JP7301443B2 - 濾過プロセスに関する方法、装置、システム及びコンピュータプログラムプロダクト - Google Patents

濾過プロセスに関する方法、装置、システム及びコンピュータプログラムプロダクト Download PDF

Info

Publication number
JP7301443B2
JP7301443B2 JP2020534403A JP2020534403A JP7301443B2 JP 7301443 B2 JP7301443 B2 JP 7301443B2 JP 2020534403 A JP2020534403 A JP 2020534403A JP 2020534403 A JP2020534403 A JP 2020534403A JP 7301443 B2 JP7301443 B2 JP 7301443B2
Authority
JP
Japan
Prior art keywords
filter
simulation
filtration
parameters
simulation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020534403A
Other languages
English (en)
Other versions
JP2021507413A (ja
Inventor
マノイ・クマール・ラーマクリシュナ
スワプニル・プラニク
ムハンマド・メフタブ・カーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Life Sciences Solutions USA LLC
Original Assignee
Amersham Biosciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amersham Biosciences Corp filed Critical Amersham Biosciences Corp
Publication of JP2021507413A publication Critical patent/JP2021507413A/ja
Application granted granted Critical
Publication of JP7301443B2 publication Critical patent/JP7301443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • B01D63/084Flat membrane modules comprising a stack of flat membranes at least one flow duct intersecting the membranes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

濾過プロセスは、例えば物質の様々な成分を分離するために、バイオテクノロジー業界、製薬業界、食品関連業界等の多くの業界で用いられる。濾過プロセスの種類として、デッドエンド濾過とクロスフロー濾過が挙げられる。デッドエンド濾過では、流体(「供給液」として知られている)が、典型的には膜を含むフィルタに通され、特定の固体や粒子をフィルタで捕捉する一方で、残りの流体(「透過液」や「濾液」として知られている)がフィルタを通り抜ける。クロスフロー濾過(「接線フロー濾過」としても知られている)では、供給液は原理的にはフィルタの表面に沿って接線方向に伝播する。フィルタにわたって圧力差(膜横断圧力(TMP,trans‐membrane pressure)として知られている)が与えられて、供給側が対向側(透過側として知られている)に対して相対的に陽圧になるようにする。これによって、物質(細孔径よりも小さな寸法を有する物質)の一部がフィルタを通り抜ける。膜を通り抜けない流体(「残渣」として知られている)は、典型的には供給容器又は他の容器に戻され、更に膜に通すようにしてリサイクルされ得る。
フィルタの特性は、こうした濾過プロセスの設計及び実施において重要な要因である。細孔径やフィルタ寸法等の要因が、所与のプロセスに対するフィルタの適性に影響し、また、所要の生成物の所与の品質をもたらすのに必要な時間等も要因となる。
一例に係る例示的なシミュレーション装置を概略的に示す。 一例に従ってシミュレーションされる濾過プロセスが実行可能な例示的な濾過システムを概略的に示す。 使用時のフィルタデバイスを概略的に示す。 一例に係るフィルタデバイスを選択するための方法を示す流れ図である。 一例に係るシミュレーション装置と濾過システムを示す概略図である。 一例に係る濾過プロセスを監視する方法を示す流れ図である。
図1は、一例に係るシミュレーションプロセスを実行するように構成されたコンピュータ型デバイスの形式の装置(以下、シミュレーション装置100)を示す。シミュレーション装置100は少なくとも一つのプロセッサ102を備え、そのプロセッサ102は非一時的コンピュータ可読記憶媒体104に通信可能に結合され、その記憶媒体104には一組のコンピュータ可読命令106が記憶されている。一組のコンピュータ可読命令106は少なくとも一つのプロセッサによって実行され得て、本願記載のいずれかの例に係る方法を少なくとも一つのプロセッサ102に行わせる。また、シミュレーション装置100はインタフェース108を備え得る。インタフェース108はユーザインタフェース、例えば、キーボード、マウス、タッチスクリーン、他の入力デバイス等を備え得る。代替的に又は追加的に、インタフェース108は通信インタフェースを備えて、例えば、有線又は無線通信を介して、インターネットを介して、ユーザや他の存在と遠隔で通信し得る。
少なくとも一つのプロセッサ102は、マイクロプロセッサ、マイクロコントローラ、プロセッサモジュールやサブシステム、プログラマブル集積回路、プログラマブルゲートアレイ、又は他の制御デバイスや計算デバイスを含み得る。コンピュータ可読記憶媒体104は、一つ又は複数のコンピュータ可読記録媒体として実現され得る。コンピュータ可読記憶媒体104は、多様な形式のメモリ、例えば、半導体メモリデバイス(ダイナミックランダムアクセスメモリモジュールやスタティックランダムアクセスメモリモジュール(DRAMやSRAM)、イレーサブルプログラマブルリードオンリメモリモジュール(EPROM)、エレクトリカリイレーサブルプログラマブルリードオンリメモリモジュール(EEPROM)、フラッシュメモリ等)、磁気ディスク(固定ディスク、フロッピーディスク、リムーバブルディスク等)、他の磁気媒体(テープ等)、光学媒体(コンパクトディスク(CD)やDVD等)、他の種類の記憶デバイスを含み得る。コンピュータ可読命令106は一つのコンピュータ可読記憶媒体に記憶され得て、又は、複数のコンピュータ可読記憶媒体に記憶され得る。
図2は、一例に従ってシミュレーションされる濾過プロセスが実行可能な例示的な濾過システム200を概略的に示す。図2の例示的な濾過システム200は、クロスフロー濾過プロセスを行うためのものである。
濾過システム200は供給容器202とフィルタデバイス204を含み、フィルタデバイス204は膜206とフィルタチャネル208を含む。流体(供給液)が、供給容器202からフィルタチャネル208の第一端に通される。次いで、供給液はフィルタ膜202の表面にわたってフィルタチャネル208を流れる。膜206にわたる圧力差によって、一部成分(濾液)、例えば、膜206の細孔よりも小さな寸法を有する成分が膜206を通り抜けて、フィルタデバイス204の透過側210に向かうようにする。図の例では、濾液はフィルタデバイス204から流出し、流出管212を通り、そこから例えば収集され得る。膜を通り抜けない成分(残渣)は供給容器202に戻される。残渣は、更なる濾過サイクルにおいて供給液として再利用され得る。
図2のシステム200で使用可能なフィルタデバイス204の例として、カートリッジフィルタとカセットフィルタが挙げられる。カートリッジフィルタ(中空繊維フィルタとしても知られている)では、膜は一組の平行な中空繊維を備える。供給液は繊維の内腔を通り、濾液は繊維を通り抜けて、一組の繊維の外側から収集され得る。カセットフィルタは、支持スクリーンによって互いに離隔して保持された複数の(典型的には平坦な)膜シートを保持する筐体を含む。供給液は膜シート同士の間を通る。濾液はシートを通り抜けて、供給液が通る側と反対側のシートの側から収集され得る。
図2に例示されるような濾過プロセスは多種多様な目的、例えば、バイオテクノロジー、製薬、石油化学、食品技術の目的で使用され得る。システム200が使用可能なバイオテクノロジープロセスとして、細胞の採取プロセス、細胞や溶解物の分類プロセス、タンパク質の分画プロセス、濃縮プロセス、透析濾過プロセスが挙げられる。場合によっては、濾過の目的は濾液を得ることであり、つまり、濾液が更に使用される所望の生成物であるが、他の場合では、所望の製品は残渣であるか、又は残渣と濾液の両方であることに留意されたい。
図3は、使用時のフィルタデバイス204の一例を示す。フィルタデバイス204は半高さ(半径)hのフィルタチャネル208を含み、そのフィルタチャネル208を流体が長さLのフィルタ膜206の表面にわたって速度u(y)で流れる。固化した溶質の層300(「ケーク」や「ゲル」層と呼ばれることも多い)が、膜206の表面上に形成され、その厚さδは膜206の長さに沿って異なり得る。濾液流束J(x)(単位時間当たりで単位面積当たりの膜206を流れる濾液の体積)は、例えば、ゲル層300の影響のため、膜206の長さに沿って異なり得る。
図4は、一例に係る濾過プロセス用にフィルタデバイスを選択する方法400を示す流れ図である。
402では、シミュレーション装置100はインタフェース108を介して入力データを受信する。404では、シミュレーション装置100は、受信した入力データに基づいて、図2に関して上述したプロセス等の濾過プロセス用に複数のフィルタ特性の各々について一つ以上のフィルタ特性を特定する。
フィルタ特性の例として、フィルタの幾何学的特性、例えば、その上を供給液が流れる膜206の長さ、膜の面積、供給液が膜206の上を流れるにつれて通り抜けるチャネルの高さ(直径)又は半高さ(半径)等や、多孔度といった膜特性が挙げられる。一例では、入力データはこれら特性の値を備え、つまり、例えばユーザからインタフェース108を介してフィルタ特性を直接受信する。他の例では、入力データは、例えば複数のフィルタ候補それぞれのフィルタ識別子を提供することによって、シミュレーション装置100に対して複数のフィルタ候補を特定する。この場合、シミュレーション装置100は、これらフィルタのフィルタ識別子とフィルタ特性との間の関連性を例えばルックアップテーブル(図示せず)の形式で記憶しているデータストアからデータを検索し得る。その関連性を記憶しているデータストアは、図1に示されるコンピュータ可読記憶媒体104であり得て、又は、例えば、サーバーデバイス上のデータストア等のインタフェース108を介してアクセスされる遠隔データストアでもあり得る。
406では、シミュレーション装置100は、濾過プロセスのプロセスパラメータ、つまり、シミュレーションが行われる濾過プロセスのパラメータを特定する。プロセスパラメータとして、例えば、濾過プロセスの種類(例えば、クロスフロー濾過又はデッドエンド濾過)、分配係数、初期供給液体積、初期供給液組成、初期供給液粘度、初期供給液濃度、初期供給液温度、初期供給液溶解度、初期液体透過率の組み合わせが挙げられる。これらパラメータの値を、例えばインタフェース108を介してユーザから受信し得て、又は、フィルタ特性に関して上述したのと同様に、識別子、プロセス、又は、プロセスの種類をインタフェース108を介して受信し、その識別子に基づいてデータを検索することによってパラメータが決定される。
408では、シミュレーション装置100は、特定されたフィルタ特性と特定されたプロセスパラメータに基づいて、複数のフィルタ候補の各々について、濾過プロセスのコンピュータシミュレーションプロセスを行う。シミュレーションの例は以下で詳細に説明する。
410では、シミュレーション装置100は、シミュレーションに基づいて、濾過プロセスの出力特性を決定する。例えば、シミュレーション装置100は、濾液体積、濾液組成、濾液粘度、残渣体積、残渣組成、残渣粘度、「ケーク」層の形成に関する特性(膜206の液体透過率に対するその影響等)のうち一つ以上を決定し得る。出力特性は、静的な量(例えば、一定期間後の出力量)として出力され得る。代替的に又は追加的に、出力は、一つ以上の出力特性の時間変動を表し得る。例えば、一つ以上の出力特性を、時間に対するその特性の変動を示すグラフとして表し得る。
412では、一つ以上の出力特性に基づいて、複数のフィルタ候補のうちの一つのフィルタ候補を選択する。一部例では、シミュレーション装置100は、決定された出力特性に基づいて選択を行い、その指標をユーザに与え、例えば、選択されたフィルタの識別子がシミュレーション装置100のスクリーン(図示せず)上に表示され得る。例えば、シミュレーション装置100は、決定された出力特性を所望の出力特性(例えばインタフェース108を介してユーザによって入力されたものであり得る)と比較し、他のフィルタ候補よりも所望の出力特性に近い出力特性をもたらす一つのフィルタ候補を選択し得る。一部例では、シミュレーション装置100は、追加的に又は代替的に、例えばスクリーン(図示せず)を介して、決定された出力特性を示すデータをユーザに提供し、提供されたデータに基づいてユーザが選択を行い得る。
上述のコンピュータシミュレーションは、流体力学のモデルに基づいたものであり得て、例えば、ナビエストークス方程式を用いてチャネル内の流れをモデル化し、膜206内の流れについてはブリンクマン方程式を用い得る。そして、流れをモデル化するのに用いられた方程式の解を求めて、出力特性を決定し得る。一例では、シミュレーション装置100は、COMSOL(登録商標)等の有限要素法プログラムを用いて、濾過プロセスをモデル化し得る。
一部例では、コンピュータシミュレーションプロセスは、濾過プロセスの一つ以上の静的プロセス特性を決定することを備える第一シミュレーション段階と、決定された一つ以上の静的プロセス特性に少なくとも部分的に基づいて、濾過プロセスの一つ以上の動的プロセス特性を決定することを備える第二シミュレーション段階を備える。
シミュレーションプロセスで使用可能な式とアルゴリズムプロセスの例については、以下の「アルゴリズム例」の節で説明する。
上述のプロセスは、濾過プロセス用のフィルタを選択するための自動化方法を提供する。従来技術の方法にはプロセス作業者が関与し得て、所定の濾過プロセスに機能しそうなフィルタについてのその人の知識と、試験システムでフィルタを用いる試行錯誤とに基づいてフィルタを選択する。しかしながら、こうした方法には時間と費用が掛かり得る。対照的に、上述のプロセスは、試験に必要な時間と費用を掛けず、また、専門家の知識を必要とせずに、所与の濾過プロセスに適したフィルタを選択することを可能にする。
更に、フィルタが選択されると、本願記載のシミュレーションプロセスを用いて、選択されたフィルタで行われる濾過プロセスを改善又は最適化し得る。例えば、一つのフィルタ候補が選択されると(上述のように自動的に又は手動入力によって)、異なるプロセスパラメータでシミュレーションプロセスの更なる反復を行い、基準(例えばユーザ入力によって設定され得る)に従って出力特性を改善し得る。例えば、シミュレーション装置100は、TMP等の要求されたパラメータの指標や、所望の生成物濃度に到達するための予測時間や、フィルタデバイスを交換すべき時間やサイクル数等のアドバイス情報等を提供し得る。
従って、本願記載の例は、濾過プロセスの設計及び/又は開発において、例えば、標準的な動作手順の設定や更新において用いられ得る。一部例では、シミュレーション装置100が実際の(シミュレーションではない)濾過プロセスと連動して用いられ得て、これについて図5を参照して以下説明する。
図5は、濾過システム500とシミュレーション装置100とを含むシステムを概略的に示す。濾過システム500は濾過プロセスを実行するためのものであり、本例では、濾過システム500はクロスフロー濾過プロセスを実行するためのものである。
物理的な濾過システム500は、図2を参照して上述した供給容器とフィルタデバイスに対応する供給容器202とフィルタデバイス204を含む。物理的な濾過システム500は、供給管502を介してフィルタデバイス204内に供給液を流す供給ポンプ501を含む。残渣は、残渣管504を介してフィルタから出て行き、容器202に戻る。フィルタデバイス204の膜(図示せず)を通り抜けた濾液は、濾液管506を介してフィルタデバイス204から出て行き、収集管508に収集される。また、物理的な濾過システム500は、システム500内の流れを制御するバルブ512も含む。
例によると、物理的な濾過システム500は、濾過プロセスの一つ以上の特性を測定するセンサ514a、514b、514cを含む。図示の例では、物理的な濾過システム500は、供給液と残渣と濾液それぞれの一つ以上の特性を測定するように構成された供給液センサ514aと残渣センサ514bと濾液センサ514cを含む。測定される特性は、例えば、温度、圧力、流量、及び、濃度のうちの一つ以上を含み得る。
センサ514a、514b、514cは、例えば有線又は無線接続を介して、シミュレーション装置100と通信するように構成される。
シミュレーション装置100は、センサ514a、514b、514cからのデータを用いて、濾過システム500で行っている濾過プロセスに対応する濾過プロセスのシミュレーションのパラメータを変更し得て、その濾過システムが試験システムとして機能する。例えば、センサ514a、514b、514cのうち一つ以上から受信した測定データが、シミュレーションによって決定された予測特性値から逸脱した特性値を示す場合、これを考慮するようにシミュレーションプロセスの一つ以上のパラメータを更新し得る。場合によっては、このような逸脱が検出されると、その逸脱が濾過システム500の故障に起因するものではないことを保証するために、濾過プロセスを繰り返し得る(例えば、フィルタデバイス204と供給液を交換することによって)。
他の例では、シミュレーション装置100は、センサ514a、514b、514cから受信したデータを用いて、物理的な濾過システム500の異常を監視し得て、これについて、一例に係る濾過プロセスを監視する方法600を示す流れ図である図6を参照して以下説明する。
602では、シミュレーション装置100は、物理的な濾過システム500によって実行される物理的な濾過プロセスに対応する濾過プロセスのコンピュータシミュレーションを行う。そのシミュレーションは、例えば、上述のようなコンピュータシミュレーションに対応し得る。シミュレーションは、上述のような入力データ、例えばユーザによって入力されたデータ(フィルタ特性データやプロセスパラメータデータ等)に基づいて行われ得る。追加的に又は代替的に、シミュレーションは、センサ514a、514b、514cのうちの一つ以上から受信した測定データで行われ得る。例えば、センサは、上述のような一つ以上のプロセスパラメータを示すデータを提供し、シミュレーションの基礎を成す。
604では、シミュレーション装置は、シミュレーションプロセスに基づいて、シミュレーションされた濾過プロセスの一つ以上の時間変動特性を決定する。一つ以上の時間変動特性は、濃度、例えば、濾液、残渣、又は供給液の濃度や流量を備え得る。
606では、シミュレーション装置100は、センサ514a、514b、514cのうちの一つ以上から測定データを受信する。測定データは、所与の時間における一つ以上の時間変動特性の値を示す。所与の時間は、例えば、濾過システム500で実行される濾過プロセスの開始時間に基づき得る。例えば、シミュレーション装置100は、濾過プロセスの開始時にインタフェース108を介してユーザから指標を受信し得て、又は、例えば、センサ514a、514b、514cのうちの一つ以上から受信したデータに基づいて開始時間を検出し得る。
608では、シミュレーション装置100は、濾過システム500から受信した測定データを、決定された一つ以上の時間変動特性と比較する。これは、例えば、測定データが示す特性の値を、コンピュータシミュレーションプロセス中に決定された時間変動特性の値と比較することを備え得る。つまり、シミュレーション装置100は、測定データの値を、シミュレーションプロセスによって決定された所与の時間における特性の予測値と比較し得る。
610では、シミュレーション装置100は、比較に基づいて、濾過システム500に異常があるかどうかを決定する。例えば、シミュレーション装置100は、測定データが示す値が所定量よりも大きく(例えば、所定の絶対値よりも大きく、又は所定の割合よりも大きく)予測値と異なる場合に、濾過システム500に異常が存在すると決定し得る。
シミュレーション装置100が、濾過システム500に異常が存在すると決定する場合、シミュレーション装置100は、612において異常指標を発生させる。異常指標は、視覚的指標、例えば、シミュレーション装置100のスクリーン上の警告メッセージや「ポップアップ」等であり得て、又は、音響的警告や他の警告であり得る。一部例では、異常指標は、異常の性質に関する情報、例えば、供給液と濾液と残渣のうちの一つ以上の異常な流量や濃度を示す。他の例では、異常指標は、更なる詳細を示さず単純に異常の存在を示す。
シミュレーション装置100が濾過システム500の異常を認めない場合、監視プロセスは606に戻り、濾過システム500から更なる測定データを受信する。
従って、図6を参照して説明される濾過プロセスを監視する方法を用いて、例えば、生成プロセス中に濾過システム500に異常(つまり、故障)が存在することをユーザ、例えば、濾過システム500の作業者に警告し得る。これは、ユーザが異常に対して是正措置(例えばフィルタの交換)を取ることを可能にし、そして、例えば、効率を改善したり、欠陥のある生成物の生成を抑制したりし得る。
追加的に又は代替的に、シミュレーション装置100は、受信した測定データと、予測値からの逸脱とを記憶し得て、例えば、その逸脱が異常指標の引き金となるほどには大きくない場合であっても記憶し得る。このデータは、例えば、品質制御の目的で用いられ分析され得る。
[アルゴリズム例]
上述のコンピュータシミュレーションプロセスで用いられる式とアルゴリズムの例を以下与える。この例では、第一シミュレーション段階で以下の式を用いる:
(式1)
Figure 0007301443000001
ここで、
・ ΔPは、膜横断圧力(TMP)、つまり、フィルタ膜206にわたる圧力差
・ μは、供給液の粘度
・ Rは、供給液の粘度と膜の液体透過率に依存する膜起因の抵抗
・ Rは、ゲルの液体透過率と密度と多孔度に依存する膜206起因の抵抗
(式2)
Figure 0007301443000002
ここで、
・ Kは、物質移動係数
・ Cは、膜206界面における供給液の濃度
・ Cは、バルク溶液の濃度
・ Lは、膜の液体透過率
・ Rは、実際の保持力
・ A、A、AはRに依存する定数であり、実験データに少なくとも部分的に基づいて決定され得る。
(式3)
Figure 0007301443000003
ここで、
・ uは、供給液のクロスフロー速度
・ Dは、関連する拡散係数
・ Iは、以下の式4で定義される積分因子
(式4)
Figure 0007301443000004
ここで、
・ ηは、式5で与えられる無次元変数
・ λは、式6で与えられる
(式5)
Figure 0007301443000005
ここで、
・ Reは、レイノルズ数
・ Scは、シュミット数
・ dは、チャネルの等価直径
(式6)
Figure 0007301443000006
ここで、
・ Jは、式7で与えられる長さ平均濾液流束
(式7)
Figure 0007301443000007
(式8)
Figure 0007301443000008
ここで、
・ Cは、濾液の濃度
(式9)
Figure 0007301443000009
上記式において、以下のフィルタ特性の値は、上述のように入力データとして与えられ得る:即ち、L、L、h。以下のプロセスパラメータの値は、上述のように入力としてシミュレーションに与えられ得る:即ち、μ、R、R、D、d。以下のパラメータ(本願において「静的プロセスパラメータ」と称される)の値は、アルゴリズムに従って決定され得る:即ち、ΔP、u、C、C、C、J、K。
一部例では、上記の式が、静的プロセスパラメータを決定するように反復アルゴリズムで用いられる。例えば、Jの値は、同様のフィルタ特性とプロセスパラメータを用いた以前のシミュレーションに基づいて初期設定され得て、又は乱数値で設定され得る。Jの値は式7に基づいて決定される。これに基づいて、他の式を数値計算で解くことによって、又は他の方法によって、Kの値と、次いでΔP、u、C、C、C、Jの値が計算される。次いで、式7と他の式に基づいて計算されたJの値同士を比較する。Jの計算値同士が所定量よりも大きく異なる場合、例えば、所定の割合(例えば、0.1%)よりも大きく異なる場合、異なる値のJを用いて、プロセスを繰り返す。従って、Jの計算値同士が所定量以下で異なるようになるまで、プロセスを反復する。Jの値同士が所定値以下で異なるようになると、Jの値と他の静的プロセスパラメータが第二シミュレーション段階で用いられるように設定される。
第二シミュレーション段階は、濾過プロセスの時間変動出力特性、例えば、時間と共に変動する膜横断圧力、供給液の濃度や体積、濾液の濃度や体積等を決定することを備える。例えば、第二シミュレーション段階は以下の式10等の式を用い得る。
(式10)
Figure 0007301443000010
ここで、
・ cは、供給液濃度
・ vは、供給液体積
・ ΔPは、TMP
・ Lは、膜の液体透過率であって、以下の式11で与えられる
・ Mは、溶質の分子量
(式11)
Figure 0007301443000011
ここで、
・ Lp,oは、初期液体透過率
・ Δπは、初期浸透圧
・ Δπは、時間変動浸透圧
・ K、Kは、ケーク形成プロセスに関する定数である。これら定数の初期値は仮定される。シミュレーションの動的部分が進行するにつれて、他のパラメータで最適曲線フィッティングを得るためにこれら定数の値を更新することによって、ケーク形成プロセスと、濾過プロセスに対するその影響とをシミュレーションする。
上記例の多くは、クロスフロー濾過プロセスに関して説明されているものである。しかしながら、本発明は、他の種類の濾過プロセス、例えばデッドエンド濾過にも等しく適用可能であることを理解されたい。
いずれか一つの例に関して説明されている特徴は、単独で使用され得て、又は、本願記載の他の特徴と組み合わせて使用され得て、また、他のいずれかの例又は他の例の組み合わせの一つ以上の特徴と組み合わせても使用され得る。更に、上記で記載されていない等価物や変更を、添付の特許請求の範囲から逸脱せずに採用することもできる。
100 シミュレーション装置
102 プロセッサ
104 コンピュータ可読記憶媒体
106 コンピュータ可読命令
108 インタフェース
200 濾過システム
202 供給容器
204 フィルタデバイス
206 膜
208 フィルタチャネル
210 透過側
212 流出管

Claims (11)

  1. プロセッサを備えるシミュレーション装置が、濾過プロセス用のフィルタを選択するための方法であって、
    前記シミュレーション装置が、入力データを受信し、該入力データに基づいて、濾過プロセス用の複数のフィルタ候補の各々について一つ以上のフィルタ特性を特定することと、
    前記シミュレーション装置が、前記濾過プロセスのプロセスパラメータを特定することと、
    前記シミュレーション装置が、特定された前記プロセスパラメータ及び特定された前記フィルタ特性に基づいて、前記複数のフィルタ候補の各々について前記濾過プロセスのコンピュータシミュレーションプロセスを行うことと、
    前記シミュレーション装置が、前記コンピュータシミュレーションプロセスに基づいて、前記濾過プロセスの一つ以上の出力特性を決定することと、
    前記シミュレーション装置が、前記一つ以上の出力特性に基づいて、前記複数のフィルタ候補のうちの一つのフィルタ候補を選択することと、を備え、
    前記コンピュータシミュレーションプロセスが、
    反復アルゴリズムに少なくとも部分的に基づいて、前記濾過プロセスの一つ以上の静的プロセス特性を決定することを備える第一シミュレーション段階と、
    決定された前記一つ以上の静的プロセス特性に少なくとも部分的に基づいて、前記濾過プロセスの一つ以上の動的プロセス特性を決定することを備える第二シミュレーション段階と、を備える、方法。
  2. 前記入力データが、各フィルタ候補のフィルタ識別子を備え、前記方法が、フィルタ識別子と対応フィルタ特性との間の関連性を記憶しているデータストアからデータを検索することによって、前記複数のフィルタ候補のフィルタ特性を特定することを備える、請求項1に記載の方法。
  3. 前記一つ以上の出力特性が、決定された前記一つ以上の動的プロセス特性から導出される、請求項1又は2に記載の方法。
  4. 前記一つのフィルタ候補を選択することが、決定された前記一つ以上の出力特性を所望の出力特性と比較することに基づいている、請求項1からのいずれか一項に記載の方法。
  5. 選択された前記一つのフィルタ候補の指標を提供することを備える請求項1からのいずれか一項に記載の方法。
  6. 選択された前記一つのフィルタ候補の一つ以上のフィルタ特性を用いて前記コンピュータシミュレーションプロセスの一回以上の反復を行い、反復毎に濾過プロセスのプロセスパラメータを変更し、反復毎の出力特性同士を比較することと、任意で反復毎の出力特性と所望の出力特性との比較を行い該比較に基づいて前記濾過プロセス用のパラメータを選択することと、を備える請求項1からのいずれか一項に記載の方法。
  7. 前記一つ以上のフィルタ特性が、幾何学的特性及び/又は多孔度特性を含み、前記プロセスパラメータが、前記濾過プロセスの供給液に関する一つ以上のパラメータを含み、該濾過プロセスの供給液に関する一つ以上のパラメータが、初期体積と初期濃度と温度と溶解度と粘度のうちの一つ以上を含む、請求項1からのいずれか一項に記載の方法。
  8. 前記一つ以上の出力特性が、生成物体積と生成物組成と生成物粘度のうちの一つ以上を含む、請求項1からのいずれか一項に記載の方法。
  9. 前記コンピュータシミュレーションプロセスが、フィルタ上に固化した溶質層のシミュレーションを含む、請求項1からのいずれか一項に記載の方法。
  10. シミュレーションされた濾過プロセスに対応する濾過プロセスを実行する濾過システムから測定データを受信することと、任意で前記測定データに基づいてシミュレーションを変更することと、を備える請求項1からのいずれか一項に記載の方法。
  11. 前記測定データを物理的な濾過プロセスからのデータと比較することに基づいて、実行された濾過プロセスに異常があるかどうかを決定することを備える請求項10に記載の方法。
JP2020534403A 2017-12-22 2018-12-17 濾過プロセスに関する方法、装置、システム及びコンピュータプログラムプロダクト Active JP7301443B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201741046239 2017-12-22
IN201741046239 2017-12-22
PCT/EP2018/085322 WO2019121573A1 (en) 2017-12-22 2018-12-17 Method, apparatus, system and computer program product relating to filtration process

Publications (2)

Publication Number Publication Date
JP2021507413A JP2021507413A (ja) 2021-02-22
JP7301443B2 true JP7301443B2 (ja) 2023-07-03

Family

ID=64901522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534403A Active JP7301443B2 (ja) 2017-12-22 2018-12-17 濾過プロセスに関する方法、装置、システム及びコンピュータプログラムプロダクト

Country Status (5)

Country Link
US (1) US11714935B2 (ja)
EP (1) EP3729301A1 (ja)
JP (1) JP7301443B2 (ja)
CN (1) CN111602132A (ja)
WO (1) WO2019121573A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063230B (zh) * 2019-12-13 2021-09-10 中国人民解放军空军工程大学 一种模拟训练仿真系统动作过滤器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072742A1 (de) 2003-02-14 2004-08-26 Basf Aktiengesellschaft Verfahren und vorrichtung zur simulation von stoff- und wärmeübergangskontrollierten trennprozessen
JP2005128788A (ja) 2003-10-23 2005-05-19 Hiromitsu Takahane 分離膜モジュールのシミュレーション方法、シミュレーション装置、プログラムおよび該プログラムを記録したコンピュータ読み取り可能な記憶媒体
CN204065048U (zh) 2014-04-17 2014-12-31 广州特种承压设备检测研究院 一种反渗透水处理阻垢剂质量评价试验装置
JP2015197783A (ja) 2014-04-01 2015-11-09 株式会社日立製作所 逆浸透膜設備設計支援装置及び設備設計支援方法
JP2016193421A (ja) 2015-02-18 2016-11-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 膜性能指標を考慮に入れた有機親和性ナノ濾過による、均一系触媒の反応混合物からの分離

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2783787A1 (en) * 2010-02-12 2011-08-18 Exxonmobil Upstream Research Company Method and system for creating history-matched simulation models
US9892225B2 (en) * 2016-04-01 2018-02-13 International Business Machines Corporation Method for optimizing the design of micro-fluidic devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072742A1 (de) 2003-02-14 2004-08-26 Basf Aktiengesellschaft Verfahren und vorrichtung zur simulation von stoff- und wärmeübergangskontrollierten trennprozessen
JP2005128788A (ja) 2003-10-23 2005-05-19 Hiromitsu Takahane 分離膜モジュールのシミュレーション方法、シミュレーション装置、プログラムおよび該プログラムを記録したコンピュータ読み取り可能な記憶媒体
JP2015197783A (ja) 2014-04-01 2015-11-09 株式会社日立製作所 逆浸透膜設備設計支援装置及び設備設計支援方法
CN204065048U (zh) 2014-04-17 2014-12-31 广州特种承压设备检测研究院 一种反渗透水处理阻垢剂质量评价试验装置
JP2016193421A (ja) 2015-02-18 2016-11-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 膜性能指標を考慮に入れた有機親和性ナノ濾過による、均一系触媒の反応混合物からの分離

Also Published As

Publication number Publication date
EP3729301A1 (en) 2020-10-28
CN111602132A (zh) 2020-08-28
WO2019121573A1 (en) 2019-06-27
US20210073439A1 (en) 2021-03-11
JP2021507413A (ja) 2021-02-22
US11714935B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6700255B2 (ja) フィルタエレメントに対する妥当性試験を実施する方法および装置
Jokić et al. The effect of turbulence promoter on cross-flow microfiltration of yeast suspensions: A response surface methodology approach
JP6681341B2 (ja) フィルタリング・システムの完全性のインライン制御方法
Giglia et al. Combined mechanism fouling model and method for optimization of series microfiltration performance
Alhadidi et al. Effect of testing conditions and filtration mechanisms on SDI
JP7301443B2 (ja) 濾過プロセスに関する方法、装置、システム及びコンピュータプログラムプロダクト
Lister et al. Pressure mode fluid dynamic gauging for studying cake build-up in cross-flow microfiltration
Thiess et al. Module design for ultrafiltration in biotechnology: Hydraulic analysis and statistical modeling
Uppu et al. Numerical modeling of particulate fouling and cake-enhanced concentration polarization in roto-dynamic reverse osmosis filtration systems
Rajniak et al. Sterilizing filtration—principles and practice for successful scale-up to manufacturing
Ghose et al. Simulation of unstirred batch ultrafiltration process based on a reversible pore-plugging model
Weihs et al. CFD analysis of tracer response technique under cake-enhanced osmotic pressure
Mattsson et al. In situ investigation of soft cake fouling layers using fluid dynamic gauging
Wu et al. Impact of measuring devices and data analysis on the determination of gas membrane properties
Jones et al. The application of fluid dynamic gauging in the investigation of synthetic membrane fouling phenomena
Alhadidi et al. SDI normalization and alternatives
Banik et al. Predicting the optimum operating parameters and hydrodynamic behavior of rectangular sheet membrane using response surface methodology coupled with computational fluid dynamics
Destro et al. Quality‐by‐control of intensified continuous filtration‐drying of active pharmaceutical ingredients
Nassehi et al. Numerical analyses of bubble point tests used for membrane characterisation: model development and experimental validation
Mondal et al. Theoretical investigation of cross flow ultrafiltration by mixed matrix membrane: A case study on fluoride removal
Wieser et al. The evolution of down‐scale virus filtration equipment for virus clearance studies
Ben Hassan et al. Coupling of local visualization and numerical approach for particle microfiltration optimization
KR101430800B1 (ko) 통합 모델을 이용한 막 오염 예측 및 진단 방법과 시스템
Rayat et al. A novel microscale crossflow device for the rapid evaluation of microfiltration processes
Lutz Rationally defined safety factors for filter sizing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230615

R150 Certificate of patent or registration of utility model

Ref document number: 7301443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150