JP7301358B2 - self-propelled robot - Google Patents

self-propelled robot Download PDF

Info

Publication number
JP7301358B2
JP7301358B2 JP2019154122A JP2019154122A JP7301358B2 JP 7301358 B2 JP7301358 B2 JP 7301358B2 JP 2019154122 A JP2019154122 A JP 2019154122A JP 2019154122 A JP2019154122 A JP 2019154122A JP 7301358 B2 JP7301358 B2 JP 7301358B2
Authority
JP
Japan
Prior art keywords
self
pipe
propelled robot
telescopic unit
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019154122A
Other languages
Japanese (ja)
Other versions
JP2021033092A (en
Inventor
太郎 中村
拓己 保井
雄貴 眞野
文臣 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo University
Original Assignee
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo University filed Critical Chuo University
Priority to JP2019154122A priority Critical patent/JP7301358B2/en
Publication of JP2021033092A publication Critical patent/JP2021033092A/en
Application granted granted Critical
Publication of JP7301358B2 publication Critical patent/JP7301358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自走式ロボットに関し、特に蠕動運動を摸して走行する自走式ロボットの移動速度を向上可能な自走式ロボットに関する。 TECHNICAL FIELD The present invention relates to a self-propelled robot, and more particularly to a self-propelled robot capable of improving the movement speed of the self-propelled robot that mimics peristaltic motion.

従来、下水道等の管内を検査するための管体内検査装置として収縮時に拡径し、伸長時に縮径する伸縮ユニットを複数連結し、ミミズの蠕動運動を模すように伸縮ユニットを順番に伸縮することで管内における推進力を発生させているものが知られている(特許文献1)。 Conventionally, as a pipe inspection device for inspecting the inside of pipes such as sewers, a plurality of telescopic units that expand when contracted and contract when expanded are connected, and the telescopic units are sequentially expanded and contracted so as to imitate the peristaltic motion of an earthworm. It is known that a propulsion force is generated in the pipe by using the above (Patent Document 1).

特開2014-228658号公報JP 2014-228658 A

しかしながら、下水道の管路の総延長は、46万kmを上る一方で、50年以上経過した老朽管の急増が見込まれており、検査効率を向上すべく、管内を検査する検査装置のより一層の移動速度の向上が求められている。しかし、管路には、例えば、直角等に方向を変える曲管やエルボ等の方向変換部が設けられているため、伸縮ユニットの通過の妨げとなっている。
本発明は、従来の問題点に鑑みてなされたもので、管路に方向変換部が設定されている場合でも、管内をスムースに進行可能な自走式ロボットを提供することを目的とする。
However, while the total length of sewage pipes is 460,000 km, it is expected that the number of aging pipes that are more than 50 years old will increase rapidly. It is required to improve the movement speed of However, since the pipeline is provided with a direction changing part such as a curved pipe or an elbow that changes the direction at right angles, the passage of the telescopic unit is hindered.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a self-propelled robot that can smoothly advance in a pipeline even when a direction changing part is set in the pipeline.

上記課題を解決するためのアクチュエータの構成として、外筒と、前記外筒の内側に設けられた内筒と、前記外筒及び前記内筒の軸方向各端部に設けられ、前記外筒の内周及び前記内筒の外周とともに閉空間を形成する端部部材と、を備え、前記閉空間に流体を供給することにより軸方向に収縮するとともに径方向に膨張し、前記閉空間から流体を排出することにより軸方向に伸長するとともに径方向に収縮する伸縮ユニットを連結手段を介して複数連結し、前記伸縮ユニットを蠕動運動を模すように管内において動作させて推進力を得る自走式ロボットであって、前記連結手段は、前記伸縮ユニットの軸線を中心とし、放射状に延長する繊維群を有する支持手段を備え、前記支持手段は、前記繊維群を構成する全ての繊維の先端が管の内壁に接触することにより、前記伸縮ユニットが管の中心側を進行するように支持することを特徴とする。
本構成によれば、伸縮ユニットや連結手段が管内壁に接触しないので、曲管部であってもスムースに進行することができ、その結果自走式ロボットの移動速度を向上させることができる。
また、自走式ロボットの構成として、連結手段を、一方の伸縮ユニットに取り付けられる取付体と、他方の伸縮ユニットに取り付けられる取付体と、各取付体が回動自在に取り付けられ、2つの取付体を結合させる結合体と、一方の取付体の内周空間から結合体の内周空間を経て他方の取付体の内周空間に達するコイルばねとを備えるユニバーサルジョイントとしたり、前記繊維群は、管の内壁を一周にわたり接するように設けられた構成としたり、また、支持手段を各結合体に取り付けるようにしても良い。
As a configuration of the actuator for solving the above problems, an outer cylinder, an inner cylinder provided inside the outer cylinder, and axial ends of the outer cylinder and the inner cylinder are provided at each end in the axial direction. and an end member forming a closed space together with the inner circumference and the outer circumference of the inner cylinder, and when a fluid is supplied to the closed space, the end member contracts in the axial direction and expands in the radial direction, thereby removing the fluid from the closed space. A self-propelled type that obtains a propulsive force by connecting a plurality of telescopic units that expand in the axial direction and contract in the radial direction when discharged, and operate the telescopic units in the pipe so as to simulate peristaltic motion. In the robot, the connecting means comprises a supporting means having a group of fibers extending radially around the axis of the telescopic unit, and the supporting means has a pipe structure in which the tips of all the fibers constituting the group of fibers are pipes. By contacting the inner wall of the tube, the telescopic unit is supported so as to advance along the center side of the tube .
According to this configuration, since the telescopic unit and the connecting means do not come into contact with the inner wall of the pipe, the robot can move smoothly even in a curved pipe portion, and as a result, the movement speed of the self-propelled robot can be improved.
Further, as a configuration of the self-propelled robot, the connection means is composed of a mounting body attached to one telescopic unit and a mounting body attached to the other telescopic unit, each mounting body being rotatably mounted, and two mounting bodies are provided. A universal joint comprising a connecting body for connecting bodies and a coil spring reaching from the inner peripheral space of one attachment body to the inner peripheral space of the other attachment body via the inner peripheral space of the joining body, or It may be arranged such that it is in contact with the inner wall of the tube all the way around, or the support means may be attached to each joint.

自走式ロボットの概略構成図である。1 is a schematic configuration diagram of a self-propelled robot; FIG. 伸縮ユニットの断面図である。FIG. 4 is a cross-sectional view of an expansion unit; 伸縮ユニットの弾性膨張体の断面図である。FIG. 4 is a cross-sectional view of an elastic expansion body of the expansion unit; 伸縮ユニットの動作を示す図である。It is a figure which shows operation|movement of an expansion-contraction unit. ジョイントを示す図である。Fig. 3 shows a joint; 支持手段の平面図である。FIG. 4 is a plan view of a support means; ジョイントの動作を示す図である。FIG. 10 is a diagram showing the motion of the joint; バルブユニットの概略構成図である。1 is a schematic configuration diagram of a valve unit; FIG. 支持手段の作用を示す図であるIt is a figure which shows the effect|action of a support means.

以下、発明の実施形態を通じて本発明を詳説するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明される特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らず、選択的に採用される構成を含むものである。 Hereinafter, the present invention will be described in detail through embodiments of the invention, but the following embodiments do not limit the invention according to the claims, and all combinations of features described in the embodiments are It includes configurations that are not necessarily essential to the solution and are selectively adopted.

以下、本発明の実施形態について、各図に基づき説明する。図1は、本実施形態に係る管Z内を移動する自走式ロボット1の概略構成図である。自走式ロボット1は、概略、管Z内を移動する移動体としての走行部10と、走行部10を動作させるコンプレッサー70と、コントローラー80とを備える。 Hereinafter, embodiments of the present invention will be described based on each drawing. FIG. 1 is a schematic configuration diagram of a self-propelled robot 1 that moves within a tube Z according to this embodiment. The self-propelled robot 1 generally includes a traveling unit 10 as a mobile object that moves within the tube Z, a compressor 70 that operates the traveling unit 10, and a controller 80.

走行部10は、複数の伸縮ユニット20と、伸縮ユニット20同士を接続するジョイント40と、バルブユニット60と、先頭部90と、を備える。以下の説明では、矢印X1に沿う方向を走行部10の進行方向とし、この進行方向に沿って前側、逆を後側としてその前後方向を特定する。 The traveling section 10 includes a plurality of telescopic units 20 , joints 40 connecting the telescopic units 20 to each other, a valve unit 60 , and a leading portion 90 . In the following description, the direction along the arrow X1 is defined as the traveling direction of the traveling portion 10, and the forward and backward directions are specified as the front side along the traveling direction and the rear side along the opposite direction.

図2は、伸縮ユニット20の一構成例を示す軸方向断面図である。伸縮ユニット20は、内筒21と、内筒21とともに二重管を形成するように内筒21の外周を囲むように配設される外筒22と、内筒21及び外筒22との端部に設けられる一対の端部部材23;23とを備える。 FIG. 2 is an axial sectional view showing one configuration example of the telescopic unit 20. As shown in FIG. The telescopic unit 20 includes an inner cylinder 21, an outer cylinder 22 disposed so as to surround the outer circumference of the inner cylinder 21 so as to form a double pipe together with the inner cylinder 21, and ends of the inner cylinder 21 and the outer cylinder 22. and a pair of end members 23;

内筒21は、軸方向に沿って伸縮可能な蛇腹構造を有する断面円形の筒体である。本実施形態の蛇腹構造は、螺旋状の蛇腹構造を有するものとして説明するが、これに限定されない。内筒21を構成する素材には、例えば、軸線の曲がりを許容し、内周側や外周側からの圧力により変形しにくい可撓性を有する素材で構成されることが好ましい。内筒21は、各端部が端部部材23に設けられた内筒固定部28に取り付けられる。 The inner cylinder 21 is a tubular body having a circular cross-section and having a bellows structure that can be expanded and contracted along the axial direction. Although the bellows structure of this embodiment is described as having a spiral bellows structure, it is not limited to this. The material forming the inner cylinder 21 is preferably made of, for example, a flexible material that allows bending of the axis and is resistant to deformation due to pressure from the inner peripheral side and the outer peripheral side. Each end of the inner cylinder 21 is attached to an inner cylinder fixing portion 28 provided on the end member 23 .

図3は、図2中のA1-A1矢視における外筒22の断面を誇張して示した図である。同図に示すように、外筒22は、弾性体より形成される円筒状の筒本体22Aと、当該筒本体22Aの内部において密に内挿された複数の繊維22Bとから構成される。筒本体22Aの材質としては、シリコーンゴム等の合成ゴム、或いは天然ラテックスゴム等の天然ゴム等の気密性及び伸縮性を有する弾性素材が好適である。 FIG. 3 is an exaggerated view of the cross section of the outer cylinder 22 taken along line A1-A1 in FIG. As shown in the figure, the outer cylinder 22 is composed of a cylindrical cylinder main body 22A made of an elastic material and a plurality of fibers 22B tightly inserted inside the cylinder main body 22A. As the material of the cylinder main body 22A, an elastic material having airtightness and elasticity such as synthetic rubber such as silicone rubber or natural rubber such as natural latex rubber is suitable.

繊維22Bは、一端側から他端側まで連続するように、軸線に沿って延長するように外筒22の壁厚内に配置され、本実施例では層状に複数積層して密に内挿される。なお、繊維22Bは、積層せずに単層であっても良い。繊維22Bは、筒本体22Aの軸方向に沿って延在するものとして示すが、軸方向に対して交差するように設けても良い。この外筒22は、各端部が端部部材23に設けられる外筒固定部29に取り付けられる。 The fibers 22B are arranged within the wall thickness of the outer cylinder 22 so as to extend along the axis so as to be continuous from one end side to the other end side. . In addition, the fiber 22B may be a single layer without being laminated. The fibers 22B are shown as extending along the axial direction of the tubular body 22A, but they may be provided so as to intersect the axial direction. The outer cylinder 22 is attached to an outer cylinder fixing portion 29 provided on the end member 23 at each end.

繊維22Bの素材としては、等、軸方向への伸縮変化の小さい素材が好適である。例えば、繊維22Bの素材には、例えば、アラミド繊維、炭素(カーボン)繊維、ガラス繊維、ナイロン、ポリアミド系繊維やポリオレフィン系繊維、金属繊維等の被伸長性を有するものを適宜選択して用いることができる。繊維に適当なプライマー処理、又は、表面酸化処理を行うことで、接着性を十分に向上させることができるが、好ましくは、ゴムとの接着性に応じて選択すると良い。
また、繊維22Bの形態は、フィラメント、ヤーン(スパン・ヤーン及びフィラメント・ヤーン)、ストランド等のいずれの形態でも用いることができ、さらに、撚りをかけずに収束させた無撚繊維、これらの繊維を複数本撚って作成した繊維を用いることも可能である。繊維の種類にもよるが、二種類以上の素材の異なる繊維や形態の異なる繊維を組み合わせても良い。
なお、上述の一端側から他端側まで連続するようにとは、一本の繊維22Bが外筒22の一端側から他端側に到達する状態や、外筒22の軸方向長さよりも短い複数の繊維が、軸方向に連続的に分布することで一端側から他端側まで到達する状態を意図する。
As the material of the fiber 22B, a material with a small change in expansion and contraction in the axial direction is suitable. For example, as the material of the fiber 22B, for example, aramid fiber, carbon fiber, glass fiber, nylon, polyamide fiber, polyolefin fiber, metal fiber, etc., which have stretchability can be appropriately selected and used. can be done. Adhesiveness can be sufficiently improved by applying an appropriate primer treatment or surface oxidation treatment to the fiber, but the selection should preferably be made according to the adhesiveness to rubber.
In addition, the form of the fiber 22B can be used in any form such as filament, yarn (spun yarn and filament yarn), strand, etc. Further, untwisted fibers converged without twisting, these fibers It is also possible to use a fiber prepared by twisting a plurality of . Depending on the type of fiber, two or more types of fibers made of different materials or fibers of different shapes may be combined.
In addition, to be continuous from one end side to the other end side described above means that one fiber 22B reaches from one end side to the other end side of the outer cylinder 22, or is shorter than the axial length of the outer cylinder 22. A plurality of fibers are intended to reach from one end side to the other end side by being distributed continuously in the axial direction.

また、筒本体22Aを形成する素材は、後述する空気室Sへの圧縮空気の給排によってその形状が変化し得る材質であれば如何なる材質であっても良い。また、筒本体22Aの厚さや繊維22Bの配置については、外筒22の空気排出時の伸長する力等を考慮して決められる。 Moreover, any material may be used as the material for forming the cylinder main body 22A as long as the material can change its shape by supplying and discharging compressed air to and from the air chamber S, which will be described later. Further, the thickness of the cylinder main body 22A and the arrangement of the fibers 22B are determined in consideration of the elongating force of the outer cylinder 22 when the air is discharged.

端部部材23は、例えば樹脂や硬質のゴム、金属等により円筒状に形成された円筒体であって、内筒21を固定する内筒固定部28と、外筒22を固定する外筒固定部29とを備える。
内筒固定部28は、内筒21の外周を嵌着可能に端部部材23の内周面の一端側に設けられる。本実施形態では、内筒21が螺旋状の蛇腹構造を有するものとしたことから内筒固定部28は、例えば、当該内筒21の螺旋形状を利用し、内筒21の外周をねじ込み可能な螺旋溝として形成される。以下、端部部材23において軸方向に内筒固定部28が設けられた側を内側といい、その逆側を外側という。
The end member 23 is a cylindrical body made of, for example, resin, hard rubber, metal, or the like. a portion 29;
The inner cylinder fixing portion 28 is provided on one end side of the inner peripheral surface of the end member 23 so that the outer periphery of the inner cylinder 21 can be fitted. In this embodiment, since the inner cylinder 21 has a helical bellows structure, the inner cylinder fixing portion 28 can be screwed into the outer circumference of the inner cylinder 21, for example, using the helical shape of the inner cylinder 21. Formed as a spiral groove. Hereinafter, the side of the end member 23 on which the inner cylinder fixing portion 28 is provided in the axial direction will be referred to as the inner side, and the opposite side will be referred to as the outer side.

例えば、内筒固定部28を形成する螺旋溝は、内筒21との気密性を考慮し、少なくとも内筒21の外周側において螺旋を描く山部の1ピッチ以上となるように形成すると良い。また、内筒固定部28は、例えば、内筒21の外周面としまりばめとなるように形成することにより、内筒21との気密性をより確実なものとすることができる。 For example, the helical groove forming the inner cylinder fixing portion 28 is preferably formed so that at least the outer peripheral side of the inner cylinder 21 has one pitch or more of the helical peaks in consideration of the airtightness with the inner cylinder 21 . Further, by forming the inner cylinder fixing portion 28 so as to form an interference fit with the outer peripheral surface of the inner cylinder 21, for example, airtightness with the inner cylinder 21 can be made more reliable.

外筒固定部29は、端部部材23の外周面に形成される。外筒固定部29は、内筒固定部28に固定された内筒21の端面よりも所定距離軸方向外側に位置し、端部部材23の外周を軸方向外側に行くにしたがって外径が漸次小径となるように、例えば球面状やテーパー状等に形成される。外筒22は、端部が外筒固定部29を軸方向外側に過ぎるように外筒22を配置した状態において、端部部材23の軸方向外側からリング状のカシメ部材30を外筒22の外周面側に被せ、さらにカシメ部材30の外側から半円状に形成された一対の固定部材32で端部部材23の外周面に挟み込むように固定することで端部部材23に固定される。 The outer cylinder fixing portion 29 is formed on the outer peripheral surface of the end member 23 . The outer cylinder fixing portion 29 is positioned axially outward by a predetermined distance from the end surface of the inner cylinder 21 fixed to the inner cylinder fixing portion 28, and the outer diameter gradually increases along the outer circumference of the end member 23 in the axial direction. It is formed, for example, in a spherical shape or a tapered shape so as to have a small diameter. A ring-shaped caulking member 30 is attached to the outer cylinder 22 from the axially outer side of the end member 23 in a state in which the outer cylinder 22 is disposed so that the end portion passes the outer cylinder fixing portion 29 on the outer side in the axial direction. It is fixed to the end member 23 by putting it on the outer peripheral surface side and fixing it so as to sandwich the outer peripheral surface of the end member 23 with a pair of fixing members 32 formed in a semicircular shape from the outside of the crimping member 30 .

このように内筒21及び外筒22の端部を端部部材23;23に固定することにより、伸縮ユニット20には、内筒21の外周面と端部部材23の外周面、及び外筒22の内周面によって囲まれた閉空間としての空気室Sが形成される。 By fixing the ends of the inner cylinder 21 and the outer cylinder 22 to the end members 23; An air chamber S as a closed space surrounded by the inner peripheral surface of 22 is formed.

さらに、端部部材23には、ジョイント40を固定するためのジョイント固定部34と、空気室Sへの空気を給排を可能にする給排孔36が設けられる。
ジョイント固定部34は、例えば、端部部材23に外筒22を固定した状態において前述の固定部材32よりも軸方向外側に露出して設けられる。ジョイント固定部34は、例えば、端部部材23の肉厚方向(半径方向)に貫通するねじ孔として形成される。
Further, the end member 23 is provided with a joint fixing portion 34 for fixing the joint 40 and a supply/discharge hole 36 for enabling supply/discharge of air to/from the air chamber S.
The joint fixing portion 34 is provided, for example, so as to be exposed axially outward from the above-described fixing member 32 in a state where the outer cylinder 22 is fixed to the end member 23 . The joint fixing portion 34 is formed, for example, as a screw hole penetrating through the end member 23 in the thickness direction (radial direction).

給排孔36は、内周側から内筒固定部28と外筒固定部29との間に形成された空気室Sに空気を給排可能に形成される。例えば、給排孔36は、端部部材23の内周面から端部部材23の内側の端面に貫通する貫通孔として形成される。この給排孔36には、後述のバルブユニット60から延長するチューブが接続される。 The supply/discharge hole 36 is formed so as to be able to supply/discharge air from the inner peripheral side to/from the air chamber S formed between the inner cylinder fixing portion 28 and the outer cylinder fixing portion 29 . For example, the supply/discharge hole 36 is formed as a through hole penetrating from the inner peripheral surface of the end member 23 to the inner end surface of the end member 23 . A tube extending from a valve unit 60 described later is connected to the supply/discharge hole 36 .

図4は、伸縮ユニット20の動作を示す図である。伸縮ユニット20は、空気室Sに空気を供給することにより、軸方向に長さがx1からx2へと収縮するとともに径方向に外径がd1からd2へと拡径する。また、空気室Sから空気を排出することにより軸方向の長さがx2からx1へと伸長するとともに径方向に外径がd2からd1へと収縮する。以下、管Zの内壁に接するように空気室Sに空気が供給された状態を膨張状態、空気室Sから空気が排出された状態を収縮状態という。伸縮ユニット20は、空気を供給し、膨張させることにより、外筒22の外周面と管Zの内壁とに摩擦を生じさせるアクチュエータとして機能する。 4A and 4B are diagrams showing the operation of the telescopic unit 20. FIG. By supplying air to the air chamber S, the telescopic unit 20 axially contracts in length from x1 to x2 and radially expands in outer diameter from d1 to d2. Further, when the air is discharged from the air chamber S, the length in the axial direction is extended from x2 to x1 and the outer diameter is contracted in the radial direction from d2 to d1. Hereinafter, the state in which air is supplied to the air chamber S so as to be in contact with the inner wall of the tube Z is referred to as an expanded state, and the state in which air is discharged from the air chamber S is referred to as a contracted state. The telescopic unit 20 functions as an actuator that generates friction between the outer peripheral surface of the outer cylinder 22 and the inner wall of the tube Z by supplying and expanding air.

図5は、ジョイント40の外観図である。
ジョイント40は、伸縮ユニット20に取り付けられる一対の取付体41と、取付体41同士を結合する結合体42と、コイルばね44とを備える。
取付体41は、例えば、端部部材23の外周に嵌着可能な大きさに形成された円筒状の基部41Aと、基部41Aの一側側において直径方向に互いに対向し、基部41Aの軸方向に沿って延長するように同一の長さで突設された一対の突片41B;41Bを備える。
FIG. 5 is an external view of the joint 40. FIG.
The joint 40 includes a pair of attachment bodies 41 attached to the extensible unit 20 , a connecting body 42 that couples the attachment bodies 41 together, and a coil spring 44 .
The mounting body 41, for example, is diametrically opposed to a cylindrical base portion 41A formed in a size that can be fitted to the outer periphery of the end member 23, on one side of the base portion 41A, and axially of the base portion 41A. A pair of projecting pieces 41B; 41B projecting with the same length so as to extend along the

結合体42は、取付体41の突片41B;41Bの内周面側を摺動可能な外径を有する環状部材として形成される。ジョイント40は、一方の取付体41の突片41B;41Bと、他方の取付体41の突片41B;41Bとを対向させ、互いに90°捻じれた状態で結合体42に取り付けられる。各取付体41は、例えば、各突片41Bの肉厚方向及び結合体42の肉厚方向に軸部材43を介して連結することで、各取付体41が結合体42に対してそれぞれ軸部材43を軸として回転可能に取り付けられる。即ち、ジョイント40は、中空のユニバーサルジョイントとして機能する。 The connecting body 42 is formed as an annular member having an outer diameter that allows sliding on the inner peripheral surface side of the projecting piece 41B of the mounting body 41 . The joint 40 is attached to the combined body 42 in a state in which the projecting pieces 41B; 41B of one mounting body 41 and the projecting pieces 41B; For example, each mounting body 41 is connected via a shaft member 43 in the thickness direction of each projecting piece 41B and the thickness direction of the connecting body 42, so that each mounting body 41 is connected to the connecting body 42 by the shaft member. It is rotatably attached with 43 as an axis. That is, joint 40 functions as a hollow universal joint.

図5(a),(b)に示すように、コイルばね44は、一方の取付体41の内周空間から結合体42の内周空間を経て他方の取付体41の内周空間に達するように設けられる。コイルばね44は、例えば、外径が結合体42の内径よりもやや小さく、一方の取付体41や他方の取付体41から脱落不能となるように取付体41;41に取り付けられる。 As shown in FIGS. 5A and 5B, the coil spring 44 extends from the inner peripheral space of one attachment body 41 to the inner peripheral space of the other attachment body 41 via the inner peripheral space of the coupling body 42. provided in The coil spring 44 has, for example, an outer diameter slightly smaller than the inner diameter of the coupling body 42, and is attached to the attachment bodies 41;

上述のように、取付体41及び結合体42を環状にすることにより、伸縮ユニット20を連結したときに、伸縮ユニット20の内筒21の内側の空間を一続きに維持できるので、後述の伸縮ユニット20を動作させるためのチューブの挿通を妨げることがない。 As described above, by forming the attachment body 41 and the connecting body 42 in a ring shape, the space inside the inner cylinder 21 of the telescopic unit 20 can be maintained continuously when the telescopic unit 20 is connected. The insertion of the tube for operating the unit 20 is not hindered.

また、ジョイント40には、取付体41を端部部材23に対して所定の位置に配置したときに、ジョイント固定部34に螺入され、貫通したねじの先端が侵入する固定部46が設けられる。固定部46は、例えば、基部41Aの外周面から円筒状に窪む有底の凹部として設けられ、ジョイント40の固定部46を貫通するねじが進入し、底付きすることで端部部材23に可能に形成される。 Further, the joint 40 is provided with a fixing portion 46 into which the tip of a screw that passes through the joint fixing portion 34 is screwed when the mounting body 41 is arranged at a predetermined position with respect to the end member 23 . . The fixing portion 46 is provided, for example, as a recess with a bottom that is cylindrically recessed from the outer peripheral surface of the base portion 41A. formed possible.

ジョイント40の各基部41A;41Aには、伸縮ユニット20を支持し、伸縮ユニット20の管Zの内壁への接触を防止する支持手段50が設けられる。
図6は、支持手段50の一例を示す図である。支持手段50は、取付体41の基部41Aの外周に装着可能に形成された台座51と、台座51の外周面側に触接される繊維群53とを備える。
Each base 41A; 41A of the joint 40 is provided with a support means 50 that supports the telescopic unit 20 and prevents the telescopic unit 20 from coming into contact with the inner wall of the tube Z. As shown in FIG.
FIG. 6 is a diagram showing an example of the support means 50. As shown in FIG. The support means 50 includes a pedestal 51 formed so as to be attachable to the outer periphery of the base portion 41A of the mounting body 41, and a fiber group 53 that contacts the outer peripheral surface side of the pedestal 51. As shown in FIG.

図6に示すように、台座51は、例えば、内周面が基部41Aの外周形状に沿って嵌着可能な半円状に形成される。台座51の内周面には、該台座51を基部41Aに取り付けたときに、突片41B;41Bの間に挿入され、基部41Aに対する位置決めをする一対の位置決め片52が設けられている。
繊維群53は、支持手段50を平面視したときに、半円状に形成された台座51の内周面の中心を中心とする放射状に延長するように複数の繊維53zが台座51の外周面に、例えば、ブラシを形成するように植設される。繊維群53を形成する繊維の素材には、例えば、ナイロン繊維などのように腰のある弾性を有するものが好ましい。より好ましくは、例えば、図1に示すように、伸縮ユニット20の両端に連結されたジョイント40により、伸縮ユニット20が図4(a)に示す収縮状態において、管Zの内壁に接触しない(非接触とする)ような剛性が得られるように、太さや素材を選ぶと良い。さらに好ましくは、繊維群53は、曲管部を進行するときに、伸縮ユニット20やジョイント40が管Zの内壁に接触しないように、支持可能に太さや素材、繊維53zの数量を選択すると良い。また、繊維群53を形成する繊維53zが台座51から延長する方向は、前述の平面視において放射状に限定されず、走行部10が曲管部を進行するときに、伸縮ユニット20やジョイント40が管Zの内壁に接触しないように適宜変更すればよい。
支持手段50は、基部41Aの外周において一周にわたり繊維群53が放射状に延長するように基部41Aに対で取り付けられる。繊維群53を形成する繊維53zの長さは、管Zの内壁に対してほぼ全周にわたり、ミミズの進行をその摩擦により妨げない程度に軽く接触していてもよく、全周が接触しなくとも、管Zのほぼ中心をジョイント40により連結された伸縮ユニット20が進行できる程度の支持する大きさがあればよい。また、円周上、分割されていても良い。
なお、繊維群53は、台座51に対して着脱(交換)可能に構成するようにしても良い。繊維群53を台座51に対して着脱可能に構成することにより、例えば、繊維53zが摩耗したときに、ジョイント40に台座51を取り付けたまま交換できる。また、例えば、管Zの直径が異なる場合等において、繊維53zの長さが異なる繊維群53に簡単に交換することで前述のように機能させることができる。
As shown in FIG. 6, the pedestal 51 has, for example, a semicircular inner peripheral surface that can be fitted along the outer peripheral shape of the base portion 41A. A pair of positioning pieces 52 are provided on the inner peripheral surface of the pedestal 51 to be inserted between the protruding pieces 41B when the pedestal 51 is attached to the base portion 41A and to position the base portion 41A with respect to the base portion 41A.
The fiber group 53 includes a plurality of fibers 53z extending radially around the center of the inner peripheral surface of the semicircular base 51 when the support means 50 is viewed from above. is implanted, for example, to form a brush. The material of the fibers forming the fiber group 53 is preferably a material having elasticity, such as nylon fiber. More preferably, for example, as shown in FIG. 1, joints 40 connected to both ends of the telescopic unit 20 prevent the telescopic unit 20 from contacting the inner wall of the tube Z in the contracted state shown in FIG. It is good to choose thickness and material so that rigidity such as contact) can be obtained. More preferably, the fiber group 53 should have a thickness, a material, and a quantity of fibers 53z selected so that the elastic unit 20 and the joint 40 do not come into contact with the inner wall of the pipe Z when traveling through the curved pipe section. . Further, the direction in which the fibers 53z forming the fiber group 53 extend from the pedestal 51 is not limited to a radial direction in the above-described planar view, and when the traveling portion 10 advances through the curved pipe portion, the expansion unit 20 and the joint 40 It may be changed appropriately so as not to contact the inner wall of the tube Z.
The supporting means 50 are attached in pairs to the base portion 41A so that the fiber group 53 extends radially around the circumference of the base portion 41A. The length of the fibers 53z that form the fiber group 53 may be in light contact with the inner wall of the tube Z over almost the entire circumference to such an extent that the movement of the earthworm is not hindered by its friction, and the entire circumference does not contact. In both cases, it is sufficient that the tube Z is large enough to support the telescopic unit 20 connected to the center of the tube Z by the joint 40 so as to advance. Moreover, it may be divided on the circumference.
Note that the fiber group 53 may be configured to be detachable (exchangeable) with respect to the base 51 . By configuring the fiber group 53 to be detachable from the pedestal 51, for example, when the fiber 53z is worn, it can be replaced while the pedestal 51 is attached to the joint 40. FIG. In addition, for example, when the diameter of the tube Z is different, the functions described above can be achieved by simply replacing the fiber group 53 with a fiber group 53 having a different length of the fiber 53z.

図7は、ジョイントの動作を示す図である。支持手段50が取り付けられたジョイント40により連結された伸縮ユニット20:20は、図7(a)に示す直線状態や、図7(b)に示すように、伸縮ユニット20同士の軸線が交差するように屈曲することが可能となる。
なお、支持手段50は、図7(b)に示すように、ジョイント40の折れ曲がりによって支持手段50の台座51同士が衝突し、連結された伸縮ユニット20の曲がりに規制を与えるが、台座51の幅を適宜変更することにより曲がりの角度を制御することができる。また、台座51同士の接触を制御することにより、伸縮ユニット20同士の不要な曲がりを抑制することにより、曲管部における円滑な進行とともに推進速度を向上させることができる。
FIG. 7 is a diagram showing the operation of the joint. The telescopic units 20:20 connected by the joint 40 to which the support means 50 is attached are in a straight state as shown in FIG. It is possible to bend like this.
In addition, as shown in FIG. 7B, the pedestals 51 of the support means 50 collide with each other due to bending of the joint 40, and the bending of the connected extensible unit 20 is restricted. The bending angle can be controlled by appropriately changing the width. In addition, by controlling the contact between the pedestals 51, unnecessary bending of the extensible units 20 can be suppressed, so that the propulsion speed can be improved along with the smooth progress in the curved pipe portion.

図8は、バルブユニット60の概略構成図である。
バルブユニット60は、最後尾の伸縮ユニット20の後方に、例えば、前述のジョイント40を介して接続される。
バルブユニット60は、各伸縮ユニット20の空気室Sに、コンプレッサー70から圧縮空気を供給、或いは、空気室Sに供給された圧縮空気を排出するための電磁弁62を備える。電磁弁62は、一つの伸縮ユニット20について2つ設けられ、本実施形態では、7つの伸縮ユニット20に対応して14個の電磁弁62が一つの収容体に一体的に収容される。
各電磁弁62は、コントローラー80から出力される信号に基づいて、伸縮ユニット20への圧縮空気の供給、伸縮ユニット20からの圧縮空気の排出、圧縮空気の供給による伸縮ユニット20の膨張状態の維持、圧縮空気の排出による伸縮ユニット20の収縮状態の維持などが制御される。電磁弁62には、例えば、3方弁が適用できる。
FIG. 8 is a schematic configuration diagram of the valve unit 60. As shown in FIG.
The valve unit 60 is connected to the rear of the telescopic unit 20 at the tail end via the aforementioned joint 40, for example.
The valve unit 60 includes an electromagnetic valve 62 for supplying compressed air from the compressor 70 to the air chamber S of each telescopic unit 20 or discharging the compressed air supplied to the air chamber S. Two electromagnetic valves 62 are provided for one telescopic unit 20, and in this embodiment, 14 electromagnetic valves 62 corresponding to seven telescopic units 20 are housed integrally in one housing.
Each solenoid valve 62 supplies compressed air to the telescopic unit 20, discharges the compressed air from the telescopic unit 20, and maintains the expanded state of the telescopic unit 20 by supplying the compressed air based on the signal output from the controller 80. , maintenance of the retracted state of the telescopic unit 20 by discharging compressed air, and the like are controlled. A three-way valve, for example, can be applied to the solenoid valve 62 .

コンプレッサー70は、伸縮ユニット20を駆動するための駆動源であって、前述のバルブユニット60の電磁弁62に所定の圧力に加圧された圧縮空気を供給する。例えば、前述のバルブユニット60において分配管を介して各電磁弁62を連通させておくことにより、コンプレッサー70から一本の配管を延長し、バルブユニット60に接続すれば良い。 The compressor 70 is a drive source for driving the telescopic unit 20, and supplies compressed air pressurized to a predetermined pressure to the electromagnetic valve 62 of the valve unit 60 described above. For example, by connecting the solenoid valves 62 through distribution pipes in the valve unit 60 described above, one pipe may be extended from the compressor 70 and connected to the valve unit 60 .

コントローラー80は、ワンチップ等の所謂コンピューターであって、複数の電磁弁62に対して個別に信号を出力可能に接続される。コントローラは、ジョイント40を介して連結された伸縮ユニット20が蠕動運動を模すように、所定の順序で膨張、収縮、膨張状態の維持、収縮状態の維持がなされるように、複数の電磁弁62に個別に信号を出力する。 The controller 80 is a so-called computer such as a one-chip, and is connected to the plurality of electromagnetic valves 62 so as to be able to output signals individually. The controller controls a plurality of electromagnetic valves so that the telescopic unit 20 connected via the joint 40 is expanded, contracted, maintained in the expanded state, and maintained in the contracted state in a predetermined order so as to imitate peristaltic motion. 62 separately.

先頭部90は、進行方向先頭の先頭の伸縮ユニット20Aに取り付けられ、例えば、内部にカメラ等の撮影手段や、撮影した内容を記録する記録手段、撮影した画像を管Z外に無線により出力する通信手段等が収容される。 The head part 90 is attached to the telescopic unit 20A at the head of the traveling direction. Communication means and the like are accommodated.

上記構成の走行部10によれば、管Z内に図1に示す曲管部Zmがある場合でもスムースに移動することができる。図9は、支持手段50の作用を示す図である。図9(a)に示す曲管部Zmは、所謂エルボーと称されるもっとも曲率半径の小さい場合を示している。このような曲管部Zmでは、図9(b)に示すように直角に曲がる管内壁Zaが形成される。例えば、前述の走行部10に支持手段50がない場合には、走行部10が曲管部Zmを通過するときに、直角の管内壁Zaにこすれるように進行することになり、推進力に大きな抵抗を生じさせてしまう。
一方、本実施形態で説明したように、走行部10のジョイント40に支持手段50を取り付けることにより、繊維群53が直角の管内壁Zaにこすれながら移動するため、伸縮ユニット20やジョイント40を管内壁Zaから遠ざけ、摩擦を小さくすることができる。これにより、走行部10は、曲管部Zmにおける推進力の低下が抑制され、スムースに通過することができる。
According to the traveling portion 10 having the above configuration, even when the tube Z has the bent tube portion Zm shown in FIG. 1, it can move smoothly. 9A and 9B are diagrams showing the operation of the support means 50. FIG. The curved tube portion Zm shown in FIG. 9(a) shows a case with the smallest radius of curvature, which is called a so-called elbow. In such a bent pipe portion Zm, a pipe inner wall Za is formed which is bent at a right angle as shown in FIG. 9(b). For example, if the running portion 10 does not have the support means 50, when the running portion 10 passes through the curved pipe portion Zm, it will advance so as to rub against the right-angled inner wall Za of the pipe, resulting in a large propulsive force. cause resistance.
On the other hand, as described in the present embodiment, by attaching the support means 50 to the joint 40 of the running portion 10, the fiber group 53 moves while rubbing against the right-angled pipe inner wall Za. It can be kept away from the wall Za to reduce friction. As a result, the traveling portion 10 can smoothly pass through the curved pipe portion Zm with the propulsive force being suppressed from being lowered.

また、図1における直管部Zsにおいても、支持手段50の繊維群53が、図9(c)に示すように伸縮ユニット20やジョイント40が管内壁Zaから離れるように支持するため、走行部10が直管部Zsを進行するときの摩擦を低下することができる。例えば、前述の支持手段50をジョイント40に取り付けない場合、図4(a)に示すように、収縮(軸方向に伸長)した状態から、図4(b)に示すように、伸縮ユニット20を膨張(軸方向に収縮)させると、伸縮ユニット20の軸線は、外筒22が管内壁Zaに接触した状態にある位置から管内壁Zaの中心線とほぼ一致する位置へと移動する。
一方、本実施形態に示すように、支持手段50をジョイント40に取り付けた場合、伸縮ユニット20やジョイント40が管内壁Zaから離れるように支持されるため、収縮(軸方向に伸長)した状態から膨張(軸方向に収縮)に至る伸縮ユニット20の軸線の変化を小さくすることができる。これにより、伸縮ユニット20の蠕動運動動作において、ジョイント40の折れ曲がる角度が小さくなり、効率良く推進力を得ることができる。
Also in the straight pipe portion Zs in FIG. 1, the fiber group 53 of the support means 50 supports the expansion unit 20 and the joint 40 so as to separate from the pipe inner wall Za as shown in FIG. 9(c). Friction can be reduced when 10 travels through the straight pipe portion Zs. For example, when the support means 50 described above is not attached to the joint 40, as shown in FIG. When expanded (axially contracted), the axis of the telescopic unit 20 moves from the position where the outer cylinder 22 is in contact with the pipe inner wall Za to a position substantially aligned with the center line of the pipe inner wall Za.
On the other hand, as shown in this embodiment, when the support means 50 is attached to the joint 40, the telescopic unit 20 and the joint 40 are supported so as to separate from the pipe inner wall Za. A change in the axis of the telescopic unit 20 leading to expansion (contraction in the axial direction) can be reduced. As a result, in the peristaltic movement of the telescopic unit 20, the bending angle of the joint 40 becomes small, and the propulsive force can be obtained efficiently.

なお、上記実施形態では、支持手段50を台座51及び繊維群53により構成するものとして説明したが、これに限定されず、例えば、スポンジ等のように、前述のように、伸縮ユニット20やジョイント40の管内壁Zaとの直接的な接触を回避できる柔軟性及び復元性を有するものであれば適宜変更しても良い。 In the above-described embodiment, the support means 50 is described as being composed of the pedestal 51 and the fiber group 53, but is not limited to this. As long as it has flexibility and resilience to avoid direct contact with the pipe inner wall Za of 40, it may be changed as appropriate.

1 自走式ロボット、10 走行部、20 伸縮ユニット、21 内筒、22 外筒、
23 端部部材、30 カシメ部材、32 固定部材、
34 ジョイント固定部、36 給排孔、40 ジョイント、41 取付体、
42 結合体、
43 軸部材、50 支持手段、51 台座、53 繊維群、60 バルブユニット、
70 コンプレッサー、80 コントローラー。
1 self-propelled robot, 10 travel unit, 20 telescopic unit, 21 inner cylinder, 22 outer cylinder,
23 end member, 30 caulking member, 32 fixing member,
34 joint fixing part, 36 supply and discharge hole, 40 joint, 41 mounting body,
42 conjugates,
43 shaft member, 50 support means, 51 pedestal, 53 fiber group, 60 valve unit,
70 compressor, 80 controller.

Claims (4)

外筒と、前記外筒の内側に設けられた内筒と、前記外筒及び前記内筒の軸方向各端部に設けられ、前記外筒の内周及び前記内筒の外周とともに閉空間を形成する端部部材と、を備え、
前記閉空間に流体を供給することにより軸方向に収縮するとともに径方向に膨張し、前記閉空間から流体を排出することにより軸方向に伸長するとともに径方向に収縮する伸縮ユニットを連結手段を介して複数連結し、前記伸縮ユニット蠕動運動を模すように管内において動作させて推進力を得る自走式ロボットであって、
前記連結手段は、
前記伸縮ユニットの軸線を中心とし、放射状に延長する繊維群を有する支持手段を備え
前記支持手段は、
前記繊維群を構成する全ての繊維の先端が管の内壁に接触することにより、前記伸縮ユニットが管の中心側を進行するように支持することを特徴とする自走式ロボット。
an outer cylinder, an inner cylinder provided inside the outer cylinder, and an inner cylinder provided at each end in the axial direction of the outer cylinder and the inner cylinder, forming a closed space together with the inner circumference of the outer cylinder and the outer circumference of the inner cylinder. an end member forming
A telescopic unit that contracts in the axial direction and expands in the radial direction when a fluid is supplied to the closed space, and expands in the axial direction and contracts in the radial direction when the fluid is discharged from the closed space. A self-propelled robot that obtains a propulsion force by connecting a plurality of telescopic units through a pipe and operating in a pipe so as to imitate peristaltic movement,
The connecting means is
A support means having a group of fibers extending radially around the axis of the telescopic unit ,
The support means are
A self-propelled robot characterized in that the extensible unit is supported so as to advance along the center side of the pipe by contacting the tips of all the fibers constituting the fiber group with the inner wall of the pipe.
前記連結手段は、
一方の伸縮ユニットに取り付けられる取付体と、
他方の伸縮ユニットに取り付けられる取付体と、
前記各取付体が回動自在に取り付けられ、2つの取付体を結合させる結合体と、
一方の取付体の内周空間から結合体の内周空間を経て他方の取付体の内周空間に達するコイルばねと、
を備えるユニバーサルジョイントからなることを特徴とする請求項1に記載の自走式ロボット。
The connecting means is
a mounting body attached to one telescopic unit;
a mounting body attached to the other telescopic unit;
a coupling body to which each of the attachment bodies is rotatably attached and which couples the two attachment bodies;
a coil spring that reaches from the inner peripheral space of one mounting body to the inner peripheral space of the other mounting body via the inner peripheral space of the coupling body;
2. The self-propelled robot according to claim 1, comprising a universal joint having a
前記繊維群は、管の内壁を一周にわたり接するように設けられたことを特徴とする請求項1又は請求項2に記載の自走式ロボット。 3. The self-propelled robot according to claim 1, wherein said fiber group is provided so as to be in contact with the inner wall of a pipe over a circumference. 前記支持手段は、各結合体に取り付けられることを特徴とする請求項2又は請求項3に記載の自走式ロボット。 4. The self-propelled robot according to claim 2 , wherein said support means is attached to each joint.
JP2019154122A 2019-08-26 2019-08-26 self-propelled robot Active JP7301358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019154122A JP7301358B2 (en) 2019-08-26 2019-08-26 self-propelled robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154122A JP7301358B2 (en) 2019-08-26 2019-08-26 self-propelled robot

Publications (2)

Publication Number Publication Date
JP2021033092A JP2021033092A (en) 2021-03-01
JP7301358B2 true JP7301358B2 (en) 2023-07-03

Family

ID=74678339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154122A Active JP7301358B2 (en) 2019-08-26 2019-08-26 self-propelled robot

Country Status (1)

Country Link
JP (1) JP7301358B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116481741B (en) * 2023-06-21 2023-09-26 深圳市勘察研究院有限公司 Intelligent automatic inspection robot for pipeline

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708001A1 (en) 1997-02-07 1998-08-13 Fitr Ges Fuer Innovation Im Ti Movable device for inspecting or cleaning pipes, conduits and channels
JP2006227125A (en) 2005-02-15 2006-08-31 Olympus Corp Centering device
US20100041951A1 (en) 2007-02-08 2010-02-18 Daniel Glozman Inflatable chamber device for motion through a passage
DE102010000900A1 (en) 2009-08-05 2011-02-10 Gkn Walterscheid Gmbh Device for protection against contact of driven shaft, has multiple protection elements and reading device for reading character, where each protection element is assigned to character
JP2014228658A (en) 2013-05-21 2014-12-08 学校法人 中央大学 In-pipe investigating device
JP2015031335A (en) 2013-08-01 2015-02-16 東京都 In-pipe work device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586911B2 (en) * 1987-07-24 1997-03-05 株式会社 アデック In-pipe inspection equipment
US5337732A (en) * 1992-09-16 1994-08-16 Cedars-Sinai Medical Center Robotic endoscopy
US5770800A (en) * 1994-09-27 1998-06-23 The United States Of America As Represented By The United States Department Of Energy Flexible ultrasonic pipe inspection apparatus
JPH09280265A (en) * 1996-04-15 1997-10-28 Matsui Warutaashiyaido Kk Safety cup of universal joint yoke
JPH10180656A (en) * 1996-12-19 1998-07-07 Nkk Corp Remover for foreign matter in pipe
US6427602B1 (en) * 2001-07-02 2002-08-06 Westinghouse Savannah River Company, Llc Pipe crawler apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708001A1 (en) 1997-02-07 1998-08-13 Fitr Ges Fuer Innovation Im Ti Movable device for inspecting or cleaning pipes, conduits and channels
JP2006227125A (en) 2005-02-15 2006-08-31 Olympus Corp Centering device
US20100041951A1 (en) 2007-02-08 2010-02-18 Daniel Glozman Inflatable chamber device for motion through a passage
DE102010000900A1 (en) 2009-08-05 2011-02-10 Gkn Walterscheid Gmbh Device for protection against contact of driven shaft, has multiple protection elements and reading device for reading character, where each protection element is assigned to character
JP2014228658A (en) 2013-05-21 2014-12-08 学校法人 中央大学 In-pipe investigating device
JP2015031335A (en) 2013-08-01 2015-02-16 東京都 In-pipe work device

Also Published As

Publication number Publication date
JP2021033092A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
RU2397785C2 (en) Medical tube set and stiletto device for it
US6067892A (en) Artificial muscle actuator assembly
US8205522B2 (en) Link assembly with defined boundaries for a snake like robot arm
CN104337491B (en) Utensil and manufacture method thereof
CN105828738B (en) Flexible manipulator guide member and flexible manipulator
JP6116967B2 (en) Deformable flexible tube and manipulator having the same
US9771956B2 (en) Actuator, actuator apparatus, and method of driving actuator
US8904919B2 (en) Extensile fluidic muscle actuator
JP7301358B2 (en) self-propelled robot
CN102711861A (en) Catheter pump arrangement and flexible shaft arrangement having a core
CN212141125U (en) Adjustable bent sheath tube
JP2018069125A (en) Movable body for cleaning
WO2018207663A1 (en) Actuator and moving body
JP7301418B2 (en) self-propelled robot
JP5391006B2 (en) Endoscope insertion aid
CN209335647U (en) Telescopic mechanism and mechanical arm with the structure
US20060272311A1 (en) Hose conduit element for a paint robot
CN211155660U (en) Universal joint adjustable snake bone and endoscope
CN210095669U (en) Rigidity-variable hose and combination thereof
US20120000564A1 (en) Flexible tubing
JP2021099141A (en) Actuator and actuator element
JP6844030B2 (en) Tube body and endoscope
CN109397331A (en) Telescopic mechanism, mechanical arm and robot system
JP7256528B2 (en) actuator
WO2023171105A1 (en) Braided structure, tube structure, tube structure for catheter, and method for producing braided structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R150 Certificate of patent or registration of utility model

Ref document number: 7301358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150