. for 60 minutes to form a positive electrode mixture layer. A positive electrode structure having a positive electrode mixture layer was produced.
[負極構造体の作製]
作製した硫黄充填ポーラスSi、及び、硫化物固体電解質(LiI-LiO2-Li2S-P2S5)の重量比率が硫黄充填ポーラスSi:硫化物固体電解質=60:40となるように混合し、負極合材層形成層100重量部に対して94.0重量部となるように秤量した。次に、負極合材層形成層100重量部に対してPVDFバインダーが2重量部、導電助剤(気相成長炭素繊維、昭和電工株式会社製)が4重量部となるように秤量した。さらに、溶媒として固形分率が45wt%となるように酪酸ブチルを添加し、超音波ホモジナイザー(株式会社SMT製 UH-50)を用いて1分間に亘って混練することにより負極用スラリーを作製した。その後、負極集電体であるSUS箔の表面に、アプリケータを用いて、負極用スラリーを塗工し、110℃で60分間に亘って温風乾燥させる過程を経て溶媒を除去して負極合材層形成層を形成した。さらに140℃で12時間に亘って真空乾燥させる過程を経て硫黄を除去することで負極合材層を形成し、負極集電体及び負極合材層を有する負極構造体を作製した。
[Preparation of negative electrode structure]
The prepared sulfur-filled porous Si and the sulfide solid electrolyte (LiI—LiO 2 —Li 2 SP 2 S 5 ) were mixed so that the weight ratio was sulfur-filled porous Si:sulfide solid electrolyte=60:40. Then, it was weighed so as to be 94.0 parts by weight with respect to 100 parts by weight of the negative electrode mixture layer forming layer. Next, 2 parts by weight of the PVDF binder and 4 parts by weight of the conductive aid (vapor growth carbon fiber, manufactured by Showa Denko KK) were weighed with respect to 100 parts by weight of the negative electrode mixture layer forming layer. Furthermore, butyl butyrate was added as a solvent so that the solid content rate was 45 wt%, and kneaded for 1 minute using an ultrasonic homogenizer (manufactured by SMT Co., Ltd. UH-50) to prepare a negative electrode slurry. . After that, an applicator is used to apply the slurry for the negative electrode to the surface of the SUS foil, which is the negative electrode current collector, and the solvent is removed through a process of drying with warm air at 110° C. for 60 minutes to remove the negative electrode. A material layer forming layer was formed. Furthermore, sulfur was removed through a process of vacuum drying at 140° C. for 12 hours to form a negative electrode mixture layer, thereby producing a negative electrode structure having a negative electrode current collector and a negative electrode mixture layer.
[固体電解質層の作製]
硫化物固体電解質97重量部、PVDFバインダー溶液を固形分で3重量部となるように添加した。さらに、溶媒である酪酸ブチルを添加し、固形分が50wt%となるように加えたものを超音波ホモジナイザー(株式会社SMT製 UH-50)を用いて混練することにより、固体電解質層用スラリーを得た。アルミニウム箔にアプリケータを用いて固体電解質層用スラリーを塗工し、110℃で60分間に亘って温風乾燥させることにより固体電解質層を得た。
[Preparation of Solid Electrolyte Layer]
97 parts by weight of a sulfide solid electrolyte and a PVDF binder solution were added so that the solid content was 3 parts by weight. Furthermore, butyl butyrate, which is a solvent, is added so that the solid content becomes 50 wt %, and the mixture is kneaded using an ultrasonic homogenizer (UH-50 manufactured by SMT Co., Ltd.) to obtain a solid electrolyte layer slurry. Obtained. An applicator was used to apply the solid electrolyte layer slurry to an aluminum foil, followed by hot air drying at 110° C. for 60 minutes to obtain a solid electrolyte layer.
[電池の作製]
不活性ガス中で、アルミニウム箔をはがした固体電解質層を挟んで正極合材層および負極合材層が対向するように重ねた後、4.3tでプレスすることにより、電池を得た。
[Production of battery]
In an inert gas, the solid electrolyte layer from which the aluminum foil was removed was sandwiched between the positive electrode mixture layer and the negative electrode mixture layer so that they faced each other, and then pressed at 4.3 t to obtain a battery.
(比較例1)
負極活物質をポーラスSi(硫黄未充填)へ変更し、負極合材層100重量部に対して活物質と硫化物固体電解質の混合物が91.0重量部、PVDFバインダーが5重量部となるように秤量し、固形分率が30wt%となるように酪酸ブチルを添加して負極用スラリーを作製した以外は、実施例と同様にして電池を得た。
※固形分率を実施例と同じ45wt%とした場合、スラリーに流動性が無く塗工できなかったため30wt%とした。バインダー量もまた、実施例と同じ2wt%では塗工後の乾燥工程で合材が剥離してしまったため5wt%に変更した。
(Comparative example 1)
The negative electrode active material was changed to porous Si (unfilled with sulfur), and the mixture of the active material and the sulfide solid electrolyte was 91.0 parts by weight and the PVDF binder was 5 parts by weight with respect to 100 parts by weight of the negative electrode mixture layer. A battery was obtained in the same manner as in Example except that butyl butyrate was added so that the solid content was 30 wt % to prepare a negative electrode slurry.
*When the solid content rate was set to 45 wt%, which was the same as in the example, the slurry did not have fluidity and could not be coated, so it was set to 30 wt%. The amount of binder was also changed to 5 wt% because the composite material peeled off during the drying process after coating at 2 wt%, which was the same as in the example.
(比較例2)
負極活物質を中実Si粒子(ポーラス化ベース材、粒径1μm、11m2/g)へ変更して負極用スラリーを作製した以外は、実施例と同様にして電池を得た。
(Comparative example 2)
A battery was obtained in the same manner as in Example except that the negative electrode active material was changed to solid Si particles (porous base material, particle size: 1 μm, 11 m 2 /g) to prepare the negative electrode slurry.
(評価方法)
実施例、比較例において評価に用いた評価方法に関して以下に示す。結果を表1に示す。
(Evaluation method)
Evaluation methods used for evaluation in Examples and Comparative Examples are shown below. Table 1 shows the results.
1.剥離強度
得られた負極構造体に粘着テープを張り付け、90°剥離試験により剥離強度を測定した。結果は比較例1を100としたときの比で示した。
1. Peel Strength An adhesive tape was attached to the obtained negative electrode structure, and the peel strength was measured by a 90° peel test. The results are shown as a ratio when Comparative Example 1 is set to 100.
2.セル抵抗
各試験セルは、25℃環境下で0.1Cの電流値で4.2Vまで20時間定電流定電圧充電を行い、0.2Cの電流値で3.0Vまで10時間定電圧放電を行った。この充放電サイクルを3回繰り返したのち、0.2Cで4.0まで充電した。これによりセル測定で使用するリチウムイオン二次電池を作製した。抵抗測定は、作製した電池を3Cで10秒間放電し、電圧変化を電流値で割ることで求められた(初期抵抗)。結果は比較例1を100としたときの比で示した。
2. Cell resistance Each test cell was subjected to constant current and constant voltage charging to 4.2 V at a current value of 0.1 C for 20 hours in a 25°C environment, and constant voltage discharging to 3.0 V at a current value of 0.2 C for 10 hours. gone. After repeating this charge/discharge cycle three times, the battery was charged at 0.2C to 4.0. In this way, a lithium ion secondary battery used in cell measurements was produced. The resistance measurement was obtained by discharging the prepared battery at 3 C for 10 seconds and dividing the voltage change by the current value (initial resistance). The results are shown as a ratio when Comparative Example 1 is set to 100.
3.サイクル試験
各試験セルは、60℃環境下で2Cの電流値で4.2Vまで1時間定電流定電圧充電を行い、2Cの電流値で3.0Vまで2時間定電圧放電を行った。この充放電サイクルを300回繰り返した。その後、評価方法2の方法でセル抵抗を測定し(サイクル後抵抗)、サイクル前後の抵抗増加率を計算した。
3. Cycle Test Each test cell was subjected to constant-current and constant-voltage charging to 4.2 V at a current value of 2 C for 1 hour in a 60° C. environment, and constant-voltage discharging to 3.0 V at a current value of 2 C to 3.0 V for 2 hours. This charge/discharge cycle was repeated 300 times. After that, the cell resistance was measured by the evaluation method 2 (post-cycle resistance), and the resistance increase rate before and after the cycle was calculated.
実施例の硫黄充填ポーラスSiは、比較例2の中実Siに近い比表面積が得られ、同じ条件で電極化できたことから、ポーラスSiの空隙に硫黄が充填され、バインダーや溶媒が空隙に侵入しなかったと考えられる。実施例はスラリー固形分率が高いため、スラリー乾燥工程での粒子沈降が抑制され、均一な合材層が形成されたため剥離強度が中実Siを使用した場合(比較例2)と同等まで向上した。また、比較例1、2よりも実施例において抵抗率増加が抑制されたのは、空隙がバインダーに圧迫されないためサイクル時の体積膨張を緩和する効果がより顕著になったためと考えられる。 The sulfur-filled porous Si of the example obtained a specific surface area close to that of the solid Si of Comparative Example 2, and could be formed into an electrode under the same conditions. presumably did not invade. In the example, since the slurry solid content is high, sedimentation of particles in the slurry drying process is suppressed, and a uniform composite layer is formed, so the peel strength is improved to the same level as when solid Si is used (Comparative Example 2). bottom. In addition, the reason why the increase in resistivity was suppressed in the example more than in the comparative examples 1 and 2 is considered to be that the voids are not pressed by the binder, so that the effect of mitigating the volume expansion during the cycle becomes more pronounced.
1 …多孔質Si粒子
2 …昇華性充填剤
3 …溶媒およびバインダー
4 …固体電解質
5 …導電材
6 …スラリー
7A …負極合層形成層
7B …負極合材層
10 …複合粒子
DESCRIPTION OF SYMBOLS 1... Porous Si particle 2... Sublimation filler 3... Solvent and binder 4... Solid electrolyte 5... Conductive material 6... Slurry 7A... Negative electrode mixture layer formation layer 7B... Negative electrode mixture layer 10... Composite particle
Claims (1)
多孔質Si粒子と、前記多孔質Si粒子の空隙内に充填された昇華性充填剤とを有し、
前記昇華性充填剤が硫黄であり、
前記複合粒子において、前記多孔質Si粒子の空隙を100体積部とした場合に、前記昇華性充填剤が80体積部以上120体積部以下である、複合粒子。 A composite particle for a negative electrode active material contained in a negative electrode mixture layer of an all-solid lithium secondary battery ,
Porous Si particles and a sublimation filler filled in the voids of the porous Si particles ,
the sublimable filler is sulfur,
The composite particles, wherein the sublimation filler is 80 volume parts or more and 120 volume parts or less when the pores of the porous Si particles are 100 volume parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019229330A JP7318517B2 (en) | 2019-12-19 | 2019-12-19 | Composite particles for negative electrode active material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019229330A JP7318517B2 (en) | 2019-12-19 | 2019-12-19 | Composite particles for negative electrode active material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021097017A JP2021097017A (en) | 2021-06-24 |
JP7318517B2 true JP7318517B2 (en) | 2023-08-01 |
Family
ID=76431461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019229330A Active JP7318517B2 (en) | 2019-12-19 | 2019-12-19 | Composite particles for negative electrode active material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7318517B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024044974A1 (en) * | 2022-08-30 | 2024-03-07 | 宁德新能源科技有限公司 | Negative electrode sheet, secondary battery, and electronic device |
JP2024047223A (en) | 2022-09-26 | 2024-04-05 | トヨタ自動車株式会社 | Negative electrode active material layer and solid-state battery |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005135925A (en) | 2002-02-07 | 2005-05-26 | Hitachi Maxell Ltd | Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method |
JP2015513180A (en) | 2012-02-28 | 2015-04-30 | ネクソン リミテッドNexeon Limited | Structured silicon particles |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3440705B2 (en) * | 1996-08-01 | 2003-08-25 | 松下電器産業株式会社 | Manufacturing method of non-aqueous electrolyte secondary battery |
-
2019
- 2019-12-19 JP JP2019229330A patent/JP7318517B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005135925A (en) | 2002-02-07 | 2005-05-26 | Hitachi Maxell Ltd | Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method |
JP2015513180A (en) | 2012-02-28 | 2015-04-30 | ネクソン リミテッドNexeon Limited | Structured silicon particles |
Also Published As
Publication number | Publication date |
---|---|
JP2021097017A (en) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6528826B2 (en) | Carbon material for non-aqueous secondary battery and negative electrode and lithium ion secondary battery using the same | |
JP4385589B2 (en) | Negative electrode material and secondary battery using the same | |
JP5329858B2 (en) | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby | |
KR20140014169A (en) | Porous structures for energy storage devices | |
KR20120061932A (en) | Electrochemical cells comprising porous structures comprising sulfur | |
KR101105877B1 (en) | Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same | |
JP5172564B2 (en) | Nonaqueous electrolyte secondary battery | |
KR20050086713A (en) | Electrode material, and production method and use thereof | |
CN109314242B (en) | Negative electrode composition, method for preparing negative electrode and lithium ion battery | |
JP2022551407A (en) | Graphite negative electrode material, negative electrode, lithium ion battery and manufacturing method thereof | |
CN107258029B (en) | Negative electrode for lithium secondary battery and lithium secondary battery including the same | |
JP7318517B2 (en) | Composite particles for negative electrode active material | |
JP2009514166A (en) | Secondary battery electrode active material | |
KR20240045188A (en) | All solid state battery and method for producing all solid state battery | |
CN112072072A (en) | Pre-cycled silicon electrode | |
TW202103358A (en) | Composite particles and negative electrode material for lithium ion secondary batteries | |
JP6965860B2 (en) | All solid state battery | |
KR20200128256A (en) | A composite anode for all-solid state battery and process for preparing thereof | |
JP2020119811A (en) | Negative electrode layer | |
JPH10116604A (en) | Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it | |
JP6194276B2 (en) | Method for producing composite graphite particles for negative electrode of lithium ion secondary battery | |
US20210111411A1 (en) | Electrode for lithium ion secondary batteries and lithium ion secondary battery | |
JP7119940B2 (en) | Negative electrode active material composite for all-solid-state battery | |
JP2016085876A (en) | Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery | |
JP2020161286A (en) | All-solid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230703 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7318517 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |