JP7302192B2 - 伝送装置、時刻伝送システム、および、遅延補正方法 - Google Patents

伝送装置、時刻伝送システム、および、遅延補正方法 Download PDF

Info

Publication number
JP7302192B2
JP7302192B2 JP2019024801A JP2019024801A JP7302192B2 JP 7302192 B2 JP7302192 B2 JP 7302192B2 JP 2019024801 A JP2019024801 A JP 2019024801A JP 2019024801 A JP2019024801 A JP 2019024801A JP 7302192 B2 JP7302192 B2 JP 7302192B2
Authority
JP
Japan
Prior art keywords
time synchronization
time
transmission
transmission device
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019024801A
Other languages
English (en)
Other versions
JP2020136780A (ja
Inventor
雅弘 中川
薫 新井
大樹 佐久間
俊一 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2019024801A priority Critical patent/JP7302192B2/ja
Priority to US17/428,240 priority patent/US11855760B2/en
Priority to PCT/JP2020/004617 priority patent/WO2020166484A1/ja
Publication of JP2020136780A publication Critical patent/JP2020136780A/ja
Application granted granted Critical
Publication of JP7302192B2 publication Critical patent/JP7302192B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G5/00Setting, i.e. correcting or changing, the time-indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay

Description

本発明は、伝送装置、時刻伝送システム、および、遅延補正方法に関する。
時刻同期技術は、モバイルにおける基地局間連携において次世代移動通信5G(Generation)などで今後必要とされている。時刻同期システムは、例えば、時刻基準装置であるGM(Grand Master)を各地点に分散配置させる構成により実現される。各地点のGMは、GNSS(Global Navigation Satellite System)衛星からの信号を直接受信するGNSSレシーバとして機能し、受信した信号を直接エンドアプリケーションに配信する。
しかし、高性能であるGNSSレシーバの台数を増やすと、その分コストも高くなってしまう。また、悪天候により衛星からの信号を受信できない時間帯は、時刻の精度が悪化してしまう。
そこで、GMからの情報をパケットネットワークによって配信する(つまり、GNSS信号を間接的に受信する)形態として、例えば、パケットのタイムスタンプを利用して時刻同期を行うPTP(Precision Time Protocol)が用いられる(非特許文献1)。PTPでは、通信事業者の高信頼なネットワークを介して時刻同期が行われる。
これにより、時刻基準となるGNSSアンテナの受信地点および設置数を集約でき、集約したGNSSレシーバ(GM)へ監視機能を具備することでGNSS受信の信頼性を向上することができる。また、パケットネットワークの経路二重化により、信頼性も向上できる。さらに、GMはPTPパケットを主信号に重畳することで、経済的かつ高精度に時刻情報を伝達することができる。
図18は、時刻同期技術が適用された時刻伝送システムの構成図である。
時刻伝送システムは、PTPに対応したPTPノードであるGMノード82zと、BC(Boundary Clock)ノード83z,84zと、OC(Ordinary Clock)ノード85zとがネットワークで接続されて構成される。
以下、時刻同期を直接行うPTPノード間で、時刻情報を提供する側をマスタノード91z(図19)とし、マスタノード91zから時刻情報を受ける被同期装置の側をスレーブノード92z(図19)とする。以下、時刻情報の伝搬の順序を図18の太線矢印で記載する。太線矢印の矢印元側が上り側であり、太線矢印の矢印先側が下り側である。つまり、GMノード82z→BCノード83z→BCノード84z→OCノード85zの順に正確な時刻情報が下りに伝搬される。
GMノード82zは、GPS衛星81zからの信号を直接受信するアンテナ82aを備える。
BCノード83zは、マスタノード91zであるGMノード82zから時刻情報を受けるスレーブノード92zであり、その後にBCノード84zに時刻情報を提供するマスタノード91zとして機能する。
BCノード84zは、BCノード83zから時刻情報を受けるスレーブノード92zであり、その後にOCノード85zに時刻情報を提供するマスタノード91zとして機能する。
OCノード85zは、BCノード84zから時刻情報を受けるスレーブノード92zであり、その後にエンド端末86zに時刻情報を提供する。
なお、BCノード83z,84zとOCノード85zとの呼び方の違いは、他PTPノードへの接続ポートがBCノード83z,84zには複数本存在し、OCノード85zには1本だけ存在することによる。
図19は、PTPの仕組みを示すシーケンス図である。
時刻情報(タイムスタンプ)を付与したPTPパケットは、マスタノード91z~スレーブノード92z間で送受信される。PTPパケットとして、下りのSyncメッセージ(S11z)と、下りのFollow-upメッセージ(S12z)と、上りのDelay_Requestメッセージ(S13z)と、下りのDelay_Responseメッセージ(S14z)とが順番に送受信される。
発時刻t1は、Syncメッセージ(S11z)がマスタノード91zから送信された時刻である。なお、Syncメッセージの発時刻t1をSyncメッセージそのものに含ませることは困難であるので、Syncメッセージの発時刻t1は後続のFollow-upメッセージにて、スレーブノード92zに通知される。
着時刻t2は、Syncメッセージがスレーブノード92zに到着した時刻である。
発時刻t3は、Delay_Requestメッセージがスレーブノード92zから送信された時刻である。
着時刻t4は、Delay_Requestメッセージがマスタノード91zに到着した時刻である。着時刻t4は、Delay_Requestメッセージに対するDelay_Responseメッセージに含めて、スレーブノード92zに通知される。
これにより、スレーブノード92zは、4つのタイムスタンプ(発時刻t1~着時刻t4)をすべて把握できる。
PTPパケットの送受信には、以下の伝搬遅延が発生する。
・下り遅延Dmsは、マスタノード91z→スレーブノード92zの下り方向のSyncメッセージの伝搬遅延である。マスタノード91z側の時計に対するスレーブノード92z側の時計のずれをオフセット値とすると、下り遅延Dms=(着時刻t2-オフセット値)-発時刻t1で求まる。
・上り遅延Dsmは、スレーブノード92z→マスタノード91zの上り方向のDelay_Requestメッセージの伝搬遅延である。上り遅延Dsm=着時刻t4-(発時刻t3-オフセット値)で求まる。
下り遅延Dms=上り遅延Dsmと仮定すると、スレーブノード92zは、以下の数式1でオフセット値を求める。
オフセット値=((着時刻t2-発時刻t1)-(着時刻t4-発時刻t3))/2 …(数式1)
そして、スレーブノード92zは、求めたオフセット値で自身の時計の時刻を修正することで、マスタノード91zの時計とスレーブノード92zの時計とが同期(時刻一致)される。
IEEE(The Institute of Electrical and Electronics Engineers, Inc.)、「IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems」、IEEE Std 1588-2008,Revision of IEEE Std 1588-2002、2008年7月24日
PTPは、PTPパケットの伝送経路について、上り下りの遅延が等しいことを前提としたプロトコルである。よって、リンク非対称性(上り下りの遅延差)が発生する場合には、時刻同期精度に誤差が生じる。以下、リンク非対称性の要因を例示する。
(a)伝送経路途中の装置内遅延は、例えば、パケット処理によるバッファリングやフレーム処理による変動可能性がある遅延である。
(b)伝送路の遅延は、例えば、光路長1mの差で5ns遅延する(5ns/m)など二芯双方向通信時のファイバ長差の遅延や、伝送路の温度変動による変動可能性がある遅延である。なお、地理的に離れた拠点間の時刻誤差は、局内配線の光路長差に比例して大きくなる。
このようなリンク非対称性が発生する場合、(数式1)をそのまま用いてしまうと、オフセット値の精度が低くなってしまう。
そこで、本発明は、リンク非対称性により発生する時刻同期の誤差を補正することで、オフセット値の精度を向上させることを、主な課題とする。
前記課題を解決するために、本発明の伝送装置は、以下の特徴を有する。
本発明は、第1時刻同期装置側に接続される第1伝送装置と、前記第1伝送装置に対向し第2時刻同期装置側に接続される第2伝送装置を経由して、前記第1時刻同期装置と前記第2時刻同期装置との間で時刻同期用パケットを送受信し、その送受信の時刻情報をもとに前記第2時刻同期装置の時刻を同期する時刻伝送システムに用いられる伝送装置であって、
前記第1伝送装置および前記第2伝送装置としてそれぞれ動作する伝送装置が、
複数波長分の前記時刻同期用パケットを同時に対向の伝送装置に送信する送信部と、
前記対向の伝送装置から受信した複数波長分の前記時刻同期用パケットを受信する受信部とを有しており、
前記受信部が、受信した複数波長分の前記時刻同期用パケットの到着した時刻の差をもとに、前記対向の伝送装置から自装置までの伝搬遅延を測定し、その伝搬遅延を前記第2時刻同期装置の時刻を同期する処理における補正用パラメータとして、前記第2時刻同期装置に通知することを特徴とする。
ここで、前記送信部は、測定対象のタイミングを認識させるための特定の信号パターンであるトリガをEthernetのプリアンブルとして付した複数波長分の前記時刻同期用パケットを同時に対向の伝送装置に送信する。
さらに、前記受信部は、受信した複数波長分の前記時刻同期用パケットの到着した時刻の差をもとに、前記対向の伝送装置から自装置までの伝搬遅延を測定し、その伝搬遅延を前記第2時刻同期装置の時刻を同期する処理における補正用パラメータとして、前記時刻同期用パケットを送受信する前記受信部内の送受信用モジュールとは異なる処理部である前記受信部内の監視部により独自に生成される信号にて前記第2時刻同期装置に通知する。
これにより、時刻同期装置間のリンク非対称性に影響される時刻同期用パケットの発時刻および着時刻を用いても、その誤差を補正することで、高精度な時刻同期を実現することができる。その補正用パラメータとして、第1伝送装置と第2伝送装置との間で高精度に測定した伝搬遅延を用いる。
本発明は、前記伝送装置と、前記第1時刻同期装置と、前記第2時刻同期装置とを含めて構成される時刻伝送システムであって、
前記第2時刻同期装置が、前記時刻同期用パケットの時刻同期装置間における発時刻および着時刻、ならびに、前記第1伝送装置および前記第2伝送装置からそれぞれ通知された補正用パラメータを用いて前記第2時刻同期装置の時計のずれであるオフセット値を計算することを特徴とする。
これにより、リンク非対称性が補正用パラメータで解消されることで、高精度なオフセット値をもとにした時刻同期を実現することができる。
本発明によれば、リンク非対称性により発生する時刻同期の誤差を補正することで、オフセット値の精度を向上させることができる。
本実施形態に係わる時刻同期技術が適用された時刻伝送システムの構成図である。 本実施形態に係わる図1の時刻伝送システムに対して、リンク非対称性により発生する時刻同期の誤差を補正する場合の構成図である。 本実施形態に係わる第1伝送装置の構成図である。 本実施形態に係わる第2伝送装置の構成図である。 本実施形態に係わる両側の同期用モジュールで計算した伝搬遅延をスレーブノードに通知する経路を示す構成図である。 本実施形態に係わる片側の同期用モジュールで計算した伝搬遅延をスレーブノードに通知する経路を示す構成図である。 本実施形態に係わる第1同期用モジュール、第2同期用モジュールの構成図である。 本実施形態に係わる第1同期用モジュールと、第2同期用モジュールとを別々の構成としたときの構成図である。 本実施形態に係わる同期用モジュール間で伝搬遅延を測定する処理を示す説明図である。 本実施形態に係わる時刻同期の全体処理を示すシーケンス図である。 本実施形態に係わるS12の送信側処理の詳細を示すシーケンス図である。 本実施形態に係わるS13の受信側処理の詳細を示すシーケンス図である。 本実施形態に係わる両側の伝搬遅延をスレーブノードに通知する変形例を示す構成図である。 本実施形態に係わる両側の伝搬遅延をスレーブノードに通知する変形例を示す構成図である。 本実施形態に係わる片側の伝搬遅延をスレーブノードに通知する変形例を示す構成図である。 本実施形態に係わる片側の伝搬遅延をスレーブノードに通知する変形例を示す構成図である。 本実施形態に係わる片側の伝搬遅延をスレーブノードに通知する変形例を示す構成図である。 時刻同期技術が適用された時刻伝送システムの構成図である。 PTPの仕組みを示すシーケンス図である。
以下、本発明の一実施形態について、図面を参照して詳細に説明する。
図1は、時刻同期技術が適用された時刻伝送システムの構成図である。
本実施形態の時刻伝送システムでは、時刻同期装置としてのマスタノード(第1時刻同期装置)3とスレーブノード(第2時刻同期装置)4との間でPTPパケット(時刻同期用パケット)を送受信することで、スレーブノード4の時刻同期処理を行う。
そして、PTPパケットを中継するための伝送装置として、第1伝送装置1と、第2伝送装置2とを互いに対向するように設ける。直接接続されるマスタノード3と第1伝送装置1とが組となり、直接接続されるスレーブノード4と第2伝送装置2とが組となる。これらの伝送装置は、パケットの中継機能に加えて、マスタノード3とスレーブノード4との間のリンク非対称性を測定する機能(詳細は図9)を有している。
時刻伝送システムは、マスタノード3→第1伝送装置1→第2伝送装置2→スレーブノード4の経路で下りのSyncメッセージ(図19ではS11z)を伝送し、その逆の経路で上りのDelay_Requestメッセージ(図19ではS13z)を伝送する。
マスタノード3→スレーブノード4の伝搬遅延の主成分である第1伝送装置1→第2伝送装置2の間に発生する片方向の伝搬遅延を、以下では「Dms」(第1伝搬遅延)とする。
スレーブノード4→マスタノード3の伝搬遅延の主成分である第2伝送装置2→第1伝送装置1の間に発生する片方向の伝搬遅延を、以下では「Dsm」(第2伝搬遅延)とする。
なお、伝搬遅延Dmsの「ms」はmaster→slaveの方向を示し、伝搬遅延Dsmの「sm」はslave→masterの方向を示す。このとき、|伝搬遅延Dms-伝搬遅延Dsm|>0なら時刻同期装置間のリンク非対称性が存在し、その要因は伝送経路途中の装置(第1伝送装置1、第2伝送装置2)内遅延と、伝送路の遅延との和である。
なお、時刻伝送システムに対して、以下に示す構成を採用することにより、伝送装置間の非対称性と、時刻同期装置間の非対称性とがほぼ等しくなる。
・マスタノード3、第1伝送装置1間の配線と、第2伝送装置2、スレーブノード4間の配線とが上り下りで等長配線である構成。例えば、装置間の配線を同じビル内に収容するなど、互いに近くに配置することが望ましい。
・第1同期用モジュール10をマスタノード3の内部に組み込み、第2同期用モジュール20をスレーブノード4の内部に組み込む構成。
図2は、図1の時刻伝送システムに対して、リンク非対称性により発生する時刻同期の誤差を補正する場合の構成図である。
第2伝送装置2は、下りのPTPパケットがマスタノード3から自装置に到着するまでの伝搬遅延Dmsを算出し、その伝搬遅延Dmsを監視制御装置5に通知する。
第1伝送装置1も、上りのPTPパケットがスレーブノード4から自装置に到着するまでの伝搬遅延Dsmを算出し、その伝搬遅延Dsmを監視制御装置5に通知する。
監視制御装置5は、通知された伝搬遅延Dms、Dsm(遅延量)をスレーブノード4に通知することで、スレーブノード4がオフセットを求めるときの補正パラメータとして使用させる。
これにより、上り下りの両方向の遅延が等しくないリンク非対称性が存在する状況でも、そのリンク非対称性がオフセットの計算に反映されることで、求まるオフセットの精度を向上させる。
例えば、同じ経路のPTPパケットでも、送信するタイミングにおけるネットワークの混雑状況により、同じ方向の通信でも遅延量がばらついてしまう。しかし、この遅延のばらつきもオフセットを求めるときの補正パラメータとすることで、リンク非対称性の大きさが求まるオフセットの精度に影響されないようにすることができ、地理的に離れた拠点間の高精度な時刻同期が可能になる。
図3は、第1伝送装置1の構成図である。第1伝送装置1は、光信号を中継するWDM(Wavelength Division Multiplexing)技術を適用した装置として構成される。第1伝送装置1は、基本的なパケット伝送部として、TRPN(Transponder)91と、MUX(multiplexer)92と、DEMUX(demultiplexer)93と、OXC(Optical Cross Connect)94と、AMP(Amplifier)95,96と、OSC(Optical Supervisory Channel)97とを有する。
これらの基本的なパケット伝送部は、第1伝送装置1内に1度導入した後には、基本的には交換しなくてもよい部品である。例外として、通信需要が急増したり、部品が故障したりする場合は交換または追加配備が必要となる。
さらに、第1伝送装置1は、PTPパケットを用いて伝搬遅延Dms、Dsmを測定するための処理部として、第1同期用モジュール10を有する。第1同期用モジュール10は、接続先のマスタノード3との間でPTPパケットを送受信する。つまり、第1伝送装置1は、基本的なパケット伝送部に修正を加えること無く、独立した別部品として第1同期用モジュール10を装置内に追加することができる。これにより、図1、図2で説明したリンク非対称性を測定する機能を低コストで追加することができる。
一方、TRPN91は、マスタノード3以外の一般的なルータや転送装置と接続し、パケットを送受信する。
第1同期用モジュール10およびTRPN91から送信される光信号は、MUX92、OXC94、AMP95、OSC97を経由して、光ネットワークへと出力される。なお、OSC97では、伝送路の監視や装置の制御が行われる。
光ネットワークから受信した光信号は、OSC97、AMP96、OXC94、MUX92、DEMUX93を経由して、第1同期用モジュール10およびTRPN91へと通知される。
図4は、第2伝送装置2の構成図である。第2伝送装置2も第1伝送装置1と同様に、基本的なパケット伝送部として、TRPN91と、MUX92と、DEMUX93と、OXC94と、AMP95,96と、OSC97とを有する。基本的なパケット伝送部の機能は、第1伝送装置1も第2伝送装置2も同じであるので、図4では説明を省略する。
そして、第2伝送装置2は、PTPパケットを用いて伝搬遅延Dms、Dsmを測定するための処理部として、第2同期用モジュール20を有する。第2同期用モジュール20は、接続先のスレーブノード4との間でPTPパケットを送受信する。
図5は、両側の同期用モジュールで計算した伝搬遅延をスレーブノード4に通知する経路を示す構成図である。
図2では、監視制御装置5が伝搬遅延Dms、Dsmをスレーブノード4に中継するとして説明した。一方、図5では、1台の監視制御装置5が有する機能を、伝送制御装置51と、統合監視装置52と、同期制御装置53とに分けて説明する。
伝送制御装置51は、各伝送装置(第1伝送装置1、第2伝送装置2)を管理する。同期制御装置53は、各時刻同期装置(マスタノード3、スレーブノード4)を管理する。
第1伝送装置1は、収容される伝送制御装置51に対して自身の測定結果である伝搬遅延Dsmを通知するための監視部18を有する。第2伝送装置2も、収容される伝送制御装置51に対して自身の測定結果である伝搬遅延Dmsを通知するための監視部28を有する。
統合監視装置52は、伝送制御装置51から通知された伝搬遅延Dms、Dsmを保持するとともに、その伝搬遅延Dms、Dsmを同期制御装置53が収容するスレーブノード4に提供する。
これにより、スレーブノード4は、伝搬遅延Dms、Dsmを補正用パラメータとして取得できる。なお、伝送制御装置51および伝送装置、ならびに、同期制御装置53および時刻同期装置は、それぞれ1つの装置として統合したり、同じビル内などの互いに近い距離に配置することが、補正までの所要時間を短縮できるので望ましい。
図6は、片側の同期用モジュール(第2伝送装置2)で計算した伝搬遅延Dmsをスレーブノード4に通知する経路を示す構成図である。補正用パラメータとして片側の伝搬遅延Dmsだけ求めればよいときには、図6に示したように、第2伝送装置2で計算した伝搬遅延Dmsだけをスレーブノード4に通知するように、図5の構成を簡略化できる。
図7は、第1同期用モジュール10、第2同期用モジュール20の構成図である。図5で示した両側の伝搬遅延を測定するため、これらの両モジュールは共通の構成である。
両モジュールの構成要素の一部である制御部は、それぞれCPU(Central Processing Unit)と、メモリと、ハードディスク、不揮発メモリ、SSD(solid state drive)などで例示される記憶手段(記憶部)と、ネットワークインタフェースとを有するコンピュータとして構成してもよい。
制御部のコンピュータは、CPUが、メモリ上に読み込んだプログラム(アプリケーションや、その略のアプリとも呼ばれる)を実行することにより、各処理部を動作させる。
さらに、O/E・E/O部11、可変波長トランスミッタ164、カプラ171、光受信部175はそれぞれ個別のハード(ハードウェア)として構成される。また、PHY部12、MAC部13は、LSI(Large Scale Integration)として構成される。
第1同期用モジュール10、第2同期用モジュール20は、それぞれPTPパケットの送信を行う送信部16と、PTPパケットの受信を行う受信部17と、その他の共通部19とを有する。共通部19は、O/E・E/O(Optical/Electronic・Electronic/Optical signal converter)部11と、PHY(physical layer:物理層)部12と、MAC(Medium Access Control)部13と、クロックタイマ14と、環境情報管理部15とを有する。
クロックタイマ14は、第1同期用モジュール10内の任意の機能部間の同期動作を担保するために、周波数・タイミングを供給する。
環境情報管理部15は、波長分散係数、温度の情報を管理する。
送信部16は、キュー部162と、トリガ付与部163と、可変波長トランスミッタ164とが2波長(2波長)分用意され、その各系統に対して同じパケットをコピーして入力するためのコピー部161も備えられている。
コピー部161は、PTPパケットを2波長にコピーする。
キュー部162は、これから送信するPTPパケットを格納する。
トリガ付与部163は、時間差検出部172の到着時間差を検出用のトリガを、これから送信するPTPパケットに付与する。トリガとは、例えば、Ethernet(登録商標)のプリアンブルのような、測定対象のタイミングを認識できるような特定の信号パターン(「101010…11」など)として実装される。または、パケット内の特定フィールドの特定値として、トリガを埋め込んでもよい。
2波長それぞれの可変波長トランスミッタ164は、送信するPTPパケット、独自パケットを他方の可変波長トランスミッタ164とは異なる波長の光信号に変換する。そして、2波長それぞれの可変波長トランスミッタ164は、変換した光信号を他方の可変波長トランスミッタ164と同時に送信する。なお、2波長を例示したが、3波長以上の光信号を3つ以上の可変波長トランスミッタ164が同時に送信してもよい。
受信部17は、カプラ171と、時間差検出部172と、遅延演算部173と、遅延管理部174と、光受信部175と、セレクタ176とを有する。
カプラ171は、可変波長トランスミッタ164から送信された2波長以上の光信号を受信し、時間差検出部172と、光受信部175とに出力する。
時間差検出部172は、2波長以上の光信号における、第1同期用モジュール10、第2同期用モジュール20間の到着時間差△tを検出する(詳細は図9)。なお、時間差検出部172は、例えばオシロスコープに具備されている機能群を用いることによって実現できる。
遅延演算部173は、到着時間差△tから伝搬遅延Dms、Dsmを算出する(詳細は図9)。
遅延管理部174は、遅延演算部173で算出された伝搬遅延Dms、Dsmを保持し、その時変動を監視する。そして、遅延管理部174は、保持する伝搬遅延Dms、Dsmを監視部18,28から監視制御装置5に通知する。
光受信部175は、カプラ171からの光信号を電気信号に変換する。この変換時に分散補償などの処理を行ってもよい。
セレクタ176は、2波長分のパケット(電気信号)のうちの一方(例えば到着が早いパケット)を選択して共通部19に出力する。
図8は、PTPパケット送信側の第1同期用モジュール10と、受信側の第2同期用モジュール20とを別々の構成としたときの構成図である。図6で示した片側の通知経路の簡略構成に対応して、図7の第1同期用モジュール10からは受信部17を省略し、図7の第2同期用モジュール20からは送信部16を省略できる。その他の各部品は、図7で説明した通りである。
図9は、同期用モジュール間で伝搬遅延を測定する処理を示す説明図である。
第1同期用モジュール10から第2同期用モジュール20までの下りの伝送路の距離をLmsとし、第2同期用モジュール20から第1同期用モジュール10までの上りの伝送路の距離をLsmとする。
ファイバの波長分散係数C[ps/nm/km]は既知とし、Lms,Lsmは未知とする。また、図9では図示を省略したが、各同期用モジュールと時刻同期装置(マスタノード3、スレーブノード4)との間のファイバペアは等長とする。さらに、同期用モジュールと、図3,図4で示したMUX92/DEMUX93との間のファイバ群も等長とする。
第1同期用モジュール10の可変波長トランスミッタ164は、2波長(波長の差:△λ[nm])の光信号を伝送路に同時に入力する(符号301)。この符号301では、太線の光信号と、細線の光信号とは波長が異なる。そして、2波長が伝搬する伝送路では、分散などの影響により第2同期用モジュール20への到着タイミングがズレる。
第2同期用モジュール20の時間差検出部172は、2波長以上の光信号の到着時間差(△t12[ps])を検出する(符号302)。
第2同期用モジュール20の遅延演算部173は、「△t12=C×△λ×L12」の関係式を用いて、L12を算出する。そして、遅延演算部173は、「Dms=5000[ns/km]×L12[km](×温度補正)」の関係式を用いて、伝搬遅延Dmsを算出する。
以上、第1同期用モジュール10から第2同期用モジュール20に通知される2波長の光信号をもとに、伝搬遅延Dmsを算出する処理の詳細を説明した。
同様にして、逆方向の第2同期用モジュール20から同時に送信される2波長の光信号(符号311)をもとに、第1同期用モジュール10が2波長の光信号の到着時間差(△t21[ps])を検出して(符号312)、伝搬遅延Dsmを算出する。
図10は、時刻同期の全体処理を示すシーケンス図である。このシーケンス図は大きく3つの処理ブロックに分類される。
(1)下りのPTPパケットをマスタノード3からスレーブノード4に送信するとともに、そのPTPパケットに発生した伝搬遅延Dmsを第2伝送装置2が測定する処理(S10=詳細はS11~S15)。
(2)上りのPTPパケットをスレーブノード4からマスタノード3に送信するとともに、そのPTPパケットに発生した伝搬遅延Dsmを第1伝送装置1が測定する処理(S20=詳細はS21~S25)。
(3)測定された伝搬遅延Dms、Dsmを補正パラメータとして、スレーブノード4が高精度なオフセットを求める処理(S30=詳細はS31,S32)。
まず、(1)下りのPTPパケットの通知処理(S10)を説明する。下りのPTPパケットとは、下りのSyncメッセージ(図19のS11z)または下りのFollow-upメッセージ(S12z)である。
S11として、マスタノード3は、下りのPTPパケットをスレーブノード4に向けて送信し、PTPパケットを中継先の第1伝送装置1が受信する。
S12として、第1伝送装置1は、図11で後記する送信側処理を行い、下りのPTPパケットを第2伝送装置2に転送する。
S13として、第2伝送装置2は、図12で後記する受信側処理を行うことで、下りのPTPパケットに発生した伝搬遅延Dmsを測定する。
S14として、第2伝送装置2は、下りのPTPパケットをスレーブノード4に転送する。
S15として、第2伝送装置2は、S13で測定した伝搬遅延Dmsを監視制御装置5に通知する。
次に、(2)上りのPTPパケットの通知処理(S20)を説明する。上りのPTPパケットとは、上りのDelay_Requestメッセージ(図19のS13z)である。
通知処理(S20)は、通知処理(S10)とPTPパケットの送信方向を反転させ、S13で第2伝送装置2が伝搬遅延Dmsを測定する処理を、S23で第1伝送装置1が伝搬遅延Dsmを測定する処理に置き換えたものである。
S21として、スレーブノード4は、上りのPTPパケットをマスタノード3に向けて送信し、PTPパケットを中継先の第2伝送装置2が受信する。
S22として、第2伝送装置2は、図11と同様の送信側処理を行い、上りのPTPパケットを第1伝送装置1に転送する。
S23として、第1伝送装置1は、図12と同様の受信側処理を行うことで、上りのPTPパケットに発生した伝搬遅延Dsmを測定する。
S24として、第1伝送装置1は、上りのPTPパケットをマスタノード3に転送する。
S25として、第1伝送装置1は、S23で測定した伝搬遅延Dsmを監視制御装置5に通知する。
そして、(3)オフセットを求める処理(S30)を説明する。
S31として、監視制御装置5は、図5で示したように、各伝送装置から通知された伝搬遅延Dms、Dsmをスレーブノード4に転送する。
S32として、スレーブノード4は、自身の時計について、時刻同期の補正処理を行う。具体的には、スレーブノード4は、以下の数式2でオフセット値を求める。
オフセット値=((着時刻t2-発時刻t1)-(着時刻t4-発時刻t3))/2+(伝搬遅延Dsm-伝搬遅延Dms)/2 …(数式2)
この数式2は、前記の数式1に対して時刻同期の補正するための第2項(伝搬遅延の項)が追加されている。
S32の別の例として、スレーブノード4は、スレーブ側の着時刻t2を、マスタ側の発時刻t1に、高精度に求めた伝搬遅延Dmsを加えた値に合わせることにより、スレーブ側の時刻をマスタ側の時刻と同期させることができる。これにより、図6で示したように、片側の伝搬遅延Dmsだけを用いる場合にも対応できる。
以上、図10を参照して時刻同期の全体処理を説明した、以下、図11,図12を参照して、この全体処理の一部である部分処理の詳細を個別に説明する。
図11は、S12の送信側処理の詳細を示すシーケンス図である。このシーケンスは、第1伝送装置1内の第1同期用モジュール10によって実行される。
S121として、共通部19は、PTPパケット受信時の共通処理(O/E・E/O部11の処理、PHY部12の処理、MAC部13の処理)を行い、その結果をコピー部161に出力する。
S122として、コピー部161は、PTPパケットをコピーして、2波長分のキュー部162に出力する。
S123として、キュー部162によるバッファリング処理、トリガ付与部163によるトリガ付与処理がなされたPTPパケットは、可変波長トランスミッタ164に出力される。
S124として、可変波長トランスミッタ164は、2波長分のPTPパケットを光信号に変換し、その光信号を同時に第2同期用モジュール20に出力する。
図12は、S13の受信側処理の詳細を示すシーケンス図である。このシーケンスは、第2伝送装置2内の第2同期用モジュール20によって実行される。
S131として、カプラ171は、2波長分の光信号を時間差検出部172、光受信部175に分岐して出力する。
S131bとして、光受信部175は、受信した光信号をセレクタ176に出力する。
S131cとして、セレクタ176は、2波長分の光信号から一方のPTPパケットを選択して共通部19に出力する。
S131dとして、共通部19は、PTPパケット送信時の各種処理(MAC部13の処理、PHY部12の処理、O/E・E/O部11の処理)を行ってから、S14で示したPTPパケットの送信処理を行う。
S132として、時間差検出部172は、トリガ付与部163によるトリガをもとに光信号の到着時間差(△t12)を検出し、その結果を遅延演算部173に出力する。
S133として、遅延演算部173は、図9で示したように、光信号の到着時間差から伝搬遅延Dmsを算出し、その結果を遅延管理部174に出力する。
S134として、遅延管理部174は、S133の伝搬遅延Dmsの情報を保持する。
S135として、遅延管理部174は、以前保持されていた伝搬遅延Dmsから、今回のS133で保持した伝搬遅延Dmsが更新されたか否かを判定する。更新されていない場合(No)は処理を終了し、更新された場合(Yes)には処理をS136に進める。
S136として、遅延管理部174は、更新された伝搬遅延Dmsを監視制御装置5に通知する(S15)。
以上説明した本実施形態の時刻伝送システムは、マスタノード3、スレーブノード4間に発生してしまう遅延非対称性(伝搬遅延Dms、Dsm)を中継地点の伝送装置が高精度に測定し、スレーブノード4のオフセットを求める数式2の補正パラメータとして用いることを主な特徴とする。
そのため、伝送装置に備えられる第1同期用モジュール10、第2同期用モジュール20間で2波長分のPTPパケットを同時に送信し、その到着時間差から同期用モジュール間の伝搬遅延Dms、Dsmを高精度に求める構成とした。
これにより、時刻同期プロトコルであるPTPの誤差要因(遅延非対称性)をオフセットの計算時に補正することができ、地理的に離れた拠点間の高精度な時刻同期が可能になる。
なお、第1同期用モジュール10、第2同期用モジュール20のうちの制御部を動作させるプログラムは、通信回線を介して配布したり、CD-ROM等の記録媒体に記録して配布したりすることも可能である。
図13~図17において、伝送装置(第1伝送装置1、第2伝送装置2)からスレーブノード4に伝搬遅延Dms、Dsmを送信するさまざまな変形例を例示する。これらの変形例では、監視制御装置5(伝送制御装置51、統合監視装置52、同期制御装置53)を中継せずに、伝送装置からスレーブノード4に伝搬遅延を直接通知するので、通知時間を短縮できる。
(1)図13は、伝送装置の監視部18,28と、スレーブノード4の監視部48との間で伝搬遅延Dms、Dsmを送信するパターンである。このパターンでは、監視部18,28にIF(インタフェース)が必要である。
(2)図14は、第2伝送装置2からスレーブノード4へPTPパケットを介して伝搬遅延Dms、Dsmを送信するパターンである。このパターンでは、PTPパケット内のフィールドに情報を埋め込むとともに、スレーブノード4側に読みだす機能を付与する。
(3)図15は、第2伝送装置2の監視部28と、スレーブノード4の監視部48との間で伝搬遅延Dmsを送信するパターンである。このパターンでは、監視部28にIFが必要である。
(4)図16,図17は、第2伝送装置2からスレーブノード4へPTPパケットを介して伝搬遅延Dmsを送信するパターンである。このパターンでは、PTPパケット内のフィールドに情報を埋め込むとともに、スレーブノード4側に読みだす機能を付与する。
なお、図5に示した両側での遅延演算のバリエーションは、(1)および(2)である。図6に示した片側での遅延演算のバリエーションは、(3)および(4)である。
1 第1伝送装置
2 第2伝送装置
3 マスタノード(第1時刻同期装置)
4 スレーブノード(第2時刻同期装置)
5 監視制御装置
10 第1同期用モジュール
11 O/E・E/O部
12 PHY部
13 MAC部
14 クロックタイマ
15 環境情報管理部
16 送信部
17 受信部
18,28,48 監視部
19 共通部
20 第2同期用モジュール
51 伝送制御装置
52 統合監視装置
53 同期制御装置
161 コピー部
162 キュー部
163 トリガ付与部
164 可変波長トランスミッタ
171 カプラ
172 時間差検出部
173 遅延演算部
174 遅延管理部
175 光受信部
176 セレクタ

Claims (5)

  1. 第1時刻同期装置側に接続される第1伝送装置と、前記第1伝送装置に対向し第2時刻同期装置側に接続される第2伝送装置を経由して、前記第1時刻同期装置と前記第2時刻同期装置との間で時刻同期用パケットを送受信し、その送受信の時刻情報をもとに前記第2時刻同期装置の時刻を同期する時刻伝送システムに用いられる伝送装置であって、
    前記第1伝送装置および前記第2伝送装置としてそれぞれ動作する伝送装置は、
    測定対象のタイミングを認識させるための特定の信号パターンであるトリガをEthernetのプリアンブルとして付した複数波長分の前記時刻同期用パケットを同時に対向の伝送装置に送信する送信部と、
    前記対向の伝送装置から受信した複数波長分の前記時刻同期用パケットを受信する受信部とを有しており、
    前記受信部は、受信した複数波長分の前記時刻同期用パケットの到着した時刻の差をもとに、前記対向の伝送装置から自装置までの伝搬遅延を測定し、その伝搬遅延を前記第2時刻同期装置の時刻を同期する処理における補正用パラメータとして、前記第2時刻同期装置に通知することを特徴とする
    伝送装置。
  2. 第1時刻同期装置側に接続される第1伝送装置と、前記第1伝送装置に対向し第2時刻同期装置側に接続される第2伝送装置を経由して、前記第1時刻同期装置と前記第2時刻同期装置との間で時刻同期用パケットを送受信し、その送受信の時刻情報をもとに前記第2時刻同期装置の時刻を同期する時刻伝送システムに用いられる伝送装置であって、
    前記第1伝送装置および前記第2伝送装置としてそれぞれ動作する伝送装置は、
    複数波長分の前記時刻同期用パケットを同時に対向の伝送装置に送信する送信部と、
    前記対向の伝送装置から受信した複数波長分の前記時刻同期用パケットを受信する受信部とを有しており、
    前記受信部は、受信した複数波長分の前記時刻同期用パケットの到着した時刻の差をもとに、前記対向の伝送装置から自装置までの伝搬遅延を測定し、その伝搬遅延を前記第2時刻同期装置の時刻を同期する処理における補正用パラメータとして、前記時刻同期用パケットを送受信する前記受信部内の送受信用モジュールとは異なる処理部である前記受信部内の監視部により独自に生成される信号にて前記第2時刻同期装置に通知することを特徴とする
    伝送装置。
  3. 請求項1または請求項2に記載の伝送装置と、前記第1時刻同期装置と、前記第2時刻同期装置とを含めて構成される時刻伝送システムであって、
    前記第2時刻同期装置は、前記時刻同期用パケットの時刻同期装置間における発時刻および着時刻、ならびに、前記第1伝送装置および前記第2伝送装置からそれぞれ通知された補正用パラメータを用いて前記第2時刻同期装置の時計のずれであるオフセット値を計算することを特徴とする
    時刻伝送システム。
  4. 第1時刻同期装置側に接続される第1伝送装置と、前記第1伝送装置に対向し第2時刻同期装置側に接続される第2伝送装置を経由して、前記第1時刻同期装置と前記第2時刻同期装置との間で時刻同期用パケットを送受信し、その送受信の時刻情報をもとに前記第2時刻同期装置の時刻を同期する時刻伝送システムが実行する遅延補正方法であって、
    前記第1伝送装置および前記第2伝送装置としてそれぞれ動作する伝送装置は、
    測定対象のタイミングを認識させるための特定の信号パターンであるトリガをEthernetのプリアンブルとして付した複数波長分の前記時刻同期用パケットを同時に対向の伝送装置に送信する送信部と、
    前記対向の伝送装置から受信した複数波長分の前記時刻同期用パケットを受信する受信部とを有しており、
    前記受信部は、受信した複数波長分の前記時刻同期用パケットの到着した時刻の差をもとに、前記対向の伝送装置から自装置までの伝搬遅延を測定し、その伝搬遅延を前記第2時刻同期装置の時刻を同期する処理における補正用パラメータとして、前記第2時刻同期装置に通知することを特徴とする
    遅延補正方法。
  5. 第1時刻同期装置側に接続される第1伝送装置と、前記第1伝送装置に対向し第2時刻同期装置側に接続される第2伝送装置を経由して、前記第1時刻同期装置と前記第2時刻同期装置との間で時刻同期用パケットを送受信し、その送受信の時刻情報をもとに前記第2時刻同期装置の時刻を同期する時刻伝送システムが実行する遅延補正方法であって、
    前記第1伝送装置および前記第2伝送装置としてそれぞれ動作する伝送装置は、
    複数波長分の前記時刻同期用パケットを同時に対向の伝送装置に送信する送信部と、
    前記対向の伝送装置から受信した複数波長分の前記時刻同期用パケットを受信する受信部とを有しており、
    前記受信部は、受信した複数波長分の前記時刻同期用パケットの到着した時刻の差をもとに、前記対向の伝送装置から自装置までの伝搬遅延を測定し、その伝搬遅延を前記第2時刻同期装置の時刻を同期する処理における補正用パラメータとして、前記時刻同期用パケットを送受信する前記受信部内の送受信用モジュールとは異なる処理部である前記受信部内の監視部により独自に生成される信号にて前記第2時刻同期装置に通知することを特徴とする
    遅延補正方法。
JP2019024801A 2019-02-14 2019-02-14 伝送装置、時刻伝送システム、および、遅延補正方法 Active JP7302192B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019024801A JP7302192B2 (ja) 2019-02-14 2019-02-14 伝送装置、時刻伝送システム、および、遅延補正方法
US17/428,240 US11855760B2 (en) 2019-02-14 2020-02-06 Transmission device, time transmission system, and delay compensation method
PCT/JP2020/004617 WO2020166484A1 (ja) 2019-02-14 2020-02-06 伝送装置、時刻伝送システム、および、遅延補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019024801A JP7302192B2 (ja) 2019-02-14 2019-02-14 伝送装置、時刻伝送システム、および、遅延補正方法

Publications (2)

Publication Number Publication Date
JP2020136780A JP2020136780A (ja) 2020-08-31
JP7302192B2 true JP7302192B2 (ja) 2023-07-04

Family

ID=72045375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019024801A Active JP7302192B2 (ja) 2019-02-14 2019-02-14 伝送装置、時刻伝送システム、および、遅延補正方法

Country Status (3)

Country Link
US (1) US11855760B2 (ja)
JP (1) JP7302192B2 (ja)
WO (1) WO2020166484A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115378534A (zh) * 2021-05-21 2022-11-22 华为技术有限公司 一种时钟频率的同步方法及通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094523A1 (en) 2011-09-09 2013-04-18 Huawei Technologies Co., Ltd. Time synchronization method and system, and node device
JP2013538022A (ja) 2010-09-20 2013-10-07 アルカテル−ルーセント 遅延非対称を補正するための方法
US20150104167A1 (en) 2012-05-16 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Determining properties of an optical communications path in an optical communications network
CN105933085A (zh) 2016-04-27 2016-09-07 西南民族大学 测量非对称光纤链路传输时延的方法
WO2018016056A1 (ja) 2016-07-21 2018-01-25 三菱電機株式会社 通信装置、通信システムおよび遅延補償方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247168B (zh) * 2007-02-15 2012-04-25 华为技术有限公司 一种时间同步的方法及系统
CN101795423A (zh) * 2009-02-04 2010-08-04 中兴通讯股份有限公司 无源光网络系统的时间同步方法及其同步系统
CN102439884B (zh) * 2010-07-23 2013-03-20 华为技术有限公司 时间同步的方法和设备
JP6467034B2 (ja) * 2014-07-18 2019-02-06 インターデイジタル パテント ホールディングス インコーポレイテッド 無線ローカルエリアネットワーク(wlan)アップリンクトランシーバシステムおよび方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013538022A (ja) 2010-09-20 2013-10-07 アルカテル−ルーセント 遅延非対称を補正するための方法
US20130094523A1 (en) 2011-09-09 2013-04-18 Huawei Technologies Co., Ltd. Time synchronization method and system, and node device
US20150104167A1 (en) 2012-05-16 2015-04-16 Telefonaktiebolaget L M Ericsson (Publ) Determining properties of an optical communications path in an optical communications network
CN105933085A (zh) 2016-04-27 2016-09-07 西南民族大学 测量非对称光纤链路传输时延的方法
WO2018016056A1 (ja) 2016-07-21 2018-01-25 三菱電機株式会社 通信装置、通信システムおよび遅延補償方法

Also Published As

Publication number Publication date
JP2020136780A (ja) 2020-08-31
US11855760B2 (en) 2023-12-26
WO2020166484A1 (ja) 2020-08-20
US20220294549A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
US9705770B2 (en) Determining asymmetries in a communication network
KR101479483B1 (ko) 지연의 비대칭을 보정하는 방법
US8600239B2 (en) Precise clock synchronization over optical fiber
JP7310163B2 (ja) 伝送装置、時刻伝送システム、および、遅延補正方法
WO2009118878A1 (ja) Ponシステム
US9172525B2 (en) Method and device for compensating for time path
US7660524B2 (en) Temperature compensation for transmission between nodes coupled by a unidirectional fiber ring
US11750358B2 (en) Time transmission device and transmission method
CN110784783A (zh) 基于光纤网络的时钟同步方法及装置
Kihara et al. Two-way time transfer through 2.4 Gb/s optical SDH system
JP7302192B2 (ja) 伝送装置、時刻伝送システム、および、遅延補正方法
US20220026857A1 (en) Time transmission correction device, time transmission system, and delay measurement method
JP7200636B2 (ja) 伝送装置、時刻伝送システム、および、遅延測定方法
JP7070387B2 (ja) 時刻比較装置、および、時刻品質監視方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230327

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7302192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150