JP7318406B2 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP7318406B2
JP7318406B2 JP2019145127A JP2019145127A JP7318406B2 JP 7318406 B2 JP7318406 B2 JP 7318406B2 JP 2019145127 A JP2019145127 A JP 2019145127A JP 2019145127 A JP2019145127 A JP 2019145127A JP 7318406 B2 JP7318406 B2 JP 7318406B2
Authority
JP
Japan
Prior art keywords
program
control
field device
processing unit
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019145127A
Other languages
English (en)
Other versions
JP2021026587A (ja
Inventor
英彦 関本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2019145127A priority Critical patent/JP7318406B2/ja
Priority to EP20851183.2A priority patent/EP3992735A4/en
Priority to US17/629,539 priority patent/US20220269238A1/en
Priority to PCT/JP2020/007163 priority patent/WO2021024523A1/ja
Priority to CN202080054963.3A priority patent/CN114207534A/zh
Publication of JP2021026587A publication Critical patent/JP2021026587A/ja
Application granted granted Critical
Publication of JP7318406B2 publication Critical patent/JP7318406B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/056Programming the PLC
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/052Linking several PLC's
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/12Plc mp multi processor system
    • G05B2219/1214Real-time communication between plc, Ethernet for configuration, monitor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/15Plc structure of the system
    • G05B2219/15039Display of reference, set value, of measured, feedback value
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25428Field device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33213Communication cpu to synchronize axis between different machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/34Director, elements to supervisory
    • G05B2219/34402Synchronize programs for machines, processes, tasks, if one stops other also

Description

本発明は、複数の制御対象を制御し得る制御装置に関する。
様々な生産現場において、PLC(Programmable Logic Controller)などの制御装置
を用いたFA(Factory Automation)技術が広く普及している。このような制御装置は、直接的に制御対象を制御するだけではなく、他の装置に制御指令を与えることで、間接的に制御対象を制御する場合もある。また、これまで複数の専用装置を用いて実現されていた制御システムを、より少ない数の制御装置に統合したいというニーズも生じている。例えば、特許文献1に示す技術では、PLCのCPUユニットにおいて、モーション演算プログラムおよびユーザプログラムが同期して実行される。
また、特許文献2では、実行形式の異なる複数種類のプログラムに従う制御演算を単一の制御装置で実現する技術が開示されている。当該技術では、例えば、制御周期毎にプログラム全体が実行される形式のプログラムと、一部の解釈により生成される中間コードに従って逐次実行される形式のプログラムとに関して、それぞれの指令値演算を行い、制御周期毎に各指令値を併せて出力する構成が採用されている。
また、特許文献3では、異なるクロックによって周期的に生成される複数の信号を制御装置において同期させる技術が開示されている。当該技術では、制御装置は、第一の周期ごとに生成される同期信号を取得する第一のプロセッサと、第一の周期をn分割(n≧1)した第二の周期を生成し、かつ、タイマを用いて、第二の周期をm分割(m≧2)した第三の周期ごとに制御信号を発生させ、制御信号に基づいたタイミングで所定の処理を行う第二のプロセッサとを有する。そして、第一の周期において発生する複数の制御信号のうちの少なくとも1回が、同期信号と同期すべき制御信号であり、第二のプロセッサは、同期信号と、同期信号と同期すべき制御信号との間でタイミングに誤差が生じたことを検出した場合に、次回以降に開始するタイマの幅を一時的に変更することで誤差を補正する。
特開2012-194662号公報 特開2019-36043号公報 特開2019-101480号公報
従来、例えば、容器を搬送する装置の回転軸の動作をマスタとし、容器に内容物を充填するためのノズルの動作をスレーブとして主従の動作を同期させる場合や、ワークを搬送するコンベアの動作をマスタとし、ワークに対する操作を行うロボットの動作をスレーブとして主従の動作を同期させる場合などにおいては、通信周期により生じる主従での動作の遅延をユーザが補正する必要があった。
本発明は、このような問題に鑑みてなされたものであり、フィールド機器に対し簡便に動作の同期制御を行うための技術を提供することを目的とする。
本発明に係る制御装置は、定周期通信を行うネットワークを介して、所定のプログラムに従い複数のフィールド機器を協調動作させる。また、制御装置は、第1の周期における第1のフィールド機器の位置に基づいて、第1の周期よりも後の第2の周期における、第1のプログラムに従って動作する第1のフィールド機器の位置を算出する予測部と、第1のプログラムに基づいて、第1のフィールド機器を動作させるための第1の指令値を決定し、複数のフィールド機器と通信するためのインターフェイス部を介して第1の指令値を第1のフィールド機器に送信すると共に、予測部によって算出された位置と第2のプログラムとに基づいて、第1のフィールド機器と協調動作すべき第2のフィールド機器を動作させるための第2の指令値を決定し、インターフェイス部を介して第2の指令値を第2のフィールド機器に送信する処理部とを備える。
定周期通信を行うネットワークを介してフィールド機器を制御する場合、フィールド機器が指令値を受信して動作するまでに、処理や通信に要する周期の分だけ遅延が発生する。制御装置によれば、後の周期(第2の周期)における第1のフィールド機器の位置を予測部が算出し、これに基づいて第1のフィールド機器と協調動作すべき第2のフィールド機器の動作の指令値を処理部が決定する。すなわち、指令値が第2のフィールド機器に到達するまでの遅延を見越して、後の周期における第1のフィールド機器の位置を目標として、第2のフィールド機器の動作を指示できるようになる。したがって、フィールド機器に対し簡便に動作の同期制御を行うことができるようになる。
また、予測部は、第1のフィールド機器の動作速度に所定の補正係数を乗じた値を、第1の周期における第1のフィールド機器の位置に加え、第2の周期における第1のフィールド機器の位置を算出するようにしてもよい。例えばこのような計算処理により、第2の周期における第1のフィールド機器の位置を予測することができる。
また、第1のプログラム及び第2のプログラムの一方は、実行毎に全体が実行される第1の実行形式に従ったプログラムであり、他方は、逐次実行される第2の実行形式に従ったプログラムであってもよい。そして、所定の補正係数は、第1の実行形式に従ったプログラムに従って動作する種類の機器と、第2の実行形式に従ったプログラムに従って動作する種類の機器とを含む、第1のフィールド機器及び第2のフィールド機器の種類の組み合わせに応じて決定されるようにしてもよい。第1の実行形式は、その実行毎にプログラム全体が実行される形式であり、例えばシーケンス制御およびモーション制御の命令を含むIEC(International Electrotechnical Commission)プログラムである。第2の実
行形式は逐次実行の形式であり、例えば主としてロボットを制御するアプリケーションプログラムである。この場合、協調動作の基準となる第1のフィールド機器、及びこれと協調して動作する第2のフィールド機器が、それぞれ例えば第1の実行形式に従って動作する機器であるか第2の実行形式に従って動作する機器であるかによって、遅延量が異なる。したがって、第1のフィールド機器及び第2のフィールド機器の種別の組み合わせに応じて補正係数を決定することで、適切な予測ができるようになる。
また、処理部は、定周期通信における制御周期毎に第1の実行形式に従ったプログラムを実行してフィールド機器を制御するための指令値を演算可能に構成された第1処理部と、第2の実行形式に従ったプログラムを実行してインタプリタにより該プログラムの少なくとも一部が解釈されて生成される中間コードに従って制御周期毎にフィールド機器を制御するための指令値を演算可能であり、且つ、第1処理部による、第1の実行形式に従ったプログラムの実行を起点としても、該フィールド機器を制御するための該指令値を演算可能に構成された第2処理部とを含み、第1処理部及び第2処理部が演算した指令値を、インターフェイス部を介して制御周期毎に送信するようにしてもよい。
第1処理部及び第2処理部が演算した指令値を、上述した定周期通信における制御周期
毎に送信することで、例えばモーション軸とロボットとを統合して制御できるようになると共に、簡便に動作の同期制御を行うことができるようになる。
また、第1の周期における第1のフィールド機器の位置は、第1のフィールド機器からフィードバックされたフィードバック値、又は第1のフィールド機器へ送信した指令値であり、所定の補正係数は、第1の周期における第1のフィールド機器の位置が、フィードバック値及び指令値のいずれであるかに応じて決定されるようにしてもよい。具体的には、上述のような値を第1の周期における第1のフィールド機器の位置として用いることができる。ただし、いずれの値を用いるかによっても遅延量が異なる。したがって、いずれの値を用いるかによって補正係数を決定することで、適切な予測ができるようになる。
また、定周期通信は、EtherCAT(登録商標)の規格に従う通信であってもよい。例えばこのような規格を採用することで、上述の処理を行うフィールドネットワークを構成することができる。
フィールド機器に対し簡便に動作の同期制御を行うことができるようになる。
統合コントローラを含む制御システムの概略構成を示す図である。 統合コントローラの機能をイメージ化した機能ブロック図である。 統合コントローラで制御周期に従って実行される処理の流れを示す図である。 制御装置とフィールド機器との通信の一例を説明するための図である。 フィールド機器の協調動作の一例を説明するための図である。 制御装置とフィールド機器との通信、及びフィールド機器の協調動作の遅延の一例を説明するための図である。 補正係数を説明するための図である。 補正処理の一例を示すフローチャートである。
<適用例>
実施形態に係る制御装置の適用例について、図1及び図2に基づいて説明する。図1は、当該制御装置100が適用される制御システム1の概略構成図であり、図2は、制御装置100に形成される機能部をイメージ化した図である。
制御装置100は、各種の設備や装置などの制御対象を制御する産業用コントローラに相当する。制御装置100は、後述するような制御演算を実行する一種のコンピュータである。制御装置100は、フィールドネットワーク2を介して各種のフィールド機器と接続されてもよい。フィールド機器は、製造装置や生産ラインなど(以下、「フィールド」とも総称する。)に対して何らかの物理的な作用を与えるアクチュエータ、および、フィールドとの間で情報を遣り取りする入出力装置などを含み、図1においては、フィールド機器として、ロボット210や、サーボドライバ220及びモータ222が例示されている。サーボドライバ220は、制御装置100からの出力データ(例えば、位置指令や速度指令などの「指令値」を含む)に従って、モータ222を駆動する。また、ロボット210としては、パラレルロボット、スカラロボット、多関節ロボットが例示できる。このように制御装置100は、ロボット210やサーボドライバ220及びモータ222を統合的に制御し得るように構成された制御装置であり、その詳細については後述する。
制御装置100は、フィールドネットワーク2などを介して、1または複数のフィール
ド機器との間でデータを遣り取りする。一般的に「フィールドネットワーク」は、「フィールドバス」とも称されるが、説明の簡素化のため、本願においては、「フィールドネットワーク」と総称する。制御装置100は、各種のフィールド機器において収集または生成されたデータ(以下、「入力データ」とも称す。)を収集する処理(入力処理)、フィールド機器に対する指令などのデータ(以下、「出力データ」とも称す。)を生成する処理(演算処理)、生成した出力データを対象のフィールド機器へ送信する処理(出力処理)等を行う。
ここで、フィールドネットワーク2は、データの到達時間が保証される、定周期通信を行うバスまたはネットワークを採用することが好ましい。このような定周期通信を行うバスまたはネットワークとしては、EtherCAT(登録商標)等が知られている。そして、フィールドネットワーク2を介して、制御装置100とフィールド機器との間で遣り取りされるデータは、数100μsecオーダ~数10msecオーダのごく短い周期で更新されることになる。なお、このような遣り取りされるデータの更新処理は、入出力リフレッシュ処理とも称される。
また、制御装置100は、上位ネットワーク6を介して、他の装置にも接続されている。上位ネットワーク6には、一般的なネットワークプロトコルであるイーサネット(登録商標)やEtherNet/IP(登録商標)が採用されてもよい。より具体的には、上位ネットワーク6には、1または複数のサーバ装置10が接続されてもよい。サーバ装置10としては、データベースシステム、製造実行システム(MES:Manufacturing Execution System)などが想定される。製造実行システムは、制御対象の製造装置や設備からの情報を取得して、生産全体を監視および管理するものであり、オーダ情報、品質情報、出荷情報などを扱うこともできる。これに限らず、情報系サービスを提供する装置を上位ネットワーク6に接続するようにしてもよい。
ここで、図2に基づいて、制御装置100の構成について説明する。制御装置100は、上記の通り所定の制御演算を実行する一種のコンピュータであり、当該制御演算に必要なプロセッサやメモリを備えている。当該プロセッサは、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)などで構成される。プロセッサとしては、複数のコアを有する構成を採用してもよいし、当該プロセッサを複数配置してもよい。当該メモリとしては、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)などの揮発性記憶装置や、HD
D(Hard Disk Drive)やSSD(Solid State Drive)などの不揮発性記憶装置などで構成される。そして、プロセッサは、メモリに格納された各種プログラムを読出して実行することで、制御対象に応じた制御、および、後述するような各種処理を実現する。メモリには、基本的な機能を実現するためのシステムプログラムに加えて、制御対象の製造装置や設備に応じて作成されるユーザプログラム(IECプログラム51およびアプリケーションプログラム52)が格納される。
なお、本願におけるIECプログラム51とは、実行毎に全体がスキャンされて、実行毎に1または複数の指令値が演算されるプログラムであり、典型的には、国際電気標準会議(International Electrotechnical Commission:IEC)によって規定された国際規
格IEC61131-3に従って記述された1または複数の命令からなるプログラムを包含する。IECプログラム51には、シーケンス制御およびモーション制御の命令が含まれる。このようなIECプログラム51は、制御周期毎にすべてのプログラムが実行(スキャン)される実行形式に対応するものであり、即時性および高速性が要求される制御に好適である。一方で、本願におけるアプリケーションプログラム52は、ロボットを用いて特定の加工や動作を行うための制御プログラムであり、ロボットによる制御アプリケーションを実現するための1または複数の命令からなるプログラムを包含し、基本的には、
IECプログラム51とは区別される。ロボット制御に関するアプリケーションプログラム52は、一例として、ロボット言語を用いて記述され、1行ずつ逐次実行されるインタプリタ方式が採用される。
そして、図2に示すように、制御装置100は、IECプログラム処理部40と、下位ネットワークインターフェイス60と、上位ネットワークインターフェイス20と、制御アプリケーション処理部30と、予測部70と、共有メモリ71とを有する。下位ネットワークインターフェイス60は、IECプログラム処理部40および制御アプリケーション処理部30と、フィールドネットワーク2を介して接続されているフィールド機器との間のデータの遣り取りを仲介する。上位ネットワークインターフェイス20は、IECプログラム処理部40および制御アプリケーション処理部30と、上位ネットワーク6を介して接続されているサーバ装置10との間のデータの遣り取りを仲介する。例えば、制御装置100は、上位ネットワーク6を介して接続されているサーバ装置10から、生産の開始/終了といった指示を受ける。サーバ装置10は、制御アプリケーションを動作させるためのアプリケーションプログラムおよびレシピ情報(生産に適したパラメータなどの情報)などを制御装置100に送信することもある。
IECプログラム処理部40は、予め定められた制御周期毎にIECプログラム51を実行(スキャン)して1または複数の指令値を演算する。すなわち、IECプログラム処理部40は、IECプログラム51に従って、制御周期毎に指令値を演算する。なお、本願では、モータ222を含んで構成される所定の装置を制御するためにIECプログラム51の実行が行われるものとする。そして、モーション処理部42は、IECプログラム51に含まれるモーション命令に従って、制御周期毎に指令値を演算する機能を提供する。すなわち、IECプログラム51に含まれるモーション命令は、複数の制御周期に亘る挙動を指示する命令(例えば、モータ222で構成される所定の装置の出力が何らかの軌道を描くための命令)を含む。このようなモーション命令が実行されると、実行されたモーション命令の指示内容に従って、モーション処理部42が制御周期毎に指令値を演算する。すなわち、モーション処理部42は、上記の所定の装置に対して制御周期毎に指令値を出力することで、モーション命令により指示された挙動を実現する。なお、モーション処理部42は、本発明に係る「第1処理部」に相当する。
次に、制御アプリケーション処理部30は、アプリケーションプログラム52およびレシピ情報などに基づいて、制御アプリケーションを制御するための指令値を演算する。なお、本願では、ロボット210を制御するためにアプリケーションプログラム52が制御アプリケーション処理部30によって実行されるものとする。制御アプリケーション処理部30は、IECプログラム処理部40による指令値の演算および出力と同期して、制御アプリケーション用の指令値を演算および出力する。すなわち、制御アプリケーション処理部30は、IECプログラム処理部40による演算処理と同期して、指令値の演算処理を実行する。なお、このIECプログラム処理部40と制御アプリケーション処理部30の同期処理については、後述する。IECプログラム処理部40による指令値の演算処理と同期した指令値の演算を実現するために、制御アプリケーション処理部30は、モーション処理部32と、バッファ33と、インタプリタ34とを含む。
インタプリタ34は、逐次アプリケーションプログラム52の少なくとも一部を解釈して中間コードを生成するとともに、生成した中間コードを格納するバッファ33を有する。本願における中間コードは、制御周期毎に指令値を演算するための命令を包含する概念であり、1または複数の命令、あるいは、1または複数の関数を含んでもよい。そして、モーション処理部32は、インタプリタ34が事前に生成しバッファ33に格納されている中間コードに従って、制御周期毎に指令値を演算する。一般的に、アプリケーションプログラム52に記述される命令(コード)は、逐次実行されるために、指令値の演算周期
を保証できないが、本願開示では、このように中間コードを利用することで、モーション処理部32は、制御周期毎に指令値を演算できるようになる。中間コードにおいて記述される命令には、各制御アプリケーションに応じた座標系が用いられてもよい。なお、モーション処理部32は、本発明に係る「第2処理部」に相当する。また、モーション処理部32及びモーション処理部42は、本発明に係る「処理部」に相当する。
そして、IECプログラム処理部40と制御アプリケーション処理部30との間でデータを共有するために、制御装置100には共有メモリ71が設けられる。本願開示では、制御アプリケーション処理部30による処理結果の一部または全部が共有メモリ71に格納され、IECプログラム処理部40は、共有メモリ71に格納されたデータを参照することができる。また、IECプログラム処理部40から共有メモリ71へのデータ書込みも可能であってもよく、このようにIECプログラム処理部40から書込まれたデータは、インタプリタ34およびモーション処理部32から参照可能とされる。また、予測部70も、共有メモリ71に対しデータを読み書きできるようにしてもよい。
ここで、上記の通り、ロボット210は、インタプリタ34により生成される中間コードを利用してモーション処理部32により制御されるが、更にロボット210の制御の別の態様として、モーション処理部32は、IECプログラム51の実行を起点としてロボット210を制御することも可能とする。この場合、IECプログラム51にロボット210の制御指令(モーション指令)が含まれており、先ずIECプログラム処理部40によってIECプログラム51が実行されると、そこに含まれるロボット210の制御指令がモーション処理部32に引き渡されて、その制御指令に基づいてロボット210を制御する。
このように制御装置100は、実行形式の異なるIECプログラム51とアプリケーションプログラム52の両者に従ってロボット210を制御可能に構成されているため、各プログラムの特性を踏まえて、ユーザ要求を実現するための制御システム1をフレキシブルに構築することができる。
また、予測部70は、協調動作すべき複数のフィールド機器に関し、動作の遅延を補正するための予測処理を行う。仮に、動作の基準となるフィールド機器(動作のマスタ装置とも呼ぶ)の現在の位置又は姿勢を示す値に基づいて、動作のマスタ装置と協調して動作すべき他のフィールド機器(動作のスレーブ装置とも呼ぶ)に対する動作の指令値を算出する場合、この指令値を含む制御指令に基づいて動作のスレーブ装置が動作する時点においては、動作のマスタ装置はさらに移動したり姿勢を変化させていることがある。このような動作の遅延は、通信周期の差やデータ処理に要する時間に起因して生じる。そこで、予測部70は、動作のスレーブ装置が動作する時点の、動作のマスタ装置の位置又は姿勢を予測し、モーション処理部32及びモーション処理部42は、予測された値に基づく指令値を動作のスレーブ装置に送信する。このように、予測部70が、動作のマスタ装置の動作に対して動作のスレーブ装置の動作のタイミングを早めるような進角補正を行うことにより、制御装置100を使用するユーザは、簡便に動作の同期制御を行うことができるようになる。なお、制御装置100は、マスタ装置及びスレーブ装置を統合して制御する。特に、制御装置100は、IECプログラム51及びアプリケーションプログラム52の両者に従ってフィールド機器の制御ができるため、様々な種類のマスタ装置及びスレーブ装置の組み合わせであっても、統合して制御できる。
<プログラムの同期実行>
制御装置100においては、IECプログラム51とアプリケーションプログラム52の同期実行が実現される。制御アプリケーション処理部30のインタプリタ34は、制御周期より長い周期、例えば、制御周期の2倍分の周期(制御アプリケーション同期周期T
2)毎にアプリケーションプログラム52を逐次実行する。ただし、IECプログラム処理部40のモーション処理部42および制御アプリケーション処理部30のモーション処理部32は、いずれも同一の制御周期毎に指令値を演算する。したがって、制御装置100からの指令値の出力は、いずれも予め定められた制御周期で同期して行われる。このように、IECプログラム処理部40および制御アプリケーション処理部30は、アクチュエータの動きを連続的に制御するためのモーション処理部をそれぞれ有しており、これらのモーション処理部が同期して指令値を演算することで、IECプログラム51に従う制御およびアプリケーションプログラム52に従う制御の両方を制御周期と同期させて実行することができ、これによって制御周期単位での精密な制御が実現される。
次に、制御装置100におけるIECプログラム51およびアプリケーションプログラム52の実行タイミングの詳細について、図3に基づいて説明する。図3は、制御装置100におけるプログラムの実行タイミングの一例を示す図である。なお、制御装置100においては、プロセッサのリソースを考慮して、優先度が高い高優先度タスク(図3中の上段の処理)と優先度が低い低優先度タスク(図3中の下段の処理)が設定されている。具体的には、下位ネットワークインターフェイス60、IECプログラム処理部40とそのモーション処理部42の実行、および制御アプリケーション処理部30のモーション処理部32の実行は、高優先度タスクとして設定され、制御アプリケーション処理部30のインタプリタ34の実行は低優先度タスクとして設定されている。
すなわち、下位ネットワークインターフェイス60に関連する入出力リフレッシュ処理B60、IECプログラム51の実行処理B40、IECプログラム51に従ってモーション処理部42によって行われる指令値の演算処理B42、アプリケーションプログラム52に従ってモーション処理部32によって行われる指令値の演算処理B32、および、IECプログラム51を起点としてモーション処理部32によって行われる指令値の演算処理B32’は、高優先度タスクとして実行される。一方、アプリケーションプログラム52を逐次解釈する処理B34は、低優先度タスクとして実行される。なお、1つの制御周期T1での高優先度タスクにおいては、演算処理B32と演算処理B32’については何れか一方のみが行われることになる。
ここで、高優先度タスクは、予め定められた制御周期T1毎に繰返し実行される。低優先度タスクは、各制御周期内で高優先度タスクが実行されていない期間に都度実行される。すなわち、制御周期毎に、高優先度タスクの実行時間が割当てられ、高優先度タスクの実行時間以外の時間において、低優先度タスクが実行される。
まず、高優先度タスクについて説明すると、各制御周期が到来すると、入出力リフレッシュ処理B60が実行された後、IECプログラム処理部40によりIECプログラム51の全体が実行(スキャン)されて、シーケンス制御についての1または複数の指令値が演算される(実行処理B40)。併せて、モーション処理部42によりIECプログラム51に含まれるモーション命令に関するモーション処理が実行されて、モーション命令についての1または複数の指令値が演算される(実行処理B42)。さらに、制御アプリケーション処理部30のモーション処理部32により、バッファ33に格納されている中間コードに従ってロボット210の制御用のモーション指令が準備され(実行処理B32)、又は、IECプログラム51からそこに含まれるロボット210の制御用のモーション指令が準備される(実行処理B32’)。実行処理B32が行われるか実行処理B32’が行われるかは、所定の基準に基づいて決定されるものとする。以下、同様の処理が制御周期毎に繰返される。なお、モーション処理部32がバッファ33から中間コードを読み出すタイミングは、各制御周期でなくともよい。これは、読み出された中間コードは、複数の制御周期T1にわたって指令値を演算できるだけの命令を含む場合、その複数の制御周期T1においては中間コードの読み出しを一度で行える。
このように、ある制御周期における高優先度タスクの実行が完了すると、モータ222等に関するシーケンス制御についての指令値及びそのモーション制御についての指令値と、ロボット210に関する制御アプリケーションについての指令値のセットが用意される。これらの指令値は、基本的には、次の制御周期が到来すると、フィールド側に反映される。すなわち、IECプログラム処理部40および制御アプリケーション処理部30は、同一の制御周期で入力データに応じた指令値を演算するので、入力に同期した出力を実現できる。
一方、低優先度タスクについては、制御アプリケーション処理部30のインタプリタ34は、アプリケーションプログラム52を逐次実行する。すなわち、インタプリタ34は、アプリケーションプログラム52の読込みおよび解析を低優先度で実行する。インタプリタ34がアプリケーションプログラム52を解析処理して生成された中間コードは、バッファ33の容量を考慮しながら、逐次、バッファ33に格納される。バッファ33に格納された中間コードは、制御アプリケーション処理部30のモーション処理部32により順次参照されて、演算処理B32での指令値の生成に用いられる。このとき、インタプリタ34は、高優先度タスクの演算周期である制御周期の整数倍分の中間コードを事前に余分に生成しておくことで、モーション処理部32による処理に影響を与えることなく、制御アプリケーションに対する指令値を制御周期毎に演算できる。
また、インタプリタ34は、予め定められた制御アプリケーション同期周期(制御周期の整数倍)が到来する前に、アプリケーションプログラム52の解釈を一時停止する。その一時停止したタイミングで、IECプログラム処理部40と制御アプリケーション処理部30との間でデータ同期を行うことで、双方に整合性をもつデータを共有する。このように、インタプリタ34は、同期周期毎に、IECプログラム処理部40との間で共有するデータを更新する。共有データの更新に併せて、フィールド側から取得される入力データおよび出力データについても更新(データ同期)するようにしてもよい。これにより、制御アプリケーション処理部30側でも、IECプログラム処理部40で取得されたデータを利用してロボット210の制御が可能となる。制御アプリケーション同期周期は、制御周期の整数倍に設定されれば、どのような長さであってもよい。制御アプリケーションにおいて要求される制御の精度などに応じて、適宜設定される。
<フィールド機器の同期制御>
図4は、制御装置とフィールド機器との通信の一例を説明するための図である。通信は、定周期通信を行うものであればよいが、本実施形態では、EtherCATの規格に従って通信を行うものとする。制御装置100は、フィールドネットワーク2のコントローラとして機能し、ロボット210やサーボドライバ220等のフィールド機器を制御する。また、各装置は、デイジーチェーン、スター型、リング型等で接続され得るが、ここではデイジーチェーンで接続されるものとする。そして、制御装置100においてイーサネットフレームのデータ部に所定の規格に従う情報が格納され、直列に接続されたフィールド機器へ順に送信される(図4:S1、S2)。また、イーサネットフレームは、フィールド機器の終端で折り返し、逆方向に制御装置100まで戻される(図4:S3、S4)。これにより、1周期の入出力処理が完了する。また、フィールド機器の各々は、各周期において、送受信するイーサネットフレームへオンザフライで入出力処理を行う。なお、フィールド機器の各々には、自装置がデータを入出力すべきビット位置及びビット幅が予め割り当てられている。上述したモーション処理部32及びモーション処理部42は、それぞれアプリケーションプログラム52及びIECプログラム51に従い、各フィールド機器への指令値をイーサネットフレームに格納する。このとき、予測部70の予測結果に基づいて補正された指令値が用いられる。
図5は、フィールド機器の協調動作の一例を説明するための図である。図5の例では、モータ222はコンベア8を動作させているものとする。なお、コンベア8上にはワーク9が載置され、ワーク9はモータ222の動作に応じて搬送される。また、ロボット210は、ワーク9に対し所定の動作を行うものとする。
例えば、第1の周期(図5:C1)において、モータ222の軸位置がサーボドライバ220から制御装置100にフィードバックされる。なお、モータ222の動作の速度が併せてフィードバックされてもよい。第1の周期よりも後の第2の周期(図5:C2)においては、制御装置100は、モータ222の軸位置に基づいて、第2の周期よりも後の第3の周期(図5:C3)におけるモータ222の軸位置を予測すると共に、予測位置に基づいてロボット210の目標位置を決定し、目標位置に基づく制御指令をロボット210に送信する。そして、第3の周期においては、ロボット210は、目標位置に基づいて動作する。第3の周期においては、ワーク9はコンベア8によって第2の周期における位置よりも先の予測位置まで搬送されており、複数のフィールド機器が同期して動作するようになる。
図6は、制御装置とフィールド機器との通信、及びフィールド機器の協調動作の遅延の一例を説明するための図である。図6は、制御装置及びフィールド機器が実行する処理を示している。なお、図6に示すマスタ装置及びスレーブ装置は、いずれもフィールド機器であり、それぞれ動作のマスタ装置、動作のスレーブ装置に相当する。また、動作のマスタ装置はモータ222を制御するサーボドライバ220であり、動作のスレーブ装置は、ロボット210であるものとする。「I/O」は、入出力リフレッシュ処理を表し、例えば図3のB60に相当する。「UPG」は、ユーザプログラムの実行を表す。「MC」は、モーション制御の演算処理を表し、例えば図3のB42に相当する。「RC」は、ロボット制御の演算処理を表し、例えば図3のB32に相当する。「ECAT」は、EtherCATにおける通信処理を表す。「IN」、「OUT」は、それぞれEtherCATにおけるフィールド機器の入力リフレッシュ、出力リフレッシュを表し、図4に示したイーサネットフレームへの入出力処理に相当する。「Trajectory」は、ロボットの軌跡計算処理を表す。
周期C11では、マスタ装置の「IN」においてフィードバックのために現在位置を示すデータが入力される。また、周期C12では、マスタ装置の「ECAT」及び制御装置の「I/O」において、制御装置100へデータがフィードバックされると共に、制御装置の「MC」、「RC」において、フィールド機器への制御指令が生成される。そして、周期C13では、制御装置の「I/O」及びスレーブ装置の「ECAT」において、制御指令が送信され、スレーブ装置の「OUT」において読み出され、「Trajectory」においてロボット210の動作の軌跡が計算される。その後、周期C14において、ロボット210は計算された軌跡に従って動作する。なお、説明していないブロックにおいても並行して処理が行われる。
図6に示す通り、ロボット210が動作するのは周期C14であり、サーボドライバ220がフィードバックのために現在位置を書き込んだ周期C11や、サーボドライバ220のモーション制御の演算処理によって指令値を算出した周期C12からは遅れることになる。また、図示していないが、マスタ装置がサーボドライバであるか、ロボットであるか、スレーブ装置がサーボドライバであるか、ロボットであるかといった、マスタ装置とスレーブ装置の種別の組み合わせによっても、遅延の大きさは異なる。換言すれば、動作のマスタ装置及びスレーブ装置の各々が、実行毎に全体が実行される実行形式に従ったプログラムにより動作する種類のフィールド機器であるか、逐次実行される実行形式に従ったプログラムの少なくとも一部から、インタプリタによって生成される中間コードに基づいて動作する種類のフィールド機器であるかによって、通信周期や処理時間が異なるため
遅延の大きさも変わる。そこで、予測部70は、このような遅延を補正した予測位置を算出する。
予測位置は、モータ222の軸位置(現在位置)と動作速度とを用いて算出できる。例えば、以下の式(1)により予測位置を求めてもよい。
予測位置=現在位置+(現在速度×補正係数) ・・・(1)
現在位置は、サーボドライバ220からフィードバックされる値を用いてもよいし、サーボドライバ220への制御指令において指示した指令値を用いてもよい。現在速度は、サーボドライバ220からフィードバックされるようにしてもよいし、過去の周期における現在位置のデータ列を用いて算出してもよい。補正係数は所定の値であり、動作のマスタ装置及び動作のスレーブ装置の種別の組み合わせに応じて設定することができる。例えば、動作のマスタ装置及び動作のスレーブ装置についての、ロボットやモータといった種別の組み合わせに対応付けて、補正係数を定めておくようにしてもよい。また、マスタ装置の現在位置としてフィードバックされた位置を用いるか、制御指令の位置を用いるかによって異なる補正係数を用いるようにしてもよい。
図7は、補正係数を説明するための図である。なお、「モーション軸・軸グループ」は、1又は複数のモータに相当し、実行毎に全体が実行される実行形式に従ったプログラムにより動作する種類のフィールド機器の一例である。また、「ロボット」は、逐次実行される実行形式に従ったプログラムの少なくとも一部から、インタプリタによって生成される中間コードに基づいて動作する種類のフィールド機器の一例である。図7の例では、動作のマスタ装置の種別と動作のスレーブ装置の種類との組み合わせに対し、遅延する周期の量が定められている。また、マスタ装置の現在位置としてフィードバックされた位置を用いる場合と、制御指令の位置を用いる場合とでも、異なる値が定められている。なお、ロボットについては、さらにロボットアンプに応じて異なる遅延周期を定めるようにしてもよい。また、実行形式の異なるIECプログラム51とアプリケーションプログラム52とに従ってロボット210を制御する場合についても、それぞれ異なる遅延周期量が定められていてもよい。図7に示したような遅延周期に応じた補正係数を用いることにより、通信遅延を補正することができ、フィールド装置の同期制御が可能になる。例えば、遅延周期の大きさに応じて補正係数も大きくなるように、予め補正係数を定めておくことができる。
<補正処理>
図8は、補正処理の一例を示すフローチャートである。制御装置100は、協調動作すべきフィールド機器への制御指令を生成及び送信する際に、図8に示すような処理を行う。まず、予測部70は、動作のマスタ装置の現在位置を取得する(図8:S101)。本ステップでは、現在位置として、マスタ装置からフィードバックされた値を取得してもよいし、マスタ装置への制御指令において指示した指令値を取得してもよい。また、マスタ装置がロボットである場合は、現在位置として、マスタ装置の現在の姿勢(ロボットが備える複数のモータの位置の組み合わせ)を取得してもよい。
そして、予測部70は、マスタ装置の到達位置を予測する(図8:S102)。本ステップでは、予測部70は、スレーブ装置の動作時点におけるマスタ装置の到達位置を予測する。到達位置は、例えば上述した式(1)を用いて算出することができる。また、本ステップにおいては、マスタ装置の種類とスレーブ装置の種類との組み合わせに基づいて補正量を変更するようにしてもよいし、マスタ装置の現在位置がマスタ装置からフィードバックされた値であるか、マスタ装置への制御指令において指示した値であるかによって補正量を変更するようにしてもよい。
また、モーション処理部32又はモーション処理部42は、予測された到達位置に基づ
いてスレーブ装置への指令値を決定し、スレーブ装置へ送信する(図8:S103)。本ステップでは、例えばマスタ装置の到達位置を目標としてスレーブ装置を動作させるように指令値を決定する。一方、指令値を含む制御指令を受けたスレーブ装置は、指令値に従って動作を行う。
また、制御装置100は、処理を終了するか判断する(図8:S104)。本ステップでは、例えば所定のユーザプログラムに従うフィールド機器の動作がすべて終了したか判断する。終了しないと判断された場合(S104:NO)、S1に戻り処理を継続する。一方、終了すると判断された場合(S104:YES)、制御装置100は処理を終了する。
以上のように、制御装置100は、定周期通信を行うシステムにおいて、現在位置に基づく制御指令がフィールド機器に到達して動作するまでの通信及び動作の遅延を補正できるようになる。特に、制御装置100は、アプリケーションプログラム52とIECプログラム51とを同期させて処理することができるため、動作のマスタ装置及び動作のスレーブ装置の種類が、例えばモータとロボットのように異なる場合であっても統合して遅延の補正ができる。
以上、実施形態について説明したが、上述した制御装置は一例であり、本発明に係る制御装置は、上記の構成には限定されない。説明した実施形態の構成は、本発明の課題や技術的思想を逸脱しない範囲で可能な限り変更したり組み合わせることができる。
<付記1>
定周期通信を行うネットワーク(2)を介して、所定のプログラムに従い複数のフィールド機器(210、220)を協調動作させる制御装置(100)であって、
第1の周期における第1のフィールド機器の位置に基づいて、前記第1の周期よりも後の第2の周期における、第1のプログラムに従って動作する前記第1のフィールド機器の位置を算出する予測部(70)と、
前記第1のプログラムに基づいて、前記第1のフィールド機器の動作の第1の指令値を決定し、前記複数のフィールド機器と通信するためのインターフェイス部を介して前記第1の指令値を前記第1のフィールド機器に送信すると共に、予測された位置と第2のプログラムとに基づいて、前記第1のフィールド機器と協調動作すべき第2のフィールド機器の動作の第2の指令値を決定し、前記インターフェイス部(60)を介して前記第2の指令値を前記第2のフィールド機器に送信する処理部(32、42)と、
を備える制御装置。
1: 制御システム
2: フィールドネットワーク
6: 上位ネットワーク
10: サーバ装置
30: 制御アプリケーション処理部
40: IECプログラム処理部
51: IECプログラム
52: アプリケーションプログラム
70: 予測部
210: ロボット
220: サーボドライバ
222: モータ

Claims (4)

  1. 定周期通信を行うネットワークを介して、所定のプログラムに従い複数のフィールド機器を協調動作させる制御装置であって、
    第1の周期における第1のフィールド機器の位置に基づいて、前記第1の周期よりも後の第2の周期における、第1のプログラムに従って動作する前記第1のフィールド機器の位置を算出する予測部と、
    前記第1のプログラムに基づいて、前記第1のフィールド機器を動作させるための第1の指令値を決定し、前記複数のフィールド機器と通信するためのインターフェイス部を介して前記第1の指令値を前記第1のフィールド機器に送信すると共に、前記予測部によって算出された位置と第2のプログラムとに基づいて、前記第1のフィールド機器と協調動作すべき第2のフィールド機器を動作させるための第2の指令値を決定し、前記インターフェイス部を介して前記第2の指令値を前記第2のフィールド機器に送信する処理部と、
    を備え
    前記予測部は、前記第1のフィールド機器の動作速度に所定の補正係数を乗じた値を、前記第1の周期における前記第1のフィールド機器の位置に加え、前記第2の周期における前記第1のフィールド機器の位置を算出し、
    前記第1のプログラム及び前記第2のプログラムの一方は、実行毎に全体が実行される第1の実行形式に従ったプログラムであり、他方は、逐次実行される第2の実行形式に従ったプログラムであり、
    前記所定の補正係数は、前記第1の実行形式に従ったプログラムに従って動作する種類の機器と、前記第2の実行形式に従ったプログラムに従って動作する種類の機器とを含む、前記第1のフィールド機器及び前記第2のフィールド機器の種類の組み合わせに応じて決定される
    制御装置。
  2. 前記処理部は、
    前記定周期通信における制御周期毎に前記第1の実行形式に従ったプログラムを実行して前記フィールド機器を制御するための指令値を演算可能に構成された第1処理部と、
    前記第2の実行形式に従ったプログラムを実行してインタプリタにより該プログラムの少なくとも一部が解釈されて生成される中間コードに従って前記制御周期毎に前記フィールド機器を制御するための指令値を演算可能であり、且つ、前記第1処理部による、前
    記第1の実行形式に従ったプログラムの実行を起点としても、該フィールド機器を制御するための該指令値を演算可能に構成された第2処理部と、
    を含み、
    前記第1処理部及び前記第2処理部が演算した前記指令値を、前記インターフェイス部を介して前記制御周期毎に送信する
    請求項に記載の制御装置。
  3. 前記第1の周期における前記第1のフィールド機器の位置は、前記第1のフィールド機器からフィードバックされたフィードバック値、又は前記第1のフィールド機器へ送信した指令値であり、
    前記所定の補正係数は、前記第1の周期における前記第1のフィールド機器の位置が、前記フィードバック値及び前記送信した指令値のいずれであるかにさらに応じて決定される
    請求項1又は2に記載の制御装置。
  4. 前記定周期通信は、EtherCAT(登録商標)の規格に従う通信である
    請求項1からのいずれか一項に記載の制御装置。
JP2019145127A 2019-08-07 2019-08-07 制御装置 Active JP7318406B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019145127A JP7318406B2 (ja) 2019-08-07 2019-08-07 制御装置
EP20851183.2A EP3992735A4 (en) 2019-08-07 2020-02-21 CONTROL DEVICE
US17/629,539 US20220269238A1 (en) 2019-08-07 2020-02-21 Control device
PCT/JP2020/007163 WO2021024523A1 (ja) 2019-08-07 2020-02-21 制御装置
CN202080054963.3A CN114207534A (zh) 2019-08-07 2020-02-21 控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019145127A JP7318406B2 (ja) 2019-08-07 2019-08-07 制御装置

Publications (2)

Publication Number Publication Date
JP2021026587A JP2021026587A (ja) 2021-02-22
JP7318406B2 true JP7318406B2 (ja) 2023-08-01

Family

ID=74503369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145127A Active JP7318406B2 (ja) 2019-08-07 2019-08-07 制御装置

Country Status (5)

Country Link
US (1) US20220269238A1 (ja)
EP (1) EP3992735A4 (ja)
JP (1) JP7318406B2 (ja)
CN (1) CN114207534A (ja)
WO (1) WO2021024523A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153881A (ja) 2017-03-16 2018-10-04 株式会社安川電機 コントロールシステム、コントローラ及び制御方法
JP2018190068A (ja) 2017-04-28 2018-11-29 ファナック株式会社 制御装置及び機械学習装置
JP2019062288A (ja) 2017-09-25 2019-04-18 オムロン株式会社 制御システムおよび制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804580B1 (en) * 2003-04-03 2004-10-12 Kuka Roboter Gmbh Method and control system for controlling a plurality of robots
US9046890B2 (en) * 2008-09-05 2015-06-02 Fanuc Robotics America, Inc. Line tracking data over Ethernet
JP4877423B1 (ja) * 2011-03-15 2012-02-15 オムロン株式会社 Plcのcpuユニット、plc用システムプログラムおよびplc用システムプログラムを格納した記録媒体
JP6244622B2 (ja) * 2012-12-14 2017-12-13 オムロン株式会社 制御装置、制御プログラムおよび制御方法
CN105024777B (zh) * 2015-07-29 2017-10-24 上海新时达电气股份有限公司 基于EtherCAT实时以太网的伺服驱动器同步方法
JP6919404B2 (ja) 2017-08-10 2021-08-18 オムロン株式会社 制御装置
JP6903275B2 (ja) * 2017-09-14 2021-07-14 オムロン株式会社 制御装置および制御方法
JP6950415B2 (ja) * 2017-09-29 2021-10-13 オムロン株式会社 制御装置
JP2019101480A (ja) 2017-11-28 2019-06-24 オムロン株式会社 制御装置および制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018153881A (ja) 2017-03-16 2018-10-04 株式会社安川電機 コントロールシステム、コントローラ及び制御方法
JP2018190068A (ja) 2017-04-28 2018-11-29 ファナック株式会社 制御装置及び機械学習装置
JP2019062288A (ja) 2017-09-25 2019-04-18 オムロン株式会社 制御システムおよび制御装置

Also Published As

Publication number Publication date
WO2021024523A1 (ja) 2021-02-11
US20220269238A1 (en) 2022-08-25
EP3992735A4 (en) 2023-07-05
JP2021026587A (ja) 2021-02-22
CN114207534A (zh) 2022-03-18
EP3992735A1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
US10761884B2 (en) Control device for operating multiple types of programs in different execution formats
US10761515B2 (en) Control system for controlling control object and control device for linking control applications in control system
JP6903275B2 (ja) 制御装置および制御方法
JP6919404B2 (ja) 制御装置
JP6950385B2 (ja) 制御装置および制御方法
US9753447B2 (en) Control unit, output control method and program
US20190095246A1 (en) Support device and non-transitory storage medium
JP7310465B2 (ja) 同期制御装置、同期制御システム、同期制御方法、及びシミュレーション装置
JP2019057253A (ja) 制御装置、制御方法およびサポート装置
JP7318406B2 (ja) 制御装置
JP7294078B2 (ja) 制御装置
JP7020198B2 (ja) 制御装置および制御システム
JP7230703B2 (ja) 制御装置
JP7456165B2 (ja) 制御装置
JP7396063B2 (ja) データ処理方法
JP7231073B2 (ja) 制御装置および制御システム
WO2020137522A1 (ja) 同期制御装置、同期制御システム、同期制御方法、及びシミュレーション装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7318406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150