JP7311535B2 - 光拡散性光ファイバの照明、青紫色光送達システムの照明、青紫色光送達システム、及び青紫色光誘導性の殺菌方法 - Google Patents

光拡散性光ファイバの照明、青紫色光送達システムの照明、青紫色光送達システム、及び青紫色光誘導性の殺菌方法 Download PDF

Info

Publication number
JP7311535B2
JP7311535B2 JP2020560117A JP2020560117A JP7311535B2 JP 7311535 B2 JP7311535 B2 JP 7311535B2 JP 2020560117 A JP2020560117 A JP 2020560117A JP 2020560117 A JP2020560117 A JP 2020560117A JP 7311535 B2 JP7311535 B2 JP 7311535B2
Authority
JP
Japan
Prior art keywords
light
blue
delivery system
pathogen
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020560117A
Other languages
English (en)
Other versions
JP2021511168A (ja
Inventor
スペンサー ザ サード クルーベン,ウィリアム
マティアス リース,ケイトリン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2021511168A publication Critical patent/JP2021511168A/ja
Application granted granted Critical
Publication of JP7311535B2 publication Critical patent/JP7311535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/084Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0052Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V33/00Structural combinations of lighting devices with other articles, not otherwise provided for
    • F21V33/0064Health, life-saving or fire-fighting equipment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/20Targets to be treated
    • A61L2202/24Medical instruments, e.g. endoscopes, catheters, sharps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V2200/00Use of light guides, e.g. fibre optic devices, in lighting devices or systems
    • F21V2200/10Use of light guides, e.g. fibre optic devices, in lighting devices or systems of light guides of the optical fibres type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

関連出願の相互参照
本出願は、その内容が依拠され、その全体がここに参照することによって本願に援用される、2018年1月16日出願の米国仮特許出願第62/617,784号及び2018年1月26日出願の米国仮特許出願第62/622,503号の米国法典第35編特許法119条に基づく優先権の利益を主張する。
本開示は、概して、光拡散性光ファイバの照明、青紫色光送達システムの照明、青紫色光送達システム、及びそれを使用する青紫色光誘導性の殺菌方法に関する。より詳細には、本開示は、光拡散性光ファイバ、並びに、青紫色光誘導性の殺菌用途に青紫色光を送達するための他の送達システムに関する。
約722,000件もの院内感染(HAI)事例が存在しており、結果的に、米国だけで年間約75,000人が死亡している(アメリカ疾病予防管理センターの統計による)。加えて、病院にはHAIについての払い戻しがないため、これらの事例では米国の医療システムに年間150~300億ドルの費用が発生する。HAIに対する現在の治療法は、主に抗生物質をベースとしており、多剤耐性病原体の増加と市場及び規制試験段階での新しい抗生物質の減少に起因して、その効果が低下している。
HAIの発生源の1つは、例えばフォーリーカテーテル、気管内チューブ、心血管カテーテル、内視鏡、膿瘍ドレナージカテーテル、透析カテーテル、ポートなどの医療機器であると考えられ、これらは、使用前、使用後、使用中に感染する可能性がある。高強度の青紫色光を使用して、このような医療機器上で増殖する微生物を死滅させて、医療機器自体が伝達装置又は感染源になるのを防ぐことができる。このような青紫色光をこれらの医療機器及び他のHAI発生源にインビボ、エクスビボ、又はインビボとエクスビボの両方で送達することが必要とされている。
光ファイバは、光源から離れた場所へと光を送達する必要があるさまざまな用途に用いられている。例えば、光通信システムは、光ファイバのネットワークに依存して、サービスプロバイダからシステムのエンドユーザに光を送信している。
通信光ファイバは、吸収及び散乱に起因して比較的低い減衰レベルしか存在しない800nm~1675nmの範囲の近赤外線波長で動作するように設計されている。これにより、ファイバの一方の端部に注入された光のほとんどがファイバの反対側の端部を出て、ごくわずかな量のみがファイバの側面を通って周辺から出る。
光ファイバは通常、光をファイバの一方の端部からファイバの他方の端部に長距離にわたって効率的に送達するように設計されているため、典型的なファイバでは側面から出る光は非常にわずかしかなく、したがって、光ファイバは拡張照明源の形成に使用するのに非常に適しているとは見なされていない。それでもなお、指定されたエリアに効率的な方法で選択された量の光を提供する必要がある、特殊な照明、標識、又は、殺菌材料、表面、及び医療機器を含む生物学的用途など、多くの用途が存在する。生物学的用途では、材料、表面、医療機器及び設備、並びに病原体の有機媒体を殺菌するための光送達システム及びプロセスを開発することが必要とされている。このような光送達システムは、薄く、柔軟で、かつ、さまざまな異なる形状へ、及び、開放創などの複雑な形状を伴う領域に到達しにくい照明経路へ、又は心血管カテーテル、気管内チューブ、フォーリーカテーテルなどの長さへと容易に変更できる必要がある。
したがって、青紫色光誘導性の殺菌用途のために、光拡散性光ファイバなどの光送達システムに沿って伝播する光を誘導及び散乱することが必要とされている。
本開示の主題によれば、光拡散ファイバを使用して殺菌する方法は、光源を、コア、該コアを取り囲むクラッド、外面、並びに、コア、クラッド、又はコアとクラッドの両方の内部に位置づけられた複数の散乱構造を備えた1つ以上の光拡散性光ファイバに光学的に結合するステップを含む。本方法は、1つ以上の光拡散性光ファイバを病原体サンプルと光係合して位置づけるステップ、及び、光源によって出力された光を第1の時間間隔で1つ以上の光拡散性光ファイバに向けるステップをさらに含む。1つ以上の光拡散性光ファイバの散乱構造は、1つ以上の光拡散性光ファイバに沿って伝播する光を外面の方へ散乱させ、光の一部は外面を通って拡散し、それによって、約30分~約48時間の曝露時間にわたって約380nm~約495nmの波長で約5mW/cm~約30mW/cmの平均パワー密度を有する光を病原体サンプルに照射する。
本開示の別の実施形態によれば、光拡散性光ファイバを使用して殺菌する方法は、光源を、コア、該コアを取り囲むクラッド、外面、並びに、コア、クラッド、又はコアとクラッドの両方の内部に位置づけられた複数の散乱構造を備えた光拡散性光ファイバに光学的に結合するステップを含む。本方法は、1つ以上の光拡散性光ファイバを病原体サンプルと光係合して位置づけるステップ、及び光源によって出力された光を第1の時間間隔で1つ以上の光拡散性光ファイバに向けるステップをさらに含む。1つ以上の光拡散性光ファイバの散乱構造は、1つ以上の光拡散性光ファイバに沿って伝播する光を外面の方へ散乱させ、光の一部が外面を通って拡散し、それによって、約5mW/cm~約30mW/cmの平均パワー密度を含む光を約380nm~約495nmの波長である量のコロニー形成単位を含む病原体サンプルに照射し、ここで、病原体サンプルのコロニー形成単位の量が、約4対数減少~約9対数減少だけ低下する。
本開示の概念は、主に、長さに沿って均一な照明を有する光拡散性光ファイバを参照して本明細書で説明されるが、その概念は、あらゆる光拡散性光ファイバへの適用性を享受することが企図されている。
本開示の特定の実施形態の以下の詳細な説明は、同様の構造が同様の参照番号で示されている以下の図面と併せて読む場合に最もよく理解することができる。
本明細書に示され、説明される1つ以上の実施形態による、光出力装置と光拡散性光ファイバとを含む照明システムの概略図 本明細書に示され、説明される1つ以上の実施形態による、光拡散性光ファイバの断面の概略図 本明細書に示され、説明される1つ以上の実施形態による、図2Aの光拡散性光ファイバの断面の概略図 本明細書に示され、説明される1つ以上の実施形態による、光拡散性光ファイバの別の実施形態の断面の概略図 本明細書に示され、説明される1つ以上の実施形態による、図3Aの光拡散性光ファイバの断面の概略図 本明細書に示され、説明される1つ以上の実施形態による、光拡散性光ファイバの別の実施形態の断面の概略図 本明細書に示され、説明される1つ以上の実施形態による、図4Aの光拡散性光ファイバの断面の概略図 本明細書に示され、説明される1つ以上の実施形態による、さまざまなポリマー材料についての紫外光の吸光度を示すグラフ 本明細書に示され、説明される1つ以上の実施形態による、光拡散性光ファイバのさまざまな実施形態についての紫外光の散乱効率を示すグラフ 本明細書に示され、説明される1つ以上の実施形態による光拡散性光ファイバを使用して殺菌する方法を示すフローチャート 本明細書に示され、説明される1つ以上の実施形態による2つの時間間隔にわたる光拡散性光ファイバによって出力された光を示すグラフ 本明細書に示され、説明される1つ以上の実施形態による2つの時間間隔にわたる光拡散性光ファイバによって出力された光を示すグラフ 本明細書に示され、説明される1つ以上の実施形態による光拡散性光ファイバに沿って光を分散させる円筒管の概略図 本明細書に示され、説明される1つ以上の実施形態による断面で示される概略図と、複数の円筒管を通過するときのパワー吸収の影響のグラフ 本明細書に示され、説明される1つ以上の実施形態による構造化された光拡散性光ファイバ構成の概略図 本明細書に示され、説明される1つ以上の実施形態による構造化された光拡散性光ファイバ構成のさまざまな断面に沿ったパワーを示すグラフ 本明細書に示され、説明される1つ以上の実施形態による構造化された光拡散性光ファイバ構成のヒートマップ 本明細書に示され、説明される1つ以上の実施形態による多点光源の発光ダイオード構成のヒートマップ 本明細書に示され、説明される1つ以上の実施形態による光拡散性光ファイバを使用して殺菌する構成の概略図 本明細書に示され、説明される1つ以上の実施形態による光拡散性光ファイバを使用して殺菌する構成の概略図
本開示のさまざまな態様は、比較的短い時間で一般的な病原体の低減を可能にする、比較的低いパワー密度で青紫色光を送達する青紫色光送達システムに関する。理論に縛られるわけではないが、このような光送達システムは、組織及びDNAに損傷を与えないことから、イオン化光(紫外線など)よりも害が少ないと考えられる。このような光は、化学的に基づいていないため、抗生物質よりも耐性を起こしにくいと考えられる。さらには、本明細書に記載される光送達システムを医療機器又はカテーテルに不活性に組み込むことにより、最も重要で到達が困難な領域に青紫色の光照明を提供することができる。さらには、光送達システム及び青紫色光は、標的部位に適用することができ、他の全身性抗生物質又は最終的に無効になる部位特異的な治療/予防技術とは異なり、継続的な殺菌を提供することができる。光送達システムによって送達される光はまた、感染症につながることが知られている治療中に予防的に(すなわち、最初にHAIの発生を防ぐために)投与することもできる。理論に縛られるわけではないが、広範囲の殺菌を達成することができ、かつ、すぐに投与することができることから、患者は、薬物特異的治療を開始する前に感染を引き起こす微生物の正体の決定に数日待つ必要がなく、あるいは、微生物が不明であるためにさまざまな抗生物質を使用した治療に耐える必要がないと考えられる。さらには、光送達システムは、全身に処置(望ましくない副作用を有する可能性がある)を施すことなく、処置を感染箇所に向けることができる。
本開示の第1の態様は、青紫色光送達システムを使用して殺菌する方法に関する。1つ以上の実施形態では、本システムは、光拡散性光ファイバと、約380nm~約495nmの波長で約5mW/cm~約30mW/cmの平均パワー密度を有する青紫色光を送達する光源とを含む。1つ以上の実施形態では、光送達システムは、光を、したがってエネルギーを感染部位に連続的に送達することができる。1つ以上の実施形態では、送達される光は、比較的短い期間(例えば、6時間以下)にわたり、照射される病原体のコロニー形成単位を4-対数減少だけ低下させる。
図を一般的に参照すると、光送達システムに使用することができる光拡散性光ファイバの1つ以上の実施形態は、コア、該コアを取り囲むクラッド、外面、並びに、コア、クラッド、又はコアとクラッドの両方の内部に位置づけられた複数の散乱構造を備えている。動作中、光が光拡散性光ファイバに向けられると、光拡散性光ファイバの散乱構造は、光拡散性光ファイバに沿って伝播する光を外面の方へと散乱させ、光の一部が外面を通って拡散する。加えて、図面は、概して、光拡散性光ファイバを使用して殺菌する方法に関し、該方法は、光源を光拡散性光ファイバに光学的に結合するステップ、光拡散性光ファイバを病原体サンプルと光係合して位置づけるステップ、及び、光源によって出力された光をある時間間隔にわたり光拡散性光ファイバへと向け、それによって、ある曝露時間にわたり、ある波長で、ある平均パワー密度を含む光を病原体サンプルに照射するステップを含む。
これより図1を参照すると、照明システム100は、光源152を含む光出力装置102に光学的に結合された光拡散性光ファイバ110を含む。光拡散性光ファイバ110は、第1の端部112と、該第1の端部112とは反対側の第2の端部114とを含む。光拡散性光ファイバの実施形態の断面が図2A~4Cに示されている。例えば、図2A及び2Bは光拡散性光ファイバ110の断面を示しており、図3A及び3Bは光拡散性光ファイバ210の断面を示しており、図4A及び4Bは光拡散性光ファイバ310の断面を示している。本明細書に記載される各光拡散性光ファイバ110、210、310は、コア120、220、320、該コア120、220、320を取り囲むクラッド122、222、322、外面128、228、328、並びに、コア120、220、320、クラッド122、222、322、又はコア120、220、320とクラッド122、222、322の両方の内部に位置づけられた複数の散乱構造125、225、325を含む。
本明細書で用いられる場合、「外面」128、228、328は、光拡散性光ファイバ110、210、310の最外表面を指す。図2A及び2Bに示される実施形態では、外面128は二次ポリマーコーティング層132の表面であり、図3A及び3Bに示される実施形態では、外面228は熱可塑性ポリマーコーティング層234の表面であり、図4A及び4Bに示される実施形態では、外面328は熱可塑性ポリマーコーティング層334の表面である。しかしながら、図2A~4Bに示される実施形態は、それぞれ、二次ポリマーコーティング層132、熱可塑性ポリマーコーティング層234、及び熱可塑性ポリマーコーティング層334を含んでいるが、幾つかの実施形態では、光拡散性光ファイバは、二次ポリマーコーティング層132、熱可塑性ポリマーコーティング層234、及び熱可塑性ポリマーコーティング層334を含まない場合があり、外面128、228、及び328は、それぞれ、クラッド122、222、322の表面であってもよい。さらには、複数の散乱構造125、225、325は、導波光(例えば、光拡散性光ファイバ110、210、310に沿って伝播する光出力装置102によって出力された光)を光拡散性光ファイバ110、210、310の外面128、228、328へと散乱させるように構成され、それによって、導波光の一部が外面128を通じて光拡散性光ファイバ110、210、310の拡散距離に沿って拡散する。さらには、光拡散性光ファイバ110、210、310は、約0.15m~約100m、例えば、約100m、75m、50m、40m、30m、20m、10m、9m、8m、7m、6m、5m、4m、3m、2m、1m、0.75m、0.5m、0.25m、0.15m、又は0.1mの長さ(例えば、第1の端部112と第2の端部114との間の長さ)を含みうる。
本明細書で用いられる場合、「拡散距離」とは、光拡散性光ファイバ110の第1の端部112から(又は入力光を受け取る任意の端部から)光拡散性光ファイバ110の長さに沿った位置であって、導波光の90%が光拡散性光ファイバ110から拡散する位置まで延びる、光拡散性光ファイバ110の長さである。本明細書で用いられる場合、「光拡散性」という用語は、光散乱が光拡散性光ファイバ110の長さの少なくとも一部に沿って実質的に空間的に連続していることを意味する。すなわち、離散(例えば、点)散乱に関連するもののような実質的なジャンプ又は不連続がない。したがって、本開示に記載される実質的に連続的な光放射又は実質的に連続的な光散乱の概念は、空間的連続性を指す。さらには、本明細書で用いられる場合、「均一照明」とは、光拡散性光ファイバ110から放出される光の強度が特定の長さにわたって25%を超えて変化しない、光拡散性光ファイバ110の長さに沿った照明を指す。上記定義はまた、図2A~4Bの光拡散性光ファイバ210、310にも適用されるものと理解されたい。
図1を再び参照すると、光出力装置102は、光拡散性光ファイバ110(又は他の実施形態では、光拡散性光ファイバ210又は310)の第1の端部112に光学的に結合されており、それによって、光出力装置102の光源によって出力された光152が光拡散性光ファイバ110の第1の端部112の端面116を照射し、光拡散性光ファイバ110に入る。光源152には、発光ダイオード(LED)、レーザダイオードなどが含まれうる。例えば、光源152には、マルチモードレーザダイオード、シングルモードレーザダイオード、SiPレーザダイオード、VCSELレーザダイオード、又は別のタイプの半導体レーザダイオードが含まれうる。さらには、光源152は直線偏光されていてもよい。任意選択的に、光源は、偏光された、コヒーレントなレーザ光でありうる。さらには、光源152は、200nm~2000nmの波長範囲の光を生成するように構成することができる。
幾つかの実施形態では、光源152は、200nm~2000nmの波長範囲の光を生成するように構成することができる。例えば、光源152は、約200nm~約500nm、例えば、約225nm、250nm、275nm、300nm、325nm、350nm、375nm、400nm、405nm、410nm、415nm、420nm、425nm、430nm、435nm、440nm、445nm、450nm、455nm、460nm、465nm、470nm、475nm、480nm、485nm、490nm、495nm、500nmなど、例えば、約300nm~約460nm、又は約400nm~約495nmの波長の光を放出するように構成された、紫外(UV)又は可視の青紫色の光源でありうる。光出力装置102は、光源152と光拡散性光ファイバ110の第1の端部112との間に位置づけられ、それらに光学的に結合されて、光拡散性光ファイバ110への光の入力を容易にする、レンズ、光送達ファイバなどの追加の光学部品をさらに含むことができる。さらには、光送達ファイバなどのこれらの追加の光学部品は、光源152が光拡散性光ファイバ110から空間的に分離されることを可能にしうる。
動作中、光源152によって放射された光は、光拡散性光ファイバ110によって周囲環境に散乱されるため、光源152は、光拡散性光ファイバ110から離れた場所に位置づけることができる。したがって、光源152によって生成された熱は、光源152から離れて、光源152及び光拡散性光ファイバ110の両方から離れた場所に伝達させることができる。よって、光拡散性光ファイバ110の温度は、周囲環境の周囲温度と実質的に同様のままに維持することができ、照明ユニットは、熱的に「冷たい」照明ユニットとして説明することができる。さらには、光拡散性光ファイバ110と光源152とを空間的に分離することにより、照明システム100にさらなる設計自由度を提供することができる。
図2A~4Bを参照すると、光拡散性光ファイバ110、210、310の各々は、特に、光拡散性光ファイバ110、210、310の長さに沿って伝播する導波光が紫外領域の波長(例えば、約200nm~約500nm)を含む場合に、高い散乱効率で、外面128、228、328を通して散乱を誘発するように構成される。本明細書で用いられる場合、「散乱効率」とは、光拡散性光ファイバ110、210、310のコア120、220、320から外面128、228、328に向かって外向きに散乱し、吸収、遮断、又は他の方法で失われることなく、実際に外面128、228、328から出る光のパーセンテージを指す。理論に制限されることは意図していないが、コア120、220、320から散乱する光のパーセンテージは、クラッド122、222、322を取り囲む光拡散性光ファイバ110、210、310の1つ以上の追加の層によって吸収されうる。しかしながら、本明細書に記載される光拡散性光ファイバ110、210、310は、外面128、228、328を通じて散乱するUV光及び可視の青紫色光の吸収を制限し、UV波長及び可視の青紫波長での高い散乱効率を促進する。
図2A~4Bを参照すると、光拡散性光ファイバ110、210、310の各々のコア120、220、320及びクラッド122、222、322は、ヒドロキシル材料をドープした、シリカガラスなどのガラス(例えば、ヒドロキシルをドープしたガラスコア及びヒドロキシルをドープしたガラスクラッド)を含みうる。本明細書で用いられる場合、「ヒドロキシルをドープ」とは、300ppm以上のヒドロキシル材料、例えばヒドロキシルイオン(OH)、過剰の酸素(ガラスに添加することができる)などを含むガラスのことを指す。理論に制限されることは意図していないが、コア120、220、320及びクラッド122、222、322にヒドロキシル材料をドーピングすることは、UV及び可視青紫色の波長において有利でありうる。ヒドロキシル含有量が低い(例えば、300ppm未満のヒドロキシル含有量)ガラスのコア及びクラッドは、より高い波長(例えば、可視範囲、近赤外線(NIR)範囲、及び赤外線範囲の波長)で透過率が増加するが、ガラスのヒドロキシル含有量を下げるとガラスの酸素欠乏中心の数及び/又はサイズが増加するため、UV及び可視青紫色の範囲の波長では吸収損失が増加する。本明細書で用いられる場合、「酸素欠乏中心」とは、酸素空孔を有するシリカの壊れた結合の形成を指す。理論に制限されることは意図していないが、コア120、220、320及びクラッド122、222、322の酸素欠乏中心は、UV及び可視青紫色の範囲の波長を含む光を吸収し、それにより、コア120、220、320及びクラッド122、222、322を暗くし、光拡散性光ファイバ110、210、310の外面128、228、328を通して拡散する散乱構造125、225、325によってコア120、220、320から外向きに散乱する光のパーセンテージを低下させる。理論に制限されることは意図していないが、UV及び可視青紫色の照射下では、溶融シリカにさまざまな「色中心」を展開することができる。色中心の起源は、溶融シリカのイオン化に関連しうる。これも理論によって制限されることは意図していないが、色中心はOHと反応して、安定した非吸収種を形成することができる。幾つかの実施形態では、光拡散性光ファイバ110、210、310には、高圧及び高温で光拡散性光ファイバ110、210、310のシリカに水素負荷することによって、ヒドロキシルをドープすることができる。
さらには、理論に制限されることは意図していないが、一部のポリマー材料、例えば一部のUV硬化性ポリマーは、UV光及び可視青紫色光を高度に吸収する。したがって、光拡散性光ファイバ110、210、310のポリマー層の数及び厚さを制限し、UV光及び可視青紫色光の吸収が制限されたポリマー層を使用することが有利である。例えば、図2A~4Bに示される各実施形態では、クラッド122、222、322は、ガラス(例えば、ヒドロキシルをドープしたガラス)を含む。さらには、本明細書に記載される光拡散性光ファイバ110、210、310の実施形態の各々は、クラッド122、222、322を取り囲む少なくとも1つのポリマー層を含むが、以下により詳細に説明するように、これらのポリマー層の各々は、UV光及び可視青紫色光に対して低吸収である。
図2A及び2Bを参照すると、コア120、該コア120を取り囲むクラッド122、外面128、及び複数の散乱構造125を含む光拡散性光ファイバ110の断面が示されている。コア120は、ヒドロキシル材料(例えば、約300ppm以上のヒドロキシル材料を含むシリカ)をドープしたガラスコア(例えば、シリカ)を含む。クラッド122は、ヒドロキシル材料をドープした、ガラスクラッド(例えば、コア120の屈折率よりも低い屈折率を有する、Fをドープしたシリカ又はF(フッ素)/B(ホウ素)を共ドープしたシリカ)を含む(例えば、約300ppm以上のヒドロキシル材料を含む、Fをドープしたシリカ又はF(フッ素)/B(ホウ素)を共ドープしたシリカ)。光拡散性光ファイバ110はさらに、クラッド122を取り囲む一次ポリマーコーティング130と、該一次ポリマーコーティング130を取り囲む二次ポリマーコーティング層132とを含む。
図2A及び2Bをさらに参照すると、散乱構造125は、コア120全体に生じさせることができ(図2A及び2Bに示すように)、又はコア120とクラッド122との界面(例えば、コア-クラッド境界)の近くに生じさせることができ、又はコア120内の環状リングに生じさせることができる。散乱構造125は、ガス充填ボイド、散乱粒子、例えばセラミック材料、ドーパントなどを含みうる。ランダムに配置された、ランダムなサイズのボイド(「ランダムなエアライン」又は「ナノ構造」、又は「ナノサイズ構造」とも称される)を有する光拡散性光ファイバの幾つかの例が、ここに参照することによってその全体が本明細書に取り込まれる、米国特許第7,450,806号、並びに、米国特許出願番号第12/950,045号、同第13/097,208号、及び同第13/269,055号の各明細書に記載されている。あるいは、光拡散性光ファイバ110は、「粗面化」されたコア120を有していてもよく、コア-クラッド境界でのコア120の表面の不規則性が光散乱を引き起こす。他のタイプの光拡散性光ファイバもまた利用することができる。動作中、光拡散性光ファイバ110は、照明波長(例えば、放出される放射線の波長)で、約50dB/km以上、例えば約100dB/km~約60000dB/kmの散乱誘発減衰(すなわち、光拡散性光ファイバ110内の散乱粒子の吸収によるのではなく、光拡散性光ファイバ110の外面128を通して失われた光による減衰)を被りうる。
散乱構造125がガス充填ボイドを含む実施形態では、ガス充填ボイドは、ランダム又は組織化されたパターンで配置されてよく、かつ、光拡散性光ファイバ110の長さに平行に走ってよく、又はらせん状でありうる(すなわち、光拡散性光ファイバ110の長軸に沿って回転する)。さらには、光拡散性光ファイバ110は、ファイバの断面に多数のガス充填ボイド、例えば、50より多い、100より多い、又は200より多いボイドを含みうる。ガスで満たされたボイドは、例えば、SO、Kr、Ar、CO、N、O、又はそれらの混合物を含みうる。しかしながら、任意のガスの有無にかかわらず、コア120、クラッド122、又は複数の散乱構造125を含むコア-クラッド境界の領域の平均屈折率は、ボイドの存在に起因して低くなる。さらには、ボイドなどの複数の散乱構造125は、コア120、クラッド122、又はコア-クラッド境界にランダムに又は非周期的に配置することができるが、他の実施形態では、ボイドは周期的に配置されてもよい。
ガス充填ボイド(又は他の散乱粒子)などのボイドの断面サイズ(例えば、直径)は、約10nm~約10μmとすることができ、長さは約1μmから約50mまで変化してもよい。幾つかの実施形態では、ボイド(又は他の散乱粒子)の断面サイズは、約10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、120nm、140nm、160nm、180nm、200nm、250nm、300nm、400nm、500nm、600nm、700nm、800nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、又は10μmである。幾つかの実施形態では、ボイドの長さは、約1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm、200μm、300μm、400μm、500μm、600μm、700μm、800μm、900μm、1000μm、5mm、10mm、50mm、100mm、500mm、1m、5m、10m、20m、又は50mである。
図2A及び2Bをさらに参照すると、一次ポリマーコーティング130は、例えばポリマーコーティングなどの機械的取り扱いを容易にするために、コア120及びクラッド122を取り囲む実質的に透明な層を含むことができる。さらには、二次ポリマーコーティング層132は、コア120、クラッド122、及び一次ポリマーコーティング130を取り囲むように配置することができる。二次ポリマーコーティング層132は、散乱層として機能し、ベース材料(例えば、ポリマー)及び該ベース材料中に位置づけられた複数の散乱粒子135を含む。動作中、二次ポリマーコーティング層132は、大きい角度範囲(例えば、40~120°、又は30°~130°、又は15~150°)にわたる均一な角度散乱を促進することができる。例えば、光拡散性光ファイバ110は、散乱に起因して実質的に均一な照明を提供するように構成され、それによって、最小散乱照明強度と最大散乱照明強度との差が、40~120度のすべての視野角で最大散乱照明強度の50%未満になる。
散乱粒子135は、0.05を超える、二次ポリマーコーティング層132のベース材料(例えば、約1.5の屈折率を有するベースポリマー)との屈折率の差を含む(例えば、ベース材料と各散乱粒子135との間の屈折率の差が0.05より大きい)。幾つかの実施形態では、ベース材料と各散乱粒子135との間の屈折率の差は少なくとも0.1である。すなわち、各散乱粒子135の屈折率は、二次ポリマーコーティング層132の(例えば、ポリマー又は他のマトリクス材料の)ベース材料の屈折率よりも少なくとも0.1大きくなりうる。さらには、二次ポリマーコーティング層132を横切るUV光及び可視青紫色光の吸収を制限するために、散乱粒子135は、UV光及び可視の青紫色光の吸収が低い材料(例えば、低吸収散乱材料)を含む。ベース材料より大きい(例えば、約1.5より大きい)屈折率を有する材料を散乱させる低吸収材料の例には、約1.77の屈折率を有する酸化アルミニウム(Al)、約1.636の屈折率を有する硫酸バリウム(BaSO)、約1の屈折率を有するマイクロバブルなどのガスボイドなどが含まれる。さらには、幾つかの実施形態では、散乱粒子135は、代わりに又は加えて、ガスボイド又はマイクロバブルを含みうる。
さらには、二次ポリマーコーティング層132内の各散乱粒子135の断面サイズは0.1λ~10λを含んでよく、ここで、λは光拡散性光ファイバ110を通じて伝播する光の波長である。幾つかの実施形態では、各散乱粒子135の断面サイズは、0.2λ超5λ未満、例えば、0.5λ~2λである。例えば、各散乱粒子の断面サイズは、約20nm~約5μm、例えば、約50nm、75nm、100nm、150nm、200nm、350nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm、1μm、1.1μm、1.2μm、1.3μm、1.4μm、1.5μm、1.6μm、1.7μm、1.8μm、1.9μm、2μm、2.1μm、2.2μm、2.3μm、2.4μm、2.5μm、2.6μm、2.7μm、2.8μm、2.9μm、3μm、3.1μm、3.2μm、3.3μm、3.4μm、3.5μm、3.6μm、3.7μm、3.8μm、3.9μm、4μm、4.1μm、4.2μm、4.3μm、4.4μm、4.5μm、4.6μm、4.7μm、4.8μm、4.9μmなどを含みうる。さらには、二次ポリマーコーティング層132中の散乱粒子135は、二次ポリマーコーティング層132の約0.005質量%~70質量%、例えば、0.01%~60%、0.02%~50%などを構成しうる。
幾つかの実施形態では、複数の散乱粒子135は、二次ポリマーコーティング層132の副層内に配置することができる。例えば、幾つかの実施形態では、副層は、約1μm~約5μmの厚さを有することができる。他の実施形態では、二次ポリマーコーティング層132中の粒子副層の厚さ及び/又は散乱粒子135の濃度は、光拡散性光ファイバ110から大きい角度(すなわち、約15度より大きい角度)で散乱された光の強度のより均一な変化を提供するように、光拡散性光ファイバ110の軸方向長さに沿って変化しうる。例えば、40度と120度の間のすべての視野角の角度照明は、最大照明の50%以内であり、幾つかの実施形態では30%以内である。幾つかの実施形態では、40~120度の間のすべての視野角の角度照明は、最大照明の30%以内であり、幾つかの実施形態では、25%以内である。
図3A及び3Bを参照すると、コア220、該コア220を取り囲むクラッド222、散乱構造225、及びクラッド222を取り囲み、それと接触する熱可塑性ポリマーコーティング層234を備えた光拡散性光ファイバ210の断面が示されている。コア220は、ヒドロキシル材料(例えば、約300ppm以上のヒドロキシル材料を含むシリカ)をドープしたガラスコア(例えば、シリカ)を含む。クラッド222は、ヒドロキシル材料をドープしたガラスクラッド(例えば、コア220の屈折率よりも低い屈折率を有する、Fをドープしたシリカ又はF(フッ素)/B(ホウ素)を共ドープしたシリカ)を含む(例えば、約300ppm以上のヒドロキシル材料を含む、ドープしたシリカ又はF(フッ素)/B(ホウ素)を共ドープしたシリカ)。散乱構造225は、コア220全体に生じさせることができ(図3A及び3Bに示されるように)、又はコア220とクラッド222(例えば、コア-クラッド境界)との境界の近くに生じさせることができ、又はコア220内の環状リングに生じさせることができる。散乱構造225は、例えば、ガス充填ボイド、散乱粒子、例えばセラミック材料、ドーパントなど、光拡散性光ファイバ110に関して上述した散乱構造125のいずれかを含むことができる。
熱可塑性ポリマーコーティング層234は、テフロン(登録商標)などのポリテトラフルオロエチレン(PTFE)、Tefzel(商標)などのエチレンテトラフルオロエチレン(ETFE)、ポリエチレンテレフタレート(PET)、フッ素化エチレンプロピレン(FEP)、ペルフルオロアルコキシアルカン(PFA)、PEEK(ポリエーテルエーテルケトン)、ナイロン、及び他のいずれかのフッ素化された押出可能なポリマーなど、フッ素化ポリマー材料を含む。熱可塑性ポリマーコーティング層234は、(以下の図5のグラフ50に関してより詳細に説明されるように)UV光及び可視の青紫色光に対する吸収が低く、コア220及びクラッド222を取り囲む保護コーティング層を提供する硬質プラスチック材料である。図3A及び3Bに示される実施形態では、熱可塑性ポリマーコーティング層234がクラッド222と直接接触しており、したがって、クラッド222と熱可塑性ポリマーコーティング層234との間に、吸収され、遮断され、若しくは外面228から出るのを妨げられ、コア220から外面228に向かって外向きに散乱するUV光及び可視の青紫色光の量を制限する、介在層は配置されていない。
さらには、図3A及び3Bに示されるように、散乱粒子235は熱可塑性ポリマーコーティング層234内に配置される。熱可塑性ポリマーコーティング層234内に配置される散乱粒子235は、光拡散性光ファイバ110に関して上述した散乱粒子135のいずれかを含みうる。熱可塑性ポリマーコーティング層234は、約1.30~約1.35の屈折率を含みうる。散乱粒子235は、熱可塑性ポリマーコーティング層234の屈折率より大きい屈折率を有する低吸収散乱材料、例えば、約1.77の屈折率を有するAl、約1.636の屈折率を有するBaSO、約1.46の屈折率を有する二酸化ケイ素(SiO)などを含みうる。熱可塑性ポリマーコーティング層234は二次ポリマーコーティング層132より低い屈折率を含むことから、散乱粒子135として利用できない材料を散乱粒子235として使用することができることに留意されたい。特に、SiOは、散乱粒子235の材料として使用することができ、これは、SiOが約200nm以上の波長を有する光に対して透過性であり、それによって、UV及び可視青紫色の範囲の散乱粒子235によって引き起こされる吸収損失を低減するため、有利でありうる。さらには、幾つかの実施形態では、散乱粒子235は、代わりに又は加えて、ガスボイド又はマイクロバブルを含んでいてもよい。
幾つかの実施形態では、熱可塑性ポリマーコーティング層234は、ファイバ線引きプロセス中に光拡散性光ファイバ210のクラッド222に直接適用することができる。例えば、理論に制限されることは意図していないが、コア220及びクラッド222は、光ファイバプリフォームを加熱する線引き炉、及び熱可塑性ポリマーコーティング層234を光拡散性光ファイバ210のクラッド222に施すファイバコーティングユニットを通じて、光ファイバプリフォームから線引きすることができる。さらには、熱可塑性ポリマーコーティング層234を施した後、光拡散性光ファイバ210は、光拡散性光ファイバ210に張力を提供し、光拡散性光ファイバ310をファイバ貯蔵スプールに巻き付けるのを容易にするために、1つ以上の線引き機構及びテンションプーリを含みうる、ファイバ収集ユニットに到達する。
線引きプロセス中、光拡散性光ファイバ210がファイバ収集ユニットに到達する前に熱可塑性ポリマーコーティング層234を施すことにより、クラッド222とファイバ収集ユニットの1つ以上の線引き機構との間の機械的接触が防止され、クラッド222のガラスへの損傷を防止することができる。しかしながら、他の実施形態では、熱可塑性ポリマーコーティング層234は、光拡散性光ファイバ210が線引きされた後に、例えば、従来の押出装置などの線引き以外の(off-draw)装置を使用して光拡散性光ファイバ210に施される。したがって、熱可塑性ポリマーコーティング層234が線引きプロセスの後に施される実施形態では、ファイバ収集ユニットの線引き機構及びテンションプーリによって引き起こされるクラッド122のガラスへの損傷を防ぐために、線引きプロセス中にクラッド222上にコーティング層を施すことが望ましい場合がある。クラッドと熱可塑性ポリマーコーティング層との間にポリマー層を有する光拡散性光ファイバの例は、以下に説明される光拡散性光ファイバ310である。
図4A及び4Bを参照すると、コア320、該コア320を取り囲むクラッド322、散乱構造325、クラッド322を取り囲む一次コーティング層330、及び一次コーティング層330がクラッド322と熱可塑性ポリマーコーティング層334との間に配置されるように一次コーティング層330を取り囲む熱可塑性ポリマーコーティング層334を備えている、光拡散性光ファイバ310の断面が示されている。コア320は、ヒドロキシル材料(例えば、約300ppm以上のヒドロキシル材料を含むシリカ)をドープしたガラスコア(例えば、シリカ)を含む。クラッド322は、ヒドロキシル材料をドープしたガラスクラッド(例えば、コア320の屈折率よりも低い屈折率を有する、Fをドープしたシリカ又はF(フッ素)/B(ホウ素)を共ドープしたシリカ)を含む(例えば、約300ppm以上のヒドロキシル材料を含む、ドープしたシリカ又はF(フッ素)/B(ホウ素)を共ドープしたシリカ)。散乱構造325は、コア320全体に生じさせることができ(図4A及び4Bに示されるように)、又はコア320とクラッド322との境界(例えば、コア-クラッド境界)の近くに生じさせることができ、又はコア320内の環状リングに生じさせることができる。散乱構造325は、例えば、ガス充填ボイド、散乱粒子、例えばセラミック材料、ドーパントなどなど、光拡散性光ファイバ110に関して上述した散乱構造125のいずれかを含むことができる。
熱可塑性ポリマーコーティング層334は、熱可塑性ポリマーコーティング層234のフッ素化ポリマー材料のいずれか、例えば、テフロン(登録商標)などのポリテトラフルオロエチレン(PTFE)、Tefzel(商標)などのエチレンテトラフルオロエチレン(ETFE)、ポリエチレンテレフタレート(PET)、フッ素化エチレンプロピレン(FEP)、ペルフルオロアルコキシアルカン(PFA)、PEEK(ポリエーテルエーテルケトン)、ナイロン、及び他のいずれかのフッ素化された押出可能なポリマーなどを含みうる。熱可塑性ポリマーコーティング層334は、UV光及び可視青紫色光に対する吸収が低く、コア320、クラッド322、及び一次コーティング層330を取り囲む保護コーティング層を提供する硬質プラスチック材料である。
一次コーティング層330は、脂環式エポキシなどのUV硬化性コーティング層を含む。脂環式エポキシはUV硬化性である一方、脂環式エポキシの硬化に用いられる光開始剤はUV吸収性であるが、脂環式エポキシが硬化した後に、例えば脂環式エポキシを漂白することによって除去可能であり、得られる硬化した脂環式エポキシは、以下の図5のグラフ50に関して以下により詳細に説明するように、UV光及び可視青紫色光に対して低吸収である。幾つかの実施形態では、光開始剤は、(p-イソプロピルフェニル)(p-メチルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレートを含む。さらには、一次コーティング層330は、約5μm~約20μm、例えば、約10μm~約15μmの厚さを含みうる。一部のUV光及び可視の青紫色光は依然として一次コーティング層330によって吸収されるが、より薄い層がこの吸収を最小限にすることから、一次コーティング層330は、薄いことが有利でありうる。
図4A及び4Bをさらに参照すると、一次コーティング層330には、光拡散性光ファイバ110に関して上述した散乱粒子135のいずれかを含みうる複数の散乱粒子335がドープされる。例えば、散乱粒子335は、一次コーティング層330の脂環式エポキシ(約1.41の屈折率を含む)より大きい屈折率を有する低吸収散乱材料、例えば、約1.77の屈折率を有するAl、約1.636の屈折率を有するBaSO、例えば、テフロン(登録商標)などのポリテトラフルオロエチレン(PTFE)、Tefzel(商標)などのエチレンテトラフルオロエチレン(ETFE)、ポリエチレンテレフタレート(PET)、フッ素化エチレンプロピレン(FEP)、ペルフルオロアルコキシアルカン(PFA)、PEEK(ポリエーテルエーテルケトン)、ナイロン、及び任意の他のフッ素化ポリマーなどの熱可塑性ポリマーから作られた粒子を含みうる。さらには、幾つかの実施形態では、散乱粒子335は、代わりに又は加えて、ガスボイド又はマイクロバブルを含んでいてもよい。さらには、図4A及び4Bは、複数の散乱粒子335が一次コーティング層330に配置されることを示しているが、複数の散乱粒子335は、代替的に又は追加的に熱可塑性ポリマーコーティング層334に配置されてもよい。
再び図1、2B、3B、及び4Bを参照すると、動作中、散乱されない導波光(光出力装置102の光源152によって出力されるUV光又は可視青紫色光など)は、矢印10で示される方向に光拡散性光ファイバ110、210、310に沿って伝播する。散乱光は、矢印12で示される方向に散乱角θで光拡散性光ファイバ110、210、310から出るように示されており、これは、光拡散性光ファイバ110、210、310に沿って伝播する導波光の伝播方向10と光拡散性光ファイバ110を離れるときの散乱光の方向12との間の角度差である。幾つかの実施形態では、散乱角θが15°から150°、又は30°から130°の場合のスペクトルの強度は、ピーク波長で測定して、±50%、±30%、±25%、±20%、±15%、±10%、又は±5%以内である。幾つかの実施形態では、散乱角θが30°から130°以内、又は40°から120°以内のすべての角度の間にある場合のスペクトルの強度は、ピーク波長で測定して、少なくとも±50%以内、例えば±30%、±25%、±20%、±15%、±10%、又は±5%である。したがって、各光拡散性光ファイバ110、210、310は、散乱に起因する実質的に均一な照明を提供するように構成され、それによって、最小と最大の散乱照明強度の差は、例えば40度及び120度のすべての視野角など、少なくとも40度から110度のすべての視野角で、最大散乱照明強度の50%未満になる。幾つかの実施形態によれば、最小と最大の散乱照明強度の差は、最大散乱照明強度の30%以下である。
再び図2A~4Bを参照すると、各光拡散性光ファイバ110、210、310は、550nmの波長で約0.2dB/mを超える散乱誘起減衰損失を有しうる。例えば、幾つかの実施形態では、散乱誘起減衰損失(エアラインなどの散乱構造125、225、325に起因した減衰損失)は、550nmで、約0.5dB/m超、0.6dB/m、0.7dB/m、0.8dB/m、0.9dB/m、1dB/m、1.2dB/m、1.4dB/m、1.6dB/m、1.8dB/m、2.0dB/m、2.5dB/m、3.0dB/m、3.5dB/m、又は4dB/m、5dB/m、6dB/m、7dB/m、8dB/m、9dB/m、10dB/m、20dB/m、30dB/m、40dB/m、又は50dB/m超でありうる。幾つかの実施形態では、光拡散性光ファイバ110、210、310の平均散乱損失は50dB/kmより大きく、散乱損失は、光拡散性光ファイバ110の任意の所与のファイバセグメントにわたって20%を超えて変化しない(すなわち、散乱損失は平均散乱損失の±20%以内、例えば±15%以内、又は±10%以内である)。幾つかの実施形態では、光拡散性光ファイバ110、210、310の平均散乱損失は50dB/kmより大きく、散乱損失は、約0.2m~約50m、例えば、0.5m、1m、2m、5m、10m、15m、20m、25m、30m、35m、40m、45mなどの光拡散性光ファイバ110、210、310の任意の所与のファイバセグメントにわたって、20%を超えて変化しない(すなわち、散乱損失は平均散乱損失の±20%以内、例えば±15%以内、又はさらには±10%以内である)。
次に図5を参照すると、グラフ50は、約100μmの厚さを含むサンプル材料層における200nm~400nmのUV光の吸収を示している。1つのサンプル材料層は、線52で表される光拡散性光ファイバ310の一次コーティング層330の脂環式エポキシなど、約100μmの厚さを含む脂環式エポキシである。約100μmの厚さを含む別のサンプル材料層は、線54で表される、光拡散性光ファイバ210の熱可塑性ポリマーコーティング層234及び光拡散性光ファイバ310の熱可塑性ポリマーコーティング層334などのPTFEである。線52で示されるように、脂環式エポキシは、厚さ100μmあたり、400nmで約0.0005、375nmで約0.001、350nmで約0.002、325nmで約0.004、300nmで約0.012、275nmで約0.025、及び250nmで約0.035の吸光度を含む。さらには、線54で示されるように、PTFEは、厚さ100μmあたり、400nmで約0.003、375nmで約0.004、350nmで約0.006、325nmで約0.008、300nmで約0.01、275nmで約0.013、250nmで約0.0175、225nmで約0.024、及び200nmで約0.032の吸光度を含む。
図5をさらに参照すると、脂環式エポキシ(線52)は、約310nm以上の波長を含む光について、厚さ100μmあたり約0.01以下の吸光度を含む。脂環式エポキシ(線52)は、約250nm以上の波長を含む光について、厚さ100μmあたり約0.02以下の吸光度を含む。脂環式エポキシ(線52)は、約270nm以上の波長を含む光について、厚さ100μmあたり約0.03以下の吸光度を含む。さらには、脂環式エポキシ(線52)は、約245nm以上の波長を含む光について、厚さ100μmあたり約0.04以下の吸光度を含む。PTFE(線54)は、約300nm以上の波長を含む光について、厚さ100μmあたり約0.01以下の吸光度を含む。PTFE(線54)は、約240nm以上の波長を含む光について、厚さ100μmあたり約0.02以下の吸光度を含む。さらには、PTFE(線54)は、約205nm以上の波長を含む光について、厚さ100μmあたり約0.03以下の吸光度を含む。
図6を参照すると、グラフ70は、約300nm~約500nmの波長を含む光に対する、さまざまな光拡散性光ファイバの実施形態の散乱効率を示している。前述のとおり、「散乱効率」とは、光拡散性光ファイバ110、210、310のコア120、220、320から外面128、228、328に向かって外向きに散乱し、吸収、遮断、又は他の方法で失われることなく、実際に外面128、228、328から出る光のパーセンテージを指す。図6では、線72は光拡散性光ファイバの先の実施形態を表しており、線74は光拡散性光ファイバ110を表しており、線76は光拡散性光ファイバ210を表しており、線78は光拡散性光ファイバ310を表している。図6に示されるように、本明細書に記載される光拡散性光ファイバ110、210、310は、先の光拡散性光ファイバよりも高い、UV光の散乱効率を含む。
図6をさらに参照すると、線74は、光拡散性光ファイバ110が、約350nm以上の波長を含む光について約0.1以上の散乱効率、約375nm以上の波長を含む光について約0.4以上の散乱効率、約400nm以上の波長を含む光について約0.6以上の散乱効率、及び約425nm以上の波長を含む光について約0.8以上の散乱効率を含むことを示している。線76は、光拡散性光ファイバ210が、約300nm以上の波長を含む光について約0.5以上の散乱効率、約325nm以上の波長を含む光について約0.65以上の散乱効率、約350nm以上の波長を含む光について約0.75以上の散乱効率、約375nm以上の波長を含む光について約0.8以上の散乱効率、及び約400nm以上の波長を含む光について約0.9以上の散乱効率を含むことを示している。さらには、図6には示されていないが、光拡散性光ファイバ210は、約250nm以上の波長を含む光について、約0.5以上の散乱効率など、約0.4以上の散乱効率を含む。さらには、線78は、光拡散性光ファイバ310が、約350nm以上の波長を含む光について約0.3以上の散乱効率、約375nm以上の波長を含む光について約0.6以上の散乱効率、約400nm以上の波長を含む光について約0.8以上の散乱効率、及び約425nm以上の波長を含む光について約0.9以上の散乱効率を含むことを示している。
本開示の一態様は、約380nm~約495nmの波長で、約5mW/cm~約30mW/cmの平均パワー密度を含む光を放射する青紫色光照射装置を含む、青紫色光を送達するための光送達システムに関し、ここで、ある量のコロニー形成単位を含む病原体サンプルが約30分~約48時間の曝露時間(例えば、約2時間~約8時間、又は約4時間~約24時間)にわたって光で照射された後に、病原体サンプルのコロニー形成単位の量は、約4対数減少~約9対数減少だけ低下する。
1つ以上の実施形態では、光送達システムは、1つ以上の光拡散性光ファイバを含む。1つ以上の実施形態では、システムによって放出される光は、約7.2mW/cm~約11.25mW/cmの平均パワー密度を有する。光は、本明細書に別途記載されているように、パルス化されても、一定であってもよい。
光送達システムは光照射装置に光学的に接続された光源を含むことができ、該光源は直線偏光されている。1つ以上の実施形態では、システムは光照射装置に光学的に接続された光源を含むことができ、該光源はレーザダイオードである。
1つ以上の実施形態では、光送達システムは、殺菌に使用され、インビボ、エクスビボ又はインビボとエクスビボの両方で病原体に光を照射するための光照射装置を含み、ここで、病原体は、ある量のコロニー形成単位を含み、光は、約380nm~約495nmの波長で約5mW/cm~約30mW/cmの平均パワー密度を含み、病原体が約30分~約48時間の曝露時間にわたって光を照射されたときに、病原体サンプルのコロニー形成単位の量は、約4対数減少~約9対数減少だけ低下する。1つ以上の実施形態では、光照射装置は病原体から約30mm以下の距離に位置づけられる。1つ以上の実施形態では、光照射装置は、病原体から約2mm~約30mm以下の距離に位置づけられる。1つ以上の実施形態では、光照射装置は病原体と接触している。1つ以上の実施形態では、光照射装置は、病原体から約2mm~約30mm以下の距離に位置づけられる。光は、本明細書に別途記載されているように、パルス化されても、一定であってもよい。
1つ以上の実施形態では、本明細書に記載される光送達システムは、グラム陽性病原菌である病原体(例えば、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの1つ)に照射するために使用することができる。1つ以上の実施形態では、本明細書に記載される光送達システムは、グラム陰性病原菌である病原体(例えば、緑膿菌(Pseudomonas aeruginosa)、大腸菌(Escherichia coli)、アシネトバクター・バウマンニ(Acinetobacter baumannii)、肺炎桿菌(Klebsiella pneumoniae)、及びエンテロバクター・アエロゲネス(Enterobacter aerogenes)のうちの少なくとも1つ)に照射するために使用することができる。1つ以上の実施形態では、病原体がエンテロコッカス・フェシウム(Enterococcus faecium)の場合、かつ、病原体が約6時間の曝露時間にわたって25mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。1つ以上の実施形態では、病原体が黄色ブドウ球菌(Staphylococcus aureus)の場合、かつ、病原体が約4時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約2時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。1つ以上の実施形態では、病原体が肺炎桿菌(Klebsiella pneumoniae)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。
1つ以上の実施形態では、病原体がアシネトバクター・バウマンニ(Acinetobacter baumannii)の場合、かつ、病原体が約4時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約2時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。
1つ以上の実施形態では、病原体が緑膿菌(Pseudomonas aeruginosa)の場合、かつ、病原体が約2時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。
1つ以上の実施形態では、病原体が化膿レンサ球菌(Streptococcus pyogenes)の場合、かつ、病原体が約2時間の曝露時間にわたって5mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。
1つ以上の実施形態では、病原体がカンジダ・アルビカンス(Candida albicans)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約4時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。
1つ以上の実施形態では、病原体がカンジダ・アルビ大腸菌(Escherichia coli)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約4時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する。
光送達システムに組み込むことができる光拡散性光ファイバの実施形態が本明細書に記載されている;しかしながら、本システムはこのようなファイバに限定されるべきではない。図7~9Bを参照して、殺菌のための光送達ツールとして青紫色光送達システムを使用する方法をこれから説明する。本明細書に記載されるシステムからの可視青紫色光を病原体に光係合させることにより、抗菌及び/又は殺菌結果を達成することができることが発見された。概して、理論に制限されることは意図していないが、可視青紫色光は、病原体細胞における細胞活性酸素種の産生を増加させ、細胞死をもたらす。UV光(例えばUVA、UVB、又はUVCの使用とは異なり)、可視青紫色光を使用すると、哺乳動物のDNA変異及び細胞死に対する悪影響が軽減される。本明細書でより詳細に論じるように、本明細書に記載される青紫色光送達システムから放射する可視青紫色光で病原体細胞死及び殺菌効果を達成するためには、照射される光を、所定のパワー密度、波長、及び曝露時間を使用して送達する必要がある。
次に図7を参照すると、青紫色光送達システムを使用して殺菌する方法の例がフローチャート400に示されている。ステップ410では、光出力装置102由来の光源152が、青紫色光送達システム(又は、該当する場合には1つ以上の光拡散性光ファイバ)に結合される。光出力装置102は、レンズ、光送達ファイバなどの追加の光学部品をさらに含むことができ、これらは、光源152と青紫色光送達システム(又は光拡散性光ファイバ110)の第1の端部112との間に位置づけられ、光学的に結合されて、青紫色光送達システム(又は光拡散性光ファイバ110)への光の入力を容易にする。さらには、光送達ファイバなどのこれらの追加の光学部品は、光源152が青紫色光送達システム(又は光拡散性光ファイバ110)から空間的に分離することを可能にすることができる。
上でより詳細に説明したように、光拡散性光ファイバは、コア、クラッド、外面、並びに、コア、クラッド、又はコアとクラッドの両方に位置づけられた複数の散乱構造を備えている。動作中、1つ以上の光拡散性光ファイバの散乱構造は、1つ以上の光拡散性光ファイバに沿って伝播する光を外面の方へ散乱させ、光の一部が外面を通って拡散する。
ステップ420では、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)は病原体サンプルと光係合して位置づけられる。本明細書で用いられる場合、「光係合」とは、1つ以上の光拡散性光ファイバが病原体サンプルに光を直接的又は間接的に照射することができる配置を指す。1つ以上の実施形態では、光は、1つ以上の光拡散性光ファイバの外面を通して拡散する。青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)と病原体サンプルとの間の間隔を最小限に抑えて、青紫色光送達システム(1つ以上の光拡散性光ファイバ)によって出力され、病原体サンプルによって吸収される、高いエネルギー効率を達成することは有利である。「光係合」という用語に関して本明細書で用いられる場合、「直接的」とは、病原体サンプルと接触していること、又は青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)と病原体サンプルとの間の空隙によって分離されていることを指し、「間接的」とは、可視青紫色光の光透過材料など、概して、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)から病原体サンプルに送達される光の平均出力、波長、又は曝露時間を妨げない、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)と病原体サンプルとの間に位置づけられた材料のことを指す。幾つかの実施形態では、青紫色光送達システム(1つ以上の光拡散性光ファイバ)は、病原体サンプルに直接接触することができる。
ステップ430では、光源によって出力された光は、第1の時間間隔の間、1つ以上の光拡散性光ファイバに向けられる。ステップ430に応答して、光は、1つ以上の光拡散性光ファイバの外面を通して拡散し、それにより、ある曝露時間の間、ある波長で、ある平均出力密度を有する光を病原体サンプルに照射する。幾つかの実施形態では、病原体サンプルに送達される光は、約5mW/cm~約30mW/cm、又は約7.2mW/cm~約11.25mW/cmの平均パワー密度を有する。例えば、幾つかの実施形態では、平均パワー密度は、約5mW/cm、6mW/cm、7mW/cm、8mW/cm、9mW/cm、10mW/cm、11mW/cm、12mW/cm、13mW/cm、14mW/cm、15mW/cm、16mW/cm、17mW/cm、18mW/cm、19mW/cm、20mW/cm、21mW/cm、22mW/cm、23mW/cm、24mW/cm、25mW/cm、26mW/cm、27mW/cm、28mW/cm、29mW/cm、又は30mW/cmである。さらには、病原体サンプルに送達される光は、約380nm~約495nm、すなわち、UV-青紫境界範囲、又は約400nm~約410nm、又は405nmの波長を有する。例えば、幾つかの実施形態では、波長は、約375nm、380nm、385nm、390nm、395nm、400nm、405nm、410nm、415nm、420nm、425nm、430nm、435nm、440nm、445nm、450nm、455nm、460nm、465nm、470nm、475nm、480nm、485nm、490nm、495nm、500nmなどである。
加えて、本明細書で用いられる場合、「曝露時間」とは、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)から送達される光を病原体サンプルに照射する時間間隔を指す。幾つかの実施形態では、曝露時間は、約30分~約48時間、又は約2時間~約48時間、又は約30分~約24時間、又は約2~約24時間、又は約2~約8時間、又は4時間~約24時間でありうる。例えば、幾つかの実施形態では、曝露時間は、約30分、45分、1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、9時間、10時間、11時間、12時間、13時間、14時間、15時間、16時間、17時間、18時間、19時間、20時間、21時間、22時間、23時間、24時間、36時間、48時間、又はそれ以上でありうる。換言すれば、曝露時間は連続的であってよく、すなわち、30分超、6時間超、24時間超、又は48時間超でありうる。
幾つかの実施形態では、ある曝露時間の間、ある平均パワー密度で青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)から送達される光は、例えば、約36J/cm~約972J/cmの範囲のエネルギー密度で病原体サンプルに送達される。幾つかの実施形態では、総エネルギー密度は約103J/cm~約972J/cmである。概して、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)から拡散される光から病原体サンプルに送達される総エネルギー密度は、パワー密度と曝露時間の関数である、すなわち、平均パワー密度と曝露時間との積が総エネルギー密度である(例えば、約7.2mW/cm×3600秒/時間×1J/1000mJ×6時間=約155.52J/cm)。例えば、約1×10CFU(コロニー形成単位)の病原体が光に曝露されて約155J/cmのエネルギー密度を生じると、その効果は殺菌性(すなわち、病原体細胞死)であり、CFUの約4-対数削減~9-対数削減をもたらし、例えば、CFUは約10,000分の1から約1,000,000,000分の1になる。
幾つかの実施形態では、光は、連続的なパワー密度で連続的な態様で提供することができる。他の実施形態では、光は、変化するパワー密度で連続的に提供することができる。他の実施形態では、光は、時間間隔中に全体的な平均パワー密度を達成するために、さまざまなパワー密度で、パルス化された態様で提供することができる。さらに他の実施形態では、光は、各パルスの光のパワー密度が同じである、パルス化された態様で提供することができる。
次に図8A~8Bを参照すると、光送達の2つの例が、2つの時間間隔にわたるパワー密度の関数としてグラフで示されている。例えば、図8Aを参照すると、光は、合計20時間の曝露時間の間、10mW/cmのパワー密度レベル512で第1の時間間隔510で送達され、720J/cmの総エネルギー密度514をもたらす。続いて、光は、合計20時間の曝露時間の間、5mW/cmのパワー密度レベル522で第2の時間間隔520で送達され、360J/cmの総エネルギー密度524をもたらす。幾つかの実施形態では、光は、第2の時間間隔ではなく、第1の時間間隔の間に送達される。しかしながら、一部の用途では、変化するパワー密度及び曝露時間の2つ以上の時間間隔を有することが有利である。このような構成は、大量のCFUの処理とその後の保全間隔を提供することができ、少量のCFUが再増殖するのを防ぐ。
別の実施形態では、図8Bを参照すると、光はパルス化された構成で送達される。例えば、光は、20時間の第1の時間間隔530で10時間の総曝露時間の間、20mW/cmのパワー密度532で第1の時間間隔530にわたって送達される。すなわち、光源は、2時間間隔で交互に光を青紫色光送達システム(又は1つ以上の光拡散ファイバ)へと向け、結果的に病原体サンプルに出力される光のパルスパターンをもたらす。例えば、2時間の曝露時間533の間、パワー密度は20mW/cmであり、その後、2時間のオフ時間533’が続き、その結果、20時間の第1の時間間隔530のうちの最初の4時間をもたらす。第1の時間間隔530の間、光のパルスパターンが繰り返され、ここで、曝露時間533、534、535、536、及び537の間、光は、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)から病原体サンプルへと出力され、それぞれ、20mW/cmのパワー密度532を有しており、オフ時間533’、534’、535’、536’、及び537’の間、光は青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)から病原体サンプルに出力されない。したがって、第1の時間間隔の間に得られる平均パワー密度532は10mW/cmである。さらには、得られる総エネルギー密度は、各曝露時間533、534、535、536及び537の間のパワー密度の関数であり、例えば、図8Bに示される第1の時間間隔では約720J/cmを生じる。
図8Bはさらに、各曝露時間543、544、545、546、及び547の間は、10mW/cmのパワー密度542でパルス化された構成で光が送達され、各オフ時間543’、544’、545’、546’、及び547’の間には光は送達されない、第2の時間間隔540も示している。したがって、第2の時間間隔の間に得られる平均パワー密度542は5mW/cmである。さらには、得られる総エネルギー密度は、各曝露時間543、544、545、546及び547の間のパワー密度の関数であり、例えば図8Bに示される第2の時間間隔では約360J/cmを生じる。
幾つかの実施形態では、例えば、光源は、第1のパルス周期(例えば、第1の時間間隔530)及び第2のパルス周期(例えば、第2の時間間隔540)でパルス化された光を出力するように構成することができる。第1のパルス周期は、1つ以上のパルスを出力することができ(例えば、曝露時間533、534、535、536、及び537による)、曝露時間533、534、535、536、及び537の合計は、第1のパルス持続時間である。第2のパルス周期は、1つ以上のパルスを出力することができ(例えば、曝露時間543、544、545、546、及び547による)、曝露時間543、544、545、546、及び547の合計は、第2のパルス持続時間である。
光を一定に適用するよりも高いパワー密度の間隔で病原体サンプルに送達される光をパルスすることは、大量のCFUの殺菌、及び/又は殺菌プロセスの効率の向上、及び/又は攻撃的又は堅牢な形態の病原体との闘いに有利でありうる。加えて、パワー密度及び曝露時間を調整することにより、病原体サンプルに送達される総エネルギー密度を調整することができる。
幾つかの実施形態では、時間間隔における光の各パルスの曝露時間は、オフ時間よりも長くなりうる。他の実施形態では、光の各パルスの曝露時間は、オフ時間よりも短い。同様に、「オフ時間」という用語は、病原体サンプルに光が出力されない期間に関連して本明細書で用いられるが、当業者は、青紫色光送達システム(又は1つ以上の光拡散性光ファイバ)によって出力されるパルス光が、第1の曝露時間の間は第1のパワー密度を有し、続いて第2の曝露時間の間は第1のパワー密度とは異なる第2のパワー密度を有するように構成することができる。さらには、第1のパワー密度及び第2のパワー密度はいずれも、0mW/cmより大きくなりうる。
実験構成に関して以下に説明するように、幾つかの実施形態は、1つ以上の光拡散性光ファイバが構造化された構成で構成される光拡散性光ファイバ構成を含みうる。理論に制限されることは意図していないが、図9A~9Bを参照すると、光652が光拡散性光ファイバ620を通って伝播するときに、光は拡散するが、番号625で示されるファイバの長さに沿って減衰する。図9Aは、光拡散性光ファイバに沿った拡散した光のエネルギーの減衰の例を示している。殺菌の目的で有効であるためには、拡散光のエネルギーは効力の閾値を超えている必要がある。幾つかの実施形態では、有害な影響なしに、効果的な殺菌も保証するように上限閾値を構成すべきであると考えられる。
さらなる実施形態では、光拡散性光ファイバは、1つ以上の円筒管622及び624内に入れるか又はその内部に位置づけることができる。図9Bに示されるように、管622及び624の各層は、拡散光のエネルギーの吸収をもたらす。したがって、拡散光が殺菌目的で効果を維持するためには、初期パワーは、吸収後の有効性閾値よりも高くなければならない。図9Bのグラフは、第1の吸収層622及び第2の吸収層624を通して光拡散性光ファイバ620から拡散された光の効果を示している。光が光拡散性光ファイバから外向きにほぼ円対称に拡散するにつれて、パワーは空気中において約1/rで低下する。しかしながら、拡散光が吸収層622及び624を通って伝播する場合、拡散光のパワーは、拡散光が伝播する材料に応じて、より低下する可能性がある。
次に図10A~10Dを参照すると、構造化された構成の例が示されている。以下の実験例で利用されるものなどの幾つかの実施形態では、1つ以上の光拡散性光ファイバを構造化された方法で構成して、殺菌目的で有効性閾値を超える拡散光のより均一な分散のための平面又は3D形状を生成することができる。図10Aに示されるように、光拡散性光ファイバ720は、織られた格子構造で構成されている。説明の目的で、3つの断面平面が識別されている。断面Aは、複数の列と交差する行の中点に沿って配置されている。断面Bは、複数の列と交差する光拡散性光ファイバの行に沿って配置されている。断面Cは、格子の行と列を斜めに横切るように配置されている。図10Bは、構造化された構成を横切る拡散光の結果として得られる強度を示している。同様に、図10Cは、ヒートマップの形態で同じものを示している。図10Cに示されるように、拡散光は、図10Dに示されるような同様の格子構造の構成における多点光源LED740よりも大規模でより均一に分散されるように構成されうる。
本開示の趣旨及び範囲から逸脱することなく、他の構造化された構成が実装されうることが企図されている。
実験
第1の実験構成では、図11Aに示されるように、病原体サンプル800を96ウェルプレート810内の溶液中に播種し、増殖させた。光拡散性光ファイバ820を96ウェルプレート810に平行に構成し、光拡散性光ファイバの一部が、96ウェルの各々を405nmの光で照明した。加えて、光拡散性光ファイバ820が96ウェルプレート810と反射面830との間に位置づけられるように、反射面830を含めた。1つ以上の光拡散性光ファイバ820の「ネットワーク」は、光拡散性光ファイバの柔軟な構造的制約内で、平行スタンドパターン、十字形パターン、らせん構造、又は他の構成で構成することができるものと理解されたい。光拡散性光ファイバ820から発する光のパワー密度は、約4時間~約24時間の曝露時間で約7.2mW/cm~約11.25mW/cmであった。これにより、約103J/cm~約972J/cmの総エネルギー密度が生じ、96ウェルプレート810内の病原体サンプルに送達された。約1×10CFUの病原体サンプル800を前記総エネルギー密度で曝露した結果は、約4対数削減~約6対数削減、例えば、CFUが約10,000分の1~約1,000,000分の1になる殺菌効果であった。
第2の実験構成では、図11Bに示されるように、病原体サンプル900をペトリ皿910内の寒天上に播種し、増殖させた。光拡散性光ファイバ920のネットワークをペトリ皿910に平行に構成し、光拡散性光ファイバは、405nmの光でペトリ皿910の寒天上の病原体サンプル900を照射した。加えて、光拡散性光ファイバ920がペトリ皿910の寒天上の病原体サンプル900と反射面930との間に位置づけられるように、反射面930を含めた。光拡散性光ファイバ920から発する光のパワー密度は、約6時間の曝露時間にわたって約7.2mW/cm~約11.25mW/cmであった。これにより、約155J/cm~約243J/cmの総エネルギー密度が生じ、寒天上の病原体サンプルに送達された。約1×10CFUの病原体サンプル900を前記総エネルギー密度で曝露した結果は、約8対数削減~約9対数削減、例えば、CFUが約100,000,000分の1~約1,000,000,000分の1になる殺菌効果であった。
グラム陽性病原体サンプルの3つのバリエーション、すなわち、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、及び化膿レンサ球菌(Streptococcus pyogenes)を、上述の実験的試験で試験した。他の試験では、グラム陽性病原体サンプル、例えば、限定はしないが、カンジダ・アルビカンス(C. albicans)、化膿レンサ球菌(S. pyogenes)、及びエンテロコッカス・フェシウム(E. faecium)、並びに、グラム陰性病原体サンプル、例えば、緑膿菌(P. aeruginosa)、大腸菌(E. coli)、アシネトバクター・バウマンニ(A. baumannii)、肺炎桿菌(K. pneumoniae)、及びエンテロバクター・アエロゲネス(E. aerogenes)の両方において、少なくとも4対数削減効果が観察された。
光拡散性光ファイバから病原体サンプル又は病原体成長培地への405nmの光の連続的な適用により、病原体サンプル又病原体成長培地に連続的にエネルギーを加えることで連続的な殺菌を提供することができるものと理解されたい。可視青紫色光、例えば405nmの光は、人間及び病原体の細胞に関してUV光が知られているような損傷を引き起こさないことも理解されたい。加えて、光拡散性光ファイバを使用して可視の青紫色の光を送達することにより、光が届きにくい場所に光を送達することができ、潜在的又は現在の病原体の増殖及び感染部位の発生源に直接適用することが可能となることが理解される。1つの例は、留置カテーテル又は経皮カテーテル、すなわち、一部は体の内部にあり、一部は体外にあるカテーテルに関連する感染症でありうる。結果的に、病原体はカテーテルに沿って、カテーテル内で増殖する可能性があり、したがって、体外から始まり、増殖するための媒体としてカテーテルを使用して内向きに進行しうる、体内の直接的な感染経路を供給する。他の例は、心血管カテーテル、気管内チューブ、フォーリーカテーテルなどを殺菌することを含みうる。
2つの異なる試験のセットアップ(96ウェルプレート試験セットアップ及び寒天皿)を使用して、表1に記載されているさまざまな病原体に関して本明細書に記載される光送達システムの有効パワー密度及び曝露時間を測定した。96ウェルプレート構成では、96ウェルの各々の底部を除き、プレートの底部が黒くなる。寒天表面/ペトリ皿の構成では、ファイバと細菌との間に(空気を除いて)材料は存在しないが、この距離はファイバと96ウェルプレートの底部との間の距離よりも大きい。
Figure 0007311535000001
Figure 0007311535000002
表1に示されるように、最小有効エネルギー密度は36mJ/cm~約540mJ/cmの範囲である。試験したパワー密度の範囲は5mW/cm、10mW/cm、及び25mW/cmであり、曝露時間の範囲は2、4又は6時間であり、試験した濃度範囲は10~10CFU/mLであった。すべての曝露は連続波であった。
態様(1)は、青紫色光送達システムを使用して殺菌する方法であって、光源を青紫色光送達システムに光学的に結合するステップ;青紫色光送達システムを病原体サンプルと光係合させて位置づけるステップ;及び、光源によって出力された光を第1の時間間隔で青紫色光送達システムへと向け、それによって、約5mW/cm~約30mW/cmの平均パワー密度を含む光を約380nm~約495nmの波長で約30分~約48時間の曝露時間にわたって病原体サンプルに照射するステップを含む、方法に関する。
態様(2)は、青紫色光送達システムが、コア;該コアを取り囲むクラッド;外面;並びに、コア、クラッド、又はコアとクラッドの両方の内部に位置づけられた複数の散乱構造を備えた1つ以上の光拡散性光ファイバを含む、態様(1)に記載の方法に関する。
態様(3)は、出力された光が光源によって青紫色光送達システムへと向けられるときに、1つ以上の光拡散性光ファイバの複数の散乱構造が、1つ以上の光拡散性光ファイバに沿って伝播する光を外面の方へと散乱させ、光の一部が外側システムを通って拡散する、態様(1)に記載の方法に関する。
態様(4)は、平均パワー密度が約7.2mW/cm~約11.25mW/cmである、態様(1)から(3)のいずれかに記載の方法に関する。
態様(5)は、曝露時間が約2時間~約8時間である、態様(1)から(4)のいずれかに記載の方法に関する。
態様(6)は、曝露時間が約4時間~約24時間である、態様(1)から(5)のいずれかに記載の方法に関する。
態様(7)は、光源によって青紫色光送達システムへと出力された光がパルス化される、態様(1)から(6)のいずれかに記載の方法に関する。
態様(8)は、光源が、パルス化された光を第1のパルス周期及び第2のパルス周期で出力するように構成され;第1のパルス周期で光源によって出力される1つ以上のパルスが第1のパルス持続時間を含み;かつ、第2のパルス周期で光源によって出力される1つ以上のパルスが第2のパルス持続時間を含む、態様(7)に記載の方法に関する。
態様(9)は、第1のパルス持続時間が第2のパルス持続時間より長い、態様(8)に記載の方法に関する。
態様(10)は、光源によって出力された光を第2の時間間隔で青紫色光送達システムへと向けるステップをさらに含み、第2の時間間隔の間のエネルギー密度が、第1の時間間隔の間のエネルギー密度より小さい、態様(1)から(9)のいずれかに記載の方法に関する。
態様(11)は、病原体サンプルがグラム陽性病原菌である、態様(1)から(10)のいずれかに記載の方法に関する。
態様(12)は、グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、態様(11)に記載の方法に関する。
態様(13)は、コアが300ppm以上のヒドロキシル材料をドープしたガラスを含み、クラッドが300ppm以上のヒドロキシル材料をドープしたガラスを含む、態様(2)から(12)のいずれかに記載の方法に関する。
態様(14)は、熱可塑性ポリマーコーティング層がクラッドを取り囲み、かつ該クラッドに接触する、態様(2)から(13)のいずれかに記載の方法に関する。
態様(15)は、一次コーティング層がクラッドを取り囲み、熱可塑性ポリマーコーティング層が、一次コーティング層がクラッドと熱可塑性ポリマーコーティング層との間に配置されるように一次コーティング層を取り囲み、一次コーティング層が、約250nm以上の波長で層厚100μmあたり約0.04以下の吸光度を有する脂環式エポキシを含む、態様(2)から(14)のいずれかに記載の方法に関する。
態様(16)は、コーティング層がクラッドを取り囲み、コーティング層に複数の散乱構造がドープされる、態様(2)から(15)のいずれかに記載の方法に関する。
態様(17)は、光源が直線偏光されている、態様(1)から(16)のいずれかに記載の方法に関する。
態様(18)は、光源がレーザダイオードである、態様(1)から(17)のいずれかに記載の方法に関する。
態様(19)は、青紫色光送達システムを使用して殺菌する方法であって、光源を青紫色光送達システムに光学的に結合するステップ;青紫色光送達システムを病原体サンプルと光係合させて位置づけるステップ;光源によって出力された光を第1の時間間隔で青紫色光送達システムへと向け、それによって、約5mW/cm~約30mW/cmの平均パワー密度を含む光を約380nm~約495nmの波長である量のコロニー形成単位を含む病原体サンプルに照射するステップであって、病原体サンプルのコロニー形成単位の量が約4対数減少~約9対数減少だけ低下する、ステップを含む、方法に関する。
態様(20)は、青紫色光送達システムが、コア;該コアを取り囲むクラッド;外面;並びに、コア、クラッド、又はコアとクラッドの両方の内部に位置づけられた複数の散乱構造を備えた1つ以上の光拡散性光ファイバを含む、態様(19)に記載の方法に関する。
態様(21)は、出力された光が光源によって青紫色光送達システムへと向けられるときに、1つ以上の光拡散性光ファイバの複数の散乱構造が、1つ以上の光拡散性光ファイバに沿って伝播する光を外面の方へと散乱させ、光の一部が外側システムを通って拡散する、態様(20)に記載の方法に関する。
態様(22)は、平均パワー密度が約7.2mW/cm~約11.25mW/cmである、態様(19)から(21)のいずれかに記載の方法に関する。
態様(23)は、病原体サンプルに対する光の曝露時間が約2時間~約24時間である、態様(19)から(22)のいずれかに記載の方法に関する。
態様(24)は、病原体サンプルに対する光の曝露時間が約2時間~約8時間である、態様(19)から(23)のいずれかに記載の方法に関する。
態様(25)は、光源によって青紫色光送達システムへと出力された光がパルス化される、態様(19)から(24)のいずれかに記載の方法に関する。
態様(26)は、光源が、パルス化された光を第1のパルス周期及び第2のパルス周期で出力するように構成され;第1のパルス周期で光源によって出力される1つ以上のパルスが第1のパルス持続時間を含み;かつ第2のパルス周期で光源によって出力される1つ以上のパルスが第2のパルス持続時間を含む、態様(25)に記載の方法に関する。
態様(27)は、第1のパルス持続時間が第2のパルス持続時間より長い、態様(26)に記載の方法に関する。
態様(28)は、光源によって出力された光を第2の時間間隔で青紫色光送達システムへと向けるステップをさらに含み、第2の時間間隔の間のエネルギー密度が、第1の時間間隔の間のエネルギー密度より小さい、態様(19)から(27)のいずれかに記載の方法に関する。
態様(29)は、病原体サンプルがグラム陽性病原菌である、態様(19)から(28)のいずれかに記載の方法に関する。
態様(30)は、グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、態様(29)に記載の方法に関する。
態様(31)は、病原体サンプルがグラム陰性病原菌である、態様(19)から(28)のいずれかに記載の方法に関する。
態様(32)は、グラム陰性病原菌が、緑膿菌(Pseudomonas aeruginosa)、大腸菌(Escherichia coli)、アシネトバクター・バウマンニ(Acinetobacter baumannii)、肺炎桿菌(Klebsiella pneumoniae)、及びエンテロバクター・アエロゲネス(Enterobacter aerogenes)のうちの少なくとも1つである、態様(31)に記載の方法に関する。
態様(33)は、コアが300ppm以上のヒドロキシル材料をドープしたガラスを含み、クラッドが300ppm以上のヒドロキシル材料をドープしたガラスを含む、態様(20)から(32)のいずれかに記載の方法に関する。
態様(34)は、熱可塑性ポリマーコーティング層がクラッドを取り囲み、かつ該クラッドに接触する、態様(20)から(33)のいずれかに記載の方法に関する。
態様(35)は、一次コーティング層がクラッドを取り囲み、熱可塑性ポリマーコーティング層が、一次コーティング層がクラッドと熱可塑性ポリマーコーティング層との間に配置されるように一次コーティング層を取り囲み、一次コーティング層が、約250nm以上の波長で層厚100μmあたり約0.04以下の吸光度を有する脂環式エポキシを含む、態様(20)から(34)のいずれかに記載の方法に関する。
態様(36)は、コーティング層がクラッドを取り囲み、コーティング層に複数の散乱構造がドープされる、態様(20)から(35)のいずれかに記載の方法に関する。
態様(37)は、約5mW/cm~約30mW/cmの平均パワー密度を含む光を約380nm~約495nmの波長で放射する青紫色光照射装置であって、ある量のコロニー形成単位を含む病原体サンプルが約30分~約48時間の曝露時間にわたって光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少~約9対数減少だけ低下する、青紫色光照射装置を含む、青紫色光を送達するための光送達システムに関する。
態様(38)は、平均パワー密度が約7.2mW/cm~約11.25mW/cmである、態様(37)に記載のシステムに関する。
態様(39)は、曝露時間が約2時間~約8時間である、態様(37)又は態様(38)に記載のシステムに関する。
態様(40)は、曝露時間が約4時間~約24時間である、態様(37)から(39)のいずれかに記載のシステムに関する。
態様(41)は、光がパルス化される、態様(37)から(40)のいずれかに記載のシステムに関する。
態様(42)は、光が第1のパルス周期及び第2のパルス周期に従ってパルス化され;第1のパルス周期が第1のパルス持続時間を含み、かつ、第2のパルス周期が第2のパルス持続時間を含む、態様(41)に記載のシステムに関する。
態様(43)は、第1のパルス持続時間が第2のパルス持続時間より長い、態様(42)に記載のシステムに関する。
態様(44)は、病原体サンプルがグラム陽性病原菌である、態様(37)から(43)のいずれかに記載のシステムに関する。
態様(45)は、グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、態様(44)に記載のシステムに関する。
態様(46)は、光照射装置に光学的に接続された光源をさらに含み、該光源が直線偏光されている、態様(37)から(45)のいずれかに記載のシステムに関する。
態様(47)は、光照射装置に光学的に接続された光源をさらに含み、該光源がレーザダイオードである、態様(37)から(46)のいずれかに記載のシステムに関する。
態様(48)は、インビボ、エクスビボ、又はインビボとエクスビボの両方で病原体に光を照射する光照射装置であって、該病原体がある量のコロニー形成単位を含み、光が約380nm~約495nmの波長で約5mW/cm~約30mW/cmの平均パワー密度を含み、病原体が約30分~約48時間の曝露時間にわたって光を照射されたときに、病原体サンプルのコロニー形成単位の量が約4対数減少~約9対数減少だけ低下する、光照射装置を含む、殺菌するための光送達システムに関する。
態様(49)は、光照射装置が病原体から約30mm以下の距離に位置づけられる、態様(48)に記載のシステムに関する。
態様(50)は、光照射装置が病原体から約2mm~約30mm以下の距離に位置づけられる、態様(49)に記載のシステムに関する。
態様(51)は、光照射装置が病原体と接触している、態様(49)に記載のシステムに関する。
態様(52)は、光照射装置が病原体から約2mm~約30mm以下の距離に位置づけられる、態様(48)から(51)のいずれかに記載のシステムに関する。
態様(53)は、光がパルス化される、態様(48)から(52)のいずれかに記載のシステムに関する。
態様(54)は、病原体がグラム陽性病原菌である、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(55)は、グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、態様(49)に記載のシステムに関する。
態様(56)は、病原体がグラム陰性病原菌である、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(57)は、グラム陰性病原菌が、緑膿菌(Pseudomonas aeruginosa)、大腸菌(Escherichia coli)、アシネトバクター・バウマンニ(Acinetobacter baumannii)、肺炎桿菌(Klebsiella pneumoniae)、及びエンテロバクター・アエロゲネス(エンテロバクター・アエロゲネス(Enterobacter aerogenes)のうちの少なくとも1つである、態様(56)に記載のシステムに関する。
態様(58)は、病原体がエンテロコッカス・フェシウム(Enterococcus faecium)の場合、かつ、病原体が約6時間の曝露時間にわたって25mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(59)は、病原体が黄色ブドウ球菌(Staphylococcus aureus)の場合、かつ、病原体が約4時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約2時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(60)は、病原体が肺炎桿菌(Klebsiella pneumoniae)の場合、かつ、病原体が 約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(61)は、病原体がアシネトバクター・バウマンニ(Acinetobacter baumannii)の場合、かつ、病原体が約4時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約2時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(62)は、病原体が緑膿菌(Pseudomonas aeruginosa)の場合、かつ、病原体が約2時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(63)は、病原体が化膿レンサ球菌(Streptococcus pyogenes)の場合、かつ、病原体が約2時間の曝露時間にわたって5mW/cmの平均パワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(64)は、病原体がカンジダ・アルビカンス(Candida albicans)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約4時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
態様(65)は、病原体がカンジダ・アルビ大腸菌(Escherichia coli)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する光で、又は約4時間の曝露時間にわたって25mW/cmのパワー密度を有する光で照射された後に、病原体サンプルのコロニー形成単位の量が約4対数減少値以上低下する、態様(48)から(53)のいずれかに記載のシステムに関する。
本発明に係る技術を説明及び定義する目的で、パラメータ又は別の変数の「関数」である変数に対する本明細書での言及は、その変数が、専らリストされたパラメータ又は変数の関数であることを示すことを意図していないことに留意されたい。むしろ、リストされたパラメータの「関数」である変数に対する本明細書での言及は、単一のパラメータ又は複数のパラメータの関数でありうるように、オープンエンドであることが意図されている。別の例は、創傷を感染性環境に曝露することなく、創傷に直接、殺菌光線治療を提供するために、包帯及び創傷内又はそれらの間に1つ以上の光拡散ファイバを構成することを含みうる。
本明細書における「少なくとも1つ」の構成要素、要素などの列挙は、冠詞「a」又は「an」の代替使用が単一の構成要素、要素などに制限する必要があるという推論を作り出すために用いられるべきではないことにも留意されたい。
特定の方法で特定の特性又は機能を具現化するために特定の方法で「構成」された本開示の構成要素の本明細書での列挙は、意図された使用の列挙とは対照的に、構造的な列挙であることに留意されたい。より具体的には、構成要素が「構成」される態様への本明細書での言及は、構成要素の既存の物理的状態を示し、したがって、その構成要素の構造的特徴の明確な説明として解釈されるべきである。
本発明に係る技術を説明及び定義する目的では、「実質的に」及び「約」という用語は、本明細書では、任意の定量的比較、値、測定、又は他の表現に起因しうる固有の不確実性の度合いを表すために利用されることに留意されたい。「実質的に」及び「約」という用語はまた、本明細書では、問題の主題の基本的な機能に変化を生じさせることなく、記載される参考文献から量的表現が変化しうる度合いを表すためにも利用される。
本開示の主題を詳細に、特定の実施形態を参照して説明してきたが、本明細書に開示されたさまざまな詳細は、特定の要素が本明細書に付随する各図面に示されている場合でさえ、これらの詳細が本明細書に記載されたさまざまな実施形態の必須の構成要素である要素に関連することを示唆するものと解釈されるべきではないことに留意されたい。さらには、添付の特許請求の範囲で定義される実施形態を含むがこれらに限定されない本開示の範囲から逸脱することなく、修正及び変更が可能であることは明白であろう。より具体的には、本開示の幾つかの態様は、本明細書では好ましい又は特に有利であるとされているが、本開示は必ずしもこれらの態様に限定されないことが企図されている。
以下の請求項の1つ以上では、「ここで」という用語が移行句として利用されていることに留意されたい。本発明に係る技術を定義する目的で、この用語は、構造の一連の特性に係る説明を導入するために使用されるオープンエンドの移行句として請求項に導入されているのであり、より一般的に使用されるオープンエンドのプリアンブル用語である「含む」と同じように解釈されるべきであることに留意されたい。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
青紫色光送達システムを使用して殺菌する方法であって、
光源を青紫色光送達システムに光学的に結合するステップ;
青紫色光送達システムを病原体サンプルと光係合させて位置づけるステップ;及び
前記光源によって出力された光を第1の時間間隔で前記青紫色光送達システムに向け、それによって、約5mW/cm~約30mW/cmの平均パワー密度を含む光を約380nm~約495nmの波長で約30分~約48時間の曝露時間にわたって前記病原体サンプルに照射するステップ
を含む、方法。
実施形態2
前記青紫色光送達システムが、
コア;
前記コアを取り囲むクラッド;
外面;並びに
前記コア、前記クラッド、又は前記コアと前記クラッドの両方の内部に位置づけられた複数の散乱構造
を備えた、1つ以上の光拡散性光ファイバを含む、実施形態1に記載の方法。
実施形態3
前記出力された光が前記光源によって前記青紫色光送達システムへと向けられるときに、前記1つ以上の光拡散性光ファイバの前記複数の散乱構造が、前記1つ以上の光拡散性光ファイバに沿って伝播する光を前記外面の方へと散乱させ、光の一部が外側システムを通って拡散する、実施形態1に記載の方法。
実施形態4
前記平均パワー密度が約7.2mW/cm~約11.25mW/cmである、実施形態1~3のいずれかに記載の方法。
実施形態5
前記曝露時間が約2時間~約8時間である、実施形態1~4のいずれかに記載の方法。
実施形態6
前記曝露時間が約4時間~約24時間である、実施形態1~5のいずれかに記載の方法。
実施形態7
前記光源によって前記青紫色光送達システムへと出力された前記光がパルス化される、実施形態1~6のいずれかに記載の方法。
実施形態8
前記光源が、パルス化された光を第1のパルス周期及び第2のパルス周期で出力するように構成され;
前記第1のパルス周期で前記光源によって出力される1つ以上のパルスが第1のパルス持続時間を含み;かつ
前記第2のパルス周期で前記光源によって出力される1つ以上のパルスが第2のパルス持続時間を含む、
実施形態7に記載の方法。
実施形態9
前記第1のパルス持続時間が前記第2のパルス持続時間より長い、実施形態8に記載の方法。
実施形態10
前記光源によって出力された光を第2の時間間隔で前記青紫色光送達システムへと向けるステップをさらに含み、前記第2の時間間隔の間のエネルギー密度が、前記第1の時間間隔の間のエネルギー密度より小さい、実施形態1~9のいずれかに記載の方法。
実施形態11
前記病原体サンプルがグラム陽性病原菌である、実施形態1~10のいずれかに記載の方法。
実施形態12
前記グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、実施形態11に記載の方法。
実施形態13
前記コアが300ppm以上のヒドロキシル材料をドープしたガラスを含み、前記クラッドが300ppm以上のヒドロキシル材料をドープしたガラスを含む、実施形態2~12のいずれかに記載の方法。
実施形態14
熱可塑性ポリマーコーティング層が前記クラッドを取り囲み、かつ前記クラッドに接触する、実施形態2~13のいずれかに記載の方法。
実施形態15
一次コーティング層が前記クラッドを取り囲み、また、熱可塑性ポリマーコーティング層が、前記一次コーティング層が前記クラッドと前記熱可塑性ポリマーコーティング層との間に配置されるように前記一次コーティング層を取り囲み、前記一次コーティング層が、約250nm以上の波長で層厚100μmあたり約0.04以下の吸光度を有する脂環式エポキシを含む、実施形態2~14のいずれかに記載の方法。
実施形態16
コーティング層が前記クラッドを取り囲み、前記コーティング層に複数の散乱構造がドープされる、実施形態2~15のいずれかに記載の光送達システム。
実施形態17
前記光源が直線偏光されている、実施形態1~16のいずれかに記載の方法。
実施形態18
前記光源がレーザダイオードである、実施形態1~17のいずれかに記載の方法。
実施形態19
青紫色光送達システムを使用して殺菌する方法であって、
光源を前記青紫色光送達システムに光学的に結合するステップ;
前記青紫色光送達システムを病原体サンプルと光係合させて位置づけるステップ;
前記光源によって出力された光を第1の時間間隔で前記青紫色光送達システムに向け、それによって、約5mW/cm~約30mW/cmの平均パワー密度を含む光を約380nm~約495nmの波長である量のコロニー形成単位を含む前記病原体サンプルに照射するステップであって、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少~約9対数減少だけ低下する、ステップ
を含む、方法。
実施形態20
前記青紫色光送達システムが、
コア;
前記コアを取り囲むクラッド;
外面;並びに
前記コア、前記クラッド、又は前記コアと前記クラッドの両方の内部に位置づけられた複数の散乱構造
を備えた、1つ以上の光拡散性光ファイバを含む、実施形態19に記載の方法。
実施形態21
前記出力された光が前記光源によって前記青紫色光送達システムへと向けられるときに、前記1つ以上の光拡散性光ファイバの前記複数の散乱構造が、前記1つ以上の光拡散性光ファイバに沿って伝播する光を前記外面の方へと散乱させ、光の一部が外側システムを通って拡散する、実施形態20に記載の方法。
実施形態22
前記平均パワー密度が約7.2mW/cm~約11.25mW/cmである、実施形態19~21のいずれかに記載の方法。
実施形態23
前記病原体サンプルに対する前記光の曝露時間が、約2時間~約24時間である、実施形態19~22のいずれかに記載の方法。
実施形態24
前記病原体サンプルに対する前記光の曝露時間が、約2時間~約8時間である、実施形態19~23のいずれかに記載の方法。
実施形態25
前記光源によって前記青紫色光送達システムへと出力された前記光がパルス化される、実施形態19~24のいずれかに記載の方法。
実施形態26
前記光源が、パルス化された光を第1のパルス周期及び第2のパルス周期で出力するように構成され;
前記第1のパルス周期で前記光源によって出力される1つ以上のパルスが第1のパルス持続時間を含み;かつ
前記第2のパルス周期で前記光源によって出力される1つ以上のパルスが第2のパルス持続時間を含む、
実施形態25に記載の方法。
実施形態27
前記第1のパルス持続時間が前記第2のパルス持続時間より長い、実施形態26に記載の方法。
実施形態28
前記光源によって出力された光を第2の時間間隔で前記青紫色光送達システムへと向けるステップをさらに含み、前記第2の時間間隔の間のエネルギー密度が前記第1の時間間隔の間のエネルギー密度より小さい、実施形態19~27のいずれかに記載の方法。
実施形態29
前記病原体サンプルがグラム陽性病原菌である、実施形態19~28のいずれかに記載の方法。
実施形態30
前記グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、実施形態29に記載の方法。
実施形態31
前記病原体サンプルがグラム陰性病原菌である、実施形態19~28のいずれかに記載の方法。
実施形態32
前記グラム陰性病原菌が、緑膿菌(Pseudomonas aeruginosa)、大腸菌(Escherichia coli)、アシネトバクター・バウマンニ(Acinetobacter baumannii)、肺炎桿菌(Klebsiella pneumoniae)、及びエンテロバクター・アエロゲネス(Enterobacter aerogenes)のうちの少なくとも1つである、実施形態31に記載の方法。
実施形態33
前記コアが300ppm以上のヒドロキシル材料をドープしたガラスを含み、前記クラッドが300ppm以上のヒドロキシル材料をドープしたガラスを含む、実施形態20~32のいずれかに記載の方法。
実施形態34
熱可塑性ポリマーコーティング層が前記クラッドを取り囲み、かつ前記クラッドに接触する、実施形態20~33のいずれかに記載の方法。
実施形態35
一次コーティング層が前記クラッドを取り囲み、また、熱可塑性ポリマーコーティング層が、前記一次コーティング層が前記クラッドと前記熱可塑性ポリマーコーティング層との間に配置されるように前記一次コーティング層を取り囲み、前記一次コーティング層が、約250nm以上の波長で層厚100μmあたり約0.04以下の吸光度を有する脂環式エポキシを含む、実施形態20~34のいずれかに記載の方法。
実施形態36
コーティング層が前記クラッドを取り囲み、前記コーティング層に複数の散乱構造がドープされる、実施形態20~35のいずれかに記載の方法。
実施形態37
青紫色光を送達するための光送達システムにおいて、
約380nm~約495nmの波長で約5mW/cm~約30mW/cmの平均パワー密度を含む光を放射する青紫色光照射装置であって、ある量のコロニー形成単位を含む病原体サンプルが約30分~約48時間の曝露時間にわたって前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少~約9対数減少だけ低下する、青紫色光照射装置
を含む、光送達システム。
実施形態38
前記平均パワー密度が約7.2mW/cm~約11.25mW/cmである、実施形態37に記載の光送達システム。
実施形態39
前記曝露時間が約2時間~約8時間である、実施形態37又は38に記載の光送達システム。
実施形態40
前記曝露時間が約4時間~約24時間である、実施形態37~39のいずれかに記載の光送達システム。
実施形態41
前記光がパルス化される、実施形態37~40のいずれかに記載の光送達システム。
実施形態42
前記光が第1のパルス周期及び第2のパルス周期に従ってパルス化され;
前記第1のパルス周期が第1のパルス持続時間を含み、前記第2のパルス周期が第2のパルス持続時間を含む、
実施形態41に記載の光送達システム。
実施形態43
前記第1のパルス持続時間が前記第2のパルス持続時間より長い、実施形態42に記載の光送達システム。
実施形態44
前記病原体サンプルがグラム陽性病原菌である、実施形態37~43のいずれかに記載の光送達システム。
実施形態45
前記グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、実施形態44に記載の光送達システム。
実施形態46
前記光照射装置に光学的に接続された光源をさらに含み、前記光源が直線偏光されている、実施形態37~45のいずれかに記載の光送達システム。
実施形態47
前記光照射装置に光学的に接続された光源をさらに含み、前記光源がレーザダイオードである、実施形態37~46のいずれかに記載の光送達システム。
実施形態48
殺菌のための光送達システムにおいて、
インビボ、エクスビボ、又はインビボとエクスビボの両方で病原体に光を照射するための光照射装置であって、前記病原体がある量のコロニー形成単位を含む、光照射装置
を備えており、
前記光が、約380nm~約495nmの波長で約5mW/cm~約30mW/cmの平均パワー密度を含み、かつ
前記病原体が前記光を約30分~約48時間の曝露時間にわたって照射されるときに、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少~約9対数減少だけ低下する、
光送達システム。
実施形態49
前記光照射装置が、前記病原体から約30mm以下の距離に位置づけられる、実施形態48に記載の光送達システム。
実施形態50
前記光照射装置が、前記病原体から約2mm~約30mm以下の距離に位置づけられる、実施形態49に記載の光送達システム。
実施形態51
前記光照射装置が前記病原体と接触している、実施形態49に記載の光送達システム。
実施形態52
前記光照射装置が、前記病原体から約2mm~約30mm以下の距離に位置づけられる、実施形態48~51のいずれかに記載の光送達システム。
実施形態53
前記光がパルス化される、実施形態48~52のいずれかに記載の光送達システム。
実施形態54
前記病原体がグラム陽性病原菌である、実施形態48~53のいずれかに記載の光送達システム。
実施形態55
前記グラム陽性病原菌が、黄色ブドウ球菌(Staphylococcus aureus)、表皮ブドウ球菌(Staphylococcus epidermidis)、カンジダ・アルビカンス(Candida albicans)、化膿レンサ球菌(Streptococcus pyogenes)、及びエンテロコッカス・フェシウム(Enterococcus faecium)のうちの少なくとも1つである、実施形態49に記載の光送達システム。
実施形態56
前記病原体がグラム陰性病原菌である、実施形態48~53のいずれかに記載の光送達システム。
実施形態57
前記グラム陰性病原菌が、緑膿菌(Pseudomonas aeruginosa)、大腸菌(Escherichia coli)、アシネトバクター・バウマンニ(Acinetobacter baumannii)、肺炎桿菌(Klebsiella pneumoniae)、及びエンテロバクター・アエロゲネス(Enterobacter aerogenes)のうちの少なくとも1つである、実施形態56に記載の光送達システム。
実施形態58
前記病原体がエンテロコッカス・フェシウム(Enterococcus faecium)の場合、かつ、病原体が約6時間の曝露時間にわたって25mW/cmの平均パワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態59
前記病原体が黄色ブドウ球菌(Staphylococcus aureus)の場合、かつ、病原体が約4時間の曝露時間にわたって10mW/cmの平均パワー密度を有する前記光で、又は、約2時間の曝露時間にわたって25mW/cmのパワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態60
前記病原体が肺炎桿菌(Klebsiella pneumoniae)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態61
前記病原体がアシネトバクター・バウマンニ(Acinetobacter baumannii)の場合、かつ、病原体が約4時間の曝露時間にわたって10mW/cmの平均パワー密度を有する前記光で、又は、約2時間の曝露時間にわたって25mW/cmのパワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態62
前記病原体が緑膿菌(Pseudomonas aeruginosa)の場合、かつ、病原体が約2時間の曝露時間にわたって10mW/cmの平均パワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態63
前記病原体が化膿レンサ球菌(Streptococcus pyogenes)の場合、かつ、病原体が約2時間の曝露時間にわたって5mW/cmの平均パワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態64
前記病原体がカンジダ・アルビカンス(Candida albicans)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する前記光で、又は、約4時間の曝露時間にわたって25mW/cmのパワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
実施形態65
前記病原体が大腸菌(Escherichia coli)の場合、かつ、病原体が約6時間の曝露時間にわたって10mW/cmの平均パワー密度を有する前記光で、又は、約4時間の曝露時間にわたって25mW/cmのパワー密度を有する前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が約4対数減少値以上低下する、実施形態48~53のいずれかに記載の光送達システム。
100 照明システム
102 光出力装置
110,210,310 光拡散性光ファイバ
112 第1の端部
114 第2の端部
116 端面
120,220,320 コア
122,222,322 クラッド
125,225,325 複数の散乱構造
128,228,328 外面
130,330 一次ポリマーコーティング
132 二次ポリマーコーティング層
135,235,335 散乱粒子
152 光源
234,334 熱可塑性ポリマーコーティング層
800,900 病原体サンプル
810 96ウェルプレート
820,920 光拡散性光ファイバ
830,930 反射面
910 ペトリ皿

Claims (8)

  1. 青紫色光送達システムを使用して殺菌する方法であって、
    光源を青紫色光送達システムに光学的に結合するステップ;
    前記青紫色光送達システムを病原体サンプルと光係合させて位置づけるステップ;及び
    前記光源によって出力された光を第1の時間間隔で前記青紫色光送達システムに向け、それによって、5mW/cm ~30mW/cmの平均パワー密度を含む光を380nm~495nmの波長で30分~48時間の曝露時間の間、前記病原体サンプルに照射するステップ
    を含
    前記青紫色光送達システムが、
    コア;
    前記コアを取り囲むクラッド;
    外面;並びに
    前記コア、前記クラッド、又は前記コアと前記クラッドの両方の内部に位置づけられた複数の散乱構造
    を備えた、1つ以上の光拡散性光ファイバを含む、方法。
  2. 前記出力された光が前記光源によって前記青紫色光送達システムへと向けられるときに、前記1つ以上の光拡散性光ファイバの前記複数の散乱構造が、前記1つ以上の光拡散性光ファイバに沿って伝播する光を前記外面の方へと散乱させ、光の一部が外側システムを通って拡散する、請求項に記載の方法。
  3. 前記コアが300ppm以上のヒドロキシル材料をドープしたガラスを含み、前記クラッドが300ppm以上のヒドロキシル材料をドープしたガラスを含む、請求項又はに記載の方法。
  4. 熱可塑性ポリマーコーティング層が前記クラッドを取り囲み、かつ前記クラッドに接触する、請求項のいずれか一項に記載の方法。
  5. 一次コーティング層が前記クラッドを取り囲み、また、熱可塑性ポリマーコーティング層が、前記一次コーティング層が前記クラッドと前記熱可塑性ポリマーコーティング層との間に配置されるように前記一次コーティング層を取り囲み、前記一次コーティング層が、250nm以上の波長で層厚100μmあたり0.04以下の吸光度を有する脂環式エポキシを含む、請求項のいずれか一項に記載の方法。
  6. コーティング層が前記クラッドを取り囲み、前記コーティング層に複数の散乱構造がドープされる、請求項のいずれか一項に記載の方法。
  7. 前記病原体サンプルがある量のコロニー形成単位を含む、請求項1~のいずれか一項に記載の方法。
  8. 青紫色光を送達するための光送達システムにおいて、
    80nm~495nmの波長で5mW/cm ~30mW/cmの平均パワー密度を含む光を放射する青紫色光照射装置と、
    前記青紫光照射装置に光学的に接続された光源と、
    コア、前記コアを取り囲むクラッド、外面、並びに、前記コア、前記クラッド、又は前記コアと前記クラッドの両方の内部に位置づけられた複数の散乱構造を備えた、1つ以上の光拡散性光ファイバと、
    を含み、
    前記青紫色光照射装置は、ある量のコロニー形成単位を含む病原体サンプルが、30分~48時間の曝露時間にわたって前記光で照射された後に、前記病原体サンプルの前記コロニー形成単位の量が4対数減少~9対数減少だけ低下する、光送達システム。
JP2020560117A 2018-01-16 2019-01-16 光拡散性光ファイバの照明、青紫色光送達システムの照明、青紫色光送達システム、及び青紫色光誘導性の殺菌方法 Active JP7311535B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862617784P 2018-01-16 2018-01-16
US62/617,784 2018-01-16
US201862622503P 2018-01-26 2018-01-26
US62/622,503 2018-01-26
PCT/US2019/013733 WO2019143647A1 (en) 2018-01-16 2019-01-16 Illumination of light diffusing optical fibers, illumination of blue-violet light delivery systems, blue-violet light delivery systems, and methods for blue-violet light induced disinfection

Publications (2)

Publication Number Publication Date
JP2021511168A JP2021511168A (ja) 2021-05-06
JP7311535B2 true JP7311535B2 (ja) 2023-07-19

Family

ID=65516728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560117A Active JP7311535B2 (ja) 2018-01-16 2019-01-16 光拡散性光ファイバの照明、青紫色光送達システムの照明、青紫色光送達システム、及び青紫色光誘導性の殺菌方法

Country Status (7)

Country Link
US (2) US11850314B2 (ja)
EP (1) EP3740250B1 (ja)
JP (1) JP7311535B2 (ja)
KR (1) KR20200110673A (ja)
CN (1) CN111670054A (ja)
TW (1) TWI822720B (ja)
WO (1) WO2019143647A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227012A (zh) * 2018-12-19 2021-08-06 康宁股份有限公司 长的长度的均匀照明光漫射光纤
WO2021222664A1 (en) * 2020-04-29 2021-11-04 Nissenbaum, Israel Remote pathogen eradication
EP4142810A1 (en) 2020-04-29 2023-03-08 Israel Nissenbaum Remote pathogen eradication
EP3939618A1 (en) 2020-07-10 2022-01-19 Emoled Srl Method for inactivation of a pathogen colony in spaces, surfaces and objects using electromagnetic radiation
IT202000016864A1 (it) * 2020-07-10 2022-01-10 Emoled S R L Metodo per la inattivazione di una colonia di patogeni in spazi, superfici o oggetti usando radiazione elettromagnetica
AU2023252691B2 (en) * 2022-04-11 2024-05-02 Suntracker Technologies Ltd. Visible light chromophore excitation for microorganism control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130267888A1 (en) 2012-04-05 2013-10-10 Veritas Medical, L.L.C. Methods and apparatus to inactivate infectious agents on a catheter residing in a body cavity
WO2017205578A1 (en) 2016-05-26 2017-11-30 San Diego State University Research Foundation Photoeradication of microorganisms with pulsed purple or blue light

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989243A (en) * 1984-12-07 1999-11-23 Advanced Interventional Systems, Inc. Excimer laser angioplasty system
CN1048700C (zh) 1995-03-17 2000-01-26 中国建筑材料科学研究院 紫外激光传能光纤预制棒制造方法
JP3800743B2 (ja) * 1997-07-22 2006-07-26 住友電気工業株式会社 長周期グレーティングを備えた光ファイバ及びその製造方法
US6551346B2 (en) 2000-05-17 2003-04-22 Kent Crossley Method and apparatus to prevent infections
CA2479525A1 (en) 2002-04-02 2003-10-16 Seedling Enterprises, Llc Apparatus and methods using visible light for debilitating and/or killing microorganisms within the body
AU2003235489A1 (en) * 2002-05-08 2003-11-11 Tom Mcneil High efficiency solid-state light source and methods of use and manufacture
US20060004317A1 (en) 2004-06-30 2006-01-05 Christophe Mauge Hydrocephalus shunt
US8240312B2 (en) 2004-09-09 2012-08-14 Osnat Feuerstein Method and means for exerting a phototoxic effect of visible light on microorganisms
US20080254405A1 (en) * 2005-01-26 2008-10-16 Montgomery R Eric Method and device for improving oral health
GB0515550D0 (en) 2005-07-29 2005-09-07 Univ Strathclyde Inactivation of staphylococcus species
US7450806B2 (en) 2005-11-08 2008-11-11 Corning Incorporated Microstructured optical fibers and methods
JP5069637B2 (ja) 2007-08-17 2012-11-07 国立大学法人九州工業大学 可視光応答型光触媒皮膜
GB0721374D0 (en) * 2007-10-31 2007-12-12 Univ Strathclyde Optical device for the environmental control of pathogenic bacteria
CA2715813C (en) 2008-02-13 2017-03-21 Erich Zurfluh Light delivery device that provides a radial light output pattern
US20090257910A1 (en) 2008-04-10 2009-10-15 Segal Jeremy P Intravenous catheter connection point disinfection
US8404273B2 (en) 2009-04-24 2013-03-26 Old Dominion University Research Foundation Wound care system and bactericidal methods and devices
EP2502101B2 (en) 2009-11-20 2021-11-17 Corning Incorporated Illumination system with side-emitting optical photonic fibre and manufacturing method thereof
US8779386B2 (en) 2010-03-03 2014-07-15 U-VIVO ApS Assembly and method for disinfecting lumens of devices
AU2011253154A1 (en) 2010-05-10 2012-11-08 Puracath Medical, Inc. Systems and methods for increasing sterilization during peritoneal dialysis
US8620125B2 (en) 2011-04-29 2013-12-31 Corning Incorporated Light diffusing fibers and methods for making the same
US8980174B2 (en) 2011-05-13 2015-03-17 Bactriblue, Ltd. Methods and apparatus for reducing count of infectious agents in intravenous access system
WO2012177803A1 (en) 2011-06-20 2012-12-27 Sri International Self - sterilizing catheter with titanium dioxide photocatalyst thin film upon uv radiation
US20130035629A1 (en) 2011-08-04 2013-02-07 Conversion Energy Enterprises Optical bandage to sterilize wounds
US8805141B2 (en) 2011-10-07 2014-08-12 Corning Incorporated Optical fiber illumination systems and methods
CN104010710B (zh) 2012-05-08 2016-06-08 韩国Energy技术硏究院 采用光纤维的抗菌过滤器及包含其的空气净化器
US9795466B2 (en) 2012-05-30 2017-10-24 Klox Technologies Inc. Phototherapy devices and methods
KR101362704B1 (ko) 2012-07-25 2014-02-13 주식회사 엠이티엔지니어링 구강 살균 장치
EP2737909A1 (en) 2012-12-03 2014-06-04 Tetra Laval Holdings & Finance S.A. Device and method for irradiating packaging containers with electron beam
US10166402B2 (en) 2013-05-16 2019-01-01 Excelitas Technologies Corp. Visible light photo-disinfection patch
US20150080709A1 (en) 2013-06-27 2015-03-19 Neha Chaturvedi Implantable Medical Devices, Methods of Use, and Apparatus for Extraction Thereof
WO2015066238A2 (en) 2013-10-29 2015-05-07 Ultraviolet Interventions Inc. Systems and methods for sterilization using uv light
US20160058937A1 (en) 2013-11-05 2016-03-03 Angelo Gaitas Blood cleansing and apparatus & method
US10183144B2 (en) 2013-11-06 2019-01-22 The University Of Maryland, Baltimore Ultraviolet Sterilizing Drainage Catheter
US20150144802A1 (en) * 2013-11-25 2015-05-28 Corning Incorporated Water purification and water supply system decontamination apparatus
US11213695B2 (en) * 2013-11-26 2022-01-04 Corning Incorporated Illuminated bandage and method for disinfecting a wound
GB201322026D0 (en) 2013-12-12 2014-01-29 Siemens Water Technologies Ltd Hypochlorite strength monitor
US20160354503A1 (en) 2013-12-17 2016-12-08 Oregon Health & Science University Ultraviolet disinfection of medical device access sites
WO2015168129A1 (en) 2014-04-30 2015-11-05 The General Hospital Corporation Reducing infections from catheters and implanted devices
US20150335773A1 (en) * 2014-05-21 2015-11-26 Corning Incorporated Methods of irradiating articles and sanitizing systems employing light diffusing fibers
WO2016011233A1 (en) 2014-07-16 2016-01-21 LiteProducts LLC Device and method for inactivating pathogens using visible light
WO2016019029A1 (en) 2014-07-31 2016-02-04 Vital Vio, Inc. Disinfecting light fixture
PL3335573T3 (pl) * 2014-09-18 2020-11-16 Xenex Disinfection Services Inc. Sposoby dezynfekcji pomieszczeń i obszarów z wykorzystaniem impulsów świetlnych
US9937274B2 (en) * 2015-03-18 2018-04-10 GE Lighting Solutions, LLC Light disinfection system and method
CN204840698U (zh) 2015-06-15 2015-12-09 中国医学科学院生物医学工程研究所 一种医用弱光治疗设备
US10363325B2 (en) 2015-06-26 2019-07-30 Kenall Manufacturing Company Lighting device that deactivates dangerous pathogens while providing visually appealing light
US11273324B2 (en) 2015-07-14 2022-03-15 Illumipure Corp LED structure and luminaire for continuous disinfection
EP3322479A4 (en) 2015-07-14 2019-11-13 Vitabeam Ltd. METHOD AND DEVICES FOR CLEANING, DISINFECTION AND STERILIZATION
US9925390B2 (en) 2015-09-17 2018-03-27 Ets Technologies, Llc Mobile device case with ultraviolet light sanitizer and light therapy
EP3355940A2 (en) 2015-10-02 2018-08-08 The U.S.A. as represented by the Secretary, Department of Health and Human Services Inactivation of pathogens in ex vivo blood products in storage bags using visible light
CN105396169B (zh) 2015-11-11 2018-06-19 崔剑 一种杀菌灯具
CN106889157A (zh) 2015-12-18 2017-06-27 巴东县丰太农业专业合作社 一种天然肠衣杀菌方法
US11273006B2 (en) 2016-01-29 2022-03-15 Millennium Healthcare Technologies, Inc. Laser-assisted periodontics
KR101851576B1 (ko) 2016-05-20 2018-04-26 주식회사 젬 엘이디 메디 조명 시스템
WO2018009864A1 (en) 2016-07-07 2018-01-11 University Of Iowa Research Foundation Light based dental treatment device
US10688207B2 (en) 2016-08-02 2020-06-23 C. R. Bard, Inc. High energy visible light-based disinfection of medical components
CN106178280B (zh) 2016-08-08 2019-04-12 南昌大学 一种恒温蓝光治疗毯
CN106178282A (zh) 2016-08-31 2016-12-07 王成章 基于体外供电的微型蓝光杀菌胶囊
KR20180049757A (ko) 2016-11-03 2018-05-11 주식회사 코넥실 접속형 살균장치
US10220221B2 (en) 2016-12-28 2019-03-05 Olighter Co., Ltd. Dental device and photodynamic therapeutic system using same
US20180304094A1 (en) 2017-04-24 2018-10-25 Vanderbilt University Systems, devices, and methods for administering low-level light therapy
KR102040884B1 (ko) 2017-06-12 2019-11-06 주식회사 크림슨스타 감염방지 카테터
KR20180135256A (ko) 2017-06-12 2018-12-20 주식회사 크림슨스타 광을 이용한 감염방지 및 광역학 약물 침투 강화 하이드로겔 마스크팩 또는 감염방지 드레싱 패치
US9925285B1 (en) 2017-06-21 2018-03-27 Inikoa Medical, Inc. Disinfecting methods and apparatus
CA3071998C (en) 2017-08-03 2022-10-04 Light Line Medical, Inc. Methods and apparatus to deliver therapeutic, non-ultra violet electromagnetic radiation to inactivate infectious agents
GB201712597D0 (en) 2017-08-04 2017-09-20 Univ Strathclyde Improved bioreactors
KR101784213B1 (ko) * 2017-08-07 2017-10-12 부경대학교 산학협력단 내시경 내부 채널 표면 소독 장치 및 그 방법
US20190192879A1 (en) * 2017-12-22 2019-06-27 Inikoa Medical, Inc. Disinfecting Methods and Apparatus
KR101892996B1 (ko) 2018-01-09 2018-08-29 김갑수 태양스펙트럼에 근접한 엘이디 패키지 광원이 내장된 백색 가시광 조명등
CN108671243A (zh) 2018-07-10 2018-10-19 安徽君慎信息科技有限公司 一种血液存放用电子消毒柜

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130267888A1 (en) 2012-04-05 2013-10-10 Veritas Medical, L.L.C. Methods and apparatus to inactivate infectious agents on a catheter residing in a body cavity
WO2017205578A1 (en) 2016-05-26 2017-11-30 San Diego State University Research Foundation Photoeradication of microorganisms with pulsed purple or blue light

Also Published As

Publication number Publication date
TW201940197A (zh) 2019-10-16
US11850314B2 (en) 2023-12-26
CN111670054A (zh) 2020-09-15
US20200360548A1 (en) 2020-11-19
US20240091393A1 (en) 2024-03-21
KR20200110673A (ko) 2020-09-24
EP3740250A1 (en) 2020-11-25
WO2019143647A1 (en) 2019-07-25
TWI822720B (zh) 2023-11-21
JP2021511168A (ja) 2021-05-06
EP3740250B1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
JP7311535B2 (ja) 光拡散性光ファイバの照明、青紫色光送達システムの照明、青紫色光送達システム、及び青紫色光誘導性の殺菌方法
US10856952B2 (en) Medical device disinfecting system and method
US20180104368A1 (en) Ultraviolet-Based Sterilization
JP2020072862A (ja) 抗菌光伝送装置および表面を殺菌する方法
CN111315434B (zh) 递送治疗性非紫外线电磁辐射以使感染物灭活的方法和装置
JP2017502717A (ja) 照射される包帯および創傷を殺菌する方法
EP3411117B1 (en) Apparatus for removable catheter visual light therapeutic system
US11241585B2 (en) Method and apparatus for removable catheter visual light therapeutic system
WO2015077051A1 (en) Water purification and water supply system decontamination apparatus
JP2021506514A (ja) 消毒方法および装置
US20220249719A1 (en) Uv-c wavelength side-emitting optical fibers
JP7270620B2 (ja) 紫外光をガイドして散乱させるための光拡散性光ファイバ
US20240058483A1 (en) Anti-microbial blue light systems and methods
CA3168650C (en) Methods and apparatus for removable catheter visual light therapeutic system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230706

R150 Certificate of patent or registration of utility model

Ref document number: 7311535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150