JP7313759B2 - How to increase tomato fruit - Google Patents

How to increase tomato fruit Download PDF

Info

Publication number
JP7313759B2
JP7313759B2 JP2023500253A JP2023500253A JP7313759B2 JP 7313759 B2 JP7313759 B2 JP 7313759B2 JP 2023500253 A JP2023500253 A JP 2023500253A JP 2023500253 A JP2023500253 A JP 2023500253A JP 7313759 B2 JP7313759 B2 JP 7313759B2
Authority
JP
Japan
Prior art keywords
ifw1
gene
tomato
fruit
wild
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023500253A
Other languages
Japanese (ja)
Other versions
JP2023526694A (en
Inventor
析豊 陳
伯軍 馬
淑容 沈
以霊 許
敏 李
浩天 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Publication of JP2023526694A publication Critical patent/JP2023526694A/en
Application granted granted Critical
Publication of JP7313759B2 publication Critical patent/JP7313759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、トマト果実の増大を促進する遺伝子およびその使用に関し、作物分子遺伝分野に属する。 The present invention relates to genes promoting tomato fruit growth and uses thereof, and belongs to the field of crop molecular genetics.

トマト(Solanum lycopersicum)は、重要な園芸植物および経済作物として、世界中で広く栽培され、世界的な野菜および果物になっており、見た目の美しさ、味の良さ、栄養価の高さから、消費者に大変人気がある。トマトの果実の大きさと重量は、トマトの外観と収量に影響を与える重要な農業形質である。果実の直径と重量を大きくすることにより、トマトの収量が増加するだけでなく、視覚的な美学が向上し、果実の栄養含有量が増加し、市場価値と経済価値が高まる。そのため、新しい機能遺伝子を開発し、遺伝子編集技術を利用して大きいトマトの新品種を選別することは、比較的早く便利な方法である。 Tomatoes (Solanum lycopersicum) are widely cultivated around the world as an important horticultural plant and economic crop, and have become a global vegetable and fruit that are very popular with consumers for their aesthetic appeal, good taste and high nutritional value. Tomato fruit size and weight are important agronomic traits that affect tomato appearance and yield. Increasing fruit diameter and weight not only increases tomato yield, but also improves visual aesthetics, increases fruit nutrient content, and increases market and economic value. Therefore, developing new functional genes and using gene editing technology to select new varieties of large tomatoes is a relatively quick and convenient method.

本発明が解決しようとする技術的課題は、トマト果実の大きさを効果的に増大させ、果実の収量を向上させることである。 The technical problem to be solved by the present invention is to effectively increase the size of tomato fruits and improve the yield of fruits.

上述の技術的問題を解決するために、本発明は、トマトの遺伝子IFW1(ncrease ruit size and eight 1)を提供し、それコードするヌクレオチド配列は、配列番号1に示される配列である。 In order to solve the above technical problems, the present invention provides a tomato gene IFW1 ( increase fruit size and weight 1), the encoding nucleotide sequence of which is the sequence shown in SEQ ID NO:1.

本発明は、上記遺伝子の使用をさらに提供する。トマト中でIFW1遺伝子をノックアウトすることでその果実の大きさを効果的に増大(顕著に増大)させ、収量を向上させることができる。 The present invention further provides uses of the above genes. Knocking out the IFW1 gene in tomato can effectively increase (significantly increase) the fruit size and improve yield.

本発明のトマト果実の増大におけるIFW1遺伝子の使用の改良:
IFW1遺伝子の2つのノックアウト株は、ifw1-1およびifw1-2であり、ifw1-1およびifw1-2植物体中のIFW1遺伝子変異配列はいずれも配列番号2に示される配列である。
Improved use of the IFW1 gene in tomato fruit expansion according to the invention:
The two knockout strains of the IFW1 gene are ifw1-1 and ifw1-2, and the IFW1 gene mutation sequences in both ifw1-1 and ifw1-2 plants are the sequences shown in SEQ ID NO:2.

本発明は、トマト中でIFW1遺伝子をノックアウトする方法をさらに提供する。この方法は、以下のステップを含む。
1)CRISPR/Cas9技術により、遺伝子編集される標的sgRNA配列:5’-GATAGAGGCAGAGGCAGAGG-3’を設計する。
2)ステップ1)で得られた配列を用いてプライマーを合成し、CRISPR/Cas9ベクターに構築する。
3)ステップ2)で得られたベクターを野生型トマト品種MicroTomに遺伝的変換し、対応する遺伝子組換え植物体を得る。前記遺伝子組換えトマト植物体からIFW1遺伝子がノックアウトされた植物体を同定する。
The present invention further provides a method of knocking out the IFW1 gene in tomato. This method includes the following steps.
1) Design a target sgRNA sequence to be gene-edited by CRISPR/Cas9 technology: 5′-GATAGAGGCAGAGGCAGAGG-3′.
2) Synthesize primers using the sequence obtained in step 1) and construct into CRISPR/Cas9 vector.
3) The vector obtained in step 2) is genetically transformed into a wild-type tomato cultivar MicroTom to obtain the corresponding transgenic plant. A plant in which the IFW1 gene is knocked out is identified from the transgenic tomato plant.

本発明の技術的解決策は、以下の通りである。
CRISPR/Cas9遺伝子編集技術により、IFW1遺伝子のヌクレオチド配列(配列番号1)に基づいてIFW1遺伝子を特異的に標的とするgRNA配列を合成し、対応するCRISPR/Cas9ベクターを構築し、野生型トマト品種MicroTomに遺伝的変換し、ゲノム中のIFW1遺伝子を特異的に編集し、遺伝子組換え植物体を取得し、遺伝子組換え植物体中のIFW1遺伝子に対してPCR増幅およびシーケンシングを行い、IFW1遺伝子が得られた異なるノックアウト株ifw1-1およびifw1-2を同定する(図1)。ifw1-1およびifw1-2植物体におけるIFW1遺伝子の変異配列は、いずれも配列番号2である。果形を比較した結果、IFW1遺伝子ノックアウト植物体の成熟果実の大きさ(図2、図3)および重量は、いずれも野生型対照品種(図4)よりも顕著に高く、トマト中でIFW1遺伝子をノックアウトすることにより果実中の生物量の合成の増加を効果的に促進でき、重要な育種価値を有する。
The technical solutions of the present invention are as follows.
By CRISPR/Cas9 gene editing technology, a gRNA sequence specifically targeting the IFW1 gene is synthesized based on the nucleotide sequence of the IFW1 gene (SEQ ID NO: 1), the corresponding CRISPR/Cas9 vector is constructed, genetically transformed into the wild-type tomato cultivar MicroTom, the IFW1 gene in the genome is specifically edited, the transgenic plant is obtained, and the IFW1 gene in the transgenic plant is subjected to PCR amplification and sequencing to obtain the IFW1 gene. We also identify different knockout strains ifw1-1 and ifw1-2 (FIG. 1). The mutated sequences of the IFW1 gene in ifw1-1 and ifw1-2 plants are both SEQ ID NO:2. As a result of comparing the fruit shape, the mature fruit size (Fig. 2, Fig. 3) and weight of the IFW1 gene knockout plant were both significantly higher than the wild-type control cultivar (Fig. 4). Knocking out the IFW1 gene in tomato can effectively promote the increase of biomass synthesis in fruit, and has important breeding value.

以下、図面を参照しながら本発明の具体的な実施形態をさらに詳しく説明する。
トマトIFW1遺伝子ノックアウト株のCRISPR/Cas9標的部位およびシーケンシング結果である。 トマトIFW1遺伝子ノックアウト株と野生型対照MicroTomの果形との比較図である。 トマトIFW1遺伝子ノックアウト株と野生型対照MicroTomの果実の大きさの測定である。 トマトIFW1遺伝子ノックアウト株と野生型対照MicroTomの単一の果実の重量測定である。 図1~4において、WTは野生型対照品種MicroTomを示し、ifw1-1およびifw1-2はIFW1遺伝子の2つの異なるノックアウト株を示す。図3および図4における数値は平均値±標準差であり、**はトマトIFW1遺伝子ノックアウト株ifw1-1(またはifw1-2)と野生型(WT)対照MicroTomとの比較において、t検定には顕著な有意差(P<0.01)が存在することを示す。
Specific embodiments of the present invention will be described in more detail below with reference to the drawings.
CRISPR/Cas9 target sites and sequencing results of tomato IFW1 gene knockout strain. Fig. 3 is a comparison of the fruit shape of the tomato IFW1 gene knockout strain and the wild-type control MicroTom. Measurement of fruit size of tomato IFW1 gene knockout strain and wild-type control MicroTom. Weight measurements of single fruit of tomato IFW1 gene knockout strain and wild-type control MicroTom. In Figures 1-4, WT indicates the wild-type control cultivar MicroTom and ifw1-1 and ifw1-2 indicate two different knockout strains of the IFW1 gene. The values in FIGS. 3 and 4 are the mean ± standard difference, and ** indicates that there is a significant difference (P<0.01) by t-test between the tomato IFW1 gene knockout strain ifw1-1 (or ifw1-2) and the wild-type (WT) control MicroTom.

ステップ1:トマトIFW1遺伝子がノックアウトされたCRISPR/Cas9ベクターの構築
オンラインプロフェッショナルソフトウェア(http://crispr.mit.edu/)により、IFW1遺伝子のコード配列(配列番号:1)においてCRISPR/Cas9で編集される標的sgRNA配列:5’-GATAGAGGCAGAGGCAGAGG-3’を設計し、バイオテクノロジー企業で対応するプライマー配列:5’-TGATTGATAGAGGCAGAGGCAGAGG-3’および5’-AAACCCTCTGCCTCTGCCTCTATCA-3’を合成した。CRISPR/Cas9キット(Biogle,China)により対応するCRISPR/Cas9ベクターを構築した。構築は製品マニュアルに従って操作した。
Step 1: Construction of CRISPR/Cas9 vector in which tomato IFW1 gene is knocked out Design the target sgRNA sequence to be edited with CRISPR/Cas9 in the coding sequence of IFW1 gene (SEQ ID NO: 1): 5'-GATAGAGGCAGAGGCAGAGG-3' by online professional software (http://crispr.mit.edu/), and corresponding primer sequence in biotechnology company: 5'-TGATTGATAGAG GCAGAGGCAGAGG-3' and 5'-AAACCCTCTGCCTCTGCCTCTATCA-3' were synthesized. The corresponding CRISPR/Cas9 vector was constructed by CRISPR/Cas9 kit (Biogle, China). The construction was operated according to the product manual.

ステップ2:CRISPR/Cas9ベクターで構築されたトマト遺伝的変換
Kimuraらの方法(Kimura S et al,CHS Protoc,2008)により、ステップ1で構築されたCRISPR/Cas9ベクターをトマト品種MicroTomに遺伝的変換し、遺伝子組換えトマト植物体を得た。
Step 2: Tomato genetic conversion constructed with CRISPR/Cas9 vector By the method of Kimura et al. (Kimura S et al, CHS Protoc, 2008), the CRISPR/Cas9 vector constructed in step 1 was genetically converted to tomato cultivar MicroTom to obtain a genetically modified tomato plant.

ステップ3:遺伝子組換えトマト中のIFW1遺伝子のシーケンシング分析
遺伝子組換えトマト植物体の葉を0.1gとり、液体窒素で粉砕した後、600μl抽出液(15.76gTris-cl,29.22gNaCl,15.0gSDS粉末に超純水を1Lまで加え、pH=8.0に調整)を加え、65℃で60minインキュベートした。200μlの5M KACを加え、均一に混合した後、氷浴で10min冷却した後、500μlクロロホルムを加え、均一に混合し、10000rpmで5分間遠心分離し、上清を取り、500μlイソプロパノールを加え、均一に混合し、12000rpmで3min遠心分離し、上清を捨て、75%エタノールで沈殿を洗浄し、12000rpmで3分間遠心分離し、上清を捨て、逆さまにしてDNAを15分間乾燥させた後、30μl純水を加えてDNAを溶解した。
Step 3: Sequencing analysis of IFW1 gene in transgenic tomato 0.1 g of transgenic tomato plant leaves were pulverized with liquid nitrogen, then 600 μl of extract (15.76 g Tris-cl, 29.22 g NaCl, 15.0 g SDS powder was added to 1 L of ultrapure water to adjust the pH to 8.0) and incubated at 65° C. for 60 min. Add 200 μl of 5M KAC, mix evenly, cool in an ice bath for 10 minutes, add 500 μl of chloroform, mix evenly, centrifuge at 10000 rpm for 5 minutes, remove the supernatant, add 500 μl of isopropanol, mix evenly, centrifuge at 12000 rpm for 3 minutes, discard the supernatant, wash the precipitate with 75% ethanol, and wash at 12000 rpm. After centrifuging at pm for 3 minutes, discarding the supernatant, turning the tube upside down to dry the DNA for 15 minutes, 30 μl of pure water was added to dissolve the DNA.

IFW1遺伝子PCR増幅用の上流プライマー5’-AACGTTCAACGGACAATC-3’および下流プライマー5’-CAATAAAGTACACCACAT-3’を合成し、遺伝子組換えトマト植物体およびその対照品種MicroTomのゲノムDNAをテンプレートとし、2×Taq PCR Master Mix(TIANGEN社)を用いてIFW1遺伝子に対してPCR増幅を行った。PCR増幅系は、2×Taq PCR MasterMix10μl、上流プライマーおよび下流プライマー(10μM)それぞれ1μl、テンプレートDNA 1μl(<1μg)、無菌水7μl(合計20μl)であった。PCR増幅プログラムは、予備変性:94℃、5分間;変性:94℃、30秒;アニーリング:55℃、30秒;伸長:72℃、35秒;35×サイクル;伸長:72℃、10分間であった。 An upstream primer 5'-AACGTTCAACGGACAATC-3' and a downstream primer 5'-CAATAAAGTACACCACAT-3' for IFW1 gene PCR amplification were synthesized, and the genomic DNA of the transgenic tomato plant and its control variety MicroTom were used as templates, and PCR was performed on the IFW1 gene using 2 × Taq PCR Master Mix (TIANGEN). The PCR amplification system was 10 μl 2×Taq PCR MasterMix, 1 μl each of upstream and downstream primers (10 μM), 1 μl template DNA (<1 μg), 7 μl sterile water (20 μl total). The PCR amplification program was pre-denaturation: 94°C, 5 min; denaturation: 94°C, 30 sec; annealing: 55°C, 30 sec; extension: 72°C, 35 sec;

PCR生成物に対してシーケンシング分析を行った後、IFW1遺伝子が成功にノックアウトされた2つの株ifw1-1およびifw1-2を同定した。この2つの株の植物体におけるIFW1遺伝子コード領域にはいずれも2つの塩基が欠失することで(図1)、IFW1遺伝子にフレームシフト変異が発生し、この遺伝子機能の喪失が引き起こされた。ifw1-1およびifw1-2株植物体におけるIFW1遺伝子のヌクレオチド配列は、配列番号2に示される配列である。 After performing sequencing analysis on the PCR products, two strains ifw1-1 and ifw1-2 were identified in which the IFW1 gene was successfully knocked out. Deletion of two bases in the coding region of the IFW1 gene in both plants of these two strains (Fig. 1) caused a frameshift mutation in the IFW1 gene, causing loss of this gene function. The nucleotide sequence of the IFW1 gene in ifw1-1 and ifw1-2 strain plants is the sequence shown in SEQ ID NO:2.

ステップ4:トマト果実の大きさの測定
同定されたIFW1遺伝子ノックアウト株ifw1-1、ifw1-2および野生型対照品種MicroTomを温室(25℃、照明16時間、暗所8時間)で植え付けた。トマト果実が熟した後、各品種からランダムに3株を選択し、各株から3つの熟した果実を取って果柄を除去した。ノギスを用いて各トマト果実の最大直径(cm)を測定し、各品種果実の直径の平均値を計算し、測定結果についてt検定によりifw1-1(またはifw1-2)ノックアウト株と野生型対照との間の有意性を分析した。得られた結果として、IFW1遺伝子ノックアウト株ifw1-1およびifw1-2の果実の直径はいずれも野生型対照よりも顕著に大きく(図2、3)、それぞれ対照品種よりも23.2%および25.9%増大した。
Step 4: Tomato Fruit Size Measurement The identified IFW1 gene knockout strains ifw1-1, ifw1-2 and the wild-type control variety MicroTom were planted in a greenhouse (25° C., 16 hours light, 8 hours dark). After the tomato fruit ripened, 3 plants were randomly selected from each variety, and 3 ripe fruits from each plant were taken and the peduncle removed. The maximum diameter (cm) of each tomato fruit was measured using a vernier caliper, the average value of the fruit diameter of each variety was calculated, and the significance of the measurement results between the ifw1-1 (or ifw1-2) knockout strain and the wild-type control was analyzed by t-test. The results obtained showed that the fruit diameters of both IFW1 gene knockout strains ifw1-1 and ifw1-2 were significantly larger than the wild-type control (FIGS. 2, 3) and increased by 23.2% and 25.9% respectively over the control cultivar.

ステップ5:トマト果実の重量測定
ステップ4で培養したトマト果実を取り、電子天秤で各トマト果実の重量(g)を秤量し、各品種の果実重量の平均値を計算した。測定結果について、t検定によりifw1-1(またはifw1-2)ノックアウト株と野生型対照との間の有意差を分析した。得られた結果として、IFW1遺伝子ノックアウト株ifw1-1およびifw1-2果実の重量はいずれも野生型対照よりも顕著に大きく(図4)、それぞれ対照品種よりも51.7%および57.4%増大した。
Step 5: Weight measurement of tomato fruit The tomato fruit cultured in step 4 was taken, and the weight (g) of each tomato fruit was weighed with an electronic balance to calculate the average fruit weight of each variety. Measurement results were analyzed for significant differences between ifw1-1 (or ifw1-2) knockout strains and wild-type controls by t-test. The results obtained showed that fruit weights of IFW1 gene knockout strains ifw1-1 and ifw1-2 were both significantly larger than wild-type controls (FIG. 4), increasing 51.7% and 57.4% over control cultivars, respectively.

以上の説明は、本発明のいくつかの具体的な実施例に過ぎない。本発明は、以上の実施例に限定されず、たくさんの変形例を含む。当業者が本発明の開示内容から直接導出または想到できる全ての変形は、いずれも本発明の保護範囲に含まれる。 The above descriptions are only some specific examples of the present invention. The present invention is not limited to the above examples, but includes many variations. All variations that can be directly derived or conceived by a person skilled in the art from the disclosure of the present invention shall fall within the protection scope of the present invention.

Claims (2)

トマト果実増大させる方法であって、
トマト中でIFW1遺伝子をノックアウトすることによりトマト果実の大きさを増大させ、収量を向上させる工程を含み
前記IFW1遺伝子でコードされるヌクレオチド配列は配列番号1に示される配列であることを特徴とする、方法
A method for increasing tomato fruit comprising:
increasing tomato fruit size and yield by knocking out the IFW1 gene in tomato;
A method , wherein the nucleotide sequence encoded by said IFW1 gene is the sequence shown in SEQ ID NO:1.
前記ノックアウトにより得られるトマトIFW1遺伝子の変異配列が、配列番号2に示される配列であることを特徴とする、請求項1に記載の方法
2. The method according to claim 1, wherein the mutant sequence of the tomato IFW1 gene obtained by knockout is the sequence shown in SEQ ID NO:2.
JP2023500253A 2020-09-11 2020-12-30 How to increase tomato fruit Active JP7313759B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010953359.6 2020-09-11
CN202010953359.6A CN112048510B (en) 2020-09-11 2020-09-11 Application of one gene in enlarging tomato fruit
PCT/CN2020/141384 WO2022052381A1 (en) 2020-09-11 2020-12-30 Application of gene in enlarging tomato fruits

Publications (2)

Publication Number Publication Date
JP2023526694A JP2023526694A (en) 2023-06-22
JP7313759B2 true JP7313759B2 (en) 2023-07-25

Family

ID=73610677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023500253A Active JP7313759B2 (en) 2020-09-11 2020-12-30 How to increase tomato fruit

Country Status (3)

Country Link
JP (1) JP7313759B2 (en)
CN (1) CN112048510B (en)
WO (1) WO2022052381A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048510B (en) * 2020-09-11 2022-12-20 浙江师范大学 Application of one gene in enlarging tomato fruit
CN112646819B (en) * 2021-01-17 2023-04-18 浙江师范大学 Use of gene to enhance resistance to tomato gray mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086062A (en) 2016-04-19 2016-11-09 上海市农业科学院 A kind of tomato dna group that obtains pinpoints the method knocking out mutant
CN107974457A (en) 2010-05-28 2018-05-01 纽海姆有限公司 The plant of fruit size increase

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211968A (en) * 2005-06-14 2008-09-18 National Institutes Of Natural Sciences Method of constructing crop having large-sized flower and/or fruit
CN109609511B (en) * 2018-12-24 2020-10-27 浙江师范大学 Gene for increasing lycopene in tomato fruits and application thereof
CN110408650B (en) * 2019-07-25 2021-04-23 中国农业大学 Application of NOR-like1 gene and protein encoded by same in regulation of tomato fruit yield
CN112048510B (en) * 2020-09-11 2022-12-20 浙江师范大学 Application of one gene in enlarging tomato fruit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107974457A (en) 2010-05-28 2018-05-01 纽海姆有限公司 The plant of fruit size increase
CN106086062A (en) 2016-04-19 2016-11-09 上海市农业科学院 A kind of tomato dna group that obtains pinpoints the method knocking out mutant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The genome of the stress-tolerant wild tomato species Solanum pennellii,Nature Genetics,2014年,46,1034-1038

Also Published As

Publication number Publication date
JP2023526694A (en) 2023-06-22
WO2022052381A1 (en) 2022-03-17
CN112048510A (en) 2020-12-08
CN112048510B (en) 2022-12-20

Similar Documents

Publication Publication Date Title
CN106011167B (en) The method of the application and rice fertility restorer of male sterility gene OsDPW2
JP7313759B2 (en) How to increase tomato fruit
JP6967180B2 (en) Genes that increase lycopene in tomato fruits and their use
CN111197034B (en) Wx mutant protein based on gene editing technology and application of gene thereof in plant breeding
CN109476715B (en) Plants producing seedless fruits
Liu et al. Enhanced iron and zinc accumulation in genetically engineered wheat plants using sickle alfalfa (Medicago falcata L.) ferritin gene
CN108823236A (en) A kind of method that gene editing technology target practice OsELF3 gene extends Rice Heading
Ramirez-Torres et al. Genome editing in fruit, ornamental, and industrial crops
Han et al. In planta genetic transformation to produce CRISPRed high-oleic peanut
Patil et al. Development of a RAPD-based SCAR marker for sex identification in Momordica dioica Roxb
JP2023513862A (en) Use of genes to improve tomato gray mold resistance
CN103014019A (en) Flowering gene GmCOL1b of soybean and coding protein thereof
JP6866303B2 (en) Introgression of yield QTL in cucumber (Cucumis sativus) plants
CN104878018B (en) Pleiotropic gene and its application of a kind of control corn row grain number and grain number per spike
JP6995775B2 (en) Gene transfer of two yield QTLs in Cucumis sativis plants
JP7292753B2 (en) Applications of genes that negatively regulate tomato leaf photosynthesis
CN110923231B (en) Method for preparing tomato material with high fruit solid content
Abbas Inheritance of earliness, dry matter and shelling in pea
Krishna et al. Components of genetic variation for Macrophomina phaseolona resistance in maize.
CN114107319B (en) Application of CsSEC23 gene in improvement of cucumber peel glossiness
CN116554292B (en) Negative regulation plant broad-spectrum disease-resistant protein, and coding gene and application thereof
CN117866983B (en) Application of OsbZIP10 gene in regulation of amylose content of rice grains
CN108315336B (en) Application of gene PIS1 for controlling development of rice spikelets
WO2024011900A1 (en) Use of gene in promoting biosynthesis of lycopene
Li et al. Molecular Characterization of Seven Novel Glu-A1 mx Alleles from Triticum monococcum ssp. monococcum

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230104

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7313759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150