JP7308696B2 - 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置 - Google Patents

像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置 Download PDF

Info

Publication number
JP7308696B2
JP7308696B2 JP2019157266A JP2019157266A JP7308696B2 JP 7308696 B2 JP7308696 B2 JP 7308696B2 JP 2019157266 A JP2019157266 A JP 2019157266A JP 2019157266 A JP2019157266 A JP 2019157266A JP 7308696 B2 JP7308696 B2 JP 7308696B2
Authority
JP
Japan
Prior art keywords
blur correction
image blur
image
shake signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019157266A
Other languages
English (en)
Other versions
JP2021033233A (ja
Inventor
正史 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019157266A priority Critical patent/JP7308696B2/ja
Publication of JP2021033233A publication Critical patent/JP2021033233A/ja
Application granted granted Critical
Publication of JP7308696B2 publication Critical patent/JP7308696B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、撮像装置において、装置の振れに起因する像ブレを補正する技術に関するものである。
近年、多くの撮像装置に、撮像素子を平行移動させることにより装置の振れに起因する像ブレを補正する像ブレ補正機構(像面像ブレ補正機構)が搭載されるようになってきた。また、より高い像ブレ補正性能を実現するために、像ブレ補正制御の方法に関しても多くの提案がなされている。
特許文献1には、カメラが回転運動を行った時の像ブレ(角度ブレ)およびカメラが平行移動した時の像ブレ(シフトブレ)に関して、それぞれ信号レベルが小さい場合には補正を停止する方法が開示されている。特許文献1に記載の方法によれば、三脚に設置した場合などの振れがない状態において、像ブレの誤補正を防ぐことが出来る。結果として、適切な画像をユーザーに提供することが可能となる。
特許文献2には、1つの加速度計と2つの角速度計の値からそれぞれ回転中心を推定し、露光中は角速度計の値を用いてシフトブレ補正を行う方法が開示されている。
特開2017-194529号公報 特開2012-88466号公報
しかしながら、特許文献1および特許文献2に開示されている方法を用いた場合においても、ユーザーによってはうまくシフトブレの補正を行えない場合がある。
すなわち、特許文献1によると、カメラの状態(三脚設置などの静止状態か手持ちかの違い)によって制御を適切に切り替えることは出来るが、ユーザーの個人差に対して対応しているとは言えない。また、特許文献2においては、推定された回転中心の確からしさを判断する方法については開示されていない。
本発明は上述した課題に鑑みてなされたものであり、その目的は、撮像装置の振れに起因するシフトブレを精度よく補正できるようにすることである。
本発明に係わる像ブレ補正装置は、撮像素子により一定の時間間隔で取得された2つの画像から、第1の軸の方向と該第1の軸に直交する第2の軸の方向の2軸方向の動きベクトルを検出する動きベクトル検出手段と、撮像装置の振れを検出する振れ検出手段からの、前記第1の軸の回りの回転振れ信号と、前記第2の軸の回りの回転振れ信号と、前記第1及び第2の軸に直交する第3の軸の回りの回転振れ信号の3軸回りの回転振れ信号と、前記第1及び第2の軸の方向の2軸方向の並進振れ信号と、を取得する第1の取得手段と、前記3軸回りの回転振れ信号と、前記2軸方向の並進振れ信号のそれぞれの組み合わせについて、振れの回転半径を取得する第2の取得手段と、前記2軸方向の動きベクトルと前記3軸回りの回転振れ信号の相関を求める比較手段と、前記比較手段により求められた相関の高さに応じて、前記第2の取得手段により取得されたそれぞれの回転半径ごとの並進振れを補正する比率を調整する調整手段と、を備えることを特徴とする。
本発明によれば、撮像装置の振れに起因するシフトブレを精度よく補正することが可能となる。
レンズ交換式の一眼レフタイプのデジタルカメラの構成を示す図。 撮像素子ユニットにおける像ブレ補正機構の分解斜視図。 像ブレ補正制御部の構成を示す図。 出力補正部の内部構成を説明する図。 相関が高い信号の場合の補正方法を説明する図。 相関が低い信号の場合の補正方法を説明する図。 動きベクトル検出部の動作を説明する図。 デジタルカメラの撮像動作の流れを説明するフローチャート。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
図1は、本発明の撮像装置の一実施形態であるレンズ交換式の一眼レフタイプのデジタルカメラ100の構成を示す図である。図1(a)は一実施形態におけるデジタルカメラ100の中央断面図であり、図1(b)はデジタルカメラ100の電気的構成を示すブロック図である。
図1(a)において、デジタルカメラ100はカメラ本体1と、カメラ本体1に着脱可能に装着されるレンズ2とを備える。レンズ2は、光軸4を軸とする複数のレンズからなる撮影光学系3を備える。レンズ2は、レンズ2を透過した被写体からの光束がカメラ本体1の撮像素子ユニット6に良好に結像されるようにするために、レンズ駆動部13を備える。レンズ駆動部13は、レンズシステム制御回路12からの制御信号を受けて撮影光学系3を駆動する。撮影光学系3は、焦点調節部、絞り駆動部などを備えている。
また、カメラ本体1は、シャッタ機構16、撮像素子ユニット6、背面表示部9a、電子ビューファインダ(以下EVF)9b、振れ検出部15を備える。カメラ本体1とレンズ2の間には、カメラ本体1とレンズ2を電気的に接続する電気接点11が配置されている
図1(b)において、レンズ2は、電気的な構成として、レンズシステム制御回路12、レンズ駆動部13、メモリ25を備える。レンズシステム制御回路15は、メモリ25に記憶されているプログラムを実行することにより、レンズ2の全体を制御する。レンズ駆動部13は、レンズシステム制御回路12からの制御信号を受けて撮影光学系3を駆動する。
また、カメラ本体1は、電気的な構成として、カメラシステム制御回路5、撮像素子ユニット6、画像処理部7、メモリ8、背面表示部9aとEVF9bとを含む表示部9、操作検出部10、振れ検出部15、振れ補正駆動部14を備える。カメラシステム制御回路5は、メモリ8の不揮発性メモリ部に記憶されたプログラムを実行することにより、デジタルカメラ100の全体を制御する。撮像素子ユニット6は、被写体像を光電変換し画像信号を出力する撮像素子と、撮像素子を光軸に垂直な方向において移動(チルトを含むものとする)させる像ブレ補正機構とを有する。画像処理部7は、撮像素子ユニット6の撮像素子から出力された画像信号に必要な画像処理を行う。メモリ8は、プログラムを記憶する不揮発性メモリ部と、画像データを一時記憶する揮発性メモリ部とを有する。操作検出部10は、ユーザーの操作を受け付ける。表示部9は、撮影された画像やカメラの状態を示す情報などを表示する。振れ検出部15は、デジタルカメラ100の振れ量を検出する。振れ補正駆動部14は、撮像素子ユニット6の像ブレ補正機構を駆動して撮像素子を光軸4と垂直な面内で移動させ、像振れ補正を行う。撮像素子位置検出部21は、撮像ユニット6内の撮像素子の移動位置を検出する。
また、機能的な面から見ると、カメラ本体1およびレンズ2からなるデジタルカメラ100は、撮像手段、画像処理手段、記録再生手段、制御手段を有する。
撮像手段は、撮影光学系3 、撮像素子ユニット6、シャッタ機構16を含み、画像処理手段は、画像処理部7を含む。また、記録再生手段は、メモリ8、表示部9を含む。なお、表示部9は、背面表示部9a、カメラ本体1の上面に設けられた撮影情報を表示する不図示の小型表示パネル、EVF9bを包含する。制御手段は、カメラシステム制御回路5、操作検出部10、振れ検出部15、振れ補正駆動部14、レンズシステム制御回路12、レンズ駆動部13を含む。なお、レンズシステム制御回路12は、不図示のフォーカスレンズ、絞り、ズームなどの駆動を行う。
振れ検出部15は、複数の慣性センサからなり、デジタルカメラ100の移動、回転を検知可能である。具体的には、振動ジャイロなどが用いられる。振れ補正駆動部14は撮像素子ユニット6内の像ブレ補正機構を駆動して、撮像素子を光軸4に垂直な平面上でシフトもしくはチルト駆動させる。
上記の各手段をさらに詳しく説明すると、撮像手段は、物体からの光を、撮影光学系3を介して撮像素子の撮像面に結像させる光学処理系である。撮像素子からピント評価量/適切な露光量の情報が得られるため、この情報に基づいて撮影光学系3が調整される。これにより、適切な光量の物体光を、撮像素子上にピントが合った状態で露光させることができる。シャッタ機構16は、シャッタ幕を走行させることにより、撮像素子の露光状態と遮光状態を制御する。シャッタ機構16は、少なくとも被写体像を遮るための幕(メカ後幕)を備えており、露光の完了はシャッタ機構16によってなされる。また、本実施形態では、撮像素子がシャッタ機構16の後幕走行に先だって、ラインごとに電荷をリセットすることで露光開始のタイミングを制御するモード(電子先幕)を備えている。電子先幕のモードでは、上記の撮像素子の電荷リセット(電子先幕)とシャッタ機構16の後幕を同期させて動作させることにより露出制御を行う。電子先幕に関しては多くの先行技術文献に記載されているので、詳細な説明は省略する。
画像処理手段を構成する画像処理部7は、内部にA/D変換器、ホワイトバランス調整回路、ガンマ補正回路、補間演算回路等を有しており、記録用の画像を生成する。色補間処理部はこの画像処理部7に備えられており、ベイヤ配列の信号から色補間(デモザイキング)処理を施してカラー画像を生成する。また、画像処理部7は、予め定められた方法を用いて静止画、動画、音声などの圧縮を行う。
メモリ8は実際の記憶部を備えている。カメラシステム制御回路5により、メモリ8の記憶部へ画像データの出力を行うとともに、表示部9にユーザーに提示する像を表示する。
制御手段を構成するカメラシステム制御回路5は、撮像の際のタイミング信号などを生成して出力する。外部操作に応じて撮像系、画像処理系、記録再生系をそれぞれ制御する。例えば、シャッターレリーズボタン(不図示)の押下をカメラシステム制御回路5が検出して、撮像素子ユニット6内の撮像素子の駆動、画像処理部7の動作、圧縮処理などを制御する。さらに情報表示を行う表示部9の各セグメントの状態を制御する。また、背面表示部9aはタッチパネルを有し、操作検出部10に接続される。
次に、撮影光学系の調整動作について説明する。カメラシステム制御回路5には画像処理部7が接続されており、撮像素子ユニット6に設けられた撮像素子からの信号および、操作検出部10により検出される撮影者の操作に基づいて適切な焦点位置、絞り位置を求める。カメラシステム制御回路5は、電気接点11を介してレンズシステム制御回路12に指令を出し、レンズシステム制御回路12は不図示の焦点距離変更部および絞り駆動部を制御する。さらに、像振れ補正を行うモードにおいては、振れ検出部15から得られた信号と撮像素子位置検出部21の検出情報とに基づいて、振れ補正駆動部14を制御する。撮像素子ユニット6は、例えばマグネットと平板コイルを有する像ブレ補正機構を備える。また、撮像素子位置検出部21は、例えばマグネットとホール素子を備える。
ここで、本実施形態における像ブレ補正の制御の流れについて簡単に説明する。本実施形態では、像ブレ補正制御部は、大きく分けて、カメラの振れを検出する振れ検出部15、像ブレ補正動作を行う振れ補正駆動部14、振れ検出部15の信号から振れ補正駆動部14の目標値を生成し駆動制御を行うカメラシステム制御回路5からなる。まず、不図示のレリーズボタンを半分押し下げて撮影予備動作に入る操作(スイッチSW1のON)を操作検出部10で検出する。いわゆる構図を定めるエイミング動作である。この時、構図決めを容易にするために、振れ補正駆動部14を用いて像ブレ補正を行う。すなわち、振れ検出部15からの信号に基づいて振れ補正駆動部14を制御することにより像ブレ補正を実現する。その後、レリーズボタンを完全に押し下げて撮影動作に入る操作(スイッチSW2のON)を操作検出部10で検出する。この時、露光して取得される被写体像のぶれを抑制するために振れ補正駆動部14を用いて像ブレ補正を行う。露光後一定時間が経過すると像ブレ補正動作は停止される。
図2は、撮像素子ユニット6内の像ブレ補正機構の機械的な構成を示す分解斜視図である。図2において縦の線は光軸4と平行な方向を示す。図2では、移動しない部材(=固定部)には100番台の符号を付し、移動する部材(=可動部)には200番台の符号を付している。さらに、固定部と可動部で挟持されるボールには300番台の符号を付している。
図2において、像ブレ補正機構は、上部ヨーク101、ビス102a,102b,102c、上部磁石103a,103b,103c,103d,103e,103f、補助スペーサ104a,104b、メインスペーサ105a,105b,105c、固定部転動板106a,106b,106c、下部磁石107a,107b,107c,107d,107e,107f、下部ヨーク108、ビス109a,109b,109c、ベース板110を備える。像ブレ補正機構はさらに、FPC201、取り付け位置202a,202b,202c、可動PCB203、可動部転動板204a,204b,204c、コイル205a,205b,205c、可動枠206、ボール301a,301b,301cを備える。なお、取り付け位置202a,202b,202cは、撮像素子位置検出部21を構成する複数の位置検出素子を取り付ける位置を示す。
上部ヨーク101、上部磁石103a,103b,103c,103d,103e,103f、下部磁石107a,107b,107c,107d,107e,107f、下部ヨーク108が磁気回路を形成しており、いわゆる閉磁路をなしている。上部磁石103a,103b,103c,103d,103e,103fは上部ヨーク101に吸着した状態で接着固定されている。同様に下部磁石107a,107b,107c,107d,107e,107fは下部ヨーク108に吸着した状態で接着固定されている。上部磁石103a,103b,103c,103d,103e,103fおよび下部磁石107a,107b,107c,107d,107e,107fはそれぞれ光軸方向(図2の上下方向)に着磁されており、隣接する磁石(磁石103aと103bのような位置関係)は互いに異なる向きに着磁されている。また、対向する磁石(磁石103aと107aのような位置関係)は互いに同じ向きに着磁されている。このようにすることで、上部ヨーク101と下部ヨーク108の間に光軸方向に強い密度の磁束が生じる。
上部ヨーク101と下部ヨーク108の間には強い吸引力が生じるので、メインスペーサ105a,105b,105cおよび補助スペーサ104a,104bで適切な間隔を保つように構成されている。ここでいう適切な間隔とは、上部磁石103a,103b,103c,103d,103e,103fと下部磁石107a,107b,107c,107d,107e,107fの間にコイル205a,205b,205cおよびFPC201を配置したときに適切な空隙を確保できるような間隔である。メインスペーサ105a,105b,105cにはネジ穴が設けられており、ビス102a,102b,102cによって、上部ヨーク101がメインスペーサ105a,105b,105cに固定される。メインスペーサ105a,105b,105cの胴部にはゴムが設置されており、可動部の機械的端部(いわゆるストッパー)を形成している。
ベース板110には下部磁石107a,107b,107c,107d,107e,107fを避けるように穴が設けられており、この穴から磁石の面が突出するように構成される。すなわち、ビス109a,109b,109cによってベース板110と下部ヨーク108が固定され、ベース板110よりも厚み方向の寸法が大きい下部磁石107a,107b,107c,107d,107e,107fがベース板110から突出するように固定される。
可動枠206はマグネシウムダイキャスト若しくはアルミダイキャストで形成されており、軽量で剛性が高い。可動枠206に対して可動部の各要素が固定されて可動部を構成している。FPC201には、取り付け位置202a、202b,202cで示した位置で図2から見えない側の面に、撮像素子位置検出部21を構成する位置検出素子が取り付けられている。位置検出素子としては、前述した磁気回路を利用して位置を検出できるように、例えばホール素子などを用いることが出来る。ホール素子は小型なので、コイル205a,205b,205cの巻き線の内側に入れ子になるように配置される。
可動PCB203には、不図示の撮像素子6、コイル205a,205b,205cおよびホール素子が接続されている。可動PCB203上のコネクタを介して外部との電気的なやり取りを行う。
ベース板110には固定部転動板106a,106b,106cが、可動枠206には可動部転動板204a,204b,204cが接着固定されており、ボール301a,301b,301cの転動面を形成する。転動板を別途設けることにより、表面粗さや硬さなどを好ましい状態に設計することが容易となる。
上述した構成でコイルに電流を流すことにより、フレミングの左手の法則に従った力がコイル205a,205b,205cに発生し、可動部を動かすことが出来る。また、前述した位置検出素子であるホール素子の信号を用いることにより、撮像素子の像ブレ補正動作をフィードバック制御することが出来る。ホール素子の信号の値を適切に制御することにより、光軸4に直交する平面内で可動枠206を並進運動させるとともに光軸周りに回転させることが出来る。
取付位置202aに配置されるホール素子の信号を一定に保ったまま、取付位置202b,202cに配置されたホール素子の信号を逆位相で駆動することにより、おおよそ光軸4回りの回転運動を生み出すことが出来る。
取り付け位置202a,202b,202cで検出される磁束密度は光軸方向の磁束密度である。上部磁石103a,103b,103c,103d,103e,103fと下部磁石107a,107b,107c,107d,107e,107fなどからなる磁気回路の特性は一般的に非線形である。そのため、取り付け位置202a,202b,202cで検出される磁束密度は、必ずしも駆動範囲の全てで一定の分解能を持っているわけではない。磁束密度の変化が急峻な位置となだらかな位置があり、急峻な位置ほど検出分解能が高い。図2に示した磁気回路では、磁石の境界位置(例えば磁石103aと103bの境界位置)で最も磁束密度の変化が大きく、検出分解能が高い。
図3は、カメラシステム制御回路5、画像処理回路7、振れ検出部15、振れ補正駆動部14で構成される像ブレ補正制御部300の構成を示す図である。図3(a)は、像ブレ補正制御部300の構成を示すブロック図であり、図3(b)は比較部において比較される信号を具体的に示した表である。図3において図2と同じ機能部分には同じ番号を付している。
図3において、像ブレ補正制御部300は、振れ検出部15を含み、振れ検出部15は、振動ジャイロ15aと加速度計15bとを有する。また、像ブレ補正制御部300は、積分器/ゲイン調整器21a,21b、撮影予備動作におけるターゲット生成器22、座標変換器23、動きベクトル検出部24、加算器25、第1の帯域通過フィルタ26a,26b、比較部27を備える。さらに、像ブレ補正制御部300は、積分器28、第2の帯域通過フィルタ29a,29b、回転半径推定器30、像倍率情報記憶部31、出力補正部32、撮影動作でのターゲット生成器33を備える。ここでいう撮影予備動作と撮影動作の違いは、取得した画像を最終的に不揮発メモリに記録するか否かの違いである。記録する場合を撮影動作、記録しない場合を撮影予備動作と呼ぶ。図3の構成要素のうち、動きベクトル検出部24は画像処理部7に含まれる。
図3を用いて、像ブレ補正制御部300の各部の動作について説明する。振動ジャイロ15aは角速度計(回転振れ検出)である。加速度計15b(並進振れ検出)はカメラの並進に伴う加速度を検出する。特許文献2の場合と同様に、本実施形態においても回転半径の推定処理が行われる。すなわち、加速度計15bの出力を積分器28で積分して並進の速度信号とし、さらに第2の帯域通過フィルタ29bを介して回転半径の推定に用いる帯域の速度信号を抽出する。一方、振動ジャイロ15aからの信号も第2の帯域通過フィルタ29aを介して回転半径の推定に用いる帯域の角速度信号を抽出する。回転半径推定器30では、前述の速度信号と角速度信号を比較し(速度信号を角速度信号で除算し)、回転半径を算出し推定する。この回転半径の求め方は、特許文献2に記載されているため、ここでは詳しい説明は省略する。
ここで、加速度計15bは、少なくとも撮像素子の面内方向の2軸の加速度を検出可能である。例えば、撮像素子の長手方向をx、短手方向をyとして、x,yの2軸方向の加速度を検出する。それを積分した速度信号もx,yの2軸方向の値が得られ、図3(a)では、第2の帯域通過フィルタ29bの出力信号vX,vYとして示している。振動ジャイロ15aはx軸周りのPitch、y軸周りのYaw,z軸周りのRollの3軸方向の角速度を検出可能である。この信号を、図3(a)では振動ジャイロ15aの出力信号ωP/Y/Rとして示している。具体的な構成としては振動ジャイロ15a、加速度計15bともに1軸検知可能なセンサを複数設けてもよいし、多軸検知可能なセンサ(3軸加速度計など)を設けてもよい。
このような構成となっているため、回転半径推定器30は多入力/多出力のシステムとなっている。図3(b)にそのことを模式的に示している。角速度の入力が横方向に記載されており、ωP,ωY,ωRの3次元の信号が示されている。速度の入力が縦方向に記載されており、vX,vYの2次元の信号が示されている。なお、δX,δYについては後述する。結果として信号の組み合わせは6つある。ωPとvXの組み合わせをI、ωYとvXの組み合わせをII、以下表に示されるように順次組み合わせがあり、ωRとvYの組み合わせをVIとして図示している。このそれぞれについて回転半径の推定を行う。そのため回転半径推定器30の出力は6次元の信号となる。
次に、撮影予備動作における比較部の動作について説明する。
本実施形態の撮像装置では、撮影予備動作で表示部9に画像を表示する場合(いわゆるライブビュー)において、像ブレ補正動作を行う。図3(a)においては、振動ジャイロ15aの信号を積分器/ゲイン調整器21aを介して角度信号に変換した後、撮影予備動作におけるターゲット生成器22に入力することにより、撮像素子ユニット6の各アクチュエータの目標信号C1/2/3を生成する。この目標信号は図2で説明した位置検出素子の目標値となっている。フィードバック制御によって位置検出素子が目標信号となるようにコイル205a,205b,205cの通電量が調整される。これにより像ブレ補正動作が実現される。
このとき、撮影予備動作におけるターゲット生成器22はエイミングのしやすさを実現できる特性であればよく、撮影動作でのストロークを残せるように適切な制御がなされる。ここで、撮像素子上の被写体像を考えると、元々発生していたブレから、上記の像ブレ補正動作で像ブレが抑制された後のブレのみが残る。すなわちブレ残りが観測される。撮像素子により一定間隔で画像を取得し、動きベクトル検出部24で時間間隔を有する2つの画像間の動き量を計測する。動きベクトル検出部24の動作については図6を用いて後述する。動きベクトル検出部24ではいわゆるブレ残り量が観測される。
座標変換器23は位置検出素子の目標信号C1/2/3を撮像素子6の移動量に変換する。すなわち各コイルでの駆動量を撮像素子6の動きに変換する。この量が像ブレ補正を行った量となる。加算器25において、座標変換器23の出力と、動きベクトル検出部24の出力を加算することによりデジタルカメラ100に作用した振れ量全体を求めることができる。求められたデジタルカメラ100に作用した振れ量を第1の帯域通過フィルタ26aに通すことにより、相関を求めるために用いる帯域のみを抜き出す。同時に振動ジャイロ15aの出力信号を第1の帯域通過フィルタ26bに通して、同様に相関を求めるために用いる帯域のみを抜き出す。これらの信号を比較部27に入力して相関を求める。具体的な相関の求め方については図4、図5を用いて後述する。
回転半径推定器30と同様に比較部27の入出力について考える。比較部27に第1の帯域通過フィルタ26bを通して入力される信号は、ωP、ωY、ωRの3次元である。一方で、動きベクトル検出部24の出力は2つの画像のX,Y方向のずれ(正確には差分)である。第1の帯域通過フィルタ26aの出力も動きベクトル検出部24の出力と同じ次元であり、x,yの2方向の2つの画像間の動き量(=差分値)が出力される。これを図3(a)ではδX、δYとして図示している。
すなわち、比較部27は回転半径推定器30と同じ多入力/多出力のシステムとなっている。図3(b)にそのことを模式的に示している。角速度の入力が横方向に記載されており、ωP,ωY,ωRの3次元の信号が示されている。動きベクトル検出部24からの入力が縦方向に記載されており、δX,δYの2次元の信号が示されている。結果として信号の組み合わせは6つある。ωPとδXの組み合わせをI、ωYとδXの組み合わせをII、以下表に示されるように順次組み合わせがあり、ωRとδYの組み合わせをVIとして示している。このそれぞれについて相関の計算を行う。そのため比較部27の出力は6次元の信号である。
最後に撮影動作での信号の処理方法について説明する。基本的な動作は特許文献2と同じである。特許文献2では角速度計の信号をHPF/積分フィルタ、利得調整に通した後、回転半径に対応させて出力補正部でゲインを調整する。この時ズームおよびフォーカス情報から撮影倍率を考慮してゲインの調整を実施する。
本実施形態においても、振動ジャイロ15a(角速度計に相当)の信号を積分器/ゲイン調整器21a(HPF/積分フィルタ、利得調整に相当)を用いて角度信号に変換し、出力補正部32で回転半径に対応するゲイン調整を行う。回転半径に関する情報は回転半径推定器30から得る。回転半径に関する情報に加えて、像倍率情報記憶部31から像倍率情報を取得して、対応したゲイン調整を実施する。回転半径および像倍率とゲイン補正の関係などについては、特許文献2に開示されているので、ここでは詳しい説明は省略する。
本実施形態の1つの特徴は、比較部27の出力を出力補正部32に与えることである。比較部27において相関が高いと判断(判定)された場合と相関が低いと判断された場合とで、慣性センサからその軸方向への制御ゲインを変更する。制御ゲインは、検出したシフト振れに対する、像ブレ補正機構により補正をする量の比率であり、補正比率と呼ぶこともある。相関を利用したゲインの調整方法については、図4を用いて後に詳述する。
具体的に一例を説明すると、ωYとδXの相関が高いと判断された場合(図3(b)のIIの組み合わせが高い相関を示した場合)、ωYを用いたX方向の並進に伴う像ブレ補正を積極的に行う。相関が低い場合はその反対に、ωYを用いたX方向の並進に伴う像ブレ補正の度合いを減らす。相関が低い場合は、像ブレ補正の度合いを0として、相関の低い軸については補正を停止してもよい。これにより、相関が高い軸が相関の低い軸よりも補正され、適切なシフトブレ補正が実現される。特に、個人差、姿勢差など、デジタルカメラ100の状態によって相関の状況が変わっても、それに対応することができる。
出力補正部32からの情報θP’、θY’、θR’は、撮影動作でのターゲット生成器33に送られ、各アクチュエータの目標信号C1/2/3を生成する。この目標信号は図2で説明した位置検出素子の目標値となる。フィードバック制御によって位置検出素子が目標信号となるようにコイル205a,205b,205cの通電量が調整される。これにより像ブレ補正動作が実現される。
この時、撮影動作におけるターゲット生成器33は完全にブレを除去することが望まれる。前述したように出力補正部32での補正が適切に行われることにより、相関が高く効果がある組み合わせでのシフトブレ補正が行われる。結果として、撮像素子上の被写体像を考えると、元々の発生していたブレから、角度ブレとシフトブレの双方が上記の像ブレ補正動作で抑制される。結果として高品位な画像を提供することができる。
図4を用いて、出力補正部32の内部構成について説明する。図4において図3と同じ機能部分には同じ符号を付している。
出力補正部32は、補正ゲイン演算器32a,補正ゲイン調整器32b、ゲイン部32c1,32c2,32c3,32c4,32c5,32c6、加算器32d1,32d2,32d3,32d4を備えて構成されている。
図4では、回転半径推定器30で得られた回転半径をそれぞれL1,L2,L3,L4,L5,L6として示している。添え字の1から6は図3(b)の表に示したローマ数字に対応している。同様に比較部27で得られた相関をそれぞれC1,C2,C3,C4,C5,C6として示している。添え字の1から6は図3(b)の表に示したローマ数字に対応している。
補正ゲイン演算器32aは、特許文献2に記載された方法に基づいて各軸方向のゲイン補正量を決定する。回転半径L1と像倍率βから決定されるゲインをG1、回転半径L2と像倍率βから決定されるゲインをG2、以下同様にしてG1からG6を示している。
補正ゲイン調整器32bは、比較部27で得られた相関C1からC6を受け取り、補正ゲインを調整する。前述したように、相関が所定より高いと判断された場合は、補正ゲイン演算器32aの値をそのまま出力する。一方で、相関が所定以下と判断された場合は、補正ゲイン演算器32aの値をより小さい値として出力する。これにより、相関が低く弊害が発生する可能性があるセンサからの出力をカットする。
補正ゲイン調整器32bの出力がゲイン部32c1,32c2,32c3,32c4,32c5,32c6にそれぞれ設定される。ゲイン部32c1,32c2,32c3,32c4,32c5,32c6と加算器32d1,32d2,32d3,32d4の演算においては、θP、θY、θRとθP’、θY’、θR’は以下の式(1)ような関係になる。
θP’=θP+G1*θP+G2*θY+G3*θR
θY’=θY+G4*θP+G5*θY+G6*θR (1)
θR’=θR
シフトブレの像ブレ補正が有効に作用しない場合は、比較部27での相関が低くなる。その場合ゲインG1からG6が小さな値となる。式(1)を見ると明らかなように、例えばG1~G6=0とすると、θP’=θP、θY’=θY、θR’=θRとなり、シフトブレの像ブレ補正は行われず角度ブレのみが補正される。
一方で、シフトブレの像ブレ補正が有効に作用する場合は、比較部27での相関が高くなる。その場合ゲインG1からG6は値を持つようになる。式(1)を見ると明らかなように、この場合は加算されることによって角度ブレ、シフトブレの双方を補正する目標値(像ブレ補正量)が得られる。
図5および図6を用いて、比較部27での相関の求め方について説明する。図5は相関が高い場合の例を、図6は相関が低い場合の例を示している。
図5(a)および図6(a)のグラフでは、横軸が時間、縦軸が信号のレベルを示している。図5(b)および図6(b)のグラフでは、横軸が動きベクトル検出部24の出力、縦軸が慣性センサの出力を示している。図5および図6において、41は動きベクトル検出部24の出力を、42は慣性センサの出力を、43は主成分分析をした場合の第1主成分方向と線形近似したときの近似線を、44は主成分分析をした場合の第2主成分方向を、45はデータが分布する範囲をそれぞれ示している。
まず、図5の信号について考える。図5(a)に示した例では、動きベクトル検出部24の出力41が増えると、慣性センサの出力42も増えており、相似に近い波形が得られている。すなわち正の相関が高いといえる。相関を判断するには、動きベクトル検出部24の出力41と慣性センサの出力42で相関係数を計算すればよい。なお、本実施形態における相関の高さの判断においては、相関は必ずしも正の相関である必要はなく負の相関であっても相関が高ければ相関が高いと判断すればよい。相関係数で言えば、絶対値が1に近ければ相関が高いと言うことができる。
このように相関が所定より高い信号をそれぞれ縦軸横軸にとって表現すると図5(b)のようになる。一方の変数に対して他方の変数が相似形をなして変化するため、近似直線43の周りに信号の分布45が形成される。このとき、動きベクトル検出部24の出力41と慣性センサの出力42で主成分分析をすると、第1主成分として43で示した軸方向が、第2主成分として44で示した軸方向が得られる。明らかに43で示した方向の分散が大きく、44で示した方向の分散が小さい。第1主成分と第2主成分の分散の比を求めることにより、信号間の相関の指標としてもよい。すなわち第2主成分の分散に対して第1主成分の分散が十分に大きい場合には相関が高いと判断できる。
次に、図6の信号について考える。図6(a)に示した例では、動きベクトル検出部24の出力41と慣性センサの出力42の間に連動する様子がみられない。このような場合は相関が低いと判断できる。図5の例と同様に相関係数を求めると、ゼロに近い値となる。
このように相関が低い信号をそれぞれ縦軸横軸にとって表現すると図6(b)のようになる。一方の変数に対して他方の変数が全く異なった変化をするため、近似直線43の周りに信号の分布45が集中しない。このような場合、動きベクトル検出部24の出力41と慣性センサの出力42で主成分分析をすると、第1主成分として43で示した軸方向が、第2主成分として44で示した軸方向が得られる。この場合は図5と異なり、43で示した方向の分散と44で示した方向の分散が同程度の値を示す。言い換えると、第1主成分と第2主成分の分散の比が1に近くなる。すなわち第1主成分の分散と第2主成分の分散の比が1に近い場合には相関が低いと判断できる。
図7を用いて動きベクトル検出部24の動作について説明する。動きベクトル検出部24は、2つの画像間の動き量を計測する。図7(a)は計算の1サンプル前に取得された画像を、図7(b)は計算時に取得された画像を、図7(c)は動きを分かりやすくするために図7(a)および図7(b)の画像を重ねた画像をそれぞれ示している。
図7において、81は取得した画像の境界を、82a,82bは被写体を、83は動きベクトル算出に用いる領域を、84は求めた動きベクトルをそれぞれ示している。動きベクトルを求める方法は多数の方法が提案されているが、ここでは説明を分かりやすくするためにブロックマッチングを用いた方法について説明する。その他にも特徴点を用いる方法などがあるが、本実施形態においては、動きベクトルが安定して取得できればどのような方法を用いてもよい。
動きベクトル検出部24では、図7(a)に示す1サンプル前に取得した画像のうちテンプレートとなる領域を決定する。図7(a)ではテンプレート領域を83aで示した。テンプレート領域83aは、被写体82aの特徴的な部分を含むように設定すると都合がよい。次に、図7(b)に示した計算時に取得された画像中で領域83aと類似している領域を探索する。例えば2つの画像間のXOR(排他的論理和)を計算してその値が最小となる領域を探すなどすればよい。その結果得られた領域を83bで示した。つまり、領域83aの画像に対して図7(b)では領域83b内の画像が最も類似していると判断されたことを示す。図7(c)に示すように領域83aから領域83bに向かうベクトル84が動きベクトルであり、2つの画像間の動き量を示している。
図7に示すように、撮像素子6により一定間隔で画像を取得し、異なる時間に取得された2つの画像間の比較を行うことにより、いわゆる動きベクトルを得ることができる。
図8を用いて、本実施形態における撮像動作の流れについて説明する。
ステップS100は動作の開始を示すステップであり、デジタルカメラ100の電源のONが対応する。
ステップS110では、デジタルカメラ100の電源がOFFされたか否かを確認する。電源がOFFにされた場合はステップS120に進み動作を停止する。そうでない場合はステップS130に進む。
ステップS130では、ユーザーがデジタルカメラ100を構えたか否かを判断する。カメラの振れは、ユーザーの個人差に加えて、姿勢差(デジタルカメラ100の構え方など)の影響も受けるため、構図を決めて構えた後にゲイン推定動作を行うことが好ましい。例えば、シャッターレリーズボタンを半分押し下げて撮影予備動作に入る操作(スイッチSW1のON)や、慣性センサの信号レベルなどを用いて構えたことを判断すればよい。構えたと判断された場合はステップS140に進み、構えていないと判断された場合はステップS110に戻る。
ステップS140では、本実施形態の要部であるゲイン推定動作を行う。この内容については図8(b)を用いて説明する。その後ステップS150に進む。
ステップS150では、レリーズボタンを完全に押し下げて撮影動作に入る操作(スイッチSW2のON)がなされたか否かを判断する。スイッチSW2がONされた場合はステップS160に進む。そうでない場合はステップS110に戻る。
ステップS160では撮影動作を行うとともに、像ブレ補正制御部300においては、撮影動作でのターゲット生成器33の出力に基づいて振れ補正駆動部14の制御がなされる。
図8(b)において、ステップS200はゲイン推定動作の開始を示すステップである。
ステップS210では、撮像素子の信号の読み出しを行う。ここでは、ライブビュー状態にある撮像素子から画像を取得する。
ステップS220では、動きベクトルの算出を行う。ステップS210で求めた画像が現在の画像であり、図7(b)に相当する。メモリ8に保持しておいた1サンプル前に取得された画像との比較を行い、動きベクトルの算出を行う。さらにはステップS210で求めた画像を次のタイミングでの比較対象とするためにメモリ8に保持する。
ステップS230では、ブレ量を算出する。具体的には、動きベクトル検出部24からの動きベクトルと振動ジャイロ15aからの信号から、フィルタ26a,26bを用いて、必要な帯域の信号を抽出する。
ステップS240では、比較部27がフィルタ26aの出力とフィルタ26bの出力を比較する。比較部27で相関係数等を求めることにより、慣性センサの出力と動きベクトル検出部24の出力の相関を求める。
ステップS250では、比較部27で求めた相関関係に基づいて、出力補正部32のゲインを決定する。具体的には、図3に示した回転半径推定器30を動作させ回転半径を求めるとともに、図4に示した補正ゲイン演算器32a、補正ゲイン調整器32bを動作させて、ゲインG1~G6を求める。ここで設定されたゲインがステップS160で用いられて、撮影動作でのターゲット生成器33の出力が適切に調整される(補正量取得)。
ステップS260では、元のステップS140に戻る。
以上説明したように、本実施形態によれば、ユーザーの個人差、姿勢差等に対応して適切なシフトブレ補正を実施することができ、結果として高品位な画像を提供することが可能となる。
(変形例)
上述の実施形態では、撮像素子を光軸に垂直な方向において移動させる像ブレ補正機構を像ブレ補正手段として備える撮像装置について説明した。しかしながら、像ブレ補正手段はこれに限定されるものではない。例えば、動画撮影やライブビュー表示時の像ブレ補正であれば、撮像素子から画像信号を読み出す領域の位置をフレーム毎に変更する、いわゆる電子手振れ補正を用いて像ブレ補正を行ってもよい。また、撮影光学系を構成するレンズを駆動して像ブレを補正してもよい。
(他の実施形態)
また本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読み出し実行する処理でも実現できる。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現できる。
発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。
1:カメラ本体、2:レンズ、3:撮影光学系、5:カメラシステム制御回路、6:撮像素子ユニット、12:レンズシステム制御回路、13:レンズ駆動部、14:振れ補正駆動部、15:振れ検出部、21:撮像素子位置検出部

Claims (9)

  1. 撮像素子により一定の時間間隔で取得された2つの画像から、第1の軸の方向と該第1の軸に直交する第2の軸の方向の2軸方向の動きベクトルを検出する動きベクトル検出手段と、
    撮像装置の振れを検出する振れ検出手段からの、前記第1の軸の回りの回転振れ信号と、前記第2の軸の回りの回転振れ信号と、前記第1及び第2の軸に直交する第3の軸の回りの回転振れ信号の3軸回りの回転振れ信号と、前記第1及び第2の軸の方向の2軸方向の並進振れ信号と、を取得する第1の取得手段と、
    前記3軸回りの回転振れ信号と、前記2軸方向の並進振れ信号のそれぞれの組み合わせについて、振れの回転半径を取得する第2の取得手段と、
    前記2軸方向の動きベクトルと前記3軸回りの回転振れ信号の相関を求める比較手段と、
    前記比較手段により求められた相関の高さに応じて、前記第2の取得手段により取得されたそれぞれの回転半径ごとの並進振れを補正する比率を調整する調整手段と、
    を備えることを特徴とする像ブレ補正装置。
  2. 前記調整手段は、前記比較手段により、前記動きベクトルと前記回転振れ信号の相関が高いと判定された場合には、相関が低いと判定された場合よりも前記進振れを補正する比率を高くすることを特徴とする請求項に記載の像ブレ補正装置。
  3. 前記比較手段は、前記動きベクトルと前記回転振れ信号の相関係数を求めることにより、前記動きベクトルと前記回転振れ信号の相関を求めることを特徴とする請求項1または2に記載の像ブレ補正装置。
  4. 前記比較手段は、前記動きベクトルと前記回転振れ信号の主成分分析を行い、第1主成分と第2主成分の分散の比を求めることにより、前記動きベクトルと前記回転振れ信号の相関を求めることを特徴とする請求項1または2に記載の像ブレ補正装置。
  5. 前記調整手段により調整された像ブレ補正量に基づいて、像ブレ補正手段による像ブレ補正を制御する制御手段をさらに備えることを特徴とする請求項1乃至のいずれか1項に記載の像ブレ補正装置。
  6. 前記撮像素子と、
    請求項に記載の像ブレ補正装置と、
    前記制御手段により制御される前記像ブレ補正手段とを備え、
    前記像ブレ補正手段は、前記撮像素子を光軸に垂直な方向において移動させることを特徴とする撮像装置。
  7. 前記撮像素子と、
    請求項に記載の像ブレ補正装置と、
    前記制御手段により制御される前記像ブレ補正手段とを備え、
    前記像ブレ補正手段は、前記撮像素子からの画像信号の読み出し領域の位置を変更することを特徴とする撮像装置。
  8. 撮像素子により一定の時間間隔で取得された2つの画像から、第1の軸の方向と該第1の軸に直交する第2の軸の方向の2軸方向の動きベクトルを検出する動きベクトル検出工程と、
    撮像装置の振れを検出する振れ検出手段からの、前記第1の軸の回りの回転振れ信号と、前記第2の軸の回りの回転振れ信号と、前記第1及び第2の軸に直交する第3の軸の回りの回転振れ信号の3軸回りの回転振れ信号と、前記第1及び第2の軸の方向の2軸方向の並進振れ信号と、を取得する第1の取得工程と、
    前記3軸回りの回転振れ信号と、前記2軸方向の並進振れ信号のそれぞれの組み合わせについて、振れの回転半径を取得する第2の取得工程と、

    前記2軸方向の動きベクトルと前記3軸回りの回転振れ信号の相関を求める比較工程と、
    前記比較工程おいて求められた相関の高さに応じて、前記第2の取得工程において取得されたそれぞれの回転半径ごとの並進振れを補正する比率を調整する調整工程と、
    を有することを特徴とする像ブレ補正装置の制御方法。
  9. 請求項に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。
JP2019157266A 2019-08-29 2019-08-29 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置 Active JP7308696B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157266A JP7308696B2 (ja) 2019-08-29 2019-08-29 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157266A JP7308696B2 (ja) 2019-08-29 2019-08-29 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置

Publications (2)

Publication Number Publication Date
JP2021033233A JP2021033233A (ja) 2021-03-01
JP7308696B2 true JP7308696B2 (ja) 2023-07-14

Family

ID=74677340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157266A Active JP7308696B2 (ja) 2019-08-29 2019-08-29 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置

Country Status (1)

Country Link
JP (1) JP7308696B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217334A (ja) 2010-04-02 2011-10-27 Canon Inc 撮像装置および撮像装置の制御方法
JP2012088466A (ja) 2010-10-19 2012-05-10 Canon Inc 防振制御装置、撮像装置、及び防振制御方法
JP2014191017A (ja) 2013-03-26 2014-10-06 Canon Inc 撮像装置及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011217334A (ja) 2010-04-02 2011-10-27 Canon Inc 撮像装置および撮像装置の制御方法
JP2012088466A (ja) 2010-10-19 2012-05-10 Canon Inc 防振制御装置、撮像装置、及び防振制御方法
JP2014191017A (ja) 2013-03-26 2014-10-06 Canon Inc 撮像装置及びその制御方法

Also Published As

Publication number Publication date
JP2021033233A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6486656B2 (ja) 撮像装置
KR101528860B1 (ko) 디지털 촬영 장치의 흔들림 보정 방법 및 장치
US9531938B2 (en) Image-capturing apparatus
TWI394435B (zh) 用於測定一成像裝置之移動的方法及系統
JP2019029962A (ja) 撮像装置およびその制御方法
US10887521B2 (en) Imaging apparatus and method for controlling the same
JP7257774B2 (ja) 撮像システム及びその制御方法、レンズユニット、撮像装置、プログラム、記憶媒体
JP2019029968A (ja) 撮像装置およびその制御方法
CN112135037B (zh) 稳定控制设备、摄像设备和稳定控制方法
JP7308696B2 (ja) 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置
JP6395401B2 (ja) 像振れ補正装置およびその制御方法、光学機器、撮像装置
JP7057628B2 (ja) 撮像装置、及び、その像ぶれ量算出方法
JP2019062340A (ja) 像振れ補正装置および制御方法
JP7187184B2 (ja) 撮像装置及び撮像装置の制御方法
JP2022124048A (ja) レンズ装置、撮像システム、レンズ装置の制御方法、およびプログラム
JP7182994B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP6833381B2 (ja) 撮像装置、制御方法、プログラム、および、記憶媒体
JP7292145B2 (ja) 回転半径演算装置および回転半径演算方法
JP7401278B2 (ja) 撮像装置およびその制御方法
JP7426841B2 (ja) 像ブレ補正装置及びその制御方法、プログラム、記憶媒体
US11956538B2 (en) Image capturing apparatus that performs blur correction and method of controlling same
JP2012054919A (ja) 撮像装置
JP2023140195A (ja) 制御装置、レンズ装置、撮像装置、カメラシステム、制御方法、及びプログラム
WO2019203147A1 (ja) 撮像装置
JP2022120685A (ja) 防振制御装置及び方法、及び撮像装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R151 Written notification of patent or utility model registration

Ref document number: 7308696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151