JP2016085876A - Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016085876A
JP2016085876A JP2014218276A JP2014218276A JP2016085876A JP 2016085876 A JP2016085876 A JP 2016085876A JP 2014218276 A JP2014218276 A JP 2014218276A JP 2014218276 A JP2014218276 A JP 2014218276A JP 2016085876 A JP2016085876 A JP 2016085876A
Authority
JP
Japan
Prior art keywords
negative electrode
granulated particles
wet granulated
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014218276A
Other languages
Japanese (ja)
Inventor
浩哉 梅山
Hiroya Umeyama
浩哉 梅山
直之 和田
Naoyuki Wada
直之 和田
橋本 達也
Tatsuya Hashimoto
達也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014218276A priority Critical patent/JP2016085876A/en
Publication of JP2016085876A publication Critical patent/JP2016085876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a low-resistance negative electrode for a nonaqueous electrolyte secondary battery.SOLUTION: A method for manufacturing a negative electrode for a nonaqueous electrolyte secondary battery comprises the steps of: preparing first moist powder by mixing a negative electrode active material, CMC and an imide-based resin without solvent into a powder mixture and then, adding water to the powder mixture; preparing second moist powder by coating at least part of the surface of first moist powder with SBR; and transferring the second moist powder to a negative electrode current collector.SELECTED DRAWING: Figure 2

Description

本発明は、非水電解質二次電池用負極の製造方法に関する。   The present invention relates to a method for producing a negative electrode for a nonaqueous electrolyte secondary battery.

特許文献1(特開2013−235684号公報)には、活物質粒子と造粒用結着剤などとを混練してスラリーを作製し、このスラリーをスプレードライ法などにより造粒して造粒体を作製することが記載されている。   In Patent Document 1 (Japanese Patent Laid-Open No. 2013-235684), active material particles and a granulating binder are kneaded to prepare a slurry, and the slurry is granulated by a spray drying method or the like. Making a body is described.

特開2013−235684号公報JP 2013-235684 A

イミド系樹脂は、強固なポリマーマトリックスを形成し、優れた耐熱性(耐熱温度が400℃以上)と優れた機械的特性とを有する。そのため、イミド系樹脂を非水電解質二次電池の負極用結着剤として用いることが提案されている。例えば合金系材料からなる負極活物質を用いる場合には、負極用結着剤としてイミド系樹脂を用いることが好ましい。   The imide-based resin forms a strong polymer matrix and has excellent heat resistance (heat resistance temperature of 400 ° C. or higher) and excellent mechanical properties. Therefore, it has been proposed to use an imide resin as a binder for a negative electrode of a nonaqueous electrolyte secondary battery. For example, when a negative electrode active material made of an alloy material is used, it is preferable to use an imide resin as a negative electrode binder.

しかしながら、結着剤としてイミド系樹脂を用いた場合に特許文献1に記載の方法にしたがって負極を作製すると、スラリーの作製時にイミド系樹脂が有機溶媒(例えばNMP(N-methylpyrrolidone))に溶解することがある。得られた溶解物が負極活物質の表面を被覆すると、負極の抵抗増加を引き起こすことがある。本発明では、低抵抗な非水電解質二次電池用負極を製造する方法を提供する。   However, when a negative electrode is produced according to the method described in Patent Document 1 when an imide resin is used as a binder, the imide resin is dissolved in an organic solvent (for example, NMP (N-methylpyrrolidone)) during the production of the slurry. Sometimes. When the obtained melt covers the surface of the negative electrode active material, the resistance of the negative electrode may be increased. The present invention provides a method for producing a negative electrode for a non-aqueous electrolyte secondary battery with low resistance.

本発明者らは、非水電解質二次電池用負極の製造方法として、負極活物質と結着剤と少量の溶媒とを用いて湿潤造粒粒子(moist powder)を作製し、その湿潤造粒粒子を負極集電体に転写するという方法を提案している。この方法では、溶媒として水を使用できる。そのため、結着剤としてイミド系樹脂を用いた場合には、かかる結着剤が溶媒(水)に溶解することを防止できる。よって、本発明者らは、上記方法を用いて負極を製造すれば低抵抗な負極を製造できるのではないかと考えた。   As a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, the present inventors produced wet granulated particles (moist powder) using a negative electrode active material, a binder, and a small amount of a solvent, and the wet granulation thereof. A method of transferring particles to a negative electrode current collector has been proposed. In this method, water can be used as a solvent. Therefore, when an imide resin is used as the binder, the binder can be prevented from dissolving in the solvent (water). Therefore, the present inventors thought that a negative electrode having a low resistance could be manufactured by manufacturing a negative electrode using the above method.

しかし、上記方法を用いて負極を製造すると、負極集電体と造粒粒子(湿潤造粒粒子から溶媒が除去されることにより作製された造粒体)との密着性が低下し、また、造粒粒子同士の密着性が低下した。そのため、上記方法を用いて負極を製造した場合であっても低抵抗な負極を製造できないことが分かった。このような考察をふまえて、本発明の非水電解質二次電池用負極の製造方法を完成させた。   However, when the negative electrode is produced using the above method, the adhesion between the negative electrode current collector and the granulated particles (granulated material produced by removing the solvent from the wet granulated particles) decreases, The adhesion between the granulated particles was lowered. Therefore, it was found that even when a negative electrode was manufactured using the above method, a low resistance negative electrode could not be manufactured. Based on such consideration, the manufacturing method of the negative electrode for a non-aqueous electrolyte secondary battery of the present invention was completed.

本発明の非水電解質二次電池用負極の製造方法は、負極活物質とカルボキシメチルセルロース(CMC(carboxymethyl cellulose))とイミド系樹脂とを粉体混合した後、さらに水を加えて第1湿潤造粒粒子を作製する工程と、第1湿潤造粒粒子の表面の少なくとも一部をスチレンブタジエンゴム(SBR(styrene-butadiene rubber))で被覆して第2湿潤造粒粒子を作製する工程と、第2湿潤造粒粒子を負極集電体に転写する工程とを備える。   In the method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention, a negative electrode active material, carboxymethyl cellulose (CMC) and an imide resin are mixed with powder, and then water is added to the first wet structure. A step of producing granular particles, a step of producing second wet granulated particles by covering at least part of the surface of the first wet granulated particles with styrene-butadiene rubber (SBR), And 2 transferring the wet granulated particles to the negative electrode current collector.

本発明では、第1湿潤造粒粒子の作製時におけるイミド系樹脂の溶解を防止できるので、イミド系樹脂の溶解物が負極活物質の表面を被覆することを防止できる。それだけでなく、SBRが表面に設けられた第2湿潤造粒粒子を負極集電体に転写するので、負極造粒粒子(第2湿潤造粒粒子から溶媒(水)が除去されることにより作製された造粒体)はSBRによって負極集電体又は他の負極造粒粒子に密着する。   In the present invention, since dissolution of the imide resin during the production of the first wet granulated particles can be prevented, it is possible to prevent the dissolved imide resin from covering the surface of the negative electrode active material. In addition, since the second wet granulated particles with SBR provided on the surface are transferred to the negative electrode current collector, the negative electrode granulated particles (prepared by removing the solvent (water) from the second wet granulated particles The agglomerated particles) are brought into close contact with the negative electrode current collector or other negative electrode granulated particles by SBR.

「イミド系樹脂」とは、イミド結合を主体に構成されたポリマー骨格を有する合成樹脂を意味し、イミド結合とは異なる結合(例えばアミド結合)をさらに含んでも良い。イミド系樹脂としては、ポリイミド樹脂又はポリアミドイミド樹脂などが挙げられる。   The “imide resin” means a synthetic resin having a polymer skeleton mainly composed of imide bonds, and may further include a bond (for example, an amide bond) different from the imide bond. Examples of the imide resin include polyimide resin and polyamideimide resin.

「負極活物質とCMCとイミド系樹脂とを粉体混合する」とは、溶媒を何ら用いることなく固体状態の負極活物質と固体状態のCMCと固体状態のイミド系樹脂とを混合することを意味する。固体状態の負極活物質としては、例えば、粉末状の負極活物質が挙げられる。固体状態のCMC及び固体状態のイミド系樹脂についても同様のことが言える。   “Powder mixing negative electrode active material, CMC and imide resin” means mixing solid negative electrode active material, solid state CMC and solid state imide resin without using any solvent. means. Examples of the solid-state negative electrode active material include a powdered negative electrode active material. The same applies to CMC in the solid state and imide resin in the solid state.

「第1湿潤造粒粒子」では、粒子(例えば、負極活物質、CMC、又は、イミド系樹脂の何れか)と粒子(例えば、負極活物質、CMC、又は、イミド系樹脂の何れか)との間に存在する溶媒(本発明では水)の表面張力によって粒子と粒子とが互いに接着されて造粒体を構成していると考えられる。「第1湿潤造粒粒子」は、65質量%以上の固形分(負極活物質とCMCとイミド系樹脂)を含むことが好ましい。   In the “first wet granulated particles”, particles (for example, any of negative electrode active material, CMC, or imide resin) and particles (for example, any of negative electrode active material, CMC, or imide resin) and It is considered that the particles are adhered to each other by the surface tension of the solvent (water in the present invention) existing between the particles to form a granulated body. The “first wet granulated particle” preferably contains 65% by mass or more of solid content (negative electrode active material, CMC, and imide resin).

「第1湿潤造粒粒子の表面の少なくとも一部をSBRで被覆する」には、第1湿潤造粒粒子の表面にSBRからなる粒子を付着させる場合が含まれる。   “Coating at least a part of the surface of the first wet granulated particles with SBR” includes a case where particles made of SBR are attached to the surface of the first wet granulated particles.

「転写」とは、第2湿潤造粒粒子を負極集電体の表面に圧着した後に乾燥させることを意味する。   “Transfer” means that the second wet granulated particles are pressed onto the surface of the negative electrode current collector and then dried.

本発明では、イミド系樹脂の溶解物が負極活物質の表面を被覆することを防止でき、また、負極集電体と負極造粒粒子との密着性及び負極造粒粒子同士の密着性を高めることができる。これにより、低抵抗な非水電解質二次電池用負極を製造できる。   In the present invention, it is possible to prevent the dissolved imide-based resin from covering the surface of the negative electrode active material, and to improve the adhesion between the negative electrode current collector and the negative electrode granulated particles and the adhesion between the negative electrode granulated particles. be able to. Thereby, the low resistance non-aqueous electrolyte secondary battery negative electrode can be manufactured.

本発明の一実施形態の第1湿潤造粒粒子を模式的に示す断面図である。It is sectional drawing which shows typically the 1st wet granulation particle | grain of one Embodiment of this invention. 本発明の一実施形態の第2湿潤造粒粒子を模式的に示す断面図である。It is sectional drawing which shows typically the 2nd wet granulation particle | grains of one Embodiment of this invention. 本発明の一実施形態の負極を模式的に示す断面図である。It is sectional drawing which shows the negative electrode of one Embodiment of this invention typically.

以下、本発明について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さ等の寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。   The present invention will be described below with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

[非水電解質二次電池用負極の製造方法]
図1は、本発明の一実施形態の第1湿潤造粒粒子を模式的に示す断面図である。図2は、本実施形態の第2湿潤造粒粒子を模式的に示す断面図である。図3は、本実施形態の負極を模式的に示す断面図である。
[Method for producing negative electrode for nonaqueous electrolyte secondary battery]
FIG. 1 is a cross-sectional view schematically showing first wet granulated particles according to an embodiment of the present invention. FIG. 2 is a cross-sectional view schematically showing the second wet granulated particles of the present embodiment. FIG. 3 is a cross-sectional view schematically showing the negative electrode of the present embodiment.

本実施形態の非水電解質二次電池用負極(以下では単に「負極」と記す)の製造方法では、まず、負極活物質11とCMC(不図示)とイミド系樹脂13とを粉体混合した後、さらに水を加え混合する。このようにして第1湿潤造粒粒子10が作製される。次に、第1湿潤造粒粒子10の表面の少なくとも一部をSBR21で被覆する。このようにして第2湿潤造粒粒子20が作製される。続いて、第2湿潤造粒粒子20を負極集電体31に転写する。このようにして負極30が製造される。第1湿潤造粒粒子10の形態は図1に示す形態に限定されず、第2湿潤造粒粒子20の形態は図2に示す形態に限定されない。   In the method for producing a negative electrode for a non-aqueous electrolyte secondary battery (hereinafter simply referred to as “negative electrode”) of the present embodiment, first, the negative electrode active material 11, CMC (not shown), and the imide resin 13 are powder-mixed. Then, add more water and mix. In this way, the first wet granulated particles 10 are produced. Next, at least a part of the surface of the first wet granulated particle 10 is coated with SBR 21. In this way, the second wet granulated particle 20 is produced. Subsequently, the second wet granulated particles 20 are transferred to the negative electrode current collector 31. In this way, the negative electrode 30 is manufactured. The form of the first wet granulated particle 10 is not limited to the form shown in FIG. 1, and the form of the second wet granulated particle 20 is not limited to the form shown in FIG.

本実施形態では、第1湿潤造粒粒子10の作製時には溶媒として水を用いる。これにより、イミド系樹脂13が溶媒に溶解することを防止できるので、イミド系樹脂13の溶解物が負極活物質11の表面を被覆することを防止できる(図1)。よって、負極活物質11に対するリチウムイオンの挿入及び脱離をスムーズに行うことができる。   In the present embodiment, water is used as a solvent when the first wet granulated particles 10 are produced. Thereby, since it can prevent that the imide resin 13 melt | dissolves in a solvent, it can prevent that the melt | dissolution of the imide resin 13 coat | covers the surface of the negative electrode active material 11 (FIG. 1). Therefore, insertion and desorption of lithium ions from the negative electrode active material 11 can be performed smoothly.

それだけでなく、第2湿潤造粒粒子20を負極集電体31に転写するので、第2湿潤造粒粒子20はSBR21によって負極集電体31又は他の第2湿潤造粒粒子20に密着する。そのため、溶媒が第2湿潤造粒粒子20から除去されれば、負極造粒粒子がSBR21によって負極集電体31又は他の負極造粒粒子に密着することとなる(図3)。これにより、負極造粒粒子と負極集電体31との接触抵抗を低く抑えることができ、また、負極造粒粒子同士の接触抵抗を低く抑えることができる。   In addition, since the second wet granulated particles 20 are transferred to the negative electrode current collector 31, the second wet granulated particles 20 are in close contact with the negative electrode current collector 31 or other second wet granulated particles 20 by the SBR 21. . Therefore, if the solvent is removed from the second wet granulated particles 20, the negative electrode granulated particles are brought into close contact with the negative electrode current collector 31 or other negative electrode granulated particles by the SBR 21 (FIG. 3). Thereby, the contact resistance between the negative electrode granulated particles and the negative electrode current collector 31 can be kept low, and the contact resistance between the negative electrode granulated particles can be kept low.

以上をまとめると、製造された負極30では、負極活物質11に対するリチウムイオンの挿入及び脱離をスムーズに行うことができ、また、負極造粒粒子(特に、負極造粒粒子に含まれる負極活物質11)と負極集電体31との接触抵抗、及び、負極造粒粒子同士(特に、負極造粒粒子に含まれる負極活物質11同士)の接触抵抗を低く抑えることができる。これにより、本実施形態では、低抵抗な負極30を製造できる。よって、本実施形態の負極30の製造方法は、高容量が要求される非水電解質二次電池(例えば車両用電源、工場用電源又は家庭用電源等に含まれる非水電解質二次電池)に含まれる負極の製造方法に好適である。   In summary, the manufactured negative electrode 30 can smoothly insert and desorb lithium ions from the negative electrode active material 11, and negative electrode granulated particles (particularly, the negative electrode active particles contained in the negative electrode granulated particles). The contact resistance between the substance 11) and the negative electrode current collector 31 and the contact resistance between the negative electrode granulated particles (particularly, the negative electrode active materials 11 included in the negative electrode granulated particles) can be kept low. Thereby, in this embodiment, the low resistance negative electrode 30 can be manufactured. Therefore, the manufacturing method of the negative electrode 30 of this embodiment is applied to a non-aqueous electrolyte secondary battery (for example, a non-aqueous electrolyte secondary battery included in a vehicle power supply, a factory power supply, a household power supply, or the like) that requires a high capacity. It is suitable for the manufacturing method of the negative electrode contained.

また、結着剤としてイミド系樹脂を用いるため、製造された負極30の熱安定性を高めることができる。例えば、高温下においても、負極造粒粒子と負極集電体31とを密着させることができ、また、負極造粒粒子同士を密着させることができる。これにより、熱安定性に優れた非水電解質二次電池を提供できる。   Moreover, since imide resin is used as a binder, the thermal stability of the manufactured negative electrode 30 can be improved. For example, the negative electrode granulated particles and the negative electrode current collector 31 can be brought into close contact with each other even at high temperatures, and the negative electrode granulated particles can be brought into close contact with each other. Thereby, the nonaqueous electrolyte secondary battery excellent in thermal stability can be provided.

なお、イミド系樹脂13の代わりにSBR21を用いて第1湿潤造粒粒子10を作製し、SBR21の代わりにイミド系樹脂13を用いて第2湿潤造粒粒子20を作製すると、第2湿潤造粒粒子20同士の密着性を十分に高めることが難しい。そのため、低抵抗な負極30を製造することが難しくなる。   When the first wet granulated particles 10 are produced using SBR 21 instead of the imide resin 13 and the second wet granulated particles 20 are produced using the imide resin 13 instead of the SBR 21, the second wet granulated particles 20 are produced. It is difficult to sufficiently improve the adhesion between the particle particles 20. Therefore, it becomes difficult to manufacture the low resistance negative electrode 30.

また、SBR21の方がイミド系樹脂13よりも負極活物質11の表面に付着し易い。そのため、負極活物質11とイミド系樹脂13とSBR21とを同時に混合すると、イミド系樹脂13を用いたことにより得られる効果(高温下においても、負極造粒粒子と負極集電体31とを密着させることができ、また、負極造粒粒子同士を密着させることができる)を得ることが難しくなる。以下では、工程ごとに順に示す。   In addition, SBR 21 is more likely to adhere to the surface of negative electrode active material 11 than imide resin 13. Therefore, when the negative electrode active material 11, the imide resin 13 and the SBR 21 are mixed at the same time, the effect obtained by using the imide resin 13 (adhesive adhesion between the negative granulated particles and the negative electrode current collector 31 even at high temperatures) In addition, it is difficult to obtain negative electrode granulated particles that can be adhered to each other. Below, it shows in order for every process.

<第1湿潤造粒粒子の作製>
負極活物質11とCMCとイミド系樹脂13とを粉体混合する具体的な方法は特に限定されず、従来公知の混練装置を用いてこれらを粉体混合することが好ましい。負極活物質11とCMCとイミド系樹脂13との混合物と水とを混合する方法についても同様のことが言える。
<Preparation of first wet granulated particles>
The specific method of powder-mixing the negative electrode active material 11, CMC, and the imide resin 13 is not particularly limited, and it is preferable to powder-mix these using a conventionally known kneading apparatus. The same can be said for the method of mixing the negative electrode active material 11, the CMC and the imide resin 13 with water.

負極活物質11は、非水電解質二次電池の負極活物質として従来公知の材料からなることが好ましいが、より好ましくはシリコン系合金材料、スズ系合金材料又はチタン系合金材料などの合金系材料からなる。   The negative electrode active material 11 is preferably made of a conventionally known material as a negative electrode active material of a non-aqueous electrolyte secondary battery, but more preferably an alloy-based material such as a silicon-based alloy material, a tin-based alloy material, or a titanium-based alloy material Consists of.

負極活物質11の配合量、CMCの配合量及びイミド系樹脂13の配合量は特に限定されない。例えば、CMCの配合量は負極活物質11の配合量に対して0.1質量%以上5質量%以下であることが好ましく、イミド系樹脂13の配合量は負極活物質11の配合量に対して0.1質量%以上5質量%以下であることが好ましい。   The compounding quantity of the negative electrode active material 11, the compounding quantity of CMC, and the compounding quantity of the imide resin 13 are not specifically limited. For example, the blending amount of CMC is preferably 0.1% by mass or more and 5% by mass or less with respect to the blending amount of the negative electrode active material 11, and the blending amount of the imide resin 13 is based on the blending amount of the negative electrode active material 11. It is preferable that it is 0.1 mass% or more and 5 mass% or less.

<第2湿潤造粒粒子の作製>
次に示す方法にしたがって第2湿潤造粒粒子20を作製することができる。SBRの水分散体(SBR21が水に分散されて構成されたもの)を第1湿潤造粒粒子10に添加し、これらを混合する。混合方法としては、負極活物質11とCMCとイミド系樹脂13とを混合する方法と同様の方法を適用できる。この混合により第1湿潤造粒粒子10の表面の少なくとも一部がSBR21で被覆され、よって、第2湿潤造粒粒子20が得られる。SBR21添加量は、特に限定されないが、好ましくは負極活物質11の配合量に対して0.1質量%以上1質量%以下であるとともにイミド系樹脂13の配合量以下である。
<Preparation of second wet granulated particles>
The second wet granulated particles 20 can be produced according to the following method. An aqueous dispersion of SBR (a structure in which SBR21 is dispersed in water) is added to the first wet granulated particles 10, and these are mixed. As a mixing method, a method similar to the method of mixing the negative electrode active material 11, CMC, and the imide resin 13 can be applied. By this mixing, at least a part of the surface of the first wet granulated particle 10 is coated with the SBR 21, and thus the second wet granulated particle 20 is obtained. The amount of SBR 21 added is not particularly limited, but is preferably 0.1% by mass or more and 1% by mass or less with respect to the compounding amount of the negative electrode active material 11 and is not more than the compounding amount of the imide resin 13.

<転写>
従来公知の成形転写装置を用いて、第2湿潤造粒粒子20を負極集電体31の表面に圧着させることができる。負極集電体31の表面に圧着された第2湿潤造粒粒子20を乾燥させる条件としては特に限定されず、第2湿潤造粒粒子20に含まれる溶媒(水)が除去されるように乾燥条件を設定することが好ましい。
<Transfer>
The second wet granulated particles 20 can be pressure-bonded to the surface of the negative electrode current collector 31 using a conventionally known molding transfer device. The conditions for drying the second wet granulated particles 20 pressure-bonded to the surface of the negative electrode current collector 31 are not particularly limited, and drying is performed so that the solvent (water) contained in the second wet granulated particles 20 is removed. It is preferable to set conditions.

[負極]
本実施形態の負極30は、本実施形態の負極30の製造方法にしたがって得られたものである。そのため、負極30では、負極造粒粒子がSBR21によって負極集電体31に密着しており、負極集電体31の表面に設けられた負極合剤層33の内部では、負極造粒粒子同士がSBR21によって互いに密着している。なお、負極造粒粒子は、第2湿潤造粒粒子20から溶媒(水)が除去されることにより作製されたものである。そのため、負極造粒粒子では、負極活物質11とCMCとイミド系樹脂13とを含む造粒体の外側にSBR21が存在している。
[Negative electrode]
The negative electrode 30 of this embodiment is obtained according to the manufacturing method of the negative electrode 30 of this embodiment. Therefore, in the negative electrode 30, the negative electrode granulated particles are in close contact with the negative electrode current collector 31 by the SBR 21, and the negative electrode granulated particles are in the negative electrode mixture layer 33 provided on the surface of the negative electrode current collector 31. The SBR 21 is in close contact with each other. In addition, the negative electrode granulated particles are produced by removing the solvent (water) from the second wet granulated particles 20. Therefore, in the negative-granulated particles, SBR 21 exists outside the granulated body containing the negative electrode active material 11, CMC, and the imide resin 13.

負極30は本実施形態の負極30の製造方法にしたがって得られたものであるので、溶媒の除去に起因して結着剤(例えばイミド系樹脂)がマイグレーション(偏析)することを防止できる。具体的には、負極合剤層33をその厚さ方向において二等分した場合、負極集電体31とは反対側に位置する負極合剤層33(表層側負極合剤層)における窒素元素の濃度を、負極集電体31側に位置する負極合剤層33(集電体側負極合剤層)における窒素元素の濃度の0.7以上1.3以下に抑えることができる。   Since the negative electrode 30 is obtained according to the manufacturing method of the negative electrode 30 of the present embodiment, it is possible to prevent the binder (for example, imide resin) from migrating (segregating) due to the removal of the solvent. Specifically, when the negative electrode mixture layer 33 is divided into two equal parts in the thickness direction, the nitrogen element in the negative electrode mixture layer 33 (surface layer side negative electrode mixture layer) located on the side opposite to the negative electrode current collector 31 Of the nitrogen element in the negative electrode mixture layer 33 (current collector side negative electrode mixture layer) located on the negative electrode current collector 31 side can be suppressed to 0.7 or more and 1.3 or less.

また、負極30は本実施形態の負極30の製造方法にしたがって得られたものであるので、負極合剤層33におけるNMPの含有量を1ppm以下に抑えることができる。   Moreover, since the negative electrode 30 was obtained according to the manufacturing method of the negative electrode 30 of this embodiment, the content of NMP in the negative electrode mixture layer 33 can be suppressed to 1 ppm or less.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明は以下に限定されない。
[実施例1]
<リチウムイオン二次電池の製造>
(負極の作製)
負極活物質として、黒鉛を準備した。プラネタリミキサーに、負極活物質100質量部に対してCMC1質量部とポリイミド樹脂(粉末)1質量部とを入れて混合した後、水43質量部を添加してさらに混合した。このようにして第1湿潤造粒粒子(固形分濃度が70質量%)を得た。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to the following.
[Example 1]
<Manufacture of lithium ion secondary batteries>
(Preparation of negative electrode)
Graphite was prepared as a negative electrode active material. Into a planetary mixer, 1 part by mass of CMC and 1 part by mass of polyimide resin (powder) were added to 100 parts by mass of the negative electrode active material and mixed, and then 43 parts by mass of water was added and further mixed. In this way, first wet granulated particles (solid content concentration: 70% by mass) were obtained.

第1湿潤造粒粒子が収容されているプラネタリミキサーにSBRの水分散体を加え(負極活物質100質量部に対してSBR固形分で0.5質量部)、さらに混合した。このようにして第2湿潤造粒粒子を得た。   An aqueous dispersion of SBR was added to the planetary mixer containing the first wet granulated particles (0.5 parts by mass of SBR solid content with respect to 100 parts by mass of the negative electrode active material), and further mixed. In this way, second wet granulated particles were obtained.

成形転写装置を用いて、第2湿潤造粒粒子をCu箔(負極集電体)の一方の表面に圧着させた後、乾燥させた。その後、同様の方法にしたがって、第2湿潤造粒粒子をCu箔の他方の表面に圧着させた後、乾燥させた。このとき、Cu箔が第2湿潤造粒粒子から露出する部分(負極露出部)が負極集電体の幅方向一端に形成されるように、第2湿潤造粒粒子を負極集電体の各面に圧着させた。得られた電極を、所定の厚さとなるように圧延してから、所定の大きさに切断した。このようにして負極を得た。   The second wet granulated particles were pressure-bonded to one surface of the Cu foil (negative electrode current collector) using a molding transfer device and then dried. Thereafter, according to the same method, the second wet granulated particles were pressed against the other surface of the Cu foil and then dried. At this time, the second wet granulated particles are formed on each of the negative electrode current collectors so that a portion where the Cu foil is exposed from the second wet granulated particles (negative electrode exposed portion) is formed at one end in the width direction of the negative electrode current collector. Crimped to the surface. The obtained electrode was rolled to a predetermined thickness and then cut into a predetermined size. In this way, a negative electrode was obtained.

(正極の作製)
正極活物質として、Liと3種の遷移金属元素(Ni、Co及びMn)とを含む複合酸化物を準備した。質量比で90:8:2となるように正極活物質とアセチレンブラック(導電剤)とPVdF(PolyVinylidene DiFluoride、結着剤)とを混ぜ、NMPで希釈した。このようにして、正極合剤ペーストを得た。
(Preparation of positive electrode)
A composite oxide containing Li and three transition metal elements (Ni, Co, and Mn) was prepared as a positive electrode active material. The positive electrode active material, acetylene black (conductive agent) and PVdF (PolyVinylidene DiFluoride, binder) were mixed and diluted with NMP so that the mass ratio was 90: 8: 2. In this way, a positive electrode mixture paste was obtained.

正極合剤ペーストを、Al箔(正極集電体)の幅方向一端が露出するようにAl箔の両面に塗布した後、乾燥させた。得られた極板を圧延して正極を得た。   The positive electrode mixture paste was applied to both surfaces of the Al foil so that one end in the width direction of the Al foil (positive electrode current collector) was exposed, and then dried. The obtained electrode plate was rolled to obtain a positive electrode.

(電極体の作製、挿入)
PE(polyethylene)からなるセパレータを準備した。Al箔が正極合剤層から露出する部分(正極露出部)とCu箔が負極合剤層から露出する部分(負極露出部)とがAl箔の幅方向においてセパレータから互いに逆向きに突出するように、正極と負極とセパレータとを配置した。その後、Al箔の幅方向に対して平行となるように巻回軸を配置し、その巻回軸を用いて正極、セパレータ及び負極を巻回させた。このようにして得られた電極体(円筒型電極体)に対して互いに逆向きの圧力を与え、扁平な電極体を得た。
(Production and insertion of electrode body)
A separator made of PE (polyethylene) was prepared. A portion where the Al foil is exposed from the positive electrode mixture layer (positive electrode exposed portion) and a portion where the Cu foil is exposed from the negative electrode mixture layer (negative electrode exposed portion) protrude from the separator in opposite directions in the width direction of the Al foil. In addition, a positive electrode, a negative electrode, and a separator were disposed. Then, the winding axis | shaft was arrange | positioned so that it might become parallel with respect to the width direction of Al foil, and the positive electrode, the separator, and the negative electrode were wound using the winding axis | shaft. The electrode bodies (cylindrical electrode bodies) thus obtained were given pressures in opposite directions to obtain a flat electrode body.

ケース本体と蓋体とを有する電池ケースを準備した。正極集電板を用いて、正極露出部と蓋体に設けられた正極端子とを接続した。負極集電板を用いて、負極露出部と蓋体に設けられた負極端子とを接続した。このようにして、蓋体が、扁平な電極体に接続された。その後、扁平な電極体をケース本体の凹部に入れ、蓋体でケース本体の開口を塞いだ。   A battery case having a case body and a lid was prepared. The positive electrode exposed part and the positive electrode terminal provided in the cover body were connected using the positive electrode current collector plate. The negative electrode exposed part and the negative electrode terminal provided in the cover body were connected using the negative electrode current collecting plate. In this way, the lid body was connected to the flat electrode body. Then, the flat electrode body was put in the recess of the case body, and the opening of the case body was closed with a lid.

(非水電解液の調製、注入)
体積比で3:4:3となるように、EC(ethylene carbonate)とDMC(ethyl methyl carbonate)とEMC(dimethyl carbonate)とを混合した。このようにして得られた混合溶媒にLiPF6を添加して、非水電解液を得た。得られた非水電解液では、LiPF6の濃度が1.0mol/Lであった。
(Preparation and injection of non-aqueous electrolyte)
EC (ethylene carbonate), DMC (ethyl methyl carbonate), and EMC (dimethyl carbonate) were mixed so that the volume ratio was 3: 4: 3. LiPF 6 was added to the mixed solvent thus obtained to obtain a nonaqueous electrolytic solution. In the obtained nonaqueous electrolytic solution, the concentration of LiPF 6 was 1.0 mol / L.

得られた非水電解液を、蓋体に形成された注液用孔からケース本体の凹部へ注入した。電池ケース内を減圧した後、注液用孔を封止した。このようにして、本実施例のリチウムイオン二次電池(電池容量が4Ah)が得られた。   The obtained non-aqueous electrolyte was poured into the recess of the case body from the injection hole formed in the lid. After reducing the pressure inside the battery case, the injection hole was sealed. Thus, the lithium ion secondary battery of this example (battery capacity is 4 Ah) was obtained.

<初期充放電>
得られたリチウムイオン二次電池に対して、電池電圧が4.1Vとなるまで4Aの電流で充電を行った後、電池電圧が3.0Vとなるまで4Aの電流で放電を行った。
<Initial charge / discharge>
The obtained lithium ion secondary battery was charged with a current of 4 A until the battery voltage reached 4.1 V, and then discharged with a current of 4 A until the battery voltage reached 3.0 V.

<評価>
(ポリイミド樹脂のマイグレーションの測定)
初期充放電が行われたリチウムイオン二次電池を分解して負極を取り出した。負極の任意の箇所における負極合剤層の断面に対して窒素マッピングを行い、表層側負極合剤層における窒素原子の強度の積算値と集電体側負極合剤層における窒素原子の強度の積算値とを求めた。下記式1を用いてマイグレーション指数を算出した。結果を表1に示す。マイグレーション指数が1に近い値を示す方が、乾燥時には負極合剤層において結着剤のマイグレーションが抑制されていると言える。
(マイグレーション指数)=(表層側負極合剤層における窒素原子の強度の積算値)÷(集電体側負極合剤層における窒素原子の強度の積算値) ・・・式1。
<Evaluation>
(Measurement of migration of polyimide resin)
The lithium ion secondary battery that had been initially charged and discharged was disassembled and the negative electrode was taken out. Nitrogen mapping is performed on the cross section of the negative electrode mixture layer at an arbitrary position of the negative electrode, and the integrated value of the nitrogen atom strength in the surface side negative electrode mixture layer and the integrated value of the nitrogen atom strength in the current collector side negative electrode mixture layer And asked. The migration index was calculated using the following formula 1. The results are shown in Table 1. When the migration index shows a value close to 1, it can be said that the migration of the binder is suppressed in the negative electrode mixture layer during drying.
(Migration index) = (Integrated value of the strength of nitrogen atoms in the negative electrode mixture layer on the surface layer side) ÷ (Integrated value of the strength of nitrogen atoms in the negative electrode mixture layer on the current collector side) Formula 1.

(電池抵抗の測定)
初期充放電が行われたリチウムイオン二次電池に対し、25℃で、電池電圧が3.7Vとなるまで充電を行った後、100Aの電流で10秒間、放電を行った。この放電による電圧の降下量を放電電流(100A)で除して電池抵抗を求めた。結果を表1に示す。
(Measurement of battery resistance)
The lithium ion secondary battery that had been initially charged and discharged was charged at 25 ° C. until the battery voltage reached 3.7 V, and then discharged at a current of 100 A for 10 seconds. The battery resistance was determined by dividing the amount of voltage drop due to this discharge by the discharge current (100 A). The results are shown in Table 1.

(剥離強度の変化率の測定)
初期充放電が行われたリチウムイオン二次電池を分解して負極を取り出した。負極合剤層の表面にテープを貼り、JIS Z0237:2009(粘着テープ・粘着シート試験方法)に準拠して90度剥離試験を行った。このようにして加熱前の剥離強度を求めた。
(Measurement of change rate of peel strength)
The lithium ion secondary battery that had been initially charged and discharged was disassembled and the negative electrode was taken out. A tape was applied to the surface of the negative electrode mixture layer, and a 90-degree peel test was performed in accordance with JIS Z0237: 2009 (adhesive tape / adhesive sheet test method). In this way, the peel strength before heating was determined.

その負極を400℃で10分間、加熱した。その後、上述の方法にしたがって加熱後の剥離強度を求め、下記式2を用いて剥離強度の変化率を算出した。結果を表1に示す。剥離強度の変化率が1に近い値を示す方が負極は耐熱性に優れると言える。
(剥離強度の変化率)=(加熱後の剥離強度)÷(加熱前の剥離強度) ・・・式2。
The negative electrode was heated at 400 ° C. for 10 minutes. Then, the peel strength after heating was calculated | required according to the above-mentioned method, and the rate of change of peel strength was computed using following formula 2. The results are shown in Table 1. It can be said that the negative electrode has better heat resistance when the rate of change in peel strength is close to 1.
(Change rate of peeling strength) = (peeling strength after heating) ÷ (peeling strength before heating) Equation 2.

Figure 2016085876
Figure 2016085876

表1において、「ポリイミド」はポリイミド樹脂を意味し、「ポリアミドイミド」はポリアミドイミド樹脂を意味する。   In Table 1, “polyimide” means a polyimide resin, and “polyamideimide” means a polyamideimide resin.

表1において、イミド系樹脂の配合量には、負極活物質の配合量(質量)に対するイミド系樹脂の配合量(質量)の割合を記す。同様に、SBRの配合量には、負極活物質の配合量(質量)に対するSBRの配合量(質量)の割合を記す。   In Table 1, the compounding amount (mass) of the imide resin with respect to the compounding amount (mass) of the negative electrode active material is described in the compounding amount of the imide resin. Similarly, the SBR content is the ratio of the SBR content (mass) to the negative electrode active material content (mass).

比較例5では、負極合剤ペーストを用いて負極を作製している(後述)。そのため、表1では、比較例5の第1湿潤造粒粒子の結着剤及び第2湿潤造粒粒子の結着剤を空欄としている。   In Comparative Example 5, a negative electrode was prepared using a negative electrode mixture paste (described later). Therefore, in Table 1, the binder of the first wet granulated particles and the binder of the second wet granulated particles of Comparative Example 5 are blank.

[実施例2〜6及び比較例1〜3]
表1に示すようにイミド系樹脂の配合量を変更して第1湿潤造粒粒子を作製し、表1に示すようにSBRの配合量を変更して第2湿潤造粒粒子を作製したことを除いては実施例1に記載の方法にしたがって、リチウムイオン二次電池を作製した。得られたリチウムイオン二次電池に対して実施例1と同様の評価を行った。結果を表1に示す。
[Examples 2-6 and Comparative Examples 1-3]
As shown in Table 1, the first wet granulated particles were prepared by changing the amount of imide resin, and the second wet granulated particles were changed by changing the amount of SBR as shown in Table 1. A lithium ion secondary battery was produced according to the method described in Example 1 except for. Evaluation similar to Example 1 was performed with respect to the obtained lithium ion secondary battery. The results are shown in Table 1.

[比較例4〜7]
次に示す方法にしたがって負極を作製したことを除いては実施例1に記載の方法にしたがって、リチウムイオン二次電池を作製した。得られたリチウムイオン二次電池に対して実施例1と同様の評価を行った。結果を表1に示す。
[Comparative Examples 4 to 7]
A lithium ion secondary battery was produced according to the method described in Example 1 except that the negative electrode was produced according to the following method. Evaluation similar to Example 1 was performed with respect to the obtained lithium ion secondary battery. The results are shown in Table 1.

(比較例4)
プラネタリミキサーに負極活物質100質量部に対してポリイミド樹脂(粉末)1質量部とNMP43質量部とを入れ、混合した。このようにして第1湿潤造粒粒子を得た。
(Comparative Example 4)
In a planetary mixer, 1 part by mass of a polyimide resin (powder) and 43 parts by mass of NMP were added to and mixed with 100 parts by mass of the negative electrode active material. In this way, first wet granulated particles were obtained.

実施例1に記載の方法にしたがって、第1湿潤造粒粒子をCu箔の一方の表面に圧着させた後、乾燥させた。同様の方法にしたがって、第1湿潤造粒粒子をCu箔の他方の表面に圧着させた後、乾燥させた。その後は、実施例1に記載の方法にしたがって負極を作製した。   According to the method described in Example 1, the first wet granulated particles were pressed against one surface of the Cu foil and then dried. According to the same method, the first wet granulated particles were pressed onto the other surface of the Cu foil and then dried. Thereafter, a negative electrode was produced according to the method described in Example 1.

(比較例5)
プラネタリミキサーに、負極活物質100質量部に対してCMC1質量部とポリイミド樹脂(粉末)1質量部とSBRの水分散体(負極活物質100質量部に対してSBR固形分で0.5質量部)と水87質量部とを入れ、混合した。このようにして負極合剤ペーストを得た。
(Comparative Example 5)
In a planetary mixer, 1 part by mass of CMC, 1 part by mass of polyimide resin (powder) and 100 parts by mass of SBR with respect to 100 parts by mass of the negative electrode active material (0.5 parts by mass of SBR solid content with respect to 100 parts by mass of the negative electrode active material) ) And 87 parts by mass of water were mixed. In this way, a negative electrode mixture paste was obtained.

負極合剤ペーストを、Cu箔の幅方向一端が露出するようにCu箔の両面に塗布した後、乾燥させた。得られた極板を圧延して負極を得た。   The negative electrode mixture paste was applied to both sides of the Cu foil so that one end in the width direction of the Cu foil was exposed, and then dried. The obtained electrode plate was rolled to obtain a negative electrode.

(比較例6)
プラネタリミキサーに、負極活物質100質量部に対してCMC1質量部とSBRの水分散体(負極活物質100質量部に対してSBR固形分で0.5質量部)とを入れて混合した後、水43質量部を添加してさらに混合した。このようにして第1湿潤造粒粒子を得た。
(Comparative Example 6)
In a planetary mixer, 1 part by weight of CMC and an aqueous dispersion of SBR (0.5 parts by weight in SBR solids with respect to 100 parts by weight of the negative electrode active material) were mixed with 100 parts by weight of the negative electrode active material, and then mixed. 43 parts by weight of water was added and further mixed. In this way, first wet granulated particles were obtained.

次に、第1湿潤造粒粒子が収容されているプラネタリミキサーにポリイミド樹脂(粉末)1質量部を加え、さらに混合した。このようにして第2湿潤造粒粒子を得た。   Next, 1 part by mass of polyimide resin (powder) was added to the planetary mixer containing the first wet granulated particles, and further mixed. In this way, second wet granulated particles were obtained.

実施例1に記載の方法にしたがって、第2湿潤造粒粒子をCu箔の一方の表面に圧着させた後、乾燥させた。同様の方法にしたがって、第2湿潤造粒粒子をCu箔の他方の表面に圧着させた後、乾燥させた。その後は、実施例1に記載の方法にしたがって負極を作製した。   According to the method described in Example 1, the second wet granulated particles were pressed onto one surface of the Cu foil and then dried. According to the same method, the second wet granulated particles were pressed onto the other surface of the Cu foil and then dried. Thereafter, a negative electrode was produced according to the method described in Example 1.

(比較例7)
プラネタリミキサーに、負極活物質100質量部に対してCMC1質量部とポリイミド樹脂(粉末)1質量部とSBRの水分散体(負極活物質100質量部に対してSBR固形分で0.5質量部)とを入れて混合した後、水43質量部を添加してさらに混合した。このようにして第1湿潤造粒粒子を得た。
(Comparative Example 7)
In a planetary mixer, 1 part by mass of CMC, 1 part by mass of polyimide resin (powder) and 100 parts by mass of SBR with respect to 100 parts by mass of the negative electrode active material (0.5 parts by mass of SBR solid content with respect to 100 parts by mass of the negative electrode active material) And 43 parts by weight of water were added and further mixed. In this way, first wet granulated particles were obtained.

実施例1に記載の方法にしたがって、第1湿潤造粒粒子をCu箔の一方の表面に圧着させた後、乾燥させた。同様の方法にしたがって、第1湿潤造粒粒子をCu箔の他方の表面に圧着させた後、乾燥させた。その後は、実施例1に記載の方法にしたがって負極を作製した。   According to the method described in Example 1, the first wet granulated particles were pressed against one surface of the Cu foil and then dried. According to the same method, the first wet granulated particles were pressed onto the other surface of the Cu foil and then dried. Thereafter, a negative electrode was produced according to the method described in Example 1.

<考察>
実施例1〜5と比較例1とから、結着剤(ポリイミド樹脂又はSBR)の配合量が増えるにつれて電池抵抗が上昇することが分かった。結着剤は、リチウムイオン二次電池の電池反応を阻害するおそれがあり、また、負極合剤層に形成された細孔を塞ぐおそれがある。比較例1では、負極合剤層に形成された細孔が結着剤によって塞がれたために負極合剤層の多孔度が低下し、よって、大電流での放電時に抵抗が上昇したと考えられる。
<Discussion>
From Examples 1 to 5 and Comparative Example 1, it was found that the battery resistance increased as the amount of the binder (polyimide resin or SBR) increased. The binder may inhibit the battery reaction of the lithium ion secondary battery, and may block pores formed in the negative electrode mixture layer. In Comparative Example 1, it was considered that the pores formed in the negative electrode mixture layer were blocked by the binder, so that the porosity of the negative electrode mixture layer was lowered, and thus the resistance was increased during discharging at a large current. It is done.

比較例2及び3では、剥離強度の変化率(=(加熱後の剥離強度)÷(加熱前の剥離強度))が1よりも大幅に低下した。比較例2及び3では、SBRの配合量の方がポリイミド樹脂の配合量よりも多いので、400℃では負極造粒粒子とCu箔との密着性が低下し負極造粒粒子同士の密着性が低下したと考えられる。   In Comparative Examples 2 and 3, the rate of change in peel strength (= (peel strength after heating) ÷ (peel strength before heating)) was significantly lower than 1. In Comparative Examples 2 and 3, since the blending amount of SBR is larger than the blending amount of the polyimide resin, the adhesion between the negative electrode granulated particles and the Cu foil is reduced at 400 ° C. It is thought that it fell.

比較例4では、電池抵抗が高くなった。比較例4では、NMPを用いて第1湿潤造粒粒子を作製したので、第1湿潤造粒粒子の作製時にはポリイミド樹脂がNMPに溶解した。その溶解物が負極活物質の表面を被覆したために電池抵抗が高くなったと考えられる。   In Comparative Example 4, the battery resistance was high. In Comparative Example 4, since the first wet granulated particles were produced using NMP, the polyimide resin was dissolved in NMP when the first wet granulated particles were produced. It is considered that the battery resistance was increased because the dissolved material covered the surface of the negative electrode active material.

比較例5では、電池抵抗が高くなった。比較例5では、負極合剤ペーストを負極集電体に塗布して負極を作製したので、乾燥時には結着剤のマイグレーションが負極合剤層において発生し(マイグレーション指数が1よりも大幅に大きかった)、よって、電池抵抗が高くなったと考えられる。   In Comparative Example 5, the battery resistance was high. In Comparative Example 5, since the negative electrode mixture paste was applied to the negative electrode current collector to prepare the negative electrode, migration of the binder occurred in the negative electrode mixture layer during drying (the migration index was significantly larger than 1). Therefore, it is considered that the battery resistance is increased.

比較例6では、負極を作製することができなかった。比較例6では、ポリイミド樹脂の代わりにSBRを用いて第1湿潤造粒粒子を作製し、SBRの代わりにポリイミド樹脂を用いて第2湿潤造粒粒子を作製した。そのため、第2湿潤造粒粒子同士の密着性を十分に高めることが難しく、よって、負極を作製することができなかったと考えられる。   In Comparative Example 6, a negative electrode could not be produced. In Comparative Example 6, first wet granulated particles were produced using SBR instead of polyimide resin, and second wet granulated particles were produced using polyimide resin instead of SBR. For this reason, it is difficult to sufficiently improve the adhesion between the second wet granulated particles, and it is considered that the negative electrode could not be produced.

比較例7では、剥離強度の変化率(=(加熱後の剥離強度)÷(加熱前の剥離強度))が1よりも大幅に低下した。比較例7では、負極活物質とポリイミド樹脂とSBRとを同時に混合したので、SBRの方がポリイミド樹脂よりも負極活物質の表面に優先的に付着し、よって、ポリイミド樹脂を用いたことにより得られる効果を十分に得ることができなかったと考えられる。   In Comparative Example 7, the rate of change in peel strength (= (peel strength after heating) ÷ (peel strength before heating)) was significantly lower than 1. In Comparative Example 7, since the negative electrode active material, the polyimide resin, and SBR were mixed at the same time, SBR adhered preferentially to the surface of the negative electrode active material rather than the polyimide resin, and thus obtained by using the polyimide resin. It is considered that the effects obtained could not be obtained sufficiently.

実施例1〜5と実施例6とから、ポリイミド樹脂の代わりにポリアミドイミド樹脂を用いても同様の結果が得られることが分かった。   From Examples 1 to 5 and Example 6, it was found that similar results were obtained even when a polyamideimide resin was used instead of the polyimide resin.

今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 第1湿潤造粒粒子、11 負極活物質、13 イミド系樹脂、20 第2湿潤造粒粒子、30 負極、31 負極集電体、33 負極合剤層。   10 1st wet granulated particles, 11 negative electrode active material, 13 imide resin, 20 2nd wet granulated particles, 30 negative electrode, 31 negative electrode current collector, 33 negative electrode mixture layer.

Claims (1)

負極活物質とカルボキシメチルセルロースとイミド系樹脂とを粉体混合した後、さらに水を加えて第1湿潤造粒粒子を作製する工程と、
前記第1湿潤造粒粒子の表面の少なくとも一部をスチレンブタジエンゴムで被覆して第2湿潤造粒粒子を作製する工程と、
前記第2湿潤造粒粒子を負極集電体に転写する工程とを備えた非水電解質二次電池用負極の製造方法。
After the powder mixing of the negative electrode active material, carboxymethyl cellulose and the imide resin, further adding water to produce the first wet granulated particles,
Coating at least part of the surface of the first wet granulated particles with styrene butadiene rubber to produce second wet granulated particles;
A method for producing a negative electrode for a nonaqueous electrolyte secondary battery, comprising: transferring the second wet granulated particles to a negative electrode current collector.
JP2014218276A 2014-10-27 2014-10-27 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery Pending JP2016085876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218276A JP2016085876A (en) 2014-10-27 2014-10-27 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218276A JP2016085876A (en) 2014-10-27 2014-10-27 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2016085876A true JP2016085876A (en) 2016-05-19

Family

ID=55973801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218276A Pending JP2016085876A (en) 2014-10-27 2014-10-27 Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2016085876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638287A (en) * 2018-12-04 2019-04-16 湖北融通高科先进材料有限公司 The preparation method of negative electrode slurry and the method for solving negative electrode slurry gel problem
JP2019087343A (en) * 2017-11-02 2019-06-06 トヨタ自動車株式会社 Method of manufacturing negative electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087343A (en) * 2017-11-02 2019-06-06 トヨタ自動車株式会社 Method of manufacturing negative electrode
JP7006144B2 (en) 2017-11-02 2022-02-10 トヨタ自動車株式会社 Negative electrode manufacturing method
CN109638287A (en) * 2018-12-04 2019-04-16 湖北融通高科先进材料有限公司 The preparation method of negative electrode slurry and the method for solving negative electrode slurry gel problem
CN109638287B (en) * 2018-12-04 2021-07-16 湖北融通高科先进材料有限公司 Preparation method of negative electrode slurry and method for solving problem of negative electrode slurry gelation

Similar Documents

Publication Publication Date Title
US11101501B2 (en) Electrolyte and negative electrode structure
JP4763253B2 (en) Lithium ion secondary battery
CN103875118B (en) Lithium rechargeable battery
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
JP2016103433A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP6269369B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6380808B2 (en) Method for manufacturing electrode for secondary battery
CN111710832A (en) Silicon-containing negative plate, preparation method thereof and lithium ion secondary battery manufactured by silicon-containing negative plate
US20180219249A1 (en) Method for manufacturing battery
JP2015146254A (en) Nonaqueous electrolyte secondary battery
JP6137217B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2016085876A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
JP5862928B2 (en) Method for producing positive electrode for lithium ion secondary battery
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP6931491B2 (en) How to manufacture electrodes for electrochemical power storage devices
JP5725356B2 (en) Method for manufacturing electrode for secondary battery
JP2016100161A (en) Method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP2014143064A (en) Secondary battery and method for manufacturing the same
JP2016170881A (en) Nonaqueous electrolyte secondary battery
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode
JP2013073867A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP5704401B2 (en) Secondary battery electrode and manufacturing method thereof
JP2016100159A (en) Electrode for nonaqueous electrolyte secondary battery