JP7309175B2 - Calcified lesion model, manufacturing method thereof, and test method for medical device - Google Patents

Calcified lesion model, manufacturing method thereof, and test method for medical device Download PDF

Info

Publication number
JP7309175B2
JP7309175B2 JP2019094228A JP2019094228A JP7309175B2 JP 7309175 B2 JP7309175 B2 JP 7309175B2 JP 2019094228 A JP2019094228 A JP 2019094228A JP 2019094228 A JP2019094228 A JP 2019094228A JP 7309175 B2 JP7309175 B2 JP 7309175B2
Authority
JP
Japan
Prior art keywords
calcified lesion
calcified
lesion
model
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019094228A
Other languages
Japanese (ja)
Other versions
JP2020190583A (en
Inventor
清隆 岩▲崎▼
遼太 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2019094228A priority Critical patent/JP7309175B2/en
Publication of JP2020190583A publication Critical patent/JP2020190583A/en
Application granted granted Critical
Publication of JP7309175B2 publication Critical patent/JP7309175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Instructional Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

本発明は、石灰化病変を模擬した石灰化病変部を有する石灰化病変モデル及びその製造方法、並びに、当該石灰化モデルを用いた医療機器の試験方法に関する。 TECHNICAL FIELD The present invention relates to a calcified lesion model having a calcified lesion that simulates a calcified lesion, a method for producing the same, and a method for testing a medical device using the calcified model.

冠動脈血管内が石灰化して狭窄する石灰化狭窄病変の治療法の一つとして、医療機器であるバルーンやステントを用いた経皮的冠動脈インターベーション(PCI:Percutaneous coronary intervention)が行われている。PCIは、手首や足の付け根の血管からカテーテルを通し、その内部に収容されたステントやバルーンを狭窄部で拡張させることで、狭窄によって低下した血流を回復させる治療法である。このPCIは、開胸手術を行わない低侵襲な治療法であることから、高齢者や急性心筋梗塞の治療に多く適用される。ここで、ステントによる治療を行う際に、狭窄部を構成する石灰化部分の高い剛性によってステントが十分に拡張しない場合がある。このようにステントの拡張が不十分であると、血流の確保が依然困難となり、更に無理にステントを拡張すると、正常な血管壁を傷付けることもある。そこで、このような場合には、バルーンを使って石灰化部分の破壊等による前拡張を行った上で、ステントを留置することが有用となる。石灰化狭窄病変治療用のバルーンとしては、所定の拡張圧以上を作用させても、拡張径が変化しないノンコンプライアントバルーン(特許文献1等参照)や、バルーン表面に石灰化を解消する効果を有する薬剤を塗布したドラッグコートバルーン(特許文献1参照)や、バルーンの表面に取り付けられたブレードで石灰化部分を破壊するカッティングバルーン(特許文献2参照)等がある。 Percutaneous coronary intervention (PCI) using balloons and stents, which are medical devices, is performed as one of the treatment methods for calcified stenotic lesions in which the inside of a coronary artery vessel is calcified and narrowed. PCI is a therapeutic method in which a catheter is passed through a blood vessel in the wrist or base of the leg, and a stent or balloon housed therein is expanded at the stenosis to restore blood flow that has been reduced due to stenosis. Since this PCI is a minimally invasive therapeutic method that does not involve open chest surgery, it is often applied to the treatment of the elderly and acute myocardial infarction. Here, when performing treatment with a stent, the stent may not expand sufficiently due to the high rigidity of the calcified portion that constitutes the constriction. If the expansion of the stent is insufficient in this way, it is still difficult to ensure blood flow, and if the stent is forced to expand, it may damage the normal vascular wall. Therefore, in such a case, it is useful to perform pre-dilatation by using a balloon to destroy the calcified portion, etc., and then place the stent. As balloons for treatment of calcified stenoses, non-compliant balloons that do not change in expanded diameter even when a predetermined expansion pressure or more is applied (see Patent Document 1, etc.) and balloons that have the effect of eliminating calcification on the balloon surface. There are drug-coated balloons coated with a drug (see Patent Document 1) and cutting balloons in which a blade attached to the surface of the balloon destroys the calcified portion (see Patent Document 2).

石灰化狭窄病変が発生する血管内腔範囲や石灰化部分の厚みは、患者によって異なり、前述した各種バルーンによる石灰化部分の破壊等の効果を評価するためには、同一条件の設定による試験系が必要となる。現在、石灰化部分を破壊するバルーン等の治療デバイスの選択方法や開発方法は未確立であり、医療現場では、複数の治療デバイスを使用して探索的に適切な治療デバイスを選択しており、このことが医療費や手術時間の増加に繋がるという課題がある。 The range of vascular lumen where calcified stenotic lesions occur and the thickness of the calcified part differ from patient to patient. Is required. Currently, there is no established method for selecting or developing a therapeutic device such as a balloon that destroys calcified parts, and in the medical field, multiple therapeutic devices are used to exploratoryly select an appropriate therapeutic device. There is a problem that this leads to an increase in medical expenses and operation time.

ところで、特許文献3には、手術器具の開発や医学的研究を目的とした動脈石灰化モデル血管が開示されている。この動脈石灰化モデル血管は、生理食塩水等の水性溶媒にリン酸カルシウムを添加し、pH調整して再結晶化させてから超音波処理した上で、動物由来の血管内腔に注入し、冷却して沈着させることにより得られる。 By the way, Patent Document 3 discloses an arterial calcification model blood vessel for the purpose of development of surgical instruments and medical research. This arterial calcification model blood vessel was prepared by adding calcium phosphate to an aqueous solvent such as physiological saline, adjusting the pH, recrystallizing the blood vessel, sonicating it, injecting it into the lumen of the animal-derived blood vessel, and cooling it. obtained by depositing

特表2013-502984号公報Japanese Patent Application Publication No. 2013-502984 特表2008-504059号公報Japanese translation of PCT publication No. 2008-504059 特開2015-136354号公報JP 2015-136354 A

前記特許文献3の動脈石灰化モデル血管では、実際の石灰化病変の成分であるリン酸カルシウムを動物由来の血管に沈着させることで、石灰化病変部を模擬しているが、動物由来の血管を用意しなければならず、量産には一定の限界があって簡単に製造できない。また、特許文献3には、医療機器について、血管封止手術機器の封止性能を評価する目的で、動脈石灰化モデル血管を使用が開示されているものの、石灰化部分の硬さやその調整について言及されていない。従って、前記動脈石灰化モデル血管では、石灰化部分を破壊するバルーン等の医療機器である治療デバイスについて、石灰化部分の硬さ等の力学特性に応じた破壊効果の評価に用いることができない。 In the arterial calcification model blood vessel of Patent Document 3, a calcified lesion is simulated by depositing calcium phosphate, which is a component of an actual calcified lesion, in an animal-derived blood vessel, but an animal-derived blood vessel is prepared. However, mass production has certain limits and cannot be easily manufactured. In addition, although Patent Document 3 discloses the use of an arterial calcification model blood vessel for the purpose of evaluating the sealing performance of a surgical instrument for blood vessel sealing, regarding medical equipment, the hardness of the calcified part and its adjustment are disclosed. Not mentioned. Therefore, in the arterial calcification model blood vessel, a treatment device such as a balloon that destroys the calcified portion cannot be used to evaluate the destruction effect according to the mechanical properties such as the hardness of the calcified portion.

本発明は、以上のような課題に着目して案出されたものであり、その目的は、石灰化部分を破壊するバルーン等の治療デバイスの破壊効果その他の力学特性を正確に評価する際に有用であり、且つ、簡易に製造することができる石灰化病変モデル、その製造方法、及びそれを用いた医療機器の試験方法を提供することにある。 The present invention has been devised with a focus on the above problems, and its purpose is to accurately evaluate the destructive effect and other mechanical properties of therapeutic devices such as balloons that destroy calcified parts. It is an object of the present invention to provide a useful and easily manufactured calcified lesion model, a method for manufacturing the same, and a method for testing medical equipment using the same.

前記目的を達成するため、本発明は、主として、石灰化病変をモデル化した石灰化病変モデルであって、ポリウレタン樹脂及び石膏を含んでなる石灰化病変部を備える、という構成を採っている。 In order to achieve the above object, the present invention mainly employs a calcified lesion model that models a calcified lesion, which includes a calcified lesion containing polyurethane resin and gypsum.

また、本発明に係る石灰化病変モデルの製造方法は、主として、液体状のポリウレタン樹脂に粉末状の石膏を所定の割合で混合し、当該混合液を加熱した後、所定時間放置して前記混合液を硬化させることで、前記石灰化病変の力学特性を模擬した石灰化病変部を作製する、という手法を採っている。 In addition, the method for producing a calcified lesion model according to the present invention mainly comprises mixing powdery gypsum with a liquid polyurethane resin in a predetermined ratio, heating the mixed liquid, leaving it for a predetermined time, and performing the mixing. A method is adopted in which a calcified lesion that simulates the mechanical properties of the calcified lesion is produced by hardening the liquid.

更に、本発明に係る石灰化病変モデルを用いた医療機器の試験方法は、主として、前記石灰化病変モデルに所定の医療機器を接触させることで、当該医療機器の力学特性試験を人体外で行う、という手法を採っている。 Furthermore, in the method for testing a medical device using a calcified lesion model according to the present invention, a mechanical property test of the medical device is performed outside the human body by mainly bringing a predetermined medical device into contact with the calcified lesion model. , is adopted.

現在の医療現場では、石灰化狭窄病変に対し、どのような治療法と治療デバイスを選択するかはそれぞれの医師の経験によって決められており、適切なガイドラインは存在しない。そこで、本発明に係る石灰化病変モデルを用いることにより、非臨床下において、各種の治療デバイスの力学的な比較評価を定量的に行うことができ、治療デバイスの力学的な性能評価を行うガイドラインの作成に寄与できる。従って、医療現場において、石灰化病変の状態に合わせた適切な治療を可能とし、医療費の削減や健康寿命の増加に繋がることが期待できる他、より高性能の治療デバイスの早期開発も期待できる。 In current medical practice, the selection of treatment methods and treatment devices for calcified stenotic lesions is determined by each doctor's experience, and there are no appropriate guidelines. Therefore, by using the calcified lesion model according to the present invention, it is possible to quantitatively perform mechanical comparative evaluation of various treatment devices in nonclinical conditions, and a guideline for evaluating the mechanical performance of treatment devices. can contribute to the creation of Therefore, in the medical field, it is expected that appropriate treatment according to the state of calcified lesions will be possible, leading to a reduction in medical costs and an increase in healthy life expectancy, as well as the early development of higher performance treatment devices. .

また、本発明により、形状や狭窄部の厚みの異なる石灰化狭窄病変に対する治療デバイスをin vitroで評価することができる。これにより、狭窄部の形状や厚みに合わせた適切なデバイスを工学的データに基づいて示すことができ、患者もより安心して治療を受けることが可能になる。加えて、軽度な病変に対してリスクの高い治療デバイス使用の予防にもなる。また、人工的に作製した石灰化狭窄モデルを利用した石灰化狭窄病変に対する試験条件を確立することができ、第三者機関が統一した規格で治療デバイスの性能を評価することができる。これにより、治療に有効なデバイスのみを臨床に反映可能になる。 In addition, according to the present invention, therapeutic devices for calcified stenotic lesions having different shapes and thicknesses of stenotic parts can be evaluated in vitro. As a result, it is possible to suggest an appropriate device that matches the shape and thickness of the stenosis based on engineering data, and the patient can receive treatment with greater peace of mind. In addition, it prevents the use of high-risk treatment devices for mild lesions. In addition, test conditions for calcified stenotic lesions can be established using an artificially produced calcified stenotic model, and the performance of treatment devices can be evaluated according to standards unified by third-party institutions. As a result, only devices that are effective for treatment can be clinically reflected.

更に、本発明によれば、様々な石灰化病変を模擬し、力学特性や形状の異なる人工的なモデルが、入手し易い材料により簡単な手法で作製可能になる。 Furthermore, according to the present invention, artificial models simulating various calcified lesions and having different mechanical properties and shapes can be produced by a simple method using readily available materials.

本実施形態に係る石灰化病変モデルは、ポリウレタン樹脂及び石膏の各成分を含んでなる筒状の石灰化病変部と、石灰化病変部の内腔部分に設けられ、石灰化していない病変表層を模擬した病変表層部とにより構成される。なお、病変表層部については、必要に応じて省略することもできる。 The calcified lesion model according to the present embodiment includes a cylindrical calcified lesion containing components of polyurethane resin and gypsum, and a non-calcified lesion surface layer provided in the lumen of the calcified lesion. It is composed of a simulated lesion surface layer. Note that the surface layer of the lesion can be omitted if necessary.

前記石灰化病変モデルは、以下の手順で作製される。 The calcified lesion model is produced by the following procedure.

先ず、液体のポリウレタン樹脂と粉末状の石膏を真空脱泡機内で攪拌及び真空脱泡しながら混合する。 First, liquid polyurethane resin and powdery gypsum are mixed in a vacuum deaerator while being stirred and vacuum deaerated.

ここで、ポリウレタン樹脂としては、ポリオールからなる主剤とポリイソシアネートからなる硬化剤とが用意される。石膏は、ポリウレタンの結合力を弱める目的で使用される。これら主剤、硬化剤及び石膏の配合比は、所望とする石灰化病変部の硬さによって適宜選択され、石膏の配合比が高くなる程、得られる石灰化病変部の硬さが低下する。当該配合比としては、例えば、主剤:硬化剤:石膏について、2:3:6、2:3:7、2:3:8等が挙げられる。また、ここでの真空脱泡時間を変化させることによっても、得られる石灰化病変部の硬さ調整が可能となり、当該時間が長くなる程、得られる石灰化病変部の硬さが増大する。 Here, as the polyurethane resin, a main agent made of polyol and a curing agent made of polyisocyanate are prepared. Gypsum is used for the purpose of weakening the bonding strength of polyurethane. The blending ratio of the main agent, hardening agent and gypsum is appropriately selected according to the desired hardness of the calcified lesion. Examples of the compounding ratio include 2:3:6, 2:3:7, and 2:3:8 for main agent:hardener:gypsum. Also, by changing the vacuum defoaming time here, it is possible to adjust the hardness of the obtained calcified lesion, and the longer the time, the higher the hardness of the obtained calcified lesion.

次に、以上で得られたポリウレタン樹脂と石膏粉末との混合液をシリコーン製のモールドに流し込み、オーブンで所定時間加熱する。ここでの加熱温度と加熱時間は、70度、20分間を例示できる。ここで、オーブンでの加熱温度及び加熱時間を変化させることにより、得られる石灰化病変部の硬さ調整が可能となり、当該時間が長くなる程、得られる石灰化病変部の硬さが増大する。なお、前記モールドは、延出方向両端側が開放する円筒状の石灰化病変部が得られるように形成されている。 Next, the mixture of polyurethane resin and gypsum powder obtained above is poured into a silicone mold and heated in an oven for a predetermined time. The heating temperature and heating time here can be exemplified by 70 degrees and 20 minutes. Here, by changing the heating temperature and heating time in the oven, the hardness of the resulting calcified lesion can be adjusted, and the longer the time, the greater the hardness of the resulting calcified lesion. . The mold is formed so as to obtain a cylindrical calcified lesion that is open at both ends in the extending direction.

その後、オーブンで加熱された混合液をモールドとともにオーブンから取り出し、常温で所定時間放置する。ここでの放置時間としては、48時間を例示できるが、当該放置時間を変化させることにより、得られる石灰化病変部の硬さ調整が可能となり、当該時間が長くなる程、得られる石灰化病変部の硬さが増大する。 After that, the mixture heated in the oven is taken out from the oven together with the mold, and left at normal temperature for a predetermined time. As the leaving time here, 48 hours can be exemplified, but by changing the leaving time, the hardness of the obtained calcified lesion can be adjusted. The hardness of the part increases.

そして、混合液が硬化して得られた円筒状の石灰化病変部をモールドから取り外す。 Then, the cylindrical calcified lesion obtained by hardening the mixture is removed from the mold.

最後に、得られた石灰化病変部の内腔部分にシリコーンを塗布し、石灰化していない病変表層部を模擬的に形成する。ここでのシリコーンは、主剤と硬化剤とシリコーンオイルとが、例えば3:3:1の割合で配合されてなる。この配合比は、シリコーン硬化時に、実際の病変表層に近似する弾性率に相当することになり、単一材料によって、硬化していない実際の病変表層に相当する硬さの病変表層部が得られることになる。 Finally, silicone is applied to the lumen of the obtained calcified lesion to form a simulated surface layer of the lesion that is not calcified. The silicone used here is made by blending a main agent, a curing agent, and a silicone oil at a ratio of 3:3:1, for example. This compounding ratio corresponds to an elastic modulus that approximates the actual lesion surface layer when the silicone is cured, and a single material provides a lesion surface layer with a hardness equivalent to the actual uncured lesion surface layer. It will be.

なお、石灰化病変モデルとしては、全周に石灰化病変を生じた全周性病変を模擬したものの他に、モールドの形状等に応じて、血管内腔の周方向に部分的(例えば、180度の範囲)に石灰化病変を生じたタイプを含め種々の形状のものを作製することもできる。 As a calcified lesion model, in addition to models simulating circumferential lesions in which calcified lesions are formed on the entire circumference, a partial circumferential direction (for example, 180 Various shapes can also be produced, including those with calcified lesions in the range of degree).

以下、一実施例を挙げて本発明を詳細に説明するが、本発明は当該実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to one example, but the present invention is not limited to the example.

冠動脈内に発生する石灰化狭窄病変を想定し、当該病変部(狭窄部)の厚みを400、450、500μmとした外径の異なる3種類の石灰化病変モデルを以下の手順により作製した。これらモデルは、石灰化病変部の内径を1.6mm、長さ5mmに統一するとともに、その内腔部分に存在する病変表層部の厚みを50μmとして統一した。 Assuming a calcified stenotic lesion that occurs in a coronary artery, three types of calcified lesion models with different outer diameters having thicknesses of the lesion (stenosis) of 400, 450, and 500 μm were prepared by the following procedure. In these models, the inner diameter of the calcified lesion is 1.6 mm and the length is 5 mm, and the thickness of the lesion surface layer existing in the lumen is 50 μm.

(1)石灰化病変部の作製
ポリウレタン樹脂の主剤及び硬化剤と、石膏の粉末とを真空脱泡機内で混合させた。ここでの主剤、硬化剤、石膏の配合比は、2:3:8とした。具体的には、次の通りである。
(1) Preparation of calcified lesion A polyurethane resin main agent and curing agent were mixed with gypsum powder in a vacuum deaerator. The compounding ratio of the main agent, hardening agent, and gypsum was 2:3:8. Specifically, it is as follows.

主剤と石膏を2:3の割合で混ぜた容器を準備し(Aカップ)、硬化剤と石膏を3:5の割合で混ぜた容器を準備した(Bカップ)。
真空脱泡機(MCP製 vacuum casting machine)内に、Aカップ、Bカップ、石灰化病変モデルの型となるシリコーン製のモールドをセットした。ここでのシリコーンモールドは、前述の形状の石灰化病変部が得られるように、シリコーンによりアルミ型を使って予め成形した。
A container was prepared by mixing the main agent and gypsum at a ratio of 2:3 (A cup), and a container was prepared by mixing the hardener and gypsum at a ratio of 3:5 (B cup).
Silicone molds for A cup, B cup, and calcified lesion models were set in a vacuum deaerator (vacuum casting machine manufactured by MCP). The silicone mold used here was preformed with silicone using an aluminum mold so as to obtain a calcified lesion having the shape described above.

そして、真空脱泡機内でポリウレタン樹脂と石膏の混合液を攪拌し、真空脱泡を23分間行った。 Then, the mixture of polyurethane resin and gypsum was stirred in a vacuum deaerator, and vacuum deaeration was performed for 23 minutes.

真空脱泡機から、ポリウレタンと石膏粉末の混合液が注入されたシリコーンモールドが取り出され、冷蔵庫で30分間冷却した。
その後、冷蔵庫からシリコーンモールドを取り出し、70度のオーブンで20分間加熱した。
そして、オーブンからシリコーンモールドを取り出し、常温で48時間放置した。
その後、シリコーンモールドから混合液が硬化した部分を取り外し、石灰化病変部を得た。
The silicone mold filled with the mixture of polyurethane and gypsum powder was taken out from the vacuum deaerator and cooled in a refrigerator for 30 minutes.
After that, the silicone mold was taken out from the refrigerator and heated in an oven at 70°C for 20 minutes.
Then, the silicone mold was taken out from the oven and left at room temperature for 48 hours.
After that, the cured portion of the mixture was removed from the silicone mold to obtain a calcified lesion.

(2)病変表層部の作製
シリコーンの主剤、硬化剤及びシリコーンオイルを配合し、当該配合のシリコーンを、作製した石灰化病変モデルの内腔部分に塗布することで、厚み50μmとなる病変表層部を作製し、病変表層部が石灰化病変部に一体化された石灰化病変モデルを得た。ここで、シリコーンの主剤、硬化剤及びシリコーンオイルの配合比は、3:3:1とした。
(2) Preparation of lesion surface layer A lesion surface layer having a thickness of 50 μm by blending a silicone main agent, a curing agent and silicone oil, and applying the silicone containing the compound to the lumen of the prepared calcified lesion model. and obtained a calcified lesion model in which the lesion surface layer was integrated with the calcified lesion. Here, the compounding ratio of the main agent of silicone, curing agent and silicone oil was 3:3:1.

本発明者らは、以上のようにして得られた石灰化病変モデルの実用性を検証するための実験を行った。 The present inventors conducted an experiment to verify the practicality of the calcified lesion model obtained as described above.

本発明者らの研究によれば、現存するノンコンプライアントバルーンの性能に基づく石灰化病変破壊の臨床における閾値として、血管内腔の全周に石灰化病変が発生している全周性病変のときに、石灰化病変の厚みが400μm程度では破壊できるが、同500μm程度になると破壊できない傾向があることを知見した。 According to the research of the present inventors, the clinical threshold for destruction of calcified lesions based on the performance of existing non-compliant balloons is that of circumferential lesions in which calcified lesions occur all around the lumen of the blood vessel. It was found that calcified lesions with a thickness of about 400 μm can be destroyed in some cases, but there is a tendency that calcified lesions with a thickness of about 500 μm cannot be destroyed.

そこで、石灰化病変部の厚みが400、450、500μmとなる前記実施例で得られた3種類の石灰化病変モデルの内腔部分に、現存するノンコンプライアントバルーンを挿入し、石灰化病変部の破壊の可否について調べた。ここでは、ノンコンプライアントバルーンとして、Boston Scientific社製のNCイマージを使用した。なお、このノンコンプライアントバルーンの推奨拡張圧は、12.0atmであり、最大拡張圧は20.0atmとされている。 Therefore, an existing non-compliant balloon was inserted into the lumen of the three types of calcified lesion models obtained in the above example, where the thickness of the calcified lesion was 400, 450, and 500 μm, and the calcified lesion was We investigated whether or not it is possible to destroy the Here, NC image manufactured by Boston Scientific was used as a non-compliant balloon. The recommended inflation pressure for this non-compliant balloon is 12.0 atm, and the maximum inflation pressure is 20.0 atm.

以上の実験の結果、20.0atm未満の拡張圧において、石灰化病変部の厚みが400μmの石灰化病変モデルは破壊できた一方、それ以外の厚みの石灰化病変モデルは破壊できない結果が得られ、前記石灰化病変モデルは、実際の石灰化病変に近い硬さのモデルとなることが実証された。 As a result of the above experiment, at an expansion pressure of less than 20.0 atm, a calcified lesion model with a thickness of 400 μm could be destroyed, while a calcified lesion model with a thickness other than 400 μm could not be destroyed. , the calcified lesion model was demonstrated to be a model with a hardness close to that of an actual calcified lesion.

また、カッティングバルーンを使った他の実験において、前記石灰化病変モデルについて、破壊に必要となる拡張圧を石灰化病変部の厚みに対応して定量的に把握することが可能となった。 In another experiment using a cutting balloon, it became possible to quantitatively grasp the expansion pressure required for destruction of the calcified lesion model corresponding to the thickness of the calcified lesion.

Claims (7)

石灰化病変をモデル化した石灰化病変モデルであって、
ポリウレタン樹脂及び石膏からなる石灰化病変部を備えことを特徴とする石灰化病変モデル。
A calcified lesion model that models a calcified lesion,
A calcified lesion model comprising a calcified lesion made of polyurethane resin and gypsum.
前記石灰化病変部は筒状をなし、その内腔部分に、石灰化していない病変表層を模擬したシリコーン製の病変表層部が設けられていることを特徴とする請求項1記載の石灰化病変モデル。 2. The calcification according to claim 1, wherein said calcified lesion has a tubular shape, and a silicone lesion surface layer simulating a non-calcified lesion surface layer is provided in the lumen of said calcified lesion. Metabolism model. 石灰化病変をモデル化した石灰化病変モデルの製造方法であって、
液体状のポリウレタン樹脂として、主剤及び硬化剤が用意され、主剤、硬化剤及び粉末状の石膏を所定の割合で混合し、当該混合液を加熱した後、所定時間放置して前記混合液を硬化させることで、実際の石灰化病変に近い硬さを有する石灰化病変部を作製すること特徴とする石灰化病変モデルの製造方法。
A method for producing a calcified lesion model in which a calcified lesion is modeled,
A main agent and a curing agent are prepared as a liquid polyurethane resin, and the main agent, the curing agent, and powdered gypsum are mixed in a predetermined ratio, the mixed liquid is heated, and then left for a predetermined time to harden the mixed liquid. A method for producing a calcified lesion model, characterized in that a calcified lesion having a hardness close to that of an actual calcified lesion is produced by applying a calcified lesion.
前記石灰化病変部に内腔部分を形成し、当該内腔部分にシリコーンを塗布することで、石灰化していない実際の病変表層に近似する弾性率を有する病変表層部を前記石灰化病変部と一体化させることを特徴とする請求項3記載の石灰化病変モデルの製造方法。 By forming a lumen portion in the calcified lesion and applying silicone to the lumen portion, the lesion surface layer portion having an elastic modulus similar to the actual non-calcified lesion surface layer is defined as the calcified lesion portion. 4. The method for producing a calcified lesion model according to claim 3, wherein the calcified lesion model is integrated. 前記主剤と前記石膏を所定の配合比で混合したものと、前記硬化剤と前記石膏を所定の配合比で混合したものを用意し、それらを攪拌しながら真空脱泡した上で、前記加熱を行うことを特徴とする請求項3又は4記載の石灰化病変モデルの製造方法。 A mixture of the main agent and the gypsum at a predetermined mixing ratio and a mixture of the hardening agent and the gypsum at a predetermined mixing ratio are prepared, and after vacuum defoaming while stirring, the heating is performed. 5. The method for producing a calcified lesion model according to claim 3 or 4, characterized in that: 前記ポリウレタン樹脂の主剤及び硬化剤と前記石膏の配合比、前記混合液の真空脱泡時間、前記加熱の温度と時間、及び/又は前記放置の時間を変化させることで、前記石灰化病変の硬さを調整することを特徴とする請求項5記載の石灰化病変モデルの製造方法。 Hardening of the calcified lesion can be achieved by changing the blending ratio of the main agent and curing agent of the polyurethane resin and the gypsum, the vacuum degassing time of the mixed liquid, the heating temperature and time, and/or the standing time. 6. The method for producing a calcified lesion model according to claim 5, wherein the thickness is adjusted. 請求項1又は2記載の石灰化病変モデルを用いた医療機器の試験方法であって、
前記石灰化病変モデルに所定の医療機器を接触させることで、当該医療機器の力学特性試験を人体外で行うことを特徴とする医療機器の試験方法。
A method for testing a medical device using the calcified lesion model according to claim 1 or 2,
A method for testing a medical device, comprising the step of bringing a predetermined medical device into contact with the calcified lesion model to perform a mechanical property test of the medical device outside the human body.
JP2019094228A 2019-05-20 2019-05-20 Calcified lesion model, manufacturing method thereof, and test method for medical device Active JP7309175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094228A JP7309175B2 (en) 2019-05-20 2019-05-20 Calcified lesion model, manufacturing method thereof, and test method for medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094228A JP7309175B2 (en) 2019-05-20 2019-05-20 Calcified lesion model, manufacturing method thereof, and test method for medical device

Publications (2)

Publication Number Publication Date
JP2020190583A JP2020190583A (en) 2020-11-26
JP7309175B2 true JP7309175B2 (en) 2023-07-18

Family

ID=73453634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094228A Active JP7309175B2 (en) 2019-05-20 2019-05-20 Calcified lesion model, manufacturing method thereof, and test method for medical device

Country Status (1)

Country Link
JP (1) JP7309175B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386721A1 (en) 2021-08-12 2024-06-19 Asahi Intecc Co., Ltd. Vascular lesion model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224069A (en) 2009-03-20 2010-10-07 Waseda Univ Simulated constriction blood vessel and manufacturing method thereof
JP2011027795A (en) 2009-07-21 2011-02-10 Terumo Corp Biological model for training and method of manufacturing the same
JP2017149086A (en) 2016-02-26 2017-08-31 株式会社アールテック Three dimensional molded article capable of being measured by medical imaging device, manufacturing method and manufacturing device therefor
WO2017168145A1 (en) 2016-03-29 2017-10-05 Imperial Innovations Limited Angioplasty of calcified arteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944026A (en) * 1972-09-01 1974-04-25
JPS5339365A (en) * 1976-09-24 1978-04-11 Kyowa Leather Cloth Method of producing building sheet material
DE3320217A1 (en) * 1983-06-03 1984-12-06 Bayer Ag, 5090 Leverkusen INORGANIC-ORGANIC COMPOSITES AND METHOD FOR THEIR PRODUCTION
JP3094563B2 (en) * 1991-09-30 2000-10-03 日本ゼオン株式会社 Balloon catheter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224069A (en) 2009-03-20 2010-10-07 Waseda Univ Simulated constriction blood vessel and manufacturing method thereof
JP2011027795A (en) 2009-07-21 2011-02-10 Terumo Corp Biological model for training and method of manufacturing the same
JP2017149086A (en) 2016-02-26 2017-08-31 株式会社アールテック Three dimensional molded article capable of being measured by medical imaging device, manufacturing method and manufacturing device therefor
WO2017168145A1 (en) 2016-03-29 2017-10-05 Imperial Innovations Limited Angioplasty of calcified arteries

Also Published As

Publication number Publication date
JP2020190583A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
Ganguli et al. 3D printing for preoperative planning and surgical training: a review
Kim et al. Three-dimensional printing: basic principles and applications in medicine and radiology
Robinson et al. Patient-specific design of a soft occluder for the left atrial appendage
WO2010095519A1 (en) Biological model for training and method for producing biological model for training
US7008232B2 (en) Method for producing a modeling system for vessel deformations
CN103284765B (en) A kind of aneurysm vascular model and preparation method thereof
JP5290103B2 (en) Biological model for training
JP5078271B2 (en) Stent for living body expansion and method for manufacturing the same
BR112016010991B1 (en) ANTITROMBOGENIC MEDICAL DEVICES AND METHODS
JP2007526797A (en) Liquid perfluoropolymer and medical applications incorporating it
JP5136993B2 (en) Simulated stenotic blood vessel and method for producing the same
WO2007021707A2 (en) Liquid perfluoropolymers and medical and cosmetic applications incorporating same
Kazeroni et al. A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter, tested by molecular dynamics simulation
Kondo et al. Anatomical reproducibility of a head model molded by a three-dimensional printer
JP2007192822A (en) Aaa model for fatigue testing
JP7309175B2 (en) Calcified lesion model, manufacturing method thereof, and test method for medical device
Wang et al. Three-dimensional printing for cardiovascular diseases: from anatomical modeling to dynamic functionality
JP5290077B2 (en) Biological model for training and manufacturing method of biological model for training
JP2017079914A (en) Method for providing data for treatment plan determination
JP2010178809A (en) Lesion model arranged in intraluminal section of vessel
Ooms et al. Pre-procedural planning of transcatheter mitral valve replacement in mitral stenosis with multi-detector tomography-derived 3D modeling and printing: a case report
Lewitz et al. Load-bearing capacity and design advantages of a custom-made, thin pure-titanium cranioplasty (craniotop)
Grundeken et al. Differences in rotational positioning and subsequent distal main branch rewiring of the Tryton stent: An optical coherence tomography and computational study
JP5290076B2 (en) Biological model for training
Badrou et al. Characterization of Surgical Tools for Specific Endovascular Navigation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7309175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150