JP7308357B2 - Heterotrinuclear metal organic alkyne complex, method for producing the same, and use thereof - Google Patents

Heterotrinuclear metal organic alkyne complex, method for producing the same, and use thereof Download PDF

Info

Publication number
JP7308357B2
JP7308357B2 JP2022517409A JP2022517409A JP7308357B2 JP 7308357 B2 JP7308357 B2 JP 7308357B2 JP 2022517409 A JP2022517409 A JP 2022517409A JP 2022517409 A JP2022517409 A JP 2022517409A JP 7308357 B2 JP7308357 B2 JP 7308357B2
Authority
JP
Japan
Prior art keywords
group
groups
complex
substituents
dpmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022517409A
Other languages
Japanese (ja)
Other versions
JP2022549155A (en
Inventor
陳忠寧
肖暉
張続
王金雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Publication of JP2022549155A publication Critical patent/JP2022549155A/en
Application granted granted Critical
Publication of JP7308357B2 publication Critical patent/JP7308357B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

発明の詳細な説明Detailed description of the invention

本発明は2019年9月17日に中国国家知識産権局に提出された、出願番号が201910877419.8で、発明名称が「ヘテロ三核金属有機アルキン錯体及びその製造方法並びに用途」である先行出願の優先権を主張する。当該出願の全文が引用により本願に組み込まれる。 The present invention is the prior application number 201910877419.8 filed with the State Intellectual Property Office of China on September 17, 2019, and the invention title is "Heterotrinuclear metal organic alkyne complex and its preparation and use" Claim priority of the application. The entire text of that application is incorporated herein by reference.

〔技術分野〕
本発明は発光材料及び有機発光ダイオードの技術分野に属し、具体的には、リン光PtM(M=Au(I)、Ag(I)、Cu(I))ヘテロ三核金属有機アルキン錯体、その合成方法及び有機発光ダイオードにおけるリン光材料としてその使用に関する。
〔Technical field〕
The present invention belongs to the technical field of light-emitting materials and organic light-emitting diodes, specifically phosphorescent Pt 2 M (M=Au(I), Ag(I), Cu(I)) heterotrinuclear metal organic alkyne complexes , its method of synthesis and its use as a phosphorescent material in organic light-emitting diodes.

〔背景技術〕
有機発光ダイオード(OLED)は薄膜発光素子であり、そのカソードとアノードの間には一般に発光層などの複数の有機薄膜中間層を含み、低い駆動電圧(3-12V)の作用下で電気エネルギーを光エネルギーに変換する、即ち、電界発光することができるため、フラットパネルディスプレイと照明分野で幅広い利用が見込まれる。有機発光ダイオードのコアは発光薄膜材料であり、発光材料の飛躍的な進歩も電界発光効率の高い表示と照明の普及を実現するための鍵であり、電界発光技術をめぐる競争で焦点となっている。従来OLEDの商用発光材料は主にリン光環状金属化されたイリジウム(III)錯体であり、そのエネルギー利用効率は100%に達しているが、価格が高い、色度が不完全である(青色リン光材料の不足のため)、イリジウム資源が不足するなどの難しい課題がある。そのために、新しい構造を有し、製造方法がシンプルで、合成収率が高い新規な低コスト発光材料を開発することは極めて現実的に大きな意義がある。
[Background technology]
Organic light-emitting diodes (OLEDs) are thin-film light-emitting devices that generally contain multiple organic thin-film interlayers, such as light-emitting layers, between their cathodes and anodes to emit electrical energy under the action of low drive voltages (3-12V). Since it can be converted into light energy, that is, it can be electroluminescent, it is expected to be widely used in flat panel display and lighting fields. The core of organic light-emitting diodes is light-emitting thin film materials, and the breakthrough in light-emitting materials is also the key to achieving high electroluminescence-efficiency displays and the spread of lighting. there is Conventional commercial luminescent materials for OLEDs are mainly phosphorescent cyclic metallized iridium (III) complexes, whose energy utilization efficiency reaches 100%, but with high price and imperfect chromaticity (blue Due to the shortage of phosphorescent materials), there are difficult problems such as lack of iridium resources. Therefore, it is of great practical significance to develop a novel low-cost light-emitting material that has a new structure, a simple manufacturing method, and a high synthetic yield.

〔発明の概要〕
本発明は上記の課題を解決するために、リン光PtM(M=Au(I)、Ag(I)、Cu(I))ヘテロ三核金属有機アルキン錯体、その製造方法及び有機発光ダイオードにおける高効率のリン光材料としてのその使用を提供する。
[Outline of the invention]
In order to solve the above problems, the present invention provides a phosphorescent Pt 2 M (M=Au(I), Ag(I), Cu(I)) heterotrinuclear metal organic alkyne complex, a method for producing the same, and an organic light-emitting diode. its use as a highly efficient phosphorescent material in

本発明の上記の目的は下記の技術案により実現される。 The above objects of the present invention are achieved by the following technical solutions.

PtMヘテロ三核金属有機アルキン錯体であって、その構造は下記の式(I)に示されるとおりである:
[PtM(μ-dpmp)(μ-C≡C-R’-C≡C)(C≡CR) m-(I)
そのうち、μは架橋を表す;dpmpはビス(ジフェニルホスフィノメチル)フェニルホスフィンである;
MはAu(I)、Ag(I)、或いはCu(I)から選ばれる;
Rは相同又は相異であり、アルキル基、アリール基、ヘテロアリール基から独立的に選ばれる;前記アルキル基、アリール基、ヘテロアリール基はいずれも1つ又は複数の置換基によって置換されてもよく、前記置換基はアルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基、ヘテロアリール基から選ばれる;
R’はアルキレン基、アリレン基、ヘテロアリレン基から選ばれる;前記アルキレン基、アリレン基、ヘテロアリレン基はいずれも1つ又は複数の置換基によって置換されてもよく、前記置換基はアルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基、ヘテロアリール基から選ばれる;
m-は一価又は二価の陰イオンであり、ここでmは1又は2である。
A Pt 2 M heterotrinuclear metal-organoalkyne complex, the structure of which is shown in formula (I) below:
[Pt 2 M(μ−dpmp) 2 (μ−C≡C−R′−C≡C)(C≡CR) 2 ] + m A m− (I)
wherein μ represents a bridge; dpmp is bis(diphenylphosphinomethyl)phenylphosphine;
M is selected from Au(I), Ag(I), or Cu(I);
R are homologous or different and are independently selected from alkyl groups, aryl groups and heteroaryl groups; any of said alkyl groups, aryl groups and heteroaryl groups may be substituted by one or more substituents; Often said substituents are selected from alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups, heteroaryl groups;
R' is selected from an alkylene group, an arylene group, and a heteroarylene group; any of the alkylene group, the arylene group, and the heteroarylene group may be substituted with one or more substituents, and the substituents may be an alkyl group or an alkenyl group; , alkynyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups, heteroaryl groups;
A m- is a monovalent or divalent anion, where m is 1 or 2;

本発明の実施形態において、前記一価又は二価の陰イオンはClO 、PF 、SbF 、BF 、B(C 、CFSO 、或いはSiF 2-などから選ばれる。 In an embodiment of the invention, the monovalent or divalent anion is ClO 4 , PF 6 , SbF 6 , BF 4 , B(C 6 H 5 ) 4 , CF 3 SO 3 , or It is selected from SiF 6 2- and the like.

本発明の実施形態において、前記式(I)に示されるヘテロ三核金属有機アルキン錯体の立体構造は下記のとおりである: In an embodiment of the present invention, the stereostructure of the heterotrinuclear metal-organoalkyne complex represented by formula (I) above is as follows:

Figure 0007308357000001
Figure 0007308357000001
.

本発明の実施形態において、前記Rはアリール基、カルバゾリル基、フェノチアジニル基、キナゾリニル基、アリール置換カルバゾリル基、ジアリールアミノフェニル基であることが好ましい;前記アリール基、カルバゾリル基、フェノチアジニル基、キナゾリニル基、アリール置換カルバゾリル基、ジアリールアミノフェニル基は任意選択で1つ又は複数の置換基によって置換される;前記置換基はアルキル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基から選ばれる;
本発明の実施形態において、前記R’はアリレン基、窒素含有ヘテロアリレン基(例えば、カルバゾリレン基)、酸素含有ヘテロアリレン基(例えば、ジベンゾフラニレン基)、硫黄含有ヘテロアリレン基(例えば、ジベンゾチエニレン基)、硫黄と窒素含有ヘテロアリレン基(例えば、フェノチアジニレン基)などであることが好ましく、前記アリレン基、窒素含有ヘテロアリレン基、酸素含有ヘテロアリレン基、硫黄含有ヘテロアリレン基、硫黄と窒素含有ヘテロアリレン基は任意選択で1つ又は複数の置換基によって置換される;前記置換基はアルキル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基から選ばれる;
より好ましくは、前記Rはフェニル基、アルキル置換フェニル基、フェニル置換カルバゾリル基、又はハロアルキルフェニル基、アルコキシ置換フェニル基、アルキル置換フェノチアジニル基である;前記R’はアルキル置換カルバゾリレン基、ジベンゾフラニレン基、ジベンゾチエニレン基である。
In an embodiment of the present invention, said R is preferably an aryl group, carbazolyl group, phenothiazinyl group, quinazolinyl group, aryl-substituted carbazolyl group, diarylaminophenyl group; said aryl group, carbazolyl group, phenothiazinyl group, quinazolinyl groups, aryl-substituted carbazolyl groups, diarylaminophenyl groups are optionally substituted by one or more substituents; said substituents being selected from alkyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups ;
In an embodiment of the present invention, R′ is an arylene group, a nitrogen-containing heteroarylene group (e.g., carbazolylene group), an oxygen-containing heteroarylene group (e.g., dibenzofuranylene group), a sulfur-containing heteroarylene group (e.g., dibenzothienylene group). , a sulfur- and nitrogen-containing heteroarylene group (e.g., a phenothiadinylene group), and the like, and the arylene group, nitrogen-containing heteroarylene group, oxygen-containing heteroarylene group, sulfur-containing heteroarylene group, and sulfur- and nitrogen-containing heteroarylene group are optional. optionally substituted by one or more substituents; said substituents being selected from alkyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups;
More preferably, said R is a phenyl group, an alkyl-substituted phenyl group, a phenyl-substituted carbazolyl group, or a haloalkylphenyl group, an alkoxy-substituted phenyl group, an alkyl-substituted phenothiazinyl group; said R' is an alkyl-substituted carbazolylene group, dibenzofuranylene. a dibenzothienylene group.

一例として、前記式(I)に示されるヘテロ三核金属有機アルキン錯体は下記の構造から選ばれ、ただしそれらに限定されない: By way of example, the heterotrinuclear metal-organoalkyne complexes of formula (I) above are selected from, but not limited to, the following structures:

Figure 0007308357000002
Figure 0007308357000002
.

本発明はまた、下記のステップを含む、式(I)に示されるヘテロ三核金属有機アルキン錯体の製造方法を提供する:
dpmpと、Mを含むイオン結合型錯体とを溶剤において反応させて、中間体M(dpmp)を得る;
次に中間体とPt(PPh(μ-C≡C-R’-C≡C)(C≡CR)を溶剤において反応させて、式(I)に示されるヘテロ三核金属有機アルキン錯体を得る;
ここで、Mを含むイオン結合型錯体は[Au(tht) (Am-)、[Ag(tht)] (Am-)、又は[Cu(MeCN) (Am-)から選ばれる;
前記PPhはトリフェニルホスフィンを表し、thtはテトラヒドロチオフェンであり、MeCNはアセトニトリルであり、前記dpmp、Am-、R、R’、Mは上記で定義したとおりである。
The present invention also provides a method for preparing a heterotrinuclear metal-organoalkyne complex of formula (I), comprising the steps of:
reacting dpmp with an ionic complex containing M in a solvent to give intermediate M(dpmp) 2 ;
Next, the intermediate and Pt 2 (PPh 3 ) 4 (μ-C≡CR′-C≡C)(C≡CR) 2 are reacted in a solvent to form a heterotrinuclear metal compound represented by formula (I). obtaining an organic alkyne complex;
Here, the ion-bonded complex containing M is [Au(tht) 2 ] + m (A m− ), [Ag(tht)] + m (A m− ), or [Cu(MeCN) 4 ] + m (A m− );
Said PPh 3 represents triphenylphosphine, tht is tetrahydrothiophene, MeCN is acetonitrile and said dpmp, A m− , R, R′, M are as defined above.

本発明の実施形態において、前記溶剤はハロゲン化炭化水素溶剤であることが好ましく、例えば、ジクロロメタンである。 In an embodiment of the invention, said solvent is preferably a halogenated hydrocarbon solvent, for example dichloromethane.

本発明の実施形態において、dpmpと、Mを含むイオン結合型錯体と、Pt(PPh(μ-C≡CR’C≡C)(C≡CR)とのモル比は1.5~2.5:1~1.5:1~1.5であり、好ましくはモル比が2:1:1である。 In an embodiment of the present invention, the molar ratio between dpmp, an ionic complex containing M and Pt 2 (PPh 3 ) 4 (μ-C≡CR′C≡C)(C≡CR) 2 is 1. 5-2.5:1-1.5:1-1.5, preferably the molar ratio is 2:1:1.

本発明の実施形態において、前記反応は室温下で行われる。 In an embodiment of the invention said reaction is carried out at room temperature.

本発明の実施形態において、反応時間は12~16時間であることが好ましい;
本発明の実施形態において、前記製造方法は反応終了後にシリカゲルカラムクロマトグラフィーを用いて、得られた中間体及び/又は生成物を分離、精製することをさらに含む。
In an embodiment of the present invention, the reaction time is preferably 12-16 hours;
In an embodiment of the present invention, the production method further comprises separating and purifying the obtained intermediates and/or products using silica gel column chromatography after the completion of the reaction.

本発明はまた、有機発光ダイオードを製造するための、式(I)に示されるヘテロ三核金属有機アルキン錯体の用途を提供する。 The present invention also provides the use of the heterotrinuclear metal-organoalkyne complexes of formula (I) for manufacturing organic light-emitting diodes.

本発明はまた、発光層を含む有機発光ダイオードを提供し、前記発光層が上記の式(I)に示されるヘテロ三核金属有機アルキン錯体を含む。 The present invention also provides an organic light-emitting diode comprising a light-emitting layer, said light-emitting layer comprising a heterotrinuclear metal-organoalkyne complex represented by formula (I) above.

本発明の実施形態において、前記発光層では、式(I)に示されるヘテロ三核金属有機アルキン錯体が有機発光ダイオードの発光層の全ての材料の3~20%(重量パーセント)を、好ましくは5~10%を、より好ましくは6%を占める。 In an embodiment of the present invention, in said light-emitting layer, the heterotrinuclear metal-organoalkyne complex of formula (I) comprises 3-20% (weight percent) of all materials in the light-emitting layer of the organic light-emitting diode, preferably It accounts for 5-10%, more preferably 6%.

本発明の実施形態において、前記有機発光ダイオードの構造は従来の技術で知られている様々な構造であってもよい。好ましくは、ガラス基板、アノード、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、カソード層を含む。 In embodiments of the present invention, the structure of the organic light emitting diode may be various structures known in the prior art. Preferably, it includes a glass substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and a cathode layer.

前記アノードはインジウム・スズ酸化物(ITO)であってもよい;
前記正孔注入層又は正孔輸送層はPEDOT:PSS(PEDOT:PSS=ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸))、又はm-PEDOT:PSS[PEDOT:PSS(0.8 wt%):PSS-Na(15 mg/mL、HOに溶解)を含む]であってもよい;
前記発光層は式(I)に示されるヘテロ三核金属有機アルキン錯体と、正孔輸送特性を有するTCTA(トリス(4-(9-カルバゾール)フェニル)アミン)、mCP(1,3-ビス(9-カルバゾリル)ベンゼン)、CBP(4,4’-ビス(9-カルバゾール)-1,1’-ビフェニル)、或いは2,6-DCZPPY(2,6-ビス(3-(9-カルバゾール)フェニル)ピリジン)の少なくとも1種と、電子輸送特性を有するOXD-7(1,3-ビス(5-(4-(tert-ブチル)フェニル)-1,3,4-オキサジアゾール-2-イル)ベンゼン)とを含む;
前記電子輸送層はTPBi(1,3,5-トリス(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)ベンゼン)、BmPyPb(3,3’’,5,5’’-テトラキス(3-ピリジニル)-1,1’:3’,1’’-テルフェニル)、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントレン)、或いはOXD-7のうちの少なくとも1種であってもよい;
前記電子注入層はLiFである;前記カソードはAlである。
the anode may be indium tin oxide (ITO);
The hole injection layer or hole transport layer is PEDOT:PSS (PEDOT:PSS = poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid)), or m-PEDOT:PSS [PEDOT:PSS ( 0.8 wt%): PSS-Na (15 mg/mL, dissolved in H O )];
The light-emitting layer comprises a heterotrinuclear metal organic alkyne complex represented by formula (I), TCTA (tris(4-(9-carbazole)phenyl)amine), mCP(1,3-bis( 9-carbazolyl)benzene), CBP (4,4'-bis(9-carbazole)-1,1'-biphenyl), or 2,6-DCZPPY (2,6-bis(3-(9-carbazole)phenyl ) pyridine) and OXD-7 (1,3-bis(5-(4-(tert-butyl)phenyl)-1,3,4-oxadiazol-2-yl) having electron transport properties ) benzene);
The electron transport layer is TPBi (1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene), BmPyPb (3,3'',5,5''-tetrakis( 3-pyridinyl)-1,1′:3′,1″-terphenyl), BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthrene), or at least OXD-7 may be one;
The electron injection layer is LiF; the cathode is Al.

本発明の実施形態において、前記有機発光ダイオードの構造は、ITO/m-PEDOT:PSS(20 nm)/62%のmCP:32%のOXD-7:6% wtの式(I)に示されるヘテロ三核金属有機アルキン錯体(50 nm)/BmPyPb(50 nm)/LiF(1 nm)/Al(100 nm)であることが好ましく、そのうちITOはインジウム・スズ酸化物導電性フィルムであり、m-PEDOT:PSSは改良されたポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)であり、mCPは(1,3-ビス(9-カルバゾリル)ベンゼン)であり、OXD-7は1,3-ビス(5-(4-(tert-ブチル)フェニル)-1,3,4-オキサジアゾール-2-イル)ベンゼンであり、BmPyPbは3,3’’,5,5’’-テトラキス(3-ピリジニル)-1,1’:3’,1’’-テルフェニルである。 In an embodiment of the present invention, the organic light emitting diode structure is shown in formula (I) of ITO/m-PEDOT:PSS (20 nm)/62% mCP:32% OXD-7:6% wt It is preferably a heterotrinuclear metal organic alkyne complex (50 nm)/BmPyPb (50 nm)/LiF (1 nm)/Al (100 nm), in which ITO is an indium tin oxide conductive film, m -PEDOT:PSS is modified poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid), mCP is (1,3-bis(9-carbazolyl)benzene), OXD-7 is 1,3-bis(5-(4-(tert-butyl)phenyl)-1,3,4-oxadiazol-2-yl)benzene and BmPyPb is 3,3″,5,5′ '-Tetrakis(3-pyridinyl)-1,1':3',1''-terphenyl.

本発明はまた、下記を含む前記有機発光ダイオードの製造方法を提供する:
1)溶液法を用いて有機発光ダイオードの正孔注入層を製造する;
2)溶液法を用いて式(I)に示されるヘテロ三核金属有機アルキン錯体がドープされた発光層を製造する;
3)次に真空熱蒸着法を利用して電子輸送層、電子注入層、及びカソード層をこの順に製造する。
The present invention also provides a method for manufacturing said organic light emitting diode, comprising:
1) Fabricating the hole injection layer of the organic light emitting diode using solution method;
2) preparing a light-emitting layer doped with a heterotrinuclear metal-organoalkyne complex of formula (I) using a solution method;
3) Next, an electron-transporting layer, an electron-injecting layer, and a cathode layer are fabricated in this order using a vacuum thermal evaporation method.

1つの好ましい実施形態において、前記方法は、まず水溶性のm-PEDOT:PSSを利用して正孔注入層を製造することと、次に正孔輸送特性を有するmCPと電子輸送特性を有するOXD-7を混合ホスト材料として、式(I)に示されるヘテロ三核金属有機アルキン錯体をドープして発光層を製造することと、次に真空熱蒸着法を利用してBmPyPb電子輸送層、LiF電子注入層、及びAlカソード層をこの順に製造することとを含む。 In one preferred embodiment, the method first utilizes water-soluble m-PEDOT:PSS to fabricate a hole injection layer, and then mCP with hole-transporting properties and OXD with electron-transporting properties. -7 as a mixed host material, doping the heterotrinuclear metal-organoalkyne complex shown in formula (I) to fabricate a light-emitting layer, and then utilizing a vacuum thermal evaporation method to form a BmPyPb electron-transporting layer, LiF and fabricating an electron injection layer and an Al cathode layer in that order.

本発明の実施形態において、前記方法では、m-PEDOT:PSS正孔注入層及びmCP:OXD-7ドープ型発光層にはそれぞれ溶液スピンコート法を利用して薄膜を製造し、BmPyPb電子輸送層及びLiF電子注入層には真空熱蒸着法を用いて薄膜を製造する。 In an embodiment of the present invention, in the method, the m-PEDOT:PSS hole-injection layer and the mCP:OXD-7-doped light-emitting layer respectively utilize solution spin-coating to fabricate thin films, and the BmPyPb electron-transport layer And the LiF electron injection layer is formed into a thin film using a vacuum thermal evaporation method.

式(I)に示されるヘテロ三核金属有機アルキン錯体によって製造された有機発光ダイオードは優れた特性を有し、高い電気光変換効率を有する。 The organic light-emitting diodes produced by the heterotrinuclear metal-organoalkyne complexes represented by formula (I) have excellent properties and high electro-optical conversion efficiency.

本発明はまた、フラットパネルディスプレイと日常照明の分野における前記有機発光ダイオードの用途を提供する。 The present invention also provides applications of said organic light emitting diodes in the fields of flat panel displays and everyday lighting.

本発明は従来の技術と比べて、下記の利点を有する。 The present invention has the following advantages over the prior art.

1)本発明の式(I)に示されるヘテロ三核金属有機アルキン錯体は溶液、固体及び薄膜のいずれにおいても強いリン光を発し、しかも発するのは黄色の光である;
2)本発明では初めてリン光PtMヘテロ三核金属有機アルキン錯体を発光材料として有機発光素子を組み立てている。本発明のヘテロ三核有機アルキン錯体を発光層ドーパントとして製造した有機発光ダイオードは電界発光効率が高く、外部量子効率(EQE)が12.5%よりも高い;
3)本発明では改良されたm-PEDOT:PSSを利用して正孔注入層を製造し、素子の電界発光効率が明らかに向上している。
1) The heterotrinuclear metal-organoalkyne complex represented by the formula (I) of the present invention emits strong phosphorescence in solution, solid and thin film, and emits yellow light;
2) In the present invention, for the first time, an organic light-emitting device is assembled using a phosphorescent Pt 2 M heterotrinuclear metal-organoalkyne complex as a light-emitting material. Organic light-emitting diodes prepared with the heterotrinuclear organic alkyne complexes of the present invention as light-emitting layer dopants have high electroluminescence efficiency and external quantum efficiency (EQE) higher than 12.5%;
3) In the present invention, the improved m-PEDOT:PSS is used to fabricate the hole injection layer, and the electroluminescence efficiency of the device is obviously improved.

(用語の定義と説明):
他に定義されない限り、本明細書の全ての技術用語は特許請求の範囲の主題の属する分野の技術者が理解しているのと同じ意味である。なお、上記の概要と次の詳細な説明は例示的で解釈するためにだけ使用されるもので、本願の主題を限定するものではない。本願では、特に明記しない限り、「又は」、「或いは」は「及び/又は」を表すように使用される。また、用語「含む」と類似する形態のもの、例えば、「含有する」などは限定するために使用されるものではない。
(Term definitions and explanations):
Unless defined otherwise, all technical terms used herein have the same meaning as understood by one of ordinary skill in the art to which the claimed subject matter belongs. It should be noted that the above summary and the following detailed description are used for illustration and interpretation only, and do not limit the subject matter of the present application. In this application, "or" and "or" are used to refer to "and/or" unless stated otherwise. Also, versions of the term "comprise," such as "contains," etc., are not used in a limiting sense.

用語「アルキル基」とは1~12個、好ましくは1~10個の炭素原子を有する直鎖又は分枝鎖のアルキル基を指し、前記アルキル基は、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、ペンチル基、ネオペンチル基である。 The term "alkyl group" refers to a straight or branched chain alkyl group having 1 to 12, preferably 1 to 10 carbon atoms, said alkyl group being, for example, methyl, ethyl, propyl. , isopropyl group, butyl group, isobutyl group, tert-butyl group, sec-butyl group, pentyl group and neopentyl group.

用語「アルケニル基」とは、好ましくは1つ又は複数の二重結合を含み且つ2~12個の炭素原子を有する直鎖又は分枝鎖の一価炭化水素基を表すものと理解され、好ましくは「C2-10アルケニル基」である。「C2-10アルケニル基」とは、好ましくは1つ又は複数の二重結合を含み且つ2、3、4、5、6、7、8、9又は10個の炭素原子、特に2又は3個の炭素原子(「C2-3アルケニル基」)を有する直鎖又は分枝鎖の一価炭化水素基を表すものと理解され、なお、前記アルケニル基が2つ以上の二重結合を含む場合は、前記二重結合が互いに分離し又は共役していてもよい。前記アルケニル基は、例えば、エテニル基、アリル基、(E)-2-メチルエテニル基、(Z)-2-メチルエテニル基、(E)-ブト-2-エニル基、(Z)-ブト-2-エニル基、(E)-ブト-1-エニル基、(Z)-ブト-1-エニル基、ペント-4-エニル基、(E)-ペント-3-エニル基、(Z)-ペント-3-エニル基、(E)-ペント-2-エニル基、(Z)-ペント-2-エニル基、(E)-ペント-1-エニル基、(Z)-ペント-1-エニル基、ヘキサ-5-エニル基、(E)-ヘキサ-4-エニル基、(Z)-ヘキサ-4-エニル基、(E)-ヘキサ-3-エニル基、(Z)-ヘキサ-3-エニル基、(E)-ヘキサ-2-エニル基、(Z)-ヘキサ-2-エニル基、(E)-ヘキサ-1-エニル基、(Z)-ヘキサ-1-エニル基、イソプロペニル基、2-メチルプロプ-2-エニル基、1-メチルプロプ-2-エニル基、2-メチルプロプ-1-エニル基、(E)-1-メチルプロプ-1-エニル基、(Z)-1-メチルプロプ-1-エニル基である。 The term “alkenyl group” is understood to denote a straight-chain or branched monovalent hydrocarbon group preferably containing one or more double bonds and having from 2 to 12 carbon atoms, preferably is a “C 2-10 alkenyl group”. A “C 2-10 alkenyl group” preferably contains one or more double bonds and has 2, 3, 4, 5, 6, 7, 8, 9 or 10 carbon atoms, especially 2 or 3 is understood to denote a straight or branched chain monovalent hydrocarbon group having 1 carbon atom (“C 2-3 alkenyl group”), provided that said alkenyl group contains two or more double bonds In some cases, the double bonds may be separate or conjugated to each other. The alkenyl group is, for example, ethenyl group, allyl group, (E)-2-methylethenyl group, (Z)-2-methylethenyl group, (E)-but-2-enyl group, (Z)-but-2- enyl group, (E)-but-1-enyl group, (Z)-but-1-enyl group, pent-4-enyl group, (E)-pent-3-enyl group, (Z)-pent-3 -enyl group, (E) -pent-2-enyl group, (Z) -pent-2-enyl group, (E) -pent-1-enyl group, (Z) -pent-1-enyl group, hexa- 5-enyl group, (E)-hex-4-enyl group, (Z)-hex-4-enyl group, (E)-hex-3-enyl group, (Z)-hex-3-enyl group, ( E)-hex-2-enyl group, (Z)-hex-2-enyl group, (E)-hex-1-enyl group, (Z)-hex-1-enyl group, isopropenyl group, 2-methylprop -2-enyl group, 1-methylprop-2-enyl group, 2-methylprop-1-enyl group, (E)-1-methylprop-1-enyl group, (Z)-1-methylprop-1-enyl group be.

用語「アルキニル基」とは、1つ又は複数の三重結合を含み且つ2~12個の炭素原子を有する直鎖又は分枝鎖の一価炭化水素基を表すものと理解され、好ましくは「C-C10アルキニル基」である。用語「C10アルキニル基」とは、好ましくは1つ又は複数の三重結合を含み且つ2、3、4、5、6、7、8、9又は10個の炭素原子、特に2又は3個の炭素原子(「C-アルキニル基」)を有する直鎖又は分枝鎖の一価炭化水素基を表すものと理解される。前記アルキニル基は、例えば、エチニル基、プロプ-1-イニル基、プロプ-2-イニル基、ブト-1-イニル基、ブト-2-イニル基、ブト-3-イニル基、ペント-1-イニル基、ペント-2-イニル基、ペント-3-イニル基、ペント-4-イニル基、ヘキサ-1-イニル基、ヘキサ-2-イニル基、ヘキサ-3-イニル基、ヘキサ-4-イニル基、ヘキサ-5-イニル基、1-メチルプロプ-2-イニル基、2-メチルブト-3-イニル基、1-メチルブト-3-イニル基、1-メチルブト-2-イニル基、3-メチルブト-1-イニル基である。 The term “alkynyl group” is understood to denote a straight or branched chain monovalent hydrocarbon group containing one or more triple bonds and having 2 to 12 carbon atoms, preferably “C 2 - C10 alkynyl group”. The term “C 2-10 alkynyl group” preferably contains one or more triple bonds and has 2, 3, 4 , 5, 6, 7, 8, 9 or 10 carbon atoms, especially 2 or 3 It is understood to denote a straight-chain or branched monovalent hydrocarbon radical having 1 carbon atom (“C 2-3 -alkynyl radical”). The alkynyl group is, for example, ethynyl group, prop-1-ynyl group, prop-2-ynyl group, but-1-ynyl group, but-2-ynyl group, but-3-ynyl group, pent-1-ynyl group. group, pent-2-ynyl group, pent-3-ynyl group, pent-4-ynyl group, hex-1-ynyl group, hex-2-ynyl group, hex-3-ynyl group, hex-4-ynyl group , hex-5-ynyl group, 1-methylprop-2-ynyl group, 2-methylbut-3-ynyl group, 1-methylbut-3-ynyl group, 1-methylbut-2-ynyl group, 3-methylbut-1- It is an inyl group.

用語「アリール基」とは、好ましくは5~20個の炭素原子有する芳香族性又は部分的に芳香族性の単環式、二環式又は三環式の環式炭化水素を表すものと理解され、好ましくは「C6-14アリール基」である。用語「C6-14アリール基」とは、好ましくは6、7、8、9、10、11、12、13又は14個の炭素原子を有する一価芳香族性又は部分的に芳香族性の単環式、二環式又は三環式の環式炭化水素(「C6-14アリール基」)を表すものと理解され、特に、6個の炭素原子を有する環(「Cアリール基」)、例えば、フェニル基、又はビフェニル基、或いは9個の炭素原子を有する環(「Cアリール基」、例えば、インダニル基又はインデニル基)、又は10個の炭素原子を有する環(「C10アリール基」)、例えば、テトラヒドロナフチル基、ジヒドロナフチル基又はナフチル基、又は、13個の炭素原子を有する環(「C13アリール基」)、例えば、フルオレニル基、又は14個の炭素原子を有する環(「C14アリール基」)、例えば、アントリル基である。 The term “aryl group” is understood to denote an aromatic or partially aromatic monocyclic, bicyclic or tricyclic cyclic hydrocarbon preferably having from 5 to 20 carbon atoms. and preferably a “C 6-14 aryl group”. The term “C 6-14 aryl group” preferably refers to a monovalent aromatic or partially aromatic understood to denote a monocyclic, bicyclic or tricyclic cyclic hydrocarbon (“C 6-14 aryl group”), in particular a ring having 6 carbon atoms (“C 6 aryl group” ), such as a phenyl group, or a biphenyl group, or a ring having 9 carbon atoms (a “ C9 aryl group”, such as an indanyl or indenyl group), or a ring having 10 carbon atoms (a “ C10 aryl group"), such as a tetrahydronaphthyl group, a dihydronaphthyl group or a naphthyl group, or a ring having 13 carbon atoms (a " C13 aryl group"), such as a fluorenyl group, or having 14 carbon atoms A ring (“ C14 aryl group”), for example an anthryl group.

用語「ヘテロアリール基」とは、5~20個の環原子、5~14個の環原子、又は5~12個の環原子、或いは5~10個の環原子、又は5~6個の環原子を含む単環式、二環式及び三環式の環系と理解され、少なくとも1つの環系が芳香族で、且つ少なくとも1つの環系は1つ又は複数のヘテロ原子(例えば、N、O、S、Seなど)を含み、各環系は5~7個の原子からなる環を含み、且つ1つ又は複数の結合点が分子の残りの部分に接続されている。前記ヘテロアリール基は任意選択で1つ又は複数の本発明に記載の置換基によって置換される。いくつかの実施形態において、5~10個の原子からなるヘテロアリール基はO、S、Se及びNから独立的に選ばれる1、2、3又は4個のヘテロ原子を含む。またいくつかの実施形態において、5~6個の原子からなるヘテロアリール基はO、S、Se及びNから独立的に選ばれる1、2、3又は4個のヘテロ原子を含む。 The term “heteroaryl group” refers to 5 to 20 ring atoms, 5 to 14 ring atoms, or 5 to 12 ring atoms, or 5 to 10 ring atoms, or 5 to 6 ring atoms. It is understood as monocyclic, bicyclic and tricyclic ring systems containing atoms, at least one ring system being aromatic and at least one ring system containing one or more heteroatoms (e.g. N, O, S, Se, etc.), each ring system comprising a ring of 5-7 atoms, and one or more points of attachment being attached to the remainder of the molecule. Said heteroaryl group is optionally substituted with one or more substituents according to the invention. In some embodiments, the 5-10 atom heteroaryl group contains 1, 2, 3, or 4 heteroatoms independently selected from O, S, Se, and N. Also, in some embodiments, the 5-6 atom heteroaryl group includes 1, 2, 3, or 4 heteroatoms independently selected from O, S, Se, and N.

単環式のヘテロアリール基の例はチエニル基、フラニル基、ピロリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、トリアゾリル基、チアジアゾリル基、チア-4H-ピラゾリル基など、及びそれらのベンゾ誘導体(例えば、ベンゾフラニル基、ベンゾチエニル基、ベンゾオキサゾリル基、ベンゾイソオキサゾリル基、ベンゾイミダゾリル基、ベンゾトリアゾリル基、インダゾリル基、インドリル基、イソインドリル基など);又はピリジニル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基など、及びそれらのベンゾ誘導体(例えば、キノリニル基、キナゾリニル基、イソキノリニル基など);又はアゾシニル基、インドリジニル基、プリニル基など、及びそれらのベンゾ誘導体;又はシンノリニル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ナフチリジニル基、プテリジニル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、アクリジニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基などを含み、ただしそれらに限定されない。 Examples of monocyclic heteroaryl groups are thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, thia-4H- pyrazolyl group, etc., and benzo derivatives thereof (e.g., benzofuranyl group, benzothienyl group, benzoxazolyl group, benzoisoxazolyl group, benzimidazolyl group, benzotriazolyl group, indazolyl group, indolyl group, isoindolyl group, etc.) ); or pyridinyl groups, pyridazinyl groups, pyrimidinyl groups, pyrazinyl groups, triazinyl groups, etc., and benzo derivatives thereof (e.g., quinolinyl groups, quinazolinyl groups, isoquinolinyl groups, etc.); or azocinyl groups, indolizinyl groups, purinyl groups, etc.; benzo derivatives thereof; including but not limited to.

用語「アルコキシ基」とはアルキル-O-基を指し、アルキル基は上記で定義したとおりである。同様に、アルキル基の定義はアルキル基を含む基、例えば、「ハロアルキル基」などにも適用する。 The term "alkoxy group" refers to an alkyl-O- group, where alkyl group is as defined above. Similarly, the definition of alkyl groups applies to groups containing alkyl groups, such as "haloalkyl groups."

〔図面の簡単な説明〕
図1は、実施例13の電界発光素子の構造模式図及びその一部の部品を構成する有機材料の化学構造である。
[Brief description of the drawing]
FIG. 1 is a structural schematic diagram of an electroluminescence device of Example 13 and a chemical structure of an organic material constituting a part of the component.

〔発明を実施するための形態〕
本発明の目的、技術案及び有益な効果が一層明瞭になるよう、以下、図面と実施例を用いて本発明をより詳しく説明する。なお、本明細書に記載の実施例は本発明を限定するものではなく、本発明を解釈するためのものである。
[Mode for carrying out the invention]
In order to make the purpose, technical solution and beneficial effects of the present invention clearer, the present invention will be described in more detail below with reference to drawings and examples. It should be noted that the examples provided herein are intended to interpret the invention rather than limit it.

下記の実施例では、dpmpはビス(ジフェニルホスフィノメチル)フェニルホスフィン基を表し、deczは3,6-ジtert-ブチル-カルバゾリル-1,8-ジエチニル基を表し、debfはジベンゾフラニル-4,6-ジエチニル基を表し、debtはジベンゾチエニル-4,6-ジエチニル基を表し、Phはフェニル基を表し、thtはテトラヒドロチオフェンを表し、9-Ph-carb-3は9-フェニル-カルバゾール-3-イルを表し、Ph-(OMe)-2,4は2,4-ジメトキシフェニル基を表し、10-Me-PTZ-3は10-メチル-フェノチアジン-3-イルを表し、PPhはトリフェニルホスフィンを表し、MeCNはアセトニトリルであり、ClOは過塩素酸イオンである。 In the examples below, dpmp represents the bis(diphenylphosphinomethyl)phenylphosphine group, decz represents the 3,6-ditert-butyl-carbazolyl-1,8-diethynyl group, debf represents dibenzofuranyl-4 , represents a 6-diethynyl group, debt represents a dibenzothienyl-4,6-diethynyl group, Ph represents a phenyl group, tht represents tetrahydrothiophene, 9-Ph-carb-3 represents 9-phenyl-carbazole- 3-yl, Ph-(OMe) 2 -2,4 represents a 2,4-dimethoxyphenyl group, 10-Me-PTZ-3 represents 10-methyl-phenothiazin-3-yl, PPh 3 represents represents triphenylphosphine, MeCN is acetonitrile and ClO4 is perchlorate ion.

下記の実施例でdecz-2Hは当該基deczに対応する相応の化合物を表し、他の化合物、例えば、debf-2Hなどは同様である。 In the examples below, decz-2H represents the corresponding compound corresponding to the group decz in question, as well as other compounds such as debf-2H.

実施例1:Pt錯体Pt(PPh(μ-decz)(C≡CPh)の製造
decz-2H(32.8mg、0.1mmol)を溶解した20mLのクロロホルム溶液にPt(PPh(C≡CPh)Cl(180mg、0.21mmol)、ヨウ化第一銅(1mg)、トリエチルアミン(1mL)を加え、摂氏50度下で18時間反応させた。黄色の透明な溶液を得た。反応液を濃縮した後、シリカゲルカラムクロマトグラフィーを利用して生成物を精製して、石油エーテル-ジクロロメタン(2:1)を溶離液として淡黄色の生成物を回収し、収率は78%であった。元素分析:C11293NPPt。計算値:C68.39、H4.77。測定値:C68.14、H4.82。高分解能質量スペクトルm/z(%):1967.5549(100)[M+H](計算値1967.5627)。プロトン核磁気共鳴(400MHz,CDCl,ppm):7.85-7.77(m,24H),7.60(m,2H),7.32(t,24H,J=7.36),7.24(t,12H,J=7.32),6.94-6.88(m,6H),6.73-6.70(m,2H),6.69(s,1H),6.30-6.22(m,4H),1.29(s,18H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):17.9(JPt-P=2641Hz)。赤外分光スペクトル(KBr,cm-1):2109m(C≡C)。
Example 1: Preparation of Pt 2 complex Pt 2 (PPh 3 ) 4 (μ-decz)(C≡CPh) 2 Pt(PPh 3 ) 2 (C≡CPh)Cl (180 mg, 0.21 mmol), cuprous iodide (1 mg) and triethylamine (1 mL) were added and reacted at 50 degrees Celsius for 18 hours. A yellow clear solution was obtained. After concentrating the reaction mixture, the product was purified by silica gel column chromatography, and the pale yellow product was recovered using petroleum ether-dichloromethane (2:1) as an eluent, with a yield of 78%. there were. Elemental analysis : C112H93NP4Pt2 . Calculated values: C68.39, H4.77. Measurements: C68.14, H4.82. High resolution mass spectrum m/z (%): 1967.5549 (100) [M+H] + (calcd 1967.5627). Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 7.85-7.77 (m, 24H), 7.60 (m, 2H), 7.32 (t, 24H, J = 7.36 ), 7.24 (t, 12H, J = 7.32), 6.94-6.88 (m, 6H), 6.73-6.70 (m, 2H), 6.69 (s, 1H ), 6.30-6.22 (m, 4H), 1.29 (s, 18H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 17.9 (J Pt-P =2641 Hz). Infrared spectrum (KBr, cm −1 ): 2109 m (C≡C).

実施例2:Pt錯体Pt(PPh(μ-decz)(C≡C-(9-Ph-carb-3))の製造
製造方法は実施例1の方法と基本的に同じであり、Pt(PPh(C≡CPh)Clの代わりにPt(PPh(C≡C-(9-Ph-carb-3)Clを使用し、収率は72%であった。元素分析:C136107Pt。計算値:C71.10、H4.69。測定値:C70.99、H4.81。高分解能質量スペクトルm/z(%):2297.6781(100)[M+H](計算値2297.6793)。プロトン核磁気共鳴(CDCl,ppm):7.95-7.80(m,24H),7.64-7.53(m,6H),7.51-7.39(m,12H),7.39-7.32(m,24H),7.31-7.21(m,12H),6.97(d,2H,J=8.48),6.85(s,1H),6.74(s,2H),6.33(d,2H,J=8.44),1.29(s,18H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):18.0(JPt-P=2645Hz)。赤外分光スペクトル(KBr,cm-1):2117(w)。
Example 2: Preparation of Pt 2 complex Pt 2 (PPh 3 ) 4 (μ-decz)(C≡C-(9-Ph-carb-3)) 2 The preparation method is basically the same as that of Example 1. and using Pt(PPh 3 ) 2 (C≡C-(9-Ph-carb-3)Cl instead of Pt(PPh 3 ) 2 (C≡CPh)Cl, the yield was 72%. Elemental analysis: C136H107N3P4Pt2 Calculated values : C71.10, H4.69 Measured values : C70.99, H4.81 High-resolution mass spectrum m / z (%): 2297 .6781(100) [M+H] + (calcd 2297.6793) Proton nuclear magnetic resonance (CD 2 Cl 2 , ppm): 7.95-7.80 (m, 24H), 7.64-7.53 (m, 6H), 7.51-7.39 (m, 12H), 7.39-7.32 (m, 24H), 7.31-7.21 (m, 12H), 6.97 (d , 2H, J = 8.48), 6.85 (s, 1H), 6.74 (s, 2H), 6.33 (d, 2H, J = 8.44), 1.29 (s, 18H Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 18.0 (J Pt-P =2645 Hz) Infrared spectrum (KBr, cm −1 ): 2117 (w).

実施例3:Pt錯体Pt(PPh(μ-debf)(C≡CPh)の製造
製造方法は実施例1の方法と基本的に同じであり、decz-2Hの代わりにdebf-2Hを使用し、収率は70%であった。元素分析:C10476OPPt。計算値:C67.31、H4.13。測定値:C67.21、H4.08。高分解能質量スペクトルm/z(%):1854.4132(100)[M+H](計算値1854.4140)。プロトン核磁気共鳴(CDCl,ppm):7.72-7.68(m,26H),7.61-7.57(m,4H),7.36-7.32(m,26H),7.27-7.24(m,14H),6.97-6.92(t,2H,J=8.38),6.53-6.51(d,2H,J=8),6.46-6.45(d,2H,J=8.38)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):17.77(JPt-P=2134Hz)。赤外分光スペクトル(KBr,cm-1):2110(w)。
Example 3: Preparation of Pt 2 complex Pt 2 (PPh 3 ) 4 (μ-debf)(C≡CPh) 2 -2H was used and the yield was 70%. Elemental analysis : C104H76OP4Pt2 . Calculated values: C67.31, H4.13. Measurements: C67.21, H4.08. High resolution mass spectrum m/z (%): 1854.4132 (100) [M+H] + (calcd 1854.4140). Proton nuclear magnetic resonance (CD 2 Cl 2 , ppm): 7.72-7.68 (m, 26H), 7.61-7.57 (m, 4H), 7.36-7.32 (m, 26H ), 7.27-7.24 (m, 14H), 6.97-6.92 (t, 2H, J = 8.38), 6.53-6.51 (d, 2H, J = 8) , 6.46-6.45 (d, 2H, J=8.38). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 17.77 (J Pt-P =2134 Hz). Infrared spectrum (KBr, cm −1 ): 2110 (w).

実施例4:Pt錯体Pt(PPh(μ-debf)(C≡CPh-(OMe)-2,4)の製造
製造方法は実施例1の方法と基本的に同じであり、decz-2Hの代わりにdebf-2Hを、Pt(PPh(C≡CPh)Clの代わりにPt(PPh(C≡CPh-(OMe)-2,4)Clを使用し、収率は81%であった。元素分析:C10884Pt。計算値:C65.65、H4.29。測定値:C65.79、H4.20。高分解能質量スペクトルm/z(%):1974.4532(100)[M+H](計算値1974.4553)。プロトン核磁気共鳴(CDCl,ppm):7.74-7.69(m,24H),7.62-7.60(d,2H,J=8.30),7.40-7.36(m,24H),7.29-7.23(m,10H),6.97-6.93(t,2H,J=7.68),6.53-6.49(d,2H,J=9),6.13-6.11(d,2H,J=8),3.61(s,12H)。リン同位体核磁気共鳴(162 MHz,CDCl,ppm):19.21(JPt-P=1634Hz)。赤外分光スペクトル(KBr,cm-1):2102(w)。
Example 4: Preparation of Pt 2 complex Pt 2 (PPh 3 ) 4 (μ-debf)(C≡CPh-(OMe) 2 -2,4) 2 and debf-2H instead of decz-2H and Pt(PPh 3 ) 2 (C≡CPh-(OMe) 2 -2,4)Cl instead of Pt(PPh 3 ) 2 (C≡CPh)Cl. used and the yield was 81%. Elemental analysis : C108H84O5P4Pt2 . Calculated values: C65.65, H4.29. Measurements: C65.79, H4.20. High resolution mass spectrum m/z (%): 1974.4532 (100) [M+H] + (calcd 1974.4553). Proton nuclear magnetic resonance (CD 2 Cl 2 , ppm): 7.74-7.69 (m, 24H), 7.62-7.60 (d, 2H, J=8.30), 7.40-7 .36 (m, 24H), 7.29-7.23 (m, 10H), 6.97-6.93 (t, 2H, J = 7.68), 6.53-6.49 (d, 2H, J=9), 6.13-6.11 (d, 2H, J=8), 3.61 (s, 12H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 19.21 (J Pt-P =1634 Hz). Infrared spectrum (KBr, cm −1 ): 2102 (w).

実施例5:Pt錯体Pt(PPh(μ-debt)(C≡C-(10-Me-PTZ-3)の製造
製造方法は実施例1の方法と基本的に同じであり、decz-2Hの代わりにdebt-2Hを、Pt(PPh(C≡CPh)Clの代わりにPt(PPh(C≡C-(10-Me-PTZ-3)Clを使用し、収率は69%であった。元素分析:C11886Pt。計算値:C66.16、H4.05。測定値:C66.09、H4.10。高分解能質量スペクトルm/z(%):2140.4225(100)[M+H](計算値2140.4210)。プロトン核磁気共鳴(CDCl,ppm):7.70-7.65(m,26H),7.54-7.51(m,40H),7.18-7.14(d,2H,J=8),7.09-7.08(d,2H,J=4),6.93-6.84(m,4H),6.49-6.47(d,2H,J=6.8),5.91-5.89(d,2H,J=8.2),5.54-5.53(d,2H,J=2),3.15(s,6H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):19.64(JPt-P=1334Hz)。赤外分光スペクトル(KBr,cm-1):2111(w)。
Example 5: Preparation of Pt 2 complex Pt 2 (PPh 3 ) 4 (μ-debt)(C≡C-(10-Me-PTZ-3) 2 and debt-2H instead of decz-2H and Pt(PPh 3 ) 2 (C≡C-(10-Me-PTZ-3)Cl instead of Pt(PPh 3 ) 2 (C≡CPh)Cl. Used, yield 69% Elemental analysis: C118H86N2P4Pt2S3 Calculated: C66.16 , H4.05 Found : C66.09 , H4.10 . High-resolution mass spectrum m/z (%): 2140.4225 (100) [M+H] + (calculated 2140.4210) Proton nuclear magnetic resonance (CD 2 Cl 2 , ppm): 7.70-7.65 ( m, 26H), 7.54-7.51 (m, 40H), 7.18-7.14 (d, 2H, J=8), 7.09-7.08 (d, 2H, J=4 ), 6.93-6.84 (m, 4H), 6.49-6.47 (d, 2H, J=6.8), 5.91-5.89 (d, 2H, J=8. 2), 5.54-5.53 (d, 2H, J=2), 3.15 (s, 6H) Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 19.64 ( J Pt-P =1334 Hz) Infrared spectrum (KBr, cm −1 ): 2111 (w).

実施例6:PtAu錯体[PtAu(μ-dpmp)(μ-decz)(C≡CC](ClO)錯体(1)の製造
dpmp(50.6mg、0.1mmol)を溶解した20mLのジクロロメタン溶液に[Au(tht)](ClO)(23.6mg、0.05mmol)を加え、5分間攪拌した。実施例1で製造したPt(PPh(μ-decz)(C≡CPh)(98.4mg、0.05mmol)を加え、常温下で12時間攪拌して、黄色の透明な溶液を得た。反応液を濃縮した後、シリカゲルカラムクロマトグラフィーを利用して生成物を精製して、ジクロロメタン-アセトン(10:1)を溶離液として黄色の生成物を回収し、収率は73%であった。元素分析:C10491AuClNOPt。計算値:C53.08、H4.12。測定値:C53.21、H4.02。高分解能質量スペクトルm/z(%):2127.4519(100)[M-ClO(計算値2127.4542)。プロトン核磁気共鳴(400 MHz,CDCl,ppm):8.66(s,1H),7.93-7.82(m,4H),7.81(s,2H),7.81-7.67(m,16H),7.28-7.14(m,16H),7.10-6.96(m,12H),6.91(t,4H,J=7.49),6.77(t,4H,J=7.44),6.52(s,2H),6.24(d,4H,J=7.24),4.55-4.37(m,4H),4.00-3.88(m,4H),1.35(s,18H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):20.12(m,1P,JP-P=29.5Hz,),3.34(m,2P,JP-P=29.7Hz,JPt-P=2694Hz)。赤外分光スペクトル(KBr,cm-1):2105w(C≡C),1098s(ClO)。
Example 6: Preparation of Pt 2 Au complex [Pt 2 Au(μ-dpmp) 2 (μ-decz)(C≡CC 6 H 5 ) 2 ](ClO 4 ) complex (1) dpmp (50.6 mg, 0 [Au(tht) 2 ](ClO 4 ) (23.6 mg, 0.05 mmol) was added to 20 mL of a dichloromethane solution in which (.1 mmol) was dissolved and stirred for 5 minutes. Pt 2 (PPh 3 ) 4 (μ-decz)(C≡CPh) 2 (98.4 mg, 0.05 mmol) prepared in Example 1 was added and stirred at room temperature for 12 hours to form a yellow clear solution. got After concentrating the reaction solution, the product was purified using silica gel column chromatography, and the yellow product was recovered using dichloromethane-acetone (10:1) as an eluent, the yield was 73%. . Elemental analysis : C104H91AuClNO4P6Pt2 . Calculated values: C53.08, H4.12. Measurements: C53.21, H4.02. High resolution mass spectrum m/z (%): 2127.4519 (100) [M-ClO 4 ] + (calcd 2127.4542). Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 8.66 (s, 1H), 7.93-7.82 (m, 4H), 7.81 (s, 2H), 7.81 -7.67 (m, 16H), 7.28-7.14 (m, 16H), 7.10-6.96 (m, 12H), 6.91 (t, 4H, J = 7.49) , 6.77 (t, 4H, J = 7.44), 6.52 (s, 2H), 6.24 (d, 4H, J = 7.24), 4.55-4.37 (m, 4H), 4.00-3.88 (m, 4H), 1.35 (s, 18H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 20.12 (m, 1P, J PP =29.5 Hz,), 3.34 (m, 2P, J PP =29 .7 Hz, J Pt−P =2694 Hz). Infrared spectrum (KBr, cm −1 ): 2105 w (C≡C), 1098 s (ClO 4 ).

実施例7:PtAu錯体[PtAu(μ-dpmp)(μ-decz)(C≡C-(9-Ph-carb-3))](ClO)錯体(2)の製造
製造方法は実施例6の方法と基本的に同じであり、Pt(PPh(μ-decz)(C≡CPh)の代わりにPt(PPh(μ-decz)(C≡C-(9-Ph-carb-3))を使用し、収率は68%であった。元素分析:C128105AuClNPt。計算値:C60.11、H4.14。測定値:C59.96、H4.29。高分解能質量スペクトルm/z(%):2457.5667(100)[M-ClO(計算値2457.5699)。プロトン核磁気共鳴(400MHz,CDCl,ppm):8.78(s,1H),8.02-7.88(m,4H),7.88-7.73(m,16H),7.70(d,2H,J=7.60),7.62-7.49(m,8H),7.48-7.30(m,12H),7.30-7.17(m,16H),7.15-7.05(m,8H),6.97-6.90(m,2H),6.89-6.77(m,4H),6.61(s,2H),6.58(s,2H),6.24(d,2H,J=8.44),4.63-4.39(m,4H),4.09-3.89(m,4H),1.37(s,18H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):19.5(m,1P,JP-P=29.3Hz),3.96(m,2P,JP-P=28.8 Hz,JPt-P=2711Hz)。赤外分光スペクトル(KBr,cm-1):2107w(C≡C),1099s(ClO)。
Example 7: Preparation of Pt 2 Au Complex [Pt 2 Au(μ-dpmp) 2 (μ-decz)(C≡C-(9-Ph-carb-3)) 2 ](ClO 4 ) Complex (2) The production method is basically the same as that of Example 6, and instead of Pt 2 (PPh 3 ) 4 (μ-decz)(C≡CPh) 2 Pt 2 (PPh 3 ) 4 (μ-decz)( C≡C-(9-Ph-carb-3)) 2 was used and the yield was 68%. Elemental analysis : C128H105AuClN3O4P6Pt2 . _ Calculated values: C60.11, H4.14. Measurements: C59.96, H4.29. High resolution mass spectrum m/z (%): 2457.5667 (100) [M-ClO 4 ] + (calcd 2457.5699). Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 8.78 (s, 1H), 8.02-7.88 (m, 4H), 7.88-7.73 (m, 16H), 7.70 (d, 2H, J = 7.60), 7.62-7.49 (m, 8H), 7.48-7.30 (m, 12H), 7.30-7.17 (m , 16H), 7.15-7.05 (m, 8H), 6.97-6.90 (m, 2H), 6.89-6.77 (m, 4H), 6.61 (s, 2H) ), 6.58 (s, 2H), 6.24 (d, 2H, J = 8.44), 4.63-4.39 (m, 4H), 4.09-3.89 (m, 4H ), 1.37(s, 18H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 19.5 (m, 1P, J PP =29.3 Hz), 3.96 (m, 2P, J PP =28. 8 Hz, J Pt−P =2711 Hz). Infrared spectrum (KBr, cm −1 ): 2107 w (C≡C), 1099 s (ClO 4 ).

実施例8:PtAu錯体[PtAu(μ-dpmp)(μ-debf)(C≡CC](ClO)錯体(3)の製造
製造方法は実施例6の方法と基本的に同じであり、Pt(PPh(μ-decz)(C≡CPh)の代わりにPt(PPh(μ-debf)(C≡CPh)を使用し、収率は76%であった。元素分析:C9674AuClOPt。計算値:C54.49、H3.52。測定値:C54.56、H3.60。高分解能質量スペクトルm/z(%):2015.3114(100)[M-ClO(計算値2015.3121)。プロトン核磁気共鳴(400MHz,CDCl,ppm):7.88-7.85(m,8H),7.75-7.66(m,14H),7.25-7.22(m,10H),7.17-7.07(m,8H),7.03-7.00(t,2H,J=8.44),6.95-6.92(t,4H,J=8),6.89-6.85(m,4H),6.62-6.60(d,2H,J=8.44),6.27-6.26(d,2H,J=4),4.44-4.34(m,4H),3.87-3.77(m,4H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):19.67(m,1P,JP-P=26.3Hz),4.52(m,2P,JP-P=27.7Hz,JPt-P=1336Hz)。赤外分光スペクトル(KBr,cm-1):2106w(C≡C),1135s(ClO)。
Example 8: Preparation of Pt 2 Au complex [Pt 2 Au(μ-dpmp) 2 (μ-debf)(C≡CC 6 H 5 ) 2 ](ClO 4 ) complex (3) method, using Pt 2 (PPh 3 ) 4 (μ-debf)(C≡CPh) 2 instead of Pt 2 (PPh 3 ) 4 (μ-decz)(C≡CPh) 2 and the yield was 76%. Elemental analysis : C96H74AuClO5P6Pt2 . Calculated values: C54.49, H3.52. Measurements: C54.56, H3.60. High resolution mass spectrum m/z (%): 2015.3114 (100) [M-ClO 4 ] + (calcd 2015.3121). Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 7.88-7.85 (m, 8H), 7.75-7.66 (m, 14H), 7.25-7.22 (m , 10H), 7.17-7.07 (m, 8H), 7.03-7.00 (t, 2H, J = 8.44), 6.95-6.92 (t, 4H, J = 8), 6.89-6.85 (m, 4H), 6.62-6.60 (d, 2H, J = 8.44), 6.27-6.26 (d, 2H, J = 4 ), 4.44-4.34 (m, 4H), 3.87-3.77 (m, 4H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 19.67 (m, 1P, J PP =26.3 Hz), 4.52 (m, 2P, J PP =27. 7 Hz, J Pt-P =1336 Hz). Infrared spectrum (KBr, cm −1 ): 2106 w (C≡C), 1135 s (ClO 4 ).

実施例9:PtAu錯体[PtAu(μ-dpmp)(μ-debf)(C≡CPh-(OMe)-2,4)](ClO)錯体(4)の製造
製造方法は実施例6の方法と基本的に同じであり、Pt(PPh(μ-decz)(C≡CPh)の代わりにPt(PPh(μ-debf)(C≡CPh-(OMe)-2,4)を使用し、収率は67%であった。元素分析:C10082AuClOPt。計算値:C53.71、H3.70。測定値:C53.66、H3.66。高分解能質量スペクトルm/z(%):2135.3524(100)[M-ClO(計算値2015.3551)。プロトン核磁気共鳴(400MHz,CDCl,ppm):7.93-7.89(m,4H),7.81-7.77(m,8H),7.75-7.73(d,2H,J=8),7.67-7.62(m,8H),7.21-7.19(m,14H),7.14-7.01(m,12H),6.77-6.73(t,4H,J=4.44),6.43-6.38(m,6H),6.01-5.99(d,4H,J=8),4.79-4.76(m,4H),3.73-3.71(m,4H),3.60(s,12H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):17.05(m,1P,JP-P=16.3Hz),1.35(m,2P,JP-P=29.16Hz,JPt-P=1335Hz)。赤外分光スペクトル(KBr,cm-1):2108w(C≡C),1158s(ClO)。
Example 9: Preparation of Pt 2 Au Complex [Pt 2 Au(μ-dpmp) 2 (μ-debf)(C≡CPh-(OMe) 2 -2,4) 2 ](ClO 4 ) Complex (4) Preparation The method is basically the same as that of Example 6 , except Pt 2 (PPh 3 ) 4 (μ-debf)( C ≡CPh-(OMe) 2 -2,4) 2 was used and the yield was 67%. Elemental analysis : C100H82AuClO9P6Pt2 . Calculated values: C53.71, H3.70. Measurements: C53.66, H3.66. High resolution mass spectrum m/z (%): 2135.3524 (100) [M-ClO 4 ] + (calcd 2015.3551). Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 7.93-7.89 (m, 4H), 7.81-7.77 (m, 8H), 7.75-7.73 (d , 2H, J=8), 7.67-7.62 (m, 8H), 7.21-7.19 (m, 14H), 7.14-7.01 (m, 12H), 6.77 -6.73 (t, 4H, J = 4.44), 6.43-6.38 (m, 6H), 6.01-5.99 (d, 4H, J = 8), 4.79- 4.76 (m, 4H), 3.73-3.71 (m, 4H), 3.60 (s, 12H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 17.05 (m, 1P, J PP =16.3 Hz), 1.35 (m, 2P, J PP =29. 16 Hz, J Pt -P = 1335 Hz). Infrared spectrum (KBr, cm −1 ): 2108 w (C≡C), 1158 s (ClO 4 ).

実施例10:PtAu錯体[PtAu(μ-dpmp)(μ-debt)(C≡C-(10-Me-PTZ-3](ClO)錯体(5)の製造
製造方法は実施例6の方法と基本的に同じであり、Pt(PPh(μ-decz)(C≡CPh)の代わりにPt(PPh(μ-debt)(C≡C-(10-Me-PTZ-3)を使用し、収率は62%であった。元素分析:C11084AuNClOPt。計算値:C54.99、H3.52。測定値:C55.06、H3.50。高分解能質量スペクトルm/z(%):2301.3214(100)[M-ClO(計算値2301.3208)。プロトン核磁気共鳴(400MHz,CDCl,ppm):7.70-7.65(m,26H),7.48-7.46(m,4H),7.35-7.33(m,30H),7.12-7.11(t,2H,J=3),7.06-7.05(d,2H,J=8),6.99-6.95(t,2H,J=8.2),6.89-6.81(m,4H),4.69-4.60(m,4H),3.93-3.81(m,4H),3.65(s,6H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):19.06(m,1P,JP-P=13.5Hz),3.26(m,2P,JP-P=27.26Hz,JPt-P=1453Hz)。赤外分光スペクトル(KBr,cm-1):2109w(C≡C),1103s(ClO)。
Example 10 Preparation of Pt 2 Au Complex [Pt 2 Au(μ-dpmp) 2 (μ-debt)(C≡C-(10-Me-PTZ-3](ClO 4 ) Complex (5) It is basically the same as the method of Example 6, and instead of Pt 2 (PPh 3 ) 4 (μ-decz)(C≡CPh) 2 , Pt 2 (PPh 3 ) 4 (μ-debt)(C≡C -(10-Me-PTZ-3) 2 was used and the yield was 62% Elemental analysis: C 110 H 84 AuN 2 ClO 4 P 6 Pt 2 S 3 Calculated: C54.99, H3 .52 Measured: C55.06, H3.50 High resolution mass spectrum m/z (%): 2301.3214 (100) [M-ClO 4 ] + (calculated 2301.3208) Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 7.70-7.65 (m, 26H), 7.48-7.46 (m, 4H), 7.35-7.33 (m, 30H), 7.12-7.11 (t, 2H, J=3), 7.06-7.05 (d, 2H, J=8), 6.99-6.95 (t, 2H, J=8. 2), 6.89-6.81 (m, 4H), 4.69-4.60 (m, 4H), 3.93-3.81 (m, 4H), 3.65 (s, 6H) Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 19.06 (m, 1P, J PP =13.5 Hz), 3.26 (m, 2P, J PP =27 .26 Hz, J Pt-P =1453 Hz) Infrared spectrum (KBr, cm −1 ): 2109 w (C≡C), 1103 s (ClO 4 ).

実施例11:PtCu錯体[PtCu(μ-dpmp)(μ-decz)(C≡CC](ClO)錯体(6)の製造
製造方法は実施例6の方法と基本的に同じであり、[Au(tht)](ClO)の代わりに[Cu(MeCN)](ClO)を使用した。収率は72%であった。元素分析:C10491ClCuNOPt。計算値:C59.66、H4.38。測定値:C59.28、H4.55。高分解能質量スペクトルm/z(%):1993.4160(100)[M-ClO(計算値1993.4172)。プロトン核磁気共鳴(400 MHz,CDCl,ppm):8.73(s,1H),7.90-7.83(m,4H),7.82-7.78(m,2H),7.70-7.57(m,16H),7.28-7.22(m,4H),7.19-7.03(m,22H),6.95(t,4H,J=7.48),6.86-6.75(m,8H),6.64-6.60(m,2H),5.94-5.87(m,2H),4.20-3.96(m,4H),3.78-3.56(m,4H),1.35(s,18H)。リン同位体核磁気共鳴(162MHz,CDCl,ppm):9.6(m,2P,JP-P=37.3Hz,JPt-P=2550 Hz),-13.2(m,1P,JP-P=34.6Hz)。赤外分光スペクトル(KBr,cm-1):2102w(C≡C),1099s
(ClO)。
Example 11: Preparation of Pt 2 Cu complex [Pt 2 Cu(μ-dpmp) 2 (μ-decz)(C≡CC 6 H 5 ) 2 ](ClO 4 ) complex (6) method, using [Cu(MeCN) 4 ](ClO 4 ) instead of [Au(tht) 2 ](ClO 4 ). Yield was 72%. Elemental analysis : C104H91ClCuNO4P6Pt2 . Calculated values: C59.66, H4.38. Measurements: C59.28, H4.55. High resolution mass spectrum m/z (%): 1993.4160 (100) [M-ClO 4 ] + (calcd 1993.4172). Proton nuclear magnetic resonance (400 MHz, CD 2 Cl 2 , ppm): 8.73 (s, 1H), 7.90-7.83 (m, 4H), 7.82-7.78 (m, 2H) , 7.70-7.57 (m, 16H), 7.28-7.22 (m, 4H), 7.19-7.03 (m, 22H), 6.95 (t, 4H, J= 7.48), 6.86-6.75 (m, 8H), 6.64-6.60 (m, 2H), 5.94-5.87 (m, 2H), 4.20-3. 96 (m, 4H), 3.78-3.56 (m, 4H), 1.35 (s, 18H). Phosphorus isotope nuclear magnetic resonance (162 MHz, CD 2 Cl 2 , ppm): 9.6 (m, 2P, J P-P = 37.3 Hz, J Pt-P = 2550 Hz), -13.2 (m, 1P, J PP =34.6 Hz). Infrared spectrum (KBr, cm −1 ): 2102 w (C≡C), 1099 s
( ClO4 ).

実施例12:錯体(1)~(6)のフォトルミネッセンス性能試験
蛍光分光計Edinburgh FLS920において実施例で製造した錯体(1)~(6)の異なる状態における励起スペクトル、発光スペクトル、発光寿命及び発光量子収率をそれぞれテストした。直径142mmの積分球を利用してサンプルの発光量子収率を測定した。結果の詳細は表1を参照する。
Example 12: Photoluminescence performance test of complexes (1)-(6) Excitation spectra, emission spectra, emission lifetimes and luminescence in different states of complexes (1)-(6) prepared in the example in a fluorescence spectrometer Edinburgh FLS920 The quantum yield was tested respectively. The emission quantum yield of the samples was measured using an integrating sphere with a diameter of 142 mm. See Table 1 for details of the results.

Figure 0007308357000003
Figure 0007308357000003

実施例13:錯体(1)~(5)による電界発光素子の製造と性能試験
実施例6~10で製造したリン光錯体(1)~(5)をそれぞれ発光材料として6%重量パーセントでmCP(63%):OXD-7(32%)混合ホスト材料にドープしたものを発光層として有機発光ダイオードを製造し、素子構造はITO/m-PEDOT:PSS(20 nm)/62%のmCP:32%のOXD-7:6%wtの錯体(50 nm)/Bmpypb(50 nm)/LiF(1 nm)/Al(100 nm)であった。
Example 13: Production and performance test of electroluminescent devices with complexes (1) to (5) Phosphorescent complexes (1) to (5) produced in Examples 6 to 10, respectively, were used as light-emitting materials and mCP at 6% weight percent (63%): OXD-7 (32%) mixed host material doped organic light-emitting diode was fabricated with light-emitting layer, device structure was ITO/m-PEDOT:PSS (20 nm)/62% mCP: 32% OXD-7:6% wt complex (50 nm)/Bmpypb (50 nm)/LiF (1 nm)/Al (100 nm).

まずそれぞれガラス用洗剤、アセトン、イソプロパノール、脱イオン水を利用してITO基板を洗浄し、次にUV-オゾンを用いて15分間処理した。PSS-Na水溶液(15mg/mL)とPEDOT:PSSを5:1(体積比)で混合し、濾過してスピンコーターにおいて4000回転/分でITOにスピンコートし、120℃で15分間乾燥して厚さ20nmの正孔輸送層を得た。次にスピンコーターを利用して濾過後の濃度5mg/mLの62%のmCP:32%のOXD-7:6%の錯体(重量パーセント)のジクロロメタン溶液を2100回転/分でPEDOT:PSS-Na薄膜にスピンコートして厚さ50nmの発光層を形成させた。続いて、ITO基板を真空度4×10-4Pa以上の真空チャンバーに入れて、厚さ50nmのBmPyPb電子輸送層、厚さ1nmのLiF電子注入層、及び厚さ100nmのAlを素子のカソードとしてこの順に熱蒸着した。 The ITO substrates were first cleaned using glass cleaner, acetone, isopropanol, and deionized water, respectively, and then treated with UV-ozone for 15 minutes. PSS-Na aqueous solution (15 mg/mL) and PEDOT:PSS were mixed at 5:1 (volume ratio), filtered, spin-coated on ITO at 4000 rpm in a spin coater, and dried at 120°C for 15 minutes. A hole transport layer with a thickness of 20 nm was obtained. A post-filter concentration of 5 mg/mL of 62% mCP:32% OXD-7:6% complex (weight percent) in dichloromethane was then applied at 2100 rpm using a spin coater. The thin film was spin-coated to form a light-emitting layer with a thickness of 50 nm. Subsequently, the ITO substrate was placed in a vacuum chamber with a degree of vacuum of 4×10 −4 Pa or more, and a BmPyPb electron transport layer with a thickness of 50 nm, a LiF electron injection layer with a thickness of 1 nm, and an Al with a thickness of 100 nm were formed on the cathode of the device. were thermally evaporated in this order.

発光ダイオード素子性能試験は室温下で乾燥した空気環境において行われた。電界発光性能パラメータは電界発光波長(λEL)、ターンオン電圧(Von)、最大輝度(Lmax)、最大電流効率(CEmax)、最大電力効率(PEmax)、最大外部量子効率(EQEmax)を含み、表2にまとめた。 Light-emitting diode device performance tests were conducted in a dry air environment under room temperature. Electroluminescent performance parameters are electroluminescent wavelength (λ EL ), turn-on voltage (V on ), maximum luminance (L max ), maximum current efficiency (CE max ), maximum power efficiency (PE max ), maximum external quantum efficiency (EQE max ), summarized in Table 2.

Figure 0007308357000004
Figure 0007308357000004

上記では本発明の実施形態について説明した。ただし、本発明は上記の実施形態に限定されない。本発明の趣旨を逸脱せず行った修正、同等な置き換え、改良などは、いずれも本発明の請求範囲に含まれる。 Embodiments of the present invention have been described above. However, the invention is not limited to the above embodiments. Modifications, equivalent replacements, improvements, etc. made without departing from the spirit of the present invention are all included in the scope of the present invention.

実施例13の電界発光素子の構造模式図及びその一部の部品を構成する有機材料の化学構造である。FIG. 13 is a structural schematic diagram of an electroluminescence device of Example 13 and a chemical structure of an organic material constituting a part of the component.

Claims (11)

構造が下記の式(I)に示されるとおりであることを特徴とするPtMヘテロ三核金属有機アルキン錯体:
[PtM(μ-dpmp)(μ-C≡C-R’-C≡C)(C≡CR) m- (I)
そのうち、μは架橋を表す;dpmpはビス(ジフェニルホスフィノメチル)フェニルホスフィンである;
MはAu(I)、Ag(I)、或いはCu(I)から選ばれる;
Rは相同又は相異であり、アルキル基、アリール基、ヘテロアリール基から独立的に選ばれる;前記アルキル基、アリール基、ヘテロアリール基はいずれも1つ又は複数の置換基によって置換されてもよく、前記置換基はアルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基、ヘテロアリール基から選ばれる;
R’はアルキレン基、アリレン基、ヘテロアリレン基から選ばれる;前記アルキレン基、アリレン基、ヘテロアリレン基はいずれも1つ又は複数の置換基によって置換されてもよく、前記置換基はアルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基、ヘテロアリール基から選ばれる;
m-は一価又は二価の陰イオンであり、ここでmは1又は2である。
A Pt 2 M heterotrinuclear metal-organoalkyne complex characterized in that the structure is as shown in formula (I) below:
[Pt 2 M(μ−dpmp) 2 (μ−C≡C−R′−C≡C)(C≡CR) 2 ] + m A m− (I)
wherein μ represents a bridge; dpmp is bis(diphenylphosphinomethyl)phenylphosphine;
M is selected from Au(I), Ag(I), or Cu(I);
R are homologous or different and are independently selected from alkyl groups, aryl groups and heteroaryl groups; any of said alkyl groups, aryl groups and heteroaryl groups may be substituted by one or more substituents; Often said substituents are selected from alkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups, heteroaryl groups;
R' is selected from an alkylene group, an arylene group, and a heteroarylene group; any of the alkylene group, the arylene group, and the heteroarylene group may be substituted with one or more substituents, and the substituents may be an alkyl group or an alkenyl group; , alkynyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups, heteroaryl groups;
A m- is a monovalent or divalent anion, where m is 1 or 2;
(1)前記一価又は二価の陰イオンはClO 、PF 、SbF 、BF 、B(C 、CFSO 、或いはSiF 2-から選ばれる;
(2)前記式(I)に示されるヘテロ三核金属有機アルキン錯体の立体構造は下記のとおりである;
Figure 0007308357000005

(3)前記Rはアリール基、カルバゾリル基、フェノチアジニル基、キナゾリニル基、アリール置換カルバゾリル基、又はジアリールアミノフェニル基である;前記アリール基、カルバゾリル基、フェノチアジニル基、キナゾリニル基、アリール置換カルバゾリル基、又はジアリールアミノフェニル基は任意選択で1つ又は複数の置換基によって置換される;前記置換基はアルキル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、又はアリール基から選ばれる;或いは
(4)前記R’はアリレン基、窒素含有ヘテロアリレン基酸素含有ヘテロアリレン基硫黄含有ヘテロアリレン基、又は硫黄と窒素含有ヘテロアリレン基であり、前記アリレン基、窒素含有ヘテロアリレン基、酸素含有ヘテロアリレン基、硫黄含有ヘテロアリレン基、又は硫黄と窒素含有ヘテロアリレン基は任意選択で1つ又は複数の置換基によって置換される;前記置換基はアルキル基、アルコキシ基、アミノ基、ハロゲン、ハロアルキル基、アリール基から選ばれることを特徴とする、請求項1に記載の錯体。
(1) the monovalent or divalent anion is ClO 4 , PF 6 , SbF 6 , BF 4 , B(C 6 H 5 ) 4 , CF 3 SO 3 , or SiF 6 2− selected from;
(2) The three-dimensional structure of the heterotrinuclear metal organic alkyne complex represented by the formula (I) is as follows;
Figure 0007308357000005

(3) R is an aryl group, carbazolyl group, phenothiazinyl group, quinazolinyl group, aryl-substituted carbazolyl group, or diarylaminophenyl group; groups, or diarylaminophenyl groups are optionally substituted by one or more substituents; said substituents being selected from alkyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, or aryl groups; or
(4) R′ is an arylene group, a nitrogen-containing heteroarylene group , an oxygen-containing heteroarylene group , a sulfur-containing heteroarylene group , or a sulfur and nitrogen-containing heteroarylene group, and the arylene group, nitrogen-containing heteroarylene group, oxygen-containing heteroarylene group, A sulfur-containing heteroarylene group or a sulfur and nitrogen-containing heteroarylene group is optionally substituted with one or more substituents; said substituents being selected from alkyl groups, alkoxy groups, amino groups, halogens, haloalkyl groups, aryl groups. The complex according to claim 1, characterized in that it is
前記窒素含有ヘテロアリレン基は、カルバゾリレン基であり、前記酸素含有ヘテロアリレン基は、ジベンゾフラニレン基であり、前記硫黄含有ヘテロアリレン基は、ジベンゾチエニレン基であり、前記硫黄と窒素含有ヘテロアリレン基は、フェノチアジニレン基であることを特徴とする、請求項2に記載の錯体。 The nitrogen-containing heteroarylene group is a carbazolylene group, the oxygen-containing heteroarylene group is a dibenzofuranylene group, the sulfur-containing heteroarylene group is a dibenzothienylene group, and the sulfur and nitrogen-containing heteroarylene group is a phenol. 3. A complex according to claim 2, characterized in that it is a thiazinylene group. 前記Rはフェニル基、アルキル置換フェニル基、フェニル置換カルバゾリル基、ハロアルキルフェニル基、アルコキシ置換フェニル基、又はアルキル置換フェノチアジニル基である;前記R’はアルキル置換カルバゾリレン基、ジベンゾフラニレン基、又はジベンゾチエニレン基であることを特徴とする、請求項1~3のいずれか1項に記載の錯体。 R is a phenyl group, an alkyl-substituted phenyl group, a phenyl-substituted carbazolyl group , a haloalkylphenyl group, an alkoxy-substituted phenyl group, or an alkyl-substituted phenothiazinyl group; or a dibenzothienylene group, according to any one of claims 1 to 3 . 前記式(I)に示されるヘテロ三核金属有機アルキン錯体は下記の構造から選ばれることを特徴とする、請求項1~のいずれか1項に記載の錯体:
Figure 0007308357000006

The complex according to any one of claims 1 to 4 , characterized in that the heterotrinuclear metal organic alkyne complex of formula (I) is selected from the following structures:
Figure 0007308357000006

.
下記のステップを含むことを特徴とする請求項1~のいずれか1項に記載の錯体の製造方法:
dpmpと、Mを含むイオン結合型錯体とを溶剤において反応させて、中間体M(dpmp)を得る;
次にM(dpmp)とPt(PPh(μ-C≡C-R’-C≡C)(C≡CR)を溶剤において反応させて、式(I)に示されるヘテロ三核金属有機アルキン錯体を得る;
ここで、Mを含むイオン結合型錯体は[Au(tht) (Am-)、[Ag(tht)] (Am-)、又は[Cu(MeCN) (Am-)から選ばれる;
前記PPhはトリフェニルホスフィンを表し、thtはテトラヒドロチオフェンであり、MeCNはアセトニトリルであり、前記dpmp、Am-、R、R’、Mは請求項1~のいずれか1項で定義したとおりである。
A method for preparing a complex according to any one of claims 1 to 5 , characterized in that it comprises the following steps:
reacting dpmp with an ionic complex containing M in a solvent to give intermediate M(dpmp) 2 ;
Next, M(dpmp) 2 and Pt 2 (PPh 3 ) 4 (μ-C≡CR′-C≡C)(C≡CR) 2 are reacted in a solvent to form a heterodimer of formula (I). obtaining a trinuclear metal-organoalkyne complex;
Here, the ion-bonded complex containing M is [Au(tht) 2 ] + m (A m− ), [Ag(tht)] + m (A m− ), or [Cu(MeCN) 4 ] + m (A m− );
said PPh 3 represents triphenylphosphine, tht is tetrahydrothiophene, MeCN is acetonitrile and said dpmp, A m− , R, R′, M are as defined in any one of claims 1 to 5 That's right.
dpmpと、Mを含むイオン結合型錯体と、Pt(PPh(μ-C≡CR’C≡C)(C≡CR)とのモル比は1.5~2.5:1~1.5:1~1.5であることを特徴とする、請求項に記載の製造方法。 The molar ratio of dpmp, the ionically bonded complex containing M, and Pt 2 (PPh 3 ) 4 (μ-C≡CR′C≡C)(C≡CR) 2 is 1.5-2.5:1. The production method according to claim 6 , characterized in that the ratio is ~1.5:1~1.5. 有機発光ダイオードを製造するための、請求項1~5のいずれか1項に記載の錯体の用途。 Use of the complexes according to any one of claims 1-5 for the production of organic light-emitting diodes. 発光層を含む有機発光ダイオードであって、前記発光層は請求項1~5のいずれか1項に記載の錯体を含むことを特徴とする、有機発光ダイオードAn organic light-emitting diode comprising a light-emitting layer, characterized in that said light-emitting layer comprises a complex according to any one of claims 1-5. 1)溶液法を用いて有機発光ダイオードの正孔注入層を製造することと;
2)溶液法を用いて請求項1~5のいずれか1項に記載の錯体がドープされた発光層を製造することと;
3)次に真空熱蒸着法を利用して電子輸送層、電子注入層、及びカソード層をこの順に製造することとを含む、請求項に記載の有機発光ダイオードの製造方法。
1) fabricating a hole injection layer of an organic light emitting diode using a solution method;
2) preparing a light-emitting layer doped with a complex according to any one of claims 1 to 5 using a solution method;
3) then fabricating an electron-transporting layer, an electron-injecting layer and a cathode layer in this order using vacuum thermal evaporation.
フラットパネルディスプレイ又は日常照明の分野における請求項に記載の有機発光ダイオードの用途。 Use of the organic light emitting diode according to claim 9 in the field of flat panel displays or everyday lighting.
JP2022517409A 2019-09-17 2020-09-16 Heterotrinuclear metal organic alkyne complex, method for producing the same, and use thereof Active JP7308357B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910877419.8A CN110698516B (en) 2019-09-17 2019-09-17 Hetero-trinuclear metal organic alkyne complex and preparation method and application thereof
CN201910877419.8 2019-09-17
PCT/CN2020/115623 WO2021052367A1 (en) 2019-09-17 2020-09-16 Heterotrinuclear metal organic alkyne complex, preparation method therefor and use thereof

Publications (2)

Publication Number Publication Date
JP2022549155A JP2022549155A (en) 2022-11-24
JP7308357B2 true JP7308357B2 (en) 2023-07-13

Family

ID=69194963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022517409A Active JP7308357B2 (en) 2019-09-17 2020-09-16 Heterotrinuclear metal organic alkyne complex, method for producing the same, and use thereof

Country Status (4)

Country Link
JP (1) JP7308357B2 (en)
KR (1) KR20220044840A (en)
CN (1) CN110698516B (en)
WO (1) WO2021052367A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698516B (en) * 2019-09-17 2021-11-05 中国科学院福建物质结构研究所 Hetero-trinuclear metal organic alkyne complex and preparation method and application thereof
US20220109402A1 (en) * 2020-10-01 2022-04-07 Xiong Gong Solar cells, solid-state supercapacitors, and wireless self-charging power packs formed therewith using conductive thin films
CN114736220B (en) * 2022-04-27 2023-07-25 中国科学院福建物质结构研究所 Linear trinuclear copper (I) complex, preparation method thereof and organic electroluminescent diode
CN115785949B (en) * 2023-02-10 2023-05-02 暨南大学 Copper-platinum polynuclear cluster and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892685A (en) 2015-04-13 2015-09-09 中国科学院福建物质结构研究所 Ionic phosphorescent PtM2 complex, preparation method and purpose thereof
WO2018107841A1 (en) 2016-12-14 2018-06-21 中国科学院福建物质结构研究所 PHOSPHORESCENT PtAg2 COMPLEX, PREPARATION METHOD THEREFOR AND USE THEREOF

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481910B (en) * 2015-11-20 2018-07-17 中国科学院福建物质结构研究所 A kind of high performance Organic Light Emitting Diode
CN108440609B (en) * 2018-04-19 2020-02-21 中国科学院福建物质结构研究所 Phosphorescent PtM3 heterotetranuclear complex and preparation method and application thereof
CN110698516B (en) * 2019-09-17 2021-11-05 中国科学院福建物质结构研究所 Hetero-trinuclear metal organic alkyne complex and preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892685A (en) 2015-04-13 2015-09-09 中国科学院福建物质结构研究所 Ionic phosphorescent PtM2 complex, preparation method and purpose thereof
WO2018107841A1 (en) 2016-12-14 2018-06-21 中国科学院福建物质结构研究所 PHOSPHORESCENT PtAg2 COMPLEX, PREPARATION METHOD THEREFOR AND USE THEREOF

Also Published As

Publication number Publication date
CN110698516B (en) 2021-11-05
KR20220044840A (en) 2022-04-11
WO2021052367A1 (en) 2021-03-25
JP2022549155A (en) 2022-11-24
CN110698516A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
JP7308357B2 (en) Heterotrinuclear metal organic alkyne complex, method for producing the same, and use thereof
JP6182145B2 (en) Spirobifluorene compounds for light emitting devices
US20150108449A1 (en) Organic electronic material and organic electroluminescent device
KR101218029B1 (en) Triphenylene-based compounds that substitute aryl amine compounds and organic electroluminescent device comprising same
CN108276336B (en) Organic photoelectric functional material, light-emitting device, and preparation method and application thereof
KR20170117812A (en) New compound for Hole blocking layer and/or electron transport layer of organic devices and Preparing method of organic film comprising the same compound and OLED
JP5875119B2 (en) Organic electroluminescence device
JP2024518728A (en) High emissivity platinum complexes with 1,8-substituted carbazoles and uses thereof
US20210115327A1 (en) Phosphorescent ptm3 heterotetranuclear complex, preparation method and use thereof
US20240059962A1 (en) Central chirality induced spiro chiral tetradentate cyclometalated platinum (ii) and palladium (ii) complex-based circularly polarized luminescence material and application thereof
KR20220157948A (en) Crystal of phenanthroline derivative, method for producing the same, and light emitting device using the same
US20220059782A1 (en) PHOSPHORESCENT PtM2 (M=Cu,Ag,Au) COMPLEX AND ORGANIC LIGHT-EMITTING DIODE THEREOF
US11133469B2 (en) Compounds for organic optoelectronic device and organic optoelectronic device including the same
TWI609864B (en) Carbazole derivatives and organic light-emitting diodes using the same
US20180301632A1 (en) Spirally configured cis-stilbene/fluorene hybrid material and organic electroluminescent device using the same
CN111978357B (en) Rigid tri-phosphine supported phosphorescent Pt-M complex and organic light emitting diode thereof
WO2012099237A1 (en) Organic electroluminescent element
WO2018120972A1 (en) Organic light-emitting diode device
WO2018120973A1 (en) Host material applied to organic light-emitting diode
US20180319774A1 (en) Iridium (iii) complexes with cyclic quinoxaline-fused ligands and organic light-emitting diodes using the same
JP2014049469A (en) Organic electroluminescent element
CN118119616A (en) Novel compound and organic light emitting device comprising the same
JP2019123689A (en) Compound, composition, liquid composition, organic electroluminescent element material, and organic electroluminescent element
TW201821420A (en) Carbazole derivatives and organic light-emitting diodes using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7308357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150