JP7305380B2 - UV irradiation device and ozone generator - Google Patents

UV irradiation device and ozone generator Download PDF

Info

Publication number
JP7305380B2
JP7305380B2 JP2019045837A JP2019045837A JP7305380B2 JP 7305380 B2 JP7305380 B2 JP 7305380B2 JP 2019045837 A JP2019045837 A JP 2019045837A JP 2019045837 A JP2019045837 A JP 2019045837A JP 7305380 B2 JP7305380 B2 JP 7305380B2
Authority
JP
Japan
Prior art keywords
excimer lamp
flow
fan
tube
irradiation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019045837A
Other languages
Japanese (ja)
Other versions
JP2020147461A (en
Inventor
博明 佐藤
工 五味
友樹 濱
裕美 金児
和泉 芹澤
剛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2019045837A priority Critical patent/JP7305380B2/en
Priority to CN202010179086.4A priority patent/CN111686667B/en
Publication of JP2020147461A publication Critical patent/JP2020147461A/en
Priority to JP2023105844A priority patent/JP7515231B2/en
Application granted granted Critical
Publication of JP7305380B2 publication Critical patent/JP7305380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、エキシマランプによって紫外線を照射する紫外線照射装置に関する。 The present invention relates to an ultraviolet irradiation device that emits ultraviolet rays using an excimer lamp.

酸化力の強いオゾンを生成する方法として、大気など酸素を含む原料ガスに紫外線(例えば波長172nm)を照射することによってオゾンを発生させることができる。紫外線を照射する光源としては、例えば、エキシマランプが用いられる(特許文献1参照)。そこでは、筐体の上面に吸気口、底面に排気口を設け、吸気口にファンなどを設け、筐体内に空気を流入させる。 As a method for generating ozone having a strong oxidizing power, ozone can be generated by irradiating a source gas containing oxygen such as air with ultraviolet rays (for example, a wavelength of 172 nm). For example, an excimer lamp is used as a light source for irradiating ultraviolet rays (see Patent Document 1). In this case, an intake port is provided on the top surface of the housing, an exhaust port is provided on the bottom surface, and a fan or the like is provided at the intake port to allow air to flow into the housing.

エキシマランプでは、発光管の管壁温度が上昇すると、光強度が低下し、また、発生したオゾンの熱分解が発光管付近で生じてしまう。これを防ぐため、エキシマランプを配置した管内に流れる原料ガスの流速を所定値以上に定めることによって、オゾン発生の効率を高めることが提案されている(特許文献2参照)。 In the excimer lamp, when the tube wall temperature of the arc tube rises, the light intensity decreases, and thermal decomposition of generated ozone occurs in the vicinity of the arc tube. In order to prevent this, it has been proposed to increase the efficiency of ozone generation by setting the flow velocity of the raw material gas flowing in the tube in which the excimer lamp is arranged to a predetermined value or higher (see Patent Document 2).

特開2016-139462号公報JP 2016-139462 A 特許第6070794号公報Japanese Patent No. 6070794

紫外線照射装置、オゾン生成器は、様々な環境下で設置され、外気温や原料ガスなど流体の温度も使用環境によって異なる。例えば外気を利用してオゾンを生成する場合、エキシマランプ雰囲気温度および流体の温度によってその紫外線照射効率も変化し、所望するような紫外線処理効果を得ることは難しい。特に、エキシマランプは、コンパクトでありながら高濃度のオゾンが生成でき、放射される紫外線の波長172nmでは空気の透過距離が約10mm未満で小さいので、原料ガスはエキシマランプの表面近くを流れる必要がある。そのため、原料ガスの流れの状態による影響が無視できなくなってきた。例えば紫外線の透過距離よりも、エキシマランプ外表面から流路内壁までの距離が大きくなると、紫外線が届かない領域を通過する原料ガスが多くなり、紫外線処理効率が低下するという問題がある。 Ultraviolet irradiators and ozone generators are installed in various environments, and the temperature of fluids such as the outside air temperature and raw material gas also varies depending on the usage environment. For example, when ozone is generated using outside air, the ultraviolet irradiation efficiency varies depending on the ambient temperature of the excimer lamp and the temperature of the fluid, making it difficult to obtain the desired ultraviolet treatment effect. In particular, excimer lamps are compact and can generate high-concentration ozone, and the transmission distance of the air is less than about 10 mm at the wavelength of 172 nm of emitted ultraviolet rays, so the source gas does not need to flow near the surface of the excimer lamp. be. Therefore, the influence of the flow state of the raw material gas cannot be ignored. For example, if the distance from the outer surface of the excimer lamp to the inner wall of the flow path is longer than the transmission distance of the ultraviolet rays, a large amount of raw material gas will pass through the area where the ultraviolet rays do not reach, resulting in a problem of reduced ultraviolet treatment efficiency.

したがって、様々な使用環境下においても、安定して高効率の紫外線照射処理を実現できることが求められる。 Therefore, it is required to realize stable and highly efficient ultraviolet irradiation treatment even under various usage environments.

本発明の紫外線照射装置は、例えば酸素を含む流体に対して紫外線を照射することを特徴とするオゾン生成器に設けることが可能な装置であり、紫外線を放射するエキシマランプを収納する流路と、流路に沿った方向に移動する流体を供給する流体供給部とを備え、エキシマランプが流体供給部の供給口に対向するように配置されている。供給口付近では複雑な乱流現象が生じ、エキシマランプの配置された領域においても、極めて複雑な渦運動等の流れの状態が生じる。すなわち、エキシマランプの周囲で、非一様流が形成される。 The ultraviolet irradiation device of the present invention is a device that can be installed in an ozone generator that is characterized by irradiating, for example, an oxygen-containing fluid with ultraviolet rays. and a fluid supply section for supplying fluid moving in a direction along the flow path, and the excimer lamp is arranged so as to face the supply port of the fluid supply section. Complicated turbulence phenomena occur near the supply port, and extremely complicated flow conditions such as vortex motion occur in the region where the excimer lamps are arranged. That is, a non-uniform flow is formed around the excimer lamp.

ここでの「非一様流」という記載は、全体的な流体の移動方向、すなわち流路の方向に関し、流れの状態を一様な流れとして捉えることができず、時間平均で流路方向の速度を表すことができない複雑な流れの状態を意味する。例えば、非一様乱流状態であらわされる流れ、あるいは旋回流などの流れがエキシマランプ周囲に形成される。流路方向に沿った速度成分によって流れの状態を表すことができないため、例えば、JIS B 8330に準拠する構成は排除される。 The description of "non-uniform flow" here refers to the overall moving direction of the fluid, that is, the direction of the flow channel, and the state of the flow cannot be regarded as a uniform flow. Represents a complex flow condition in which velocity cannot be expressed. For example, a non-uniform turbulent flow or a swirling flow is formed around the excimer lamp. Since the state of the flow cannot be represented by the velocity component along the direction of the flow path, for example, a configuration complying with JIS B 8330 is excluded.

エキシマランプは、流体供給部および流路の少なくとも一方の特性に従って2次元流れもしくは3次元流れとして表される流れ場になっている領域に配置することが可能である。ここで、「2次元流れもしくは3次元流れ」とは、管内などの平均速度をとることによって一方向の速度成分で表すことができる「1次元流れ」ではなく、少なくとも2方向の流れの速度成分によって流れを表すことができることを意味する。例えば流路が、直状の管などによって管状流路として構成される場合、エキシマランプは、管状流路の軸方向以外の速度成分が支配的な流れの領域に配置することが可能である。 The excimer lamps can be placed in a region with a flow field that can be represented as two-dimensional flow or three-dimensional flow according to the properties of the fluid supply and/or the flow path. Here, "two-dimensional flow or three-dimensional flow" does not mean "one-dimensional flow", which can be represented by a velocity component in one direction by taking the average velocity in a pipe, but velocity components of flow in at least two directions. means that the flow can be represented by For example, when the channel is configured as a tubular channel by a straight pipe or the like, the excimer lamp can be arranged in a flow region where velocity components other than the axial direction of the tubular channel are dominant.

流体供給部は、ファン(軸流ファン、遠心ファンなど)によって構成することが可能であり、それ以外で構成することも可能である。流体供給部は、エキシマランプの表面において冷却の程度が場所によって異なるように、流体を供給するようにすればよい。例えば、出力、サイズなどその流体供給部の特性によって表面温度が一様にならないようにすることができる。 The fluid supply unit can be configured with a fan (axial fan, centrifugal fan, etc.), or can be configured with something else. The fluid supply section may supply the fluid so that the degree of cooling varies depending on the location on the surface of the excimer lamp. For example, characteristics of the fluid supply, such as power, size, etc., can make the surface temperature non-uniform.

例えば、流体供給部に軸流ファンを設けた場合、エキシマランプは、軸流ファンの軸上に配置し、エキシマランプの外径が、軸流ファンのファンモータ部の外径よりも小さくなるように構成すればよい。 For example, when an axial fan is provided in the fluid supply section, the excimer lamp is arranged on the axis of the axial fan so that the outer diameter of the excimer lamp is smaller than the outer diameter of the fan motor section of the axial fan. should be configured to

一方で、複数のエキシマランプを配置することも可能であり、複数のエキシマランプは、流体供給部の特性によって冷却の程度が異なる場所に、それぞれ配置することができる。例えば、複数のエキシマランプが、第1のエキシマランプと、第1のエキシマランプより生成できるオゾンの濃度が高い第2のエキシマランプとを備え、第1のエキシマランプが、相対的に流速が低い場所に配置し、第2のエキシマランプが、相対的に流速が高い場所に配置することが可能である。ここでの流速は、2次元流れあるいは3次元流れの速度成分の速さとして求めることが可能である。 On the other hand, it is also possible to arrange a plurality of excimer lamps, and the plurality of excimer lamps can be arranged in locations with different degrees of cooling depending on the characteristics of the fluid supply. For example, the plurality of excimer lamps includes a first excimer lamp and a second excimer lamp having a higher concentration of ozone that can be generated from the first excimer lamp, and the first excimer lamp has a relatively low flow velocity. A second excimer lamp can be placed where the flow velocity is relatively high. The flow velocity here can be obtained as the speed of the velocity component of a two-dimensional flow or a three-dimensional flow.

また、軸流ファンを設けた場合、複数のエキシマランプを、軸流ファンの軸から径方向に沿ってファンモータ部の半径よりも離れて配置し、複数のエキシマランプの外径が、軸流ファンのファンモータ部の外径よりも小さくなるように構成すればよい。 Further, when an axial fan is provided, a plurality of excimer lamps are arranged radially from the axis of the axial fan at a distance larger than the radius of the fan motor portion, and the outer diameter of the plurality of excimer lamps is equal to the diameter of the axial fan. It may be constructed so as to be smaller than the outer diameter of the fan motor portion of the fan.

本発明によれば、様々な使用環境下においても、安定して高効率の紫外線照射処理を実現することができる。 According to the present invention, stable and highly efficient ultraviolet irradiation treatment can be realized even under various usage environments.

第1の実施形態である紫外線照射装置の概略的構成図である。1 is a schematic configuration diagram of an ultraviolet irradiation device according to a first embodiment; FIG. 第2の実施形態である紫外線照射装置の概略的構成図である。It is a schematic block diagram of the ultraviolet irradiation device which is 2nd Embodiment.

以下では、図面を参照して本発明の実施形態について説明する。 Embodiments of the present invention are described below with reference to the drawings.

図1は、第1の実施形態である紫外線照射装置の概略的構成図である。紫外線照射装置10は、軸流ファン20、管状流路30、エキシマランプ40とを備える。 FIG. 1 is a schematic configuration diagram of an ultraviolet irradiation device according to the first embodiment. The ultraviolet irradiation device 10 includes an axial fan 20 , a tubular flow path 30 and an excimer lamp 40 .

エキシマランプ40は、管状の発光管40Aを有し、紫外線(例えば172nm)を放射する。発光管40Aは、図示しない支持部材によって支持されている。紫外線照射部を有する管状流路30は、原料ガス(被照射体)の流れる流路を形成し、流入口30Aから図示しない排出口に向けて原料ガスが流れる。原料ガスは、酸素を含むガスであり、ここでは大気が管30内に流れ込むようになっている。 The excimer lamp 40 has a tubular arc tube 40A and emits ultraviolet rays (for example, 172 nm). The arc tube 40A is supported by a support member (not shown). The tubular channel 30 having the ultraviolet irradiation part forms a channel through which the source gas (object to be irradiated) flows, and the source gas flows from the inlet 30A toward the outlet (not shown). The raw material gas is an oxygen-containing gas, and air is allowed to flow into the tube 30 here.

軸流ファン20は、ファンモータ部22と、ファン羽24とを備え、管状流路30と実質的に同じ外径であって、ファンモータ部22を囲む円筒状の開口部である供給口を有し、管状流路30の流入口30Aに対して同軸的に配置され、管状流路(紫外線照射部)に沿った方向に移動する流体を供給する流体供給部である。エキシマランプ40は、発光管40Aの軸(ランプ軸)が管状流路30の軸Cと一致する、すなわち軸流ファン20の軸上に沿うように、流体供給部の排出口に対向して管状流路30内に配置されている。エキシマランプ40の外径Dは、軸流ファン20のファンモータ部22の外径dよりも小さい。なお、管状流路30の内径は、軸流ファン20以上の内径の大きさにしてもよい。 The axial fan 20 includes a fan motor portion 22 and fan blades 24 , and has substantially the same outer diameter as the tubular flow path 30 and has a supply port, which is a cylindrical opening surrounding the fan motor portion 22 . and arranged coaxially with respect to the inlet 30A of the tubular channel 30 to supply fluid moving in the direction along the tubular channel (ultraviolet irradiation part). The excimer lamp 40 is tubular so that the axis (lamp axis) of the light emitting tube 40A coincides with the axis C of the tubular flow path 30, that is, along the axis of the axial fan 20, facing the discharge port of the fluid supply section. It is arranged in the channel 30 . The outer diameter D of the excimer lamp 40 is smaller than the outer diameter d of the fan motor portion 22 of the axial fan 20 . Note that the inner diameter of the tubular flow path 30 may be equal to or larger than that of the axial fan 20 .

軸流ファン20が回転すると、周囲の空気が管状流路30に流れ込み、速度を増加させて管状流路30に沿った方向に移動する。エキシマランプ40は、図示しない電源部による制御によって点灯し、紫外線を放射する。その結果オゾンが生じ、生成されたオゾンは排出口側へ移動して脱臭、殺菌処理などに用いられる。 As the axial fan 20 rotates, ambient air flows into the tubular channel 30 and increases in velocity as it moves in a direction along the tubular channel 30 . The excimer lamp 40 is lighted under the control of a power supply (not shown) and emits ultraviolet rays. As a result, ozone is produced, and the produced ozone moves to the outlet side and is used for deodorization, sterilization, and the like.

一般的に、管内を流れるガスなどの流体は、レイノルズ数が比較的低い層流状態、レイノルズ数が比較的高い乱流状態においても、境界層以外の主流部分では、径方向に沿って曲線的(一様に減少・増加する)な速度分布をもつ流れとなるか、あるいは略一定(一様)な速度分布となる。この場合、平均速度を用いることで、管軸方向に沿った一方向の速度成分によってガスの流れの状態を表すことができる。 In general, a fluid such as gas flowing in a pipe has a curvilinear shape along the radial direction in the mainstream portion other than the boundary layer, even in a laminar flow state with a relatively low Reynolds number and a turbulent flow state with a relatively high Reynolds number. It becomes a flow with a velocity distribution (uniformly decreasing/increasing) or a substantially constant (uniform) velocity distribution. In this case, by using the average velocity, the state of gas flow can be represented by a velocity component in one direction along the pipe axis direction.

しかしながら、軸流ファン20の排出口(流体供給口)付近では、管状流路30の軸付近の軸流ファンのファンモータ部の外径の大きさに影響される領域で逆流現象が生じる。そのため、軸流ファン20を回転させている間、軸流ファンの流体供給の特性や管状流路の内面形状等の特性により、管状流路30の流入口30A付近で複雑な乱流現象が生じ、エキシマランプ40の配置された領域FAにおいても、極めて複雑な渦運動等の流れの状態が生じる。そのため、管状流路30の管軸方向に沿ったガスの速度成分だけで流れの現象を表すことができない。すなわち、管軸方向に沿った1次元流れ(一方向の速度成分)ではなく、2次元流れあるいは3次元流れ(複数方向の速度成分)とし表現される流れ場になっている。 However, near the discharge port (fluid supply port) of the axial fan 20 , a backflow phenomenon occurs in a region affected by the outer diameter of the fan motor portion of the axial fan near the axis of the tubular flow path 30 . Therefore, while the axial fan 20 is rotating, a complex turbulence phenomenon occurs near the inlet 30A of the tubular flow path 30 due to the characteristics of the fluid supply of the axial fan and the inner surface shape of the tubular flow path. , and in the area FA where the excimer lamps 40 are arranged, a flow state such as extremely complicated vortex motion occurs. Therefore, the flow phenomenon cannot be represented only by the velocity component of the gas along the axial direction of the tubular channel 30 . That is, the flow field is expressed as a two-dimensional or three-dimensional flow (velocity components in multiple directions) instead of a one-dimensional flow (velocity component in one direction) along the pipe axis direction.

したがって、エキシマランプ40の周囲では、その速度(方向および速さ)が一様ではなく不均一(非一様)であり、エキシマランプ40の表面近くでは、流速の比較的大きい流れと流速の比較的小さい流れが不規則的に存在し、その方向も異なる。例えば、軸流ファン10と対向する端部40T近くの流れと管軸方向に沿った表面40S近くの流れとでは、その方向および速さが異なる。 Therefore, around the excimer lamp 40, the velocity (direction and speed) is not uniform but non-uniform (non-uniform), and near the surface of the excimer lamp 40, a flow with a relatively high flow velocity and a flow velocity Small currents exist irregularly and their directions are different. For example, the direction and speed of the flow near the end 40T facing the axial fan 10 and the flow near the surface 40S along the tube axis direction are different.

エキシマランプ40の場合、発光管40Aの温度が上昇すると、放射光の光強度が減少する傾向にある。したがって、流速の速い原料ガスの流れによって発光管40Aの温度を下げることで、紫外線の照射効率が向上する。しかしながら、原料ガスの流量が低いと、エキシマランプを十分に冷却することが難しい。 In the case of the excimer lamp 40, when the temperature of the arc tube 40A rises, the light intensity of the radiated light tends to decrease. Therefore, by lowering the temperature of the arc tube 40A by the flow of the source gas with a high flow velocity, the irradiation efficiency of the ultraviolet rays is improved. However, when the flow rate of the raw material gas is low, it is difficult to sufficiently cool the excimer lamp.

本実施形態では、エキシマランプ40Aの配置された領域FAにおいて、場所によって流速(方向および速さ)が大きく異なる複雑な非一様流(非一様乱流)が支配的な流れの領域が生じる。そのため、エキシマランプから放射される紫外線が届かない領域を通過する原料ガスが少なくなり、原料ガスはエキシマランプの表面近くを通過することで紫外線処理効率が向上する。また、流体供給部の特性によって冷却の程度が場所によって異なり、エキシマランプの表面は一様には冷却されない。原料ガスの温度が高い場合、流速の大きい部分によってエキシマランプ40の発光管40の温度が低下し、その付近において紫外線照射効率が高くなる。そのため、原料ガスの流量が小さいときでも、エキシマランプを十分に冷却することができるので、従来の一様流によりエキシマランプの表面を一様に冷却するオゾン発生器のように、管内に流れる原料ガスの流速を所定値以上に定めることを要しない。一方、原料ガスの温度が低い場合、流速の低い部分で温度がそれほど低下しないため、オゾン発生量の低下が抑制される。したがって、外気など原料ガスの温度が高低いずれであっても、紫外線照射によるオゾン生成を、エキシマランプ40全体として効率よく行うことができる。 In the present embodiment, in the area FA where the excimer lamp 40A is arranged, there is a flow area dominated by a complex non-uniform flow (non-uniform turbulent flow) in which the flow velocity (direction and speed) varies greatly depending on the location. . As a result, less material gas passes through regions where the ultraviolet rays emitted from the excimer lamp do not reach, and the material gas passes near the surface of the excimer lamp, thereby improving the efficiency of ultraviolet treatment. In addition, the degree of cooling varies depending on the characteristics of the fluid supply section, and the surface of the excimer lamp is not uniformly cooled. When the temperature of the raw material gas is high, the temperature of the arc tube 40 of the excimer lamp 40 is lowered by the portion where the flow velocity is high, and the ultraviolet irradiation efficiency increases in the vicinity of that portion. Therefore, even when the flow rate of the source gas is small, the excimer lamp can be sufficiently cooled. It is not necessary to set the gas flow velocity to a predetermined value or higher. On the other hand, when the temperature of the raw material gas is low, the temperature does not drop so much in the portion where the flow velocity is low, so the reduction in the amount of generated ozone is suppressed. Therefore, regardless of whether the temperature of the raw material gas such as the outside air is high or low, ozone can be generated efficiently by the excimer lamp 40 as a whole by irradiating ultraviolet rays.

特に、軸流ファン10のファンモータ部分12よりも外径の小さいエキシマランプ40を軸流ファン10と同軸的に配置することによって、軸流ファン10と向かい合う端部40Tと管軸方向に沿った側面側との間で大きな流速の差を生じさせることができる。 In particular, by arranging the excimer lamp 40 having an outer diameter smaller than the fan motor portion 12 of the axial fan 10 coaxially with the axial fan 10, the end portion 40T facing the axial fan 10 and the A large difference in flow velocity can be generated between the side surfaces.

このように本実施形態によれば、紫外線照射装置10において、軸流ファン20を管状流路30と同軸的に配置し、流体を供給する。そして、エキシマランプ40の配置された領域FAにおいて、場所によって流速(方向および速さ)が大きく異なり、管状流路に沿った方向に関して複雑な非一様流(例えば非一様乱流の流れ)が支配的な流れの領域が生じている領域に、エキシマランプ40を配置する。なお、エキシマランプ40を径方向に沿って配置してもよく、あるいは斜め方向に配置してもよい。また、エキシマランプ40の外径についても任意に設定することが可能である。 Thus, according to this embodiment, in the ultraviolet irradiation device 10, the axial fan 20 is arranged coaxially with the tubular flow path 30 to supply the fluid. In the area FA where the excimer lamps 40 are arranged, the flow velocity (direction and speed) varies greatly depending on the location, and a complex non-uniform flow (for example, non-uniform turbulent flow) with respect to the direction along the tubular flow path. An excimer lamp 40 is placed in a region where a region of predominant flow occurs. It should be noted that the excimer lamps 40 may be arranged radially or may be arranged obliquely. Also, the outer diameter of the excimer lamp 40 can be arbitrarily set.

エキシマランプ40の少なくとも一部が軸流ファン20の排出口付近に配置するようにすれば、流体供給部の特性に従った流れ場を大きく変更せず、大きな圧力損失と成らない程度に、円筒形状以外の多角形状などの管状流路とし、屈曲させた管状流路としてもよい。また、大きな圧力損失を与えない程度で、軸流ファン20の排出口付近やエキシマランプ40の周囲に、流体供給部の特性に応じた整流板(整流格子)を配置してもよい。 If at least part of the excimer lamp 40 is arranged near the discharge port of the axial flow fan 20, the flow field according to the characteristics of the fluid supply portion is not greatly changed and the pressure loss of the cylinder is small enough to prevent a large pressure loss. A tubular channel having a polygonal shape other than the shape may be used, and a bent tubular channel may be used. Further, a rectifying plate (rectifying grid) according to the characteristics of the fluid supply section may be arranged near the discharge port of the axial fan 20 or around the excimer lamp 40 to the extent that it does not cause a large pressure loss.

図2は、第2の実施形態である紫外線照射装置の概略的構成図である。第2の実施形態では、2つのエキシマランプが設けられている。 FIG. 2 is a schematic configuration diagram of an ultraviolet irradiation device according to a second embodiment. In a second embodiment, two excimer lamps are provided.

紫外線照射装置100のエキシマランプ140A、140Bは、管状流路の管軸Cに関して対称的な位置に配置され、管軸Cからの距離Lは、軸流ファン10のファンモータ部24の半径d/2よりも大きい。そのため、エキシマランプ140A、140Bの管軸側を向く表面付近と、管壁を向く表面付近とでは、流速が大きく相違する。このように2つのエキシマランプ140A、140Bを配置することで、紫外線の透過距離が短いことを補い、より安定した高効率でオゾンを生成することができる。 The excimer lamps 140A and 140B of the ultraviolet irradiation device 100 are arranged at symmetrical positions with respect to the tube axis C of the tubular flow path, and the distance L from the tube axis C is the radius d/ Greater than 2. Therefore, there is a large difference in flow velocity between the vicinity of the surface of the excimer lamps 140A and 140B facing the tube axis side and the vicinity of the surface facing the tube wall. By arranging the two excimer lamps 140A and 140B in this way, it is possible to compensate for the short transmission distance of the ultraviolet rays and to generate ozone more stably and with high efficiency.

なお、エキシマランプ140A、140Bを管軸Cに対して非対称に配置して、それぞれのエキシマランプに対する冷却の程度を流体供給部の特性によって異なるようにしてもよく、例えばエキシマランプ140Aを管軸Cに配置し、エキシマランプ140Bを径方向に沿ってファンモータ部24の半径d/2より離れた位置に配置することも可能である。また、エキシマランプ140A、140Bを径方向に配置してもよく、斜めに配置してもよい。さらには、3つ以上のエキシマランプを配置することも可能である。 The excimer lamps 140A and 140B may be arranged asymmetrically with respect to the tube axis C, and the degree of cooling for each excimer lamp may differ depending on the characteristics of the fluid supply section. , and the excimer lamp 140B can be arranged at a position spaced apart from the radius d/2 of the fan motor section 24 along the radial direction. Also, the excimer lamps 140A and 140B may be arranged radially or obliquely. Furthermore, it is also possible to arrange three or more excimer lamps.

エキシマランプ140A,140Bは、長軸長さ、径の大きさなどのサイズが同一に定められているが、異なるサイズにしてもよい。また、電力、紫外線照度を異なるようにしてもよい。例えば、低濃度のオゾンを生成する(小型)第1のエキシマランプと、高濃度のオゾンを生成できる(大型)第2のエキシマランプを装備することが可能であり、相対的に流速が高く冷却が強い場所に高濃度エキシマランプを配置し、相対的に流速が低く冷却が弱い場所に低濃度エキシマランプを配置すればよい。 The excimer lamps 140A and 140B have the same size such as long axis length and diameter, but may have different sizes. Moreover, the electric power and the ultraviolet illuminance may be different. For example, it is possible to equip a (small) first excimer lamp that produces low-concentration ozone and a (large) second excimer lamp that can produce high-concentration ozone. A high-concentration excimer lamp may be arranged in a place where the flow rate is strong, and a low-concentration excimer lamp may be arranged in a place where the flow velocity is relatively low and the cooling is weak.

軸流ファン10以外にも、遠心ファンなど他のファンを適用することが可能である。この場合、1次元流れとして流れの状態を表すことができない領域に、エキシマランプを配置すればよい。 Other than the axial fan 10, other fans such as a centrifugal fan can be applied. In this case, the excimer lamp may be placed in a region where the state of the flow cannot be expressed as a one-dimensional flow.

本実施形態では、軸流ファンの送風方向に合わせて管を同軸的に接続した構成であるが、筐体内にエキシマランプ、軸流ファンなどを設置し、流路を形成してエキシマランプ方向に原料ガスなどを供給すればよく、その流路は直線的なものでなくてもよい。また、本実施形態では、酸素を含む原料ガスに紫外線を照射してオゾンを生成するが、酸素を含まない気体、液体などに紫外線を照射し、紫外線照射処理などを行ってもよい。 In this embodiment, the pipes are coaxially connected in the air blowing direction of the axial fan. The raw material gas or the like may be supplied, and the flow path does not have to be linear. Further, in the present embodiment, ozone is generated by irradiating an oxygen-containing source gas with ultraviolet rays, but an oxygen-free gas or liquid may be irradiated with ultraviolet rays to perform an ultraviolet irradiation treatment or the like.

10 紫外線照射装置
20 軸流ファン(流体供給部)
30 管状流路(紫外線照射部)
40 エキシマランプ
10 UV irradiation device 20 Axial fan (fluid supply unit)
30 Tubular flow path (ultraviolet irradiation part)
40 excimer lamp

Claims (8)

紫外線を放射するエキシマランプと、
前記エキシマランプを収納し、流入口から排出口に向けて流体が流れる流路を形成する流路管と、
ファンモータ部と、ファン羽根と、前記ファンモータ部および前記ファン羽根を囲むファン管とを有する軸流ファンとを備え、
前記ファン管が、前記流路管と流入口側で同軸的に接続し、前記軸流ファンが、前記流路管に対して同軸的に配置され、
前記エキシマランプが、前記流路管内において、前記軸流ファンの回転によって前記流路管の軸周りに旋回流が生じる領域に、前記軸流ファンの軸上に沿って配置されることを特徴とする紫外線照射装置。
an excimer lamp that emits ultraviolet light ;
a channel tube that accommodates the excimer lamp and forms a channel through which a fluid flows from an inlet to an outlet;
an axial fan having a fan motor portion, fan blades, and a fan tube surrounding the fan motor portion and the fan blades;
the fan pipe is coaxially connected to the flow pipe on the inlet side, the axial fan is arranged coaxially with the flow pipe,
The excimer lamp is arranged along the axis of the axial fan in a region in the channel pipe where a swirling flow is generated about the axis of the channel pipe by the rotation of the axial fan. Ultraviolet irradiation device.
前記ファン管の外径が、前記流路管の外径と同じであることを特徴とする請求項に記載の紫外線照射装置。 2. The ultraviolet irradiation device according to claim 1 , wherein the outer diameter of said fan tube is the same as the outer diameter of said flow path tube . 前記エキシマランプが、前記流路管内において、前記軸流ファンの回転によって渦運動が生じている領域に、配置されていることを特徴とする請求項に記載の紫外線照射装置。 2. The ultraviolet irradiation device according to claim 1 , wherein said excimer lamp is arranged in said channel tube in a region where vortex motion is generated by rotation of said axial fan. 記エキシマランプの外径が、前記ファンモータ部の外径よりも小さいことを特徴とする請求項1乃至のいずれかに記載の紫外線照射装置。 4. The ultraviolet irradiation device according to claim 1 , wherein the outer diameter of said excimer lamp is smaller than the outer diameter of said fan motor. 紫外線を放射する第1のエキシマランプおよび第2のエキシマランプと、
前記第1のエキシマランプおよび前記第2のエキシマランプを収納し、流入口から排出口に向けて流体が流れる流路を形成する流路管と、
前記流路管の流入口に流体を供給する軸流ファンとを備え、
前記軸流ファンが、前記流路管の流入口に対して同軸的に配置され、
前記第1エキシマランプと前記第2エキシマランプが、前記流路管の軸から径方向に離れた位置に、前記流路管の軸を間に挟んで配置されていることを特徴とする紫外線照射装置。
a first excimer lamp and a second excimer lamp that emit ultraviolet light;
a channel tube housing the first excimer lamp and the second excimer lamp and forming a channel through which a fluid flows from an inlet to an outlet;
an axial fan that supplies a fluid to the inlet of the channel pipe,
The axial fan is arranged coaxially with respect to the inlet of the flow channel tube,
The purple lamp is characterized in that the first excimer lamp and the second excimer lamp are arranged radially apart from the axis of the flow tube with the axis of the flow tube interposed therebetween. External radiation device.
前記第2のエキシマランプが、前記第1のエキシマランプよりも生成できるオゾン濃度が高いことを特徴とする請求項に記載の紫外線照射装置。 6. The ultraviolet irradiation device according to claim 5 , wherein said second excimer lamp has a higher concentration of ozone that can be generated than said first excimer lamp . 前記第1のエキシマランプおよび前記第2のエキシマランプが、前記流路管の軸から径方向に沿って前記軸流ファンのファンモータ部の半径よりも離れて配置され、
前記第1のエキシマランプおよび前記第2のエキシマランプの外径が、前記ファンモータ部の外径より小さいことを特徴とする請求項に記載の紫外線照射装置。
wherein the first excimer lamp and the second excimer lamp are arranged radially away from the axis of the flow path tube more than the radius of the fan motor portion of the axial flow fan ;
6. The ultraviolet irradiation device according to claim 5 , wherein outer diameters of said first excimer lamp and said second excimer lamp are smaller than an outer diameter of said fan motor portion.
請求項1乃至のいずれかに記載の紫外線照射装置を備え、
酸素を含む流体に対して紫外線を照射することを特徴とするオゾン生成器。
Equipped with the ultraviolet irradiation device according to any one of claims 1 to 7 ,
An ozone generator characterized by irradiating a fluid containing oxygen with ultraviolet rays.
JP2019045837A 2019-03-13 2019-03-13 UV irradiation device and ozone generator Active JP7305380B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019045837A JP7305380B2 (en) 2019-03-13 2019-03-13 UV irradiation device and ozone generator
CN202010179086.4A CN111686667B (en) 2019-03-13 2020-03-12 Ultraviolet irradiation device and ozone generator
JP2023105844A JP7515231B2 (en) 2019-03-13 2023-06-28 UV irradiation equipment and ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045837A JP7305380B2 (en) 2019-03-13 2019-03-13 UV irradiation device and ozone generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023105844A Division JP7515231B2 (en) 2019-03-13 2023-06-28 UV irradiation equipment and ozone generator

Publications (2)

Publication Number Publication Date
JP2020147461A JP2020147461A (en) 2020-09-17
JP7305380B2 true JP7305380B2 (en) 2023-07-10

Family

ID=72430268

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019045837A Active JP7305380B2 (en) 2019-03-13 2019-03-13 UV irradiation device and ozone generator
JP2023105844A Active JP7515231B2 (en) 2019-03-13 2023-06-28 UV irradiation equipment and ozone generator

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023105844A Active JP7515231B2 (en) 2019-03-13 2023-06-28 UV irradiation equipment and ozone generator

Country Status (2)

Country Link
JP (2) JP7305380B2 (en)
CN (1) CN111686667B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230294989A1 (en) * 2022-03-21 2023-09-21 13482073 Canada Inc. Method and system for ozone generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063881A1 (en) 2003-07-30 2005-03-24 Senne Dennis R. Air purifier including a photocatalyst
WO2007138172A1 (en) 2006-05-31 2007-12-06 Biozone Scientific International Oy An apparatus and a method for purifying a material flow
JP2017043513A (en) 2015-08-26 2017-03-02 ウシオ電機株式会社 Ozone generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561901B2 (en) * 1988-03-07 1996-12-11 ウシオ電機株式会社 Active oxygen production equipment and active oxygen water production equipment
JPH071148Y2 (en) * 1990-12-03 1995-01-18 シルバー精工株式会社 Ozone generator
JPH07194684A (en) * 1993-12-28 1995-08-01 Daikin Ind Ltd Sterilizing method and sterilizing equipment using it
US5666640A (en) * 1996-04-02 1997-09-09 Daniylchev; Vladimir A. Microwave powered ozone producing system
US6544485B1 (en) * 2001-01-29 2003-04-08 Sharper Image Corporation Electro-kinetic device with enhanced anti-microorganism capability
CN201263805Y (en) * 2008-07-25 2009-07-01 郭文达 Improved air sterilizing and purifying device
JP5688407B2 (en) * 2010-03-26 2015-03-25 大幸薬品株式会社 Chlorine dioxide generator
JP6778003B2 (en) * 2016-03-24 2020-10-28 株式会社オーク製作所 Ozone generator and ozone treatment equipment
CN114225618A (en) 2017-12-27 2022-03-25 优志旺电机株式会社 Gas treatment device
JP7283842B2 (en) 2019-05-30 2023-05-30 株式会社オーク製作所 Ultraviolet irradiation device, ozone generator, ozone generation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063881A1 (en) 2003-07-30 2005-03-24 Senne Dennis R. Air purifier including a photocatalyst
WO2007138172A1 (en) 2006-05-31 2007-12-06 Biozone Scientific International Oy An apparatus and a method for purifying a material flow
JP2017043513A (en) 2015-08-26 2017-03-02 ウシオ電機株式会社 Ozone generator

Also Published As

Publication number Publication date
JP7515231B2 (en) 2024-07-12
CN111686667A (en) 2020-09-22
CN111686667B (en) 2022-07-19
JP2023138975A (en) 2023-10-03
JP2020147461A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
CN111093822B (en) UV-LED photoreactors with controlled radiation and hydrodynamics and methods of making and using the same
CN111320229B (en) Fluid sterilization device
TWI702190B (en) A method, system and apparatus for treatment of fluids
JP6070794B1 (en) Ozone generator
JP7515231B2 (en) UV irradiation equipment and ozone generator
JP2019141292A (en) Fluid sterilizer
US20100226752A1 (en) Fan assembly
JP7437551B2 (en) Ultraviolet irradiation device and ultraviolet irradiation method
CN110461370B (en) Fluid sterilizing device
JP2007026517A (en) Ultraviolet ray irradiation device
JPH08174567A (en) Illuminator
US20230135557A1 (en) Polygonal flow reactor for photochemical processes
TWM607600U (en) Ultraviolet air germicidal lamp system
JP7399007B2 (en) Ozone generator and discharge lamp equipment
JP7399004B2 (en) Ultraviolet irradiation equipment and ozone generation equipment
JP7313764B2 (en) Ultraviolet irradiator and ozone generator
KR102191547B1 (en) Sterilization module and home appliance including the same
JP2021133287A (en) Water treatment apparatus
JP7572870B2 (en) Ultraviolet irradiation equipment and ozone generator
KR102086356B1 (en) Discharge Type Ozone Sterilization System with High Efficiency
JP6798275B2 (en) Excimer lamp unit and excimer lamp device
TW202244008A (en) Water treatment device with internal chamber
JP2017183660A (en) Irradiation device
JP2022147115A (en) Fluid sterilizer
KR20200135262A (en) Sterilization module and home appliance including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230628

R150 Certificate of patent or registration of utility model

Ref document number: 7305380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150