JP7302920B1 - 磁場検出装置、システム、及び方法 - Google Patents

磁場検出装置、システム、及び方法 Download PDF

Info

Publication number
JP7302920B1
JP7302920B1 JP2022576485A JP2022576485A JP7302920B1 JP 7302920 B1 JP7302920 B1 JP 7302920B1 JP 2022576485 A JP2022576485 A JP 2022576485A JP 2022576485 A JP2022576485 A JP 2022576485A JP 7302920 B1 JP7302920 B1 JP 7302920B1
Authority
JP
Japan
Prior art keywords
collector
magnets
sensor
magnetic field
collection points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022576485A
Other languages
English (en)
Other versions
JP2023529941A (ja
Inventor
エイ. ヘフケン、カルロス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motus Labs LLC
Original Assignee
Motus Labs LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motus Labs LLC filed Critical Motus Labs LLC
Application granted granted Critical
Publication of JP7302920B1 publication Critical patent/JP7302920B1/ja
Publication of JP2023529941A publication Critical patent/JP2023529941A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

磁束検出のための装置、システム又は方法は、1組の磁石と相互作用するために第1の縁部に沿った1組の収集点を備えた第1の収集器を有し、第1の収集器は、第1の縁部から離れた第2の縁部上にセンサ点も有し、第2の収集器は、磁石の組と相互作用する第1の縁部に沿った1組の収集点を有し、第3の収集器は、磁石の組と相互作用する第1の縁部に沿った1組の収集点を有する。第2の収集器は、第1の縁部から離れた第2の縁部上にセンサ点も有することができる。第3の収集器は、第1の縁部から離れた第2の縁部上にセンサ点を有することができる。磁束の一部は、第1のセンサ点及び第2のセンサ点から第3のセンサ点にわたる。

Description

本開示は、磁場又は磁束検出に関する。より詳細には、限定としてではなく、本開示は、磁場検出デバイス若しくはシステムの感度を増加するための装置、システム、又は方法を対象とする。
磁性は、長年にわたって公知の基本物理原理の1つである。ほとんどの人は、磁石が2つの極、すなわち互いに引き付けられるN極及びS極を有することを理解している。人が2つの磁石を同じ極を一緒に互いに向くように置こうとすると、2つの磁石が一緒に集まるのを防ぐ反発力が生じる。磁石によって分配される磁場は、ホール効果センサなどのセンサの使用を通して検出できる。しかしこれらの現在のシステムは、それらの検出機能、並びに磁石及びセンサの相対配置に限界がある。例えばセンサは、磁場内に置かなければならず、しかも他の磁場又は隣接した磁石による干渉を避けるために十分に離さなければならない。これに対処するために、ほとんどのデバイスは、センサを磁石の組の隣に置く。しかしこれには、検出若しくは感知できる磁場又は磁束の量に限界がある。
磁束の方向の検出は、多数の用途、例えばロボット・アクチュエータ、望遠鏡、アンテナなどの線形又は角度位置を測定する手段として使用されている。しかし増々増加する用途には、磁気センサが送達できるものの限度を超える精度が必要である。典型的な回転式磁気センサは、1回転当たり約4000パルスに限定され、次いで典型的な磁気センサの解像度を増加するような方法で、既存の磁気ベクトルを制御し、分配し、増幅するデバイスによって磁気センサの解像度を増加できることが非常に望ましい。
先行技術の欠点を克服する装置、システム、又は方法を有することが好都合であるはずである。本開示は、そのようなシステム及び方法を提供する。ホールセンサなどの磁気センサは、磁束の強度、大きさ、又は強さを検出できる一方で、他のより精巧な磁気センサは、強度だけでなく、磁束の方向(磁束ベクトルの検出)も検出できる。
本開示は、磁場検出又は磁束の検出に関する。
こうして一態様では、本開示は、1組の磁石と相互作用するように構成された、1組の第1の収集点を備えた第1の収集器を有する、磁場検出装置又はシステムを対象とする。相互作用により、第1の収集点の組は磁石の組によって発生された磁束の一部を受ける又は送ることができる。第1の収集器は、第1のセンサ点も有する。装置又はセンサは、磁石の組と相互作用できる1組の第2の収集点を有する第2の収集器を含む。第2の収集器は、磁石の組によって発生された磁束の一部を受けうる、又は送りうる。第2の収集器は、第2のセンサ点も有することができる。装置又はセンサは、磁束の第1の部分と第2の部分の合計を磁石の組に送る又は受けることにより、磁石の組と相互作用するための1組の第3の収集点を有する第3の収集器を含む。第3の収集器は、第3のセンサ点を有することができる。磁束の一部は、第1のセンサ点及び第2のセンサ点からセンサ検出領域を通って第3のセンサ点にわたってもよい。
別の態様では、本開示は、第1の収集器の第1の縁部に沿った1組の第1の収集点を有し、第1の収集器の第1の縁部から離れた第1の収集器の第2の縁部上の第1のセンサ点を備える第1の収集器と、第2の収集器の第1の縁部に沿った1組の第2の収集点を有する第2の収集器であって、第2の収集は、第2の収集器の第1の縁部から離れた第2の収集器の第2の縁部上に第2のセンサ点を有する、第2の収集器と、第3の収集器の第1の縁部に沿った1組の第3の収集点を有する第3の収集器とを含む、磁場検出装置又はシステムを対象とする。第3のセンサ点は、第3の収集器の第1の縁部から離れた第3の収集器の第2の縁部上に見出されることがある。センサ点は、前記センサ点の配置によって画定されるセンサ隙間の周りに等しく離間することができる。
本開示の特性と考えられる新規の特徴は、添付の特許請求の範囲に説明されている。しかし本開示自体、並びにそれらの使用、更なる目的、及び利点の好ましい形態は、添付図面とともに読めば、例示的実施形態の以下の詳述を参照して最も良く理解されよう。
磁場検出システムを例示する斜視図である。 磁気検出システムを例示する斜視図である。 磁気検出システムを例示する側面斜視図である。 多段式磁気検出システムを例示する斜視図である。 磁気検出システムを例示する側面図である。 磁気検出システムを例示する側面図である。 磁石アレイを例示する平面図である。 磁石アレイを例示する平面図である。 第1の位置に回転台を備えた、磁場検出システムを例示する平面図である。 第2の位置に回転台を備えた、磁場検出システムを例示する平面図である。 第3の位置に回転台を備えた、磁場検出システムを例示する平面図である。
次に本開示の実施形態について記載する。本開示のこのデバイス及びシステムは、1又は複数の組の磁石から磁束を収集するために使用でき、1回転当たりに読めるパルス数を増加するため、又は別法としてセンサの周りの磁場の回転数を増加するために、センサにより1回転当たりに読めるパルスの数を増加する方法で、その磁束をセンサに伝達することができる。これにより、可動物体のより小さい動きを磁束又は磁場検出を通して測定できる。これに限定されないが、拡大レンズを有する定規、増加した解像度のための針ゲージを含むキャリパ、歯車機構及び長い指示針、すなわちより小さい測定可能なステップが可能なより長い針を利用した目盛、及び測定可能な解像度を増加するために複数の区分及び弁を使用する空気圧ゲージなどの、これらの型のシステムの多くの例が存在する。しかし、磁束又は磁場を使用するための類似の型のシステムが依然として必要である。本開示は、増幅が必要な小さい磁気ベクトルの増分の測定を可能にし、典型的な磁気センサが、追加の組の磁石を必要とすることなく、変化/値/偏差を検出することを可能にする。
磁気検出システム、装置、及び方法は、それに取り付けられた1又は複数の組の磁石を有する台又は他の可動物体の小さい動きを、1組の3つ以上の収集器を利用することにより検出できる。少なくとも2つの収集器は、1又は複数の組の磁石に利用された磁石より幅が小さい(幅は台若しくは可動物体を向く面である)収集点を有する。各磁石の対応する磁束の一部(割合)を収集し、収集された磁束のそれぞれをセンサによって検出するためのセンサ点に向けることにより、センサの感度は増加することができる。
典型的な磁束検出センサは、センサ検出範囲に直接対応する磁石アレイに接近して置かれる。例えば4倍磁気センサは、対応する4倍磁石アレイを持たなければならない。本開示は、可動物体の周囲に沿って配置された磁石の組を使用でき、収集器は、各組の複数の磁石からの磁束の一部を測定し、次いで可動物体を囲む各収集器に対する1組のセンサ点に向けられるが、収集器は、固定物体を中心としても同様に移動できることがある。センサ点は、次いで磁束をセンサに伝達することができる。従って複数の磁石により、センサは収集器の数及び磁石の数の所望の割合に基づいて磁束を受けることができる。例えば21個の一致した磁石の対が存在し、3個の収集器(少なくとも一実施形態では、1個の全幅及び2個の半幅の収集器)があり、各収集器が1つのセンサ点を有する場合、磁気センサは、可動物体の1回の完全な動き毎にセンサ点の周りで20回転の磁束/磁場を読むことができ、センサの感知範囲を20倍にすることができる。収集器により、センサはそれぞれの一致した対の磁石の組を単一の動きとして見ることができ、センサの範囲又は感知機能を増大させる。センサが回転物体の各回転に対して1000点を読むことができる場合は、収集器により本開示のセンサは回転物体の1回転当たり20,000点を読み取ることができる。
図1は、線形構成の磁場検出システム100を例示する斜視図である。磁場検出システム100は、(図5A及び5Bに見られるように)センサによって検出できる磁束又は磁場の量を増加するために利用でき、センサは、センサ隙間102又はセンサ検出領域102で磁束又は磁場の量を受けるように構成することができる。
少なくとも一実施形態では、磁場検出システム100は、センサ(図示せず)と組み合わせた時に、物体の位置付けの検出のためのエンコーダとして利用することができる。センサ隙間102は、少なくとも一例では、1組の収集器104A、104B、及び104C(集合的に、収集器104)によって生成される。集磁器は、エアダクト、油圧ホース、導電体、送水管などと同じ方法で、磁束を伝導し分配することができる構成要素である。収集器の形状に依存して、磁束は操作され、分配され、その他が可能である。典型的な磁気導体は、鉄、フェライト、シリコン、鋼、それらの組み合わせ、又は磁気透過が可能な類似特性を持つ他の材料から作成される。1組は、その組に関連付けられた1又は複数(一部の例では、少なくとも1つ)の品目を含むことができることが理解されるはずである。収集器104は、磁束を基端点106Aにおける第1の場所から先端点106Bにおける第2の場所に送ることができる。磁束又は磁場の量が、センサによって検出された領域内で増加した時に、センサの感度は、磁石の組の量によって決定された係数により、又は収集器及び/若しくは収集点の大きさ及び/又は数に起因して、増加する磁場若しくは磁束の係数によって増加されてもよい。
磁場検出システム100は、1又は複数の組の磁石110A、110B、及び110C、若しくは111A、111B、111C、111D、111E、及び111Fの位置、配向、又は動きを検出するために利用することができる。磁石の組(集合的に磁石110及び111)は、磁石110、111の磁場又は磁束の透過性を特定の方向又は手法で可能にする磁気コア101と相互作用してもよい。収集器104は、これに限定されないが、鉄、フェライト、シリコン、鋼、それらの組み合わせ、又は類似特性を持つ他の材料などの同様の磁気透過性材料から作成されてもよい。磁石110、111の組及びコア101は、線103A/103Bに平行な方向に直線的に動いてもよい。しかし直線運動は、他の例では回転運動であってもよい。同様に、非直線又は非回転運動は、磁場又は磁束源に関連して収集器及び/又は収集点を適切に位置付けることで測定し得る。
収集器104A、104B、及び104Cの組は、少なくとも一例では、1組の収集点108A、108B、及び108C(集合的に第1の組の収集点108)並びに/又は109A、109B、109C、109D、109E、及び109F(集合的に第2及び第3の組の収集点109)のそれぞれを有してもよい。第1の収集器104Aの第1の組の収集点108A、108B、及び108Cは、1組の磁石110A、110B、又は110C(他の磁石は図に見られるが、図をわかりやすくするために言及されない)と位置合わせすることができる。収集点108の組は、第1の極性からなる1組の磁石と位置合わせすることができる。図では、極性は、Sと表されているが、極性は変わってもよいことが理解されるはずであり、又は磁石の組が異なる位置に移動された場合、収集点は異なる極性の磁石と位置合わせされるか、若しくは部分的に位置合わせされてもよい。
例えば第1の収集器104Aは、磁束若しくは磁場を収集器104Aから、又は収集器104Aに完全に伝達することができる手法で、1組の磁石110A、110B、及び110Cと完全に位置合わせされてもよい。収集器104B及び104Cは、複数の組の磁石111A、111B、111C、111D、111E、及び111Fと部分的に位置合わせされる、第2並びに第3の組の収集点109A、109B、109C、109D、109E、及び109Fを有することができる。第2並びに第3の組の収集点109A、109B、109C、109D、109E、及び109Fで収集された磁束は、第1の組の収集点108A、108B、及び108Cから送られた磁束に等しい。収集器104A、104B、及び/又は104Cは、収集点108又は109の組から離れた対応するセンサ点107A、107B、及び107Cを有してもよい。
それに応じて、磁場検出システム100は、多数の送り側収集点によって送られた量に等しい、一定量の磁束又は磁場を受ける多数の受け側収集点を持たなければならない。受け側収集点が1組の磁石と部分的に位置合わせされる場合は、受け側収集点の数は、送り側収集点が反対の極性の1組の磁石と完全に位置合わせされる場合に、送り側収集点の数の2倍である必要があるはずである。磁石の組が動かされる、又は移動される際に、受け側収集点は送り側収集点になることができ、送り側収集点は受け側収集点になることができる。受け側収集点によって収集された磁束は、次いでセンサ隙間102を通って送り側収集点の組にわたることができる。磁場の位置及び配向は、図6A及び6Bを参照して論じられる。しかし磁石の組が動かされ、又は移動され、その結果収集器を通る磁束の収集及び送りが変化すると、センサによって測定され、及び/又は決定されることが可能なセンサ隙間102内の磁束若しくは磁場も変化することを理解されるはずである。少なくとも一例では、磁石の組と位置合わせする収集点の一部の割合は、感度の増加が可能な係数の一部であることが可能である。例えば5個の収集器が利用される場合、そのうち4個を送り用として、対応する磁石のそれぞれの4分の1と位置合わせすると、感度は対応する量だけ増加させることができる。
図2は、回転構成の磁気検出システム200を例示する斜視図である。磁気検出システム200は、収集器204A、204B、及び204Cと選択的に位置合わせされる磁石の組(集合的に210及び211)を有することができる。収集器204A、204B、及び204Cは、特定数の収集点又はセンサ点に対して設計することができる。各収集器は、磁束又は磁場を受けることができる1組の収集点208A、208B、208C、208D、208E、並びに/又は209A、209B、209C、209D、209E、及び/若しくは209F(集合的に収集点の組208若しくは209)、並びにセンサ点207A、207B、及び/若しくは207C(集合的にセンサ点207)を有することができる。収集点208又は209は、少なくとも一実施形態では、送り側収集点208及び受け側収集点209を表してもよい。また別法として、収集点208又は209は、受け側収集点208及び送り側収集点209であってもよい。
公知のように、磁場又は磁束は、磁石のN極端部からS極端部に動く。少なくとも一例では、受け側収集点209は、磁石210のN極又はN極に配向された組と位置合わせすることができる一方で、送り側収集点208は、磁石211のS極若しくはS極に配向された組と位置合わせすることができ、又は一部と位置合わせすることができる。磁石210、211は、中心軸222を中心に回転する回転台220上に組み立てられてもよい。磁石210、211が(回転台220の回転により)回転されると、収集器204A、204B、及び204Cは、磁場又は磁束が収集点で極性を変える際に、受け側収集器から送り側収集器へ、又は送り側収集器から受け側収集器へ移行してもよい。例えば、例示された各収集器204A、204B、及び204Cは、各組を形成する6個の個々の収集点208、又は209を有し、収集点208の第1の組は1組の磁石210と直接位置合わせされ、第2及び第3の組の収集点209は、第2の組の磁石211と部分的に位置合わせされる(ずれる)。これにより、第2及び第3の組の収集点209は、第2の組の磁石211によって発生された磁束若しくは磁場の一部を収集する又は受けることができる。
オフセット比は、少なくとも一例では、送り側収集点208の数を受け側収集点209の総数で割ることによって計算され得る。またオフセット比は、他の例では、各収集器に望ましい収集点の数を決定するために使用されてもよい。オフセット比に受け側収集点209の総数を掛けることにより、送り側収集点208の数が得られるはずである。例えば所望のオフセット比が0.25すなわち4分の1である場合に、送り側収集点の数に4を掛けることにより、受け側収集点の総数が得られるはずであり、これは次いで受け側収集器の数で割られるはずである。収集器204A、204B、204Cの数が3と例示されているが、それぞれが磁石210、211の組と位置合わせし、又は部分的に位置合わせする、追加の収集器が存在することが可能である。例示されたように、オフセット比は、半分、0.5、すなわち2分の1であるはずである。
収集器204A、204B、204Cは、磁束若しくは磁場の方向づけ、導入、又は送りが可能な磁気透過性材料から構成されてもよい。少なくとも一実施形態では、磁気遮蔽は、収集器204A、204B、204Cの1又は複数の縁部に添付して、それらを通る磁束又は磁場の集中を増加させることができる。収集点208、209は、対応するセンサ点207に磁束を収集でき、又は対応するセンサ点207から磁束を送ることができる。センサ点207は、均一の磁場がセンサ隙間202を通ることができる構成に配置される。例えば収集器204AがS極と位置合わせされる場合、そのセンサ点207Aは、S極も有する一方で、収集器204B及び204Cは、N極磁束の半分をそれぞれが通るように構成され、これは次いでN極磁束がS極磁束又は磁場に引き付けられる際に、第1の収集器204Aを磁気係合し又は理論結合をすることができる。この磁束又は磁場は、センサ隙間202を通過し、センサがセンサ隙間202内に結合され、又は置かれるように構成されて、センサ隙間202内で磁束若しくは磁場の極性、配向、又は大きさを取り上げ、測定し、或いは決定することができる。
収集器204A、204B、及び204Cは、複数の磁石若しくは磁石210、211の組から磁束を受けること又は送ることができるので、磁束若しくは磁場の大きさ又は強度はセンサ隙間202内で増加することができ、センサの感度を増加することができる。センサの感度の増加は、収集器204A、204B、及び204Cの収集点208、209の数が要因である可能性がある。収集器204A、204B、及び/又は204Cを通る磁束の量が回転中に変化すると、部分的に位置合わせされた収集点は、完全に位置合わせされ、本来完全に位置合わせされていた収集点は、部分的に位置合わせされ、それに応じて磁束が変わる。
図3は、回転構成の磁気検出システム300を例示する側面斜視図である。磁気検出システム300は、1又は複数の組の磁石310又は311によって放射された磁束又は磁場の検出ができるように構成することができる。磁束又は磁場は、1又は複数の収集器304A、304B、304C(集合的に収集器304)によって収集され、又は1又は複数の収集器304A、304B、304C(集合的に収集器304)を通って向けられることができる。収集器304は、1組の収集点308又は収集点309を収集器304の第1の端部に有してもよい一方で、収集器304の第2の端部は、別の収集器若しくは収集器304の組から磁束若しくは磁場を送る又は受けるための1組のセンサ点307A、307B、或いは307C(集合的にセンサ点307)を有することができる。センサ点307は、センサ隙間302を生成するように構成することができる。センサ隙間302は、少なくとも一実施形態では、隙間内若しくは隙間の近くにセンサを受領し、又はセンサを置くことができるように構成される。少なくとも一例では、近くとは、センサ隙間302の1インチ又は対応するメートル法変換(2.54cm)内であるはずである。センサは、少なくとも一例では、ホール効果センサ、磁場センサ、磁束センサ、電磁センサ、それらの組合せ、又は磁場の配向若しくは方向、磁場の大きさ若しくは強度、又は磁場に関する他のデータ若しくは情報を検出、計算或いは決定できる他のセンサであってもよい。
少なくとも一実施形態では、収集器304は、中心軸322の周りに半径方向に配置される。同様に、磁石310又は311の組も、少なくとも一実施形態では、中心軸322の周りに半径方向に配置されてもよい。収集器304は、磁石310又は311の組より中心軸322から更に離れて例示されているが、収集器304及び磁石310、311の組は、磁石310、311の組が収集器304より中心軸322から更に離れるなどの、あらゆる数の構成で配置されてもよいことが理解されるはずである。少なくとも一例では、磁石310又は311の組は、回転台320に沿って配置されてもよい。回転台320は、ホイール、スポーク、ワゴンホイール、これに限定されないが、円形、楕円形、多角形、又は近く、すなわち磁石310、311の組の磁束若しくは磁場の範囲内に配置された2つ以上の収集器304を有することができる他の設計を含む、他の形状などに構成されてもよい。この例は、これに限定されないが、ロボット、制御システム、フィードバック・システム、音響制御システム、写真システム、光制御システム、車両制御システム、航空機制御システム、モータ、コンベアシステム、それらの組合せ、又は別の物体の位置に基づいた物体の検出若しくは操作を含む他のシステムなどの、多数の産業用途に有益であることが可能である。
収集器304は、収集点308及び309を有することができる。各収集器は、あらゆる数の構成で位置合わせされた1つ若しくは複数の収集点、又は1組の収集点を有することができることが理解されるはずである。収集点308又は309の位置合わせにより、センサ隙間302に伝達された磁束の量を計算することができる。回転台320が回転される際に、磁石310及び311の組が回転されることにより、収集点308及び309と位置合わせする磁石も変わる。磁石の1つを通る中心線326は、収集点308がオフセット量328とどのように位置合わせされ得るかを示す。オフセット量328は、収集点308の収集点309に対するオフセット比に基づいてもよい。例えば、収集点309の数は、収集点308の数にオフセット比を掛けた数と等しくなければならない。一部の例では、センサ隙間302の周りにセンサ点を追加できるために追加の収集器が必要であることがある。センサ隙間302に沿ったセンサ点が多いほど、センサ隙間302の領域内に見出することができる磁束又は磁場が多い。追加として、センサ点の数は、収集点に対するセンサ点の割合が、各回転台、1組の磁石内の磁石の数、収集器の数、又は収集点の数に対して生成できるように、感度を高めることも可能にし得る。
図4は、回転構成の多段式磁気検出システム400を例示する斜視図である。多段式磁気検出システム400は、1組の収集器404A、404B、及び404C(集合的に収集器404)の使用を通して小型磁気検出システム400を可能にできる。収集器404は垂直に配置することができ、収集器404Aは1段であり、収集器404Bは2段を有することができ、収集器404Cは2段を有することができ、各収集器のセンサ点を同じ水平面上に位置合わせすることができる。各収集器404B及び404Cは、2つの水平区分405A及び405Bを有してもよく、各収集器404B及び404Cは、2つの独自の垂直区分405C及び405Dを有する。垂直区分405C及び405Dは、少なくとも一実施形態では、収集器404の垂直積載又は位置合わせができるように2つの異なる長さである。収集器404は、収集器404の第1の端部に収集点408及び収集器404の第2の端部に少なくとも1つのセンサ点407が可能であるように配置することができる。収集器404は、磁石410及び411の組が1又は複数の収集器404と相互作用できるように配置することができるが、それらの全てが同時ではない。例えば、3つの収集器404A、404B、及び404Cが存在する場合に、1つの収集器404Aは第1の組の磁石410と位置合わせすることができ、残りの2つの収集器404B及び404Cは第2の組の磁石411と位置合わせすることができる。長さ405C及び405Dは、センサ点407A、407B、及び407Cが同じ水平面に位置合わせされることが可能である。水平面は、1つの収集器404と位置合わせされてもよく、又は1つ若しくは複数の収集器404から設計仕様書により特定された距離だけ離間されてもよい。
磁石410及び411の組は、回転台420又は移動可能な他のデバイスに沿って構成されてもよい。例えば回転台420は、回転子、固定子、又は横方向の動きをさせることができる線形台であってもよい。また磁石410及び411の組は、非磁気透過性材料430の一部によって分離されてもよい。非磁性材料430の一部は、これに限定されないが、プラスチック、木材、合成物、非磁性金属、非鉄金属、それらの組合せ、又は同様の特性を有する他の材料などの材料を含むことができる。追加として、非磁気透過性材料430の一部は、磁石410の組と磁石411の組との間に設計固有の間隔を提供することができる。例えば磁石410及び411の組は、磁石のN極が中心軸422から外方を向いて構成された第1の組の磁石410を含んでもよい一方で、第2の組の磁石411は、磁石のS極が中心軸422から外方を向いて構成される。磁石410及び411の組は、一致した対の磁石を生成するために代替様式で配置されてもよく、すなわち1つの磁石は、外方を向くS極を有する1つの磁石の隣に、外方を向くN極を有する。
図5Aは、磁気検出システム500Aを例示する側面図である。磁気検出システム500Aは、センサ534A又は534Bを垂直532A又は水平532Bに位置付けることができる。センサ534A、543Bは、センサ隙間502A若しくは502B内に、又は実質的にセンサ隙間502A若しくは502B内に置かれてもよい。センサ534A、534Bは、磁束若しくは磁場を検出、決定、又は計算できるあらゆるセンサであることが可能である。少なくとも一実施形態では、センサはホール効果センサである。
磁気検出システム500Aの1つの可能な利点は、センサ534A、534Bを磁石510、511の組から特定の距離を離して置く機能である。磁石510、511の組は、中心軸522を中心に回転できる回転台520の周りに配置されてもよい。理解されるはずであるように、磁石510、511の組は、磁束又は磁場の強度に基づいて磁石510、511の組を囲む磁束又は磁場を発生する。センサ534A、534Bの測定値は、磁石510、511の組への接近度に基づいて影響を受けることがある。従って収集器504は、磁束又は磁場をより高感度で正確に測定できるために、センサ5345A、534Bを磁石510、511の組から離れて、又は遠くに置くことができる。
角度536は、収集器504の一部として生成することができる。角度536は実質的に直角として例示されているが、設計者によって所望されたあらゆる角度、又はあらゆる数の特定の場所にセンサ534A、534Bの設置を可能にする特定の設計も可能である。角度536は、収集器504を複数の位置及び商業的用途に利用することができ得る。
図5Bは、磁気検出システム500Bを例示する側面図である。磁気検出システム500Bは、センサ534を位置付ける532ことができる。センサ534は、センサ隙間502内に、又は実質的にセンサ隙間502内に置かれてもよい。センサ534は、磁束若しくは磁場を検出、決定、又は計算できるあらゆるセンサであることが可能である。少なくとも一実施形態では、センサはホール効果センサである。
磁気検出システム500Bの1つの可能な利点は、センサ534を磁石510、511の組から特定の距離を離して置く機能である。磁石510、511の組は、中心軸522を中心に回転できる回転台520の周りに配置されてもよい。理解されるはずであるように、磁石510、511の組は、磁束又は磁場の強度に基づいて磁石510、511の組を囲む磁束又は磁場を発生する。センサ534の測定値は、磁石510、511の組への接近度に基づいて影響を受けることがある。従って収集器504A、504B、及び504C(集合的に収集器504)は、磁束又は磁場をより高感度で正確に測定できるために、センサ534を磁石510、511の組から離れて、又は遠くに置くことができる。
例えば収集器504A、504B、及び504Cは、垂直構成に配置される。垂直構成は、センサ534を磁気源538から水平にずらすことができる。少なくとも一実施形態では、磁気源538は、2組の磁石510、511を含む。磁石510、511の組は、外方を向くN極を有する第1の組の磁石、及び外方を向くS極を有する第2の組の磁石で編成される、一致した対の磁石に配置することができる。
収集器504A、504B、及び504Cは、設計の特定の距離だけ垂直方向に離間された3つの異なる段540A、540B、及び540C上のそれぞれの収集点508A、508B、及び509であることが可能である。少なくとも一例では、収集器504Aはセンサ隙間502と同じ段540A上にある一方で、収集器504Bは、第1の段540A及びセンサ隙間502を有する段から第1の距離542Aだけ離間された第2の段540B上にあり、収集器504Cは、第1の段540A及びセンサ隙間502を有する段から第2の距離542Bだけ離間された第2の段540C上にある。収集器504を通る磁束又は磁場の流れ、及び収集器504の長さに基づいて、可能な強度又は大きさの損失を考慮するために、1又は複数の収集器504に追加の収集点が必要であることがあることを理解されるはずである。例えば収集器504Cは、収集器504A若しくは504Bによって収集された磁束若しくは磁場の大きさ又は強度に対する磁束又は磁場の割合を維持するために、追加の収集点を有することがある。
この例に加えて、収集器504A及び504Cは、外方を向くN極を有する1組の磁石510と部分的に位置合わせされることを考慮されたい。収集器504Bは、外方を向くS極を有する1組の磁石511と位置合わせされる。収集器504A及び504Cに対する磁束又は磁場の割合は、半分(1/2)である。しかし収集器504Cの収集点508Bからセンサ点507Cの組への距離に起因して、磁束の約5パーセントの損失があるが、収集点508Bの数を2つ増加した場合に、損失を考慮しても、収集器504Aと同じ大きさ若しくは強度の磁束又は磁場を維持し得る。磁気検出システム500Bの設計によって指定されるように収集器の割合及び数を修正し得るので、この例で記載された数字は例示であることが理解されるはずである。
図6Aは、磁石アレイ650Aを例示する平面図である。磁石アレイ650Aは、磁気コア601に関連して配置された磁石610A、610B、610C、及び611A、611Bの組を有してもよい。第1の組の磁石610A、610B、610C(集合的に磁石510)は、磁石610のN極を磁気コア601に背を向けて配置されている。一方、第2の組の磁石611A、611B(集合的に磁石611)は、磁石611のS極を磁気コア601に背を向けて配置されている。磁石510の組と511の組との間、又は個々の磁石の間に空隙656も見出されることがある。空隙656は、別法として磁石610、611の組を互いに隔離する鉄金属、又は非磁気透過性材料であってもよい。
磁場652A、652B、652C、652D(集合的に磁場652)及び磁場654A、654B、6543C、654D(集合的に磁場654)は、磁束及び磁場を他の磁気透過性材料又は磁気コアに伝達できる。磁場652、654は、磁石のN極から対応する磁石のS極に進む。絶縁材料又は空隙656がない場合、磁場は、磁石のN極から同じ磁石のS極に進むことがある。
図6Bは、磁石アレイ650Bを例示する平面図である。磁石アレイ650Bは、磁気コア601と相互作用する磁石の組が交互配置であるハルバッハ配列(Halbach array)であることが可能である。ハルバッハ配列(Halbach array)により、隣接した磁石に対して空隙又は絶縁を使用することなく、磁場を特定の方向に増加させることができる。ハルバッハ配列(Halbach array)の1つの可能な利点は、磁石によって発生された磁束若しくは磁場の大きさ又は強度を増加できることである。増加した大きさ又は強度は、T字形状又は十字形状に磁石を独特な配置によって促進される。T字又は十字形状は、N極661A及びS極661Bを有する垂直磁石660を有することによって生成され、これはN極663A及びS極663Bを備えた2つの水平磁石662A及び662Bと磁気係合される。この例では、N極661Aが上方を向いている時に、水平磁石662A、662BのN極663Aは、垂直磁石660を向く。逆にS極661Bが上方を向き、水平磁石662A、662BのS極663Bが垂直磁石660を向くことも真実であることが可能であることを理解されるはずである。
この配置では、N極区分666A及びS極区分666B(集合的に区分666)が存在することが可能である。2つの区分666は、この例では水平磁石662Bを分割して見える。区分666は、磁場652A、652B、652C、及び652D(集合的に磁場652)、並びに磁場654A、654B、654C、654D、654E、及び654F(集合的に磁場654)が可能であり、磁場652はN区分666AからS区分666Bに延在する。磁場654は、磁気コア601付近に見出され、どこにでも互いに隣接したN極及びS極が存在する。
例えば磁場654A及び654Bは、N極区分666Aから隣接したS極区分666Bに動く。同様に別のN極区分も、S極区分666Bによって受けられた磁場654Cの一部を有する。少なくとも一例では、各N極区分666Aは、N極区分666Aから発する2つの磁場654A及び654B(又は磁場区分)を有することができ、各S極区分666Bは、N極区分から発する2つの磁場654B及び654C(又は磁場区分)を受ける。磁石の他の構成又は配置も利用してもよいことが理解されるはずである。
図7Aは、第1の位置768Aに回転台720を備えた、磁場検出システム700を例示する平面図である。図7A、7B、及び7Cを参照するが、特に図7Aでは、回転台720は、回転台720の外周に沿って2つ以上の組の磁石710(N極が外方を向いている)及び711(S極が外方を向いている)を有してもよい。磁石710、711の組は、まさにそれらの性質上、それらのN極から磁場又は磁束を発生し、S極に向かって動く。
磁力線752A、752B、及び752C(集合的に磁力線752)は、磁束を磁石710の組から収集器704Bに伝達した結果である。収集器704Bは、少なくとも1つのセンサ点707Bを有する第2の端部から離れた1組の収集点708A、708B、708C、708D、708E、及び708F(集合的に収集点708)を第1の端部に有する。磁力線752Bは、収集点708が、回転台720から外方に向くそれらのN極を有する磁石710の組と100パーセントすなわち完全に位置合わせされるので、N極磁場とみなすことができる。完全な位置合わせは、収集点708が磁石710の組を形成する磁石の幅より小さい幅(幅は磁石710の組を向く側面である)であるので有利である。完全に位置合わせすることにより、収集点708は、磁石710の組から最大量の磁束を収集することができる。磁束及び対応する磁力線752Bは、収集点708からセンサ点707Bに動くことができる。センサ点707Bは、センサ隙間702の周りに配置することができる。センサ点707Bは、収集器704A及び704Cの対応するセンサ点707A及び707Cを有してもよい。
センサ隙間702は、センサ(図示せず)を配置することができる。磁力線752の方向は、方向指示器770によって第1の位置772に示されている。磁力線752Bは、磁石710の組からの磁束の全てを含有する。磁束は、センサ隙間702を通って収集器704A及び704Cに伝達することができる。磁束は、収集器704Bから2つの収集器704Aと704Bとの間を分割してもよい。見てわかるように、磁力線752A及び752Cは磁力線752Bの数と等しい。2つの収集器704Aと704Cとの間を分割する理由は、収集点709A及び709Bが磁石711の組からずれていることである。収集点709A及び709Bは、709A及び709Bの幅の半分が磁石711の組と位置合わせされる手法で位置付けられる。収集点709A及び709Bの幅の半分のみが磁石711の組と位置合わせされるので、磁束の半分のみが各収集器704A及び704Cから磁石711の組に伝達されることが可能である。こうして収集器704Bによって収集された磁束は、収集器704A及び704Cから伝達された磁束の量と等しい。回転台720が回転すると、磁束は図7B及び7Cに示されたように移動する。
図7Bは、第2の位置768Bに回転台720を備えた、磁場検出システム700を例示する平面図である。図7A、7B、及び7Cを参照するが、特に図7Bでは、回転台720は、中心軸(図示せず)を中心に回転することができる。第1の位置768A(図7Aに例示されている)から第2の位置768Bに回転された時に、収集点708、709A、及び709Bの位置合わせは、磁石710及び711のそれぞれの組から移動することができる。
図7Aでは、収集点708は、磁石710の組と完全に位置合わせされている一方で、図7Bでは、収集点708は、磁石711の組と部分的に位置合わせされている。同様に収集点709Aは、図7Aでは、磁石711の組と部分的に位置合わせされているが、回転台720が第2の位置768Bに回転した後に、収集点709Aは、磁石710の組と完全に位置合わせされる。収集点709Bは、第1の位置768A(図7Aに見られる)及び第2の位置768Bの両方で、磁石711の組と部分的に位置合わせされたままである。しかし収集点709Bが部分的に位置合わせされた磁石711の組の一部は、第1の位置768Aから第2の位置768Bに移動される。
収集点708、709A、及び709Bと磁石710、711のそれぞれの組との位置合わせのこれらの変化により、磁力線752が移動することができる。それぞれの収集点708、709A、及び709Bは、回転台720及び磁石710、711のそれぞれの組の位置に基づいて再位置合わせされるので、センサ隙間702内で測定された磁場の配向は移動する。配向の移動は、方向指示器770によって第2の位置773に示されている。方向指示器770の移動は、回転台の回転の倍数である。例えば収集器704は、測定可能な磁場又は磁束の20倍の乗算を可能にすることがある。これにより、方向指示器770が、回転台720の1回の完全な回転に対して20回の完全な回転を完了し得ることが更にわかる。
図7Cは、第3の位置768Cに回転台720を備えた、磁場検出システム700を例示する平面図である。図7A、7B、及び7Cを参照するが、特に図7Cでは、第3の位置768Cは、回転台720が第1の位置768A(図7A)から第2の位置768B(図7B)に動き、今は第3の位置768Cにあるように、磁力線752の変化を視覚的に表す。方向指示器770の第3の位置774は、センサがセンサ隙間702内で検出することがある磁場又は磁束の変化を例示する。上に記載されたように、測定可能な磁束の相乗効果により、磁場又は磁束を決定するためのセンサの感度を増すことができる。
収集器704がセンサの増加した感度を使用できる方法の例は、ロボット工学の分野にある。例えばロボット工学応用で使用する時に、センサと組み合わせた収集器704は、ロボットアームのわずかな移動の検出を可能にすることができる。各収集器に対する収集点の数、及び収集点の数に基づいて、数学的関係は、他のロボットシステム又はセンサを制御するコンピューティング・デバイスにプログラムすることができる。ロボットアーム、ホイール、若しくは他の可動物体であることが可能な回転台720が移動又は回転されると、収集器704によって捕捉若しくは収集された磁束又は磁場も同様に変化する。図7A、7B、及び7Cに示されたように、回転台720における更に小さい移動は、磁力線752によって示されたように、磁場又は磁束を大きく移動させることができる。
絶縁材料は示されていないが、収集器は、磁束又は発生された磁場が他の収集器に受けられる又は送られることを防ぐために、異なる表面に絶縁材料を有することができることに留意されるはずである。追加として、あらゆる絶縁材料が、磁気損失を低減する助けとなることができるように、収集器内の磁束又は磁場を拡大することができることもある。
本開示は好ましい実施形態を参照して具体的に示されて記載されてきたが、本発明の精神及び範囲から逸脱することなく、形及び詳細の様々な変化をそこに行ってもよいことが当業者には理解されよう。本発明者らは、当業者が適宜このような変形を利用することを予期しており、本発明者らは、本明細書で詳細に記載されている以外に本発明が実施されることを意図する。従って本開示は、準拠法で許可されているように、本明細書に添付された特許請求の範囲に列挙された主題の修正形態及び等価物を全て含む。その上、本明細書に別段の指示がない限り、又は明らかに文脈と矛盾しない限り、その可能な全ての変形形態における、上述の要素のいかなる組合せも本開示によって包含される。
本明細書に開示された原理による様々な実施形態が上に記載されているが、これらは例のみとして提示されているものであり、制限するものではないことを理解されたい。従って本開示の広がり及び範囲は、上述の例示的な実施形態のいずれによっても制限されるべきではなく、本開示から公表するあらゆる特許請求の範囲及びそれらの等価物のみで画定されるべきである。更に上記の利点及び特徴は、記載された実施形態に提供されているが、そのように公表された特許請求の範囲の適用を上記の利点の任意又は全てを達成する工程及び構造に限定するものではない。
追加として、本明細書の章見出しは、連邦規則法典第37巻1.77条の提案と一致させるため、又は別法により構成の手がかりを提供するために提供される。これらの見出しは、本開示から発行し得る、任意の特許請求の範囲に説明された本発明を限定又は特徴付けるものではない。詳細には、例を挙げると、見出しは「技術分野」を指すが、特許請求の範囲は、この見出しに基づいて選択された言い回しによって、いわゆる技術分野を説明するように制限されるべきではない。更に背景情報としての技術の説明は、特定の技術が本開示における任意の実施形態の従来技術であることを認めると解釈されるべきではない。「発明の概要」も、公表された特許請求の範囲に記載された実施形態の特徴付けとみなすべきではない。その上、本開示における単数形の「発明」へのいかなる言及も、本開示に新規の単一点しか存在しないと主張するために使用されるべきではない。複数の実施形態は、本開示から公表する複数の特許請求の範囲の限定に従って説明されてもよく、そのような特許請求の範囲は、それによって保護される実施形態及びそれらの等価物を定義する。全ての例において、そのような特許請求の範囲は、本開示に照らしてそれらの独自の利点とみなすべきだが、本明細書に記載された見出しによって制限されるべきではない。

Claims (20)

  1. 1組の磁石と相互作用するように構成された1組の第1の収集点及び第1のセンサ点を有する第1の収集器であって、第1の収集点の前記組は、磁石の前記組によって発生された磁束の第1の部分を受けるように構成される、第1の収集器と、
    磁石の前記組と相互作用するように構成された1組の第2の収集点及び第2のセンサ点を有する第2の収集器であって、第2の収集点の前記組は、磁石の前記組によって発生された前記磁束の第2の部分を受けるように構成される、第2の収集器と、
    磁石の前記組と相互作用するように構成された1組の第3の収集点及び第3のセンサ点を有する第3の収集器であって、第3の収集点の前記組は、前記磁束の前記第1の部分と前記第2の部分の合計を磁石の前記組に送る、第3の収集器とを含み、
    前記磁束の前記第1の部分、及び前記磁束の前記第2の部分は、前記第1のセンサ点及び前記第2のセンサ点からセンサ検出領域を通って前記第3のセンサ点にわたる、磁場検出システム。
  2. 前記第1の収集器は、磁石の前記組の第1の部分と相互作用する、請求項1に記載の磁場検出システム。
  3. 前記第2の収集器は、磁石の前記組の第1の部分と相互作用する、請求項1に記載の磁場検出システム。
  4. 前記第3の収集器は、磁石の前記組の第1の部分と相互作用する、請求項1に記載の磁場検出システム。
  5. 前記第1の収集器は磁石の前記組の第1の部分と相互作用し、前記第2の収集器は磁石の前記組の第2の部分と相互作用し、前記第3の収集器は磁石の前記組の第3の部分と相互作用する、請求項1に記載の磁場検出システム。
  6. 磁石の前記組は、第1の収集点の前記組、第2の収集点の前記組、及び第3の収集点の前記組に関連して可動である、請求項1に記載の磁場検出システム。
  7. 磁石の前記組が第1の収集点の前記組、第2の収集点の前記組、及び第3の収集点の前記組に関連して動く時に、前記磁束の前記第1の部分の量、及び前記磁束の前記第2の部分の量は、磁石の前記組の動きに従って修正される、請求項1に記載の磁場検出システム。
  8. 前記第1のセンサ点、前記第2のセンサ点、及び前記第3のセンサ点は、磁束センサと相互作用することができる、請求項1に記載の磁場検出システム。
  9. 磁石の前記組は複数対の磁石を更に含み、各対はN極及びS極を有し、磁石の前記組内の磁石の数は、前記磁場検出システムの感度を決定する、請求項1に記載の磁場検出システム。
  10. 第1の収集器の第1の縁部に沿った1組の第1の収集点、及び前記第1の収集器の前記第1の縁部から離れた前記第1の収集器の第2の縁部上の第1のセンサ点を有する前記第1の収集器と、
    第2の収集器の第1の縁部に沿った1組の第2の収集点、及び前記第2の収集器の前記第1の縁部から離れた前記第2の収集器の第2の縁部上の第2のセンサ点を有する前記第2の収集器と、
    第3の収集器の第1の縁部に沿った1組の第3の収集点、及び前記第3の収集器の前記第1の縁部から離れた前記第3の収集器の第2の縁部上の第3のセンサ点を有する前記第3の収集器とを含み、
    前記センサ点は、前記センサ点の配置によって画定されるセンサ隙間の周りに等しく離間される、磁場検出システム。
  11. 前記第1の収集器は、磁気透過性材料から作成される、請求項10に記載の磁場検出システム。
  12. 前記第2の収集器は、磁気透過性材料から作成される、請求項10に記載の磁場検出システム。
  13. 前記第3の収集器は、磁気透過性材料から作成される、請求項10に記載の磁場検出システム。
  14. 第1の収集点の前記組は、前記第1の収集器の前記第1の縁部に沿って等しく離間される、請求項10に記載の磁場検出システム。
  15. 第2の収集点の前記組は、前記第2の収集器の前記第1の縁部に沿って等しく離間される、請求項10に記載の磁場検出システム。
  16. 第3の収集点の前記組は、前記第3の収集器の前記第1の縁部に沿って等しく離間される、請求項10に記載の磁場検出システム。
  17. 前記第1のセンサ点、前記第2のセンサ点、及び前記第3のセンサ点は、前記センサ隙間を画定する時に互いに接触しない、請求項10に記載の磁場検出システム。
  18. 磁場の検出のために前記センサ隙間に接近して置かれたセンサを更に含む、請求項10に記載の磁場検出システム。
  19. 1組の磁石と相互作用するように構成された第1の収集器の第1の縁部に沿った1組の第1の収集点、及び前記第1の収集器の前記第1の縁部から離れた、前記第1の収集器の第2の縁部上の第1のセンサ点を有する前記第1の収集器であって、第1の収集点の前記組は、磁石の前記組によって発生された磁束の第1の部分を受けるように構成される、第1の収集器と、
    磁石の前記組と相互作用するように構成された第2の収集器の第1の縁部に沿った1組の第2の収集点、及び前記第2の収集器の前記第1の縁部から離れた前記第2の収集器の第2の縁部上の第2のセンサ点を有する前記第2の収集器であって、第2の収集点の前記組は、磁石の前記組によって発生された前記磁束の第2の部分を受けるように構成される、第2の収集器と、
    磁石の前記組と相互作用するように構成された第3の収集器の第1の縁部に沿った1組の第3の収集点、及び前記第3の収集器の前記第1の縁部から離れた前記第3の収集器の第2の縁部上の第3のセンサ点を有する前記第3の収集器であって、第3の収集点の前記組は、前記磁束の前記第1の部分及び前記第2の部分の合計を磁石の前記組に送る、第3の収集器とを含み、
    前記センサ点は、前記センサ点の配置によって画定されるセンサ隙間の周りに等しく離間され、
    前記磁束の前記第1の部分、及び前記磁束の前記第2の部分は、前記第1のセンサ点及び前記第2のセンサ点からセンサ検出領域を通って前記第3のセンサ点にわたる、磁場検出システム。
  20. 磁場の検出のために前記センサ隙間に接近して置かれたセンサを更に含み、
    前記センサによって検出された際に、前記第1の収集器は磁石の前記組の第1の部分と相互作用し、前記第2の収集器は磁石の前記組の第2の部分と相互作用し、前記第3の収集器は磁石の前記組の第3の部分と相互作用し、
    前記第1の収集器、前記第2の収集器、及び前記第3の収集器は、磁気透過性材料から作成されるので、前記センサによる検出が起き、
    磁石の前記組は複数対の磁石を更に含み、磁石の各対はN極及びS極を有し、磁石の前記組内の磁石の数は、前記磁場検出システムの感度を決定する、請求項19に記載の磁場検出システム。
JP2022576485A 2020-06-24 2021-06-24 磁場検出装置、システム、及び方法 Active JP7302920B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063043721P 2020-06-24 2020-06-24
US63/043,721 2020-06-24
PCT/US2021/038940 WO2021263011A1 (en) 2020-06-24 2021-06-24 Magnetic field detection apparatus, system, and method

Publications (2)

Publication Number Publication Date
JP7302920B1 true JP7302920B1 (ja) 2023-07-04
JP2023529941A JP2023529941A (ja) 2023-07-12

Family

ID=79281845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022576485A Active JP7302920B1 (ja) 2020-06-24 2021-06-24 磁場検出装置、システム、及び方法

Country Status (9)

Country Link
US (1) US20230258745A1 (ja)
EP (1) EP4172642A4 (ja)
JP (1) JP7302920B1 (ja)
KR (1) KR20230042004A (ja)
CN (1) CN115917348A (ja)
AU (1) AU2021296616A1 (ja)
CA (1) CA3183403C (ja)
MX (1) MX2022015568A (ja)
WO (1) WO2021263011A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124590A (ja) 1999-09-30 2001-05-11 Elevadores Atlas Schindler Sa 位置検出器
JP3188320B2 (ja) 1992-09-11 2001-07-16 富士通株式会社 半導体記憶装置
JP2014134535A (ja) 2013-01-11 2014-07-24 Bourns Inc 可変磁束コレクタを使用する位置測定

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188320A (ja) * 1989-09-28 1991-08-16 Okuma Mach Works Ltd 磁気エンコーダ
US6870366B1 (en) * 2003-12-23 2005-03-22 Trw Automotive U.S. Llc Apparatus for sensing vehicle seat position
JP4720233B2 (ja) * 2005-03-18 2011-07-13 株式会社デンソー 回転角度検出装置
US7398168B2 (en) * 2005-09-08 2008-07-08 Genscape Intangible Holding, Inc. Method and system for monitoring power flow through an electric power transmission line
DE102006048771A1 (de) * 2006-10-12 2008-04-17 Sensitec Gmbh Drehgeber auf magnetischer Basis
US7639004B2 (en) * 2007-07-23 2009-12-29 Gm Global Technology Operations, Inc. Apparatus for sensing angular displacement between first and second rotating shafts including flux collectors
FR2937722B1 (fr) * 2008-10-24 2010-11-26 Moving Magnet Tech Mmt Capteur de position magnetique a mesure de direction de champ et a collecteur de flux
ATE539797T1 (de) * 2009-06-05 2012-01-15 Biotronik Crm Patent Ag Dispositif ameliore de detection de champ magnetique
US8264224B2 (en) * 2009-10-27 2012-09-11 University Of Seoul Industry Cooperation Foundation Detection of magnetic fields using nano-magnets
US8390276B2 (en) * 2010-09-27 2013-03-05 Bourns Incorporated Target magnet assembly for a sensor used with a steering gear
US9772200B2 (en) * 2013-03-15 2017-09-26 Bourns, Inc. Position measurement using angled collectors
JP6330178B2 (ja) * 2014-11-19 2018-05-30 日立金属株式会社 トルク操舵角センサ
DE102014223726A1 (de) * 2014-11-20 2016-05-25 Robert Bosch Gmbh Sensoranordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188320B2 (ja) 1992-09-11 2001-07-16 富士通株式会社 半導体記憶装置
JP2001124590A (ja) 1999-09-30 2001-05-11 Elevadores Atlas Schindler Sa 位置検出器
JP2014134535A (ja) 2013-01-11 2014-07-24 Bourns Inc 可変磁束コレクタを使用する位置測定

Also Published As

Publication number Publication date
MX2022015568A (es) 2023-04-03
CN115917348A (zh) 2023-04-04
WO2021263011A1 (en) 2021-12-30
EP4172642A1 (en) 2023-05-03
US20230258745A1 (en) 2023-08-17
CA3183403A1 (en) 2021-12-30
JP2023529941A (ja) 2023-07-12
KR20230042004A (ko) 2023-03-27
EP4172642A4 (en) 2023-12-13
CA3183403C (en) 2023-08-01
AU2021296616A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
KR101601735B1 (ko) 이동체 시스템과 이동체의 주행 제어 방법
US5159268A (en) Rotational position sensor with a Hall effect device and shaped magnet
EP2564152B1 (en) Metrology apparatus
US7030518B2 (en) Position-control stage with onboard linear motor
CN1982839B (zh) 用于同时获得旋转角和移动位置的测量装置
KR20180113454A (ko) 회전형 위치 센서
JP2008289344A (ja) リニアモータ
JPH0666508A (ja) 位置検知装置
US4714124A (en) Guidance system for self-guided vehicle
US10876865B2 (en) Encoder system for position determination with inclined scale
JP7302920B1 (ja) 磁場検出装置、システム、及び方法
JP2000065596A5 (ja) 磁気式エンコーダおよび磁気式エンコーダ付モータ
JP2015200650A (ja) 回転体の動的なバランスプロセス及び装置
US3956618A (en) Mechanical-electrical transducer
KR20170078449A (ko) 조향 장치용 토크 센서
KR20170040181A (ko) 각도 검출 장치 및 각도 검출 장치를 이용한 서보 장치
US20220333952A1 (en) Magnetic Rack and Pinion Linear Magnetic Encoder and Position Sensing System
CA1322281C (en) Position sensing device
KR101717125B1 (ko) 조향 장치용 토크 센서
US11181393B2 (en) Encoder system for position determination with varying scale
WO2023235631A1 (en) Magnetic field detection apparatus, system, and method
JP2003161643A5 (ja)
TW201312084A (zh) 磁式位移感測器及位移檢測方法
JPS60131070A (ja) ブラシレスリニアサ−ボモ−タ
JPH02161310A (ja) 位置検出用磁石体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7302920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150