JP7298448B2 - Isolated DC/DC converter - Google Patents

Isolated DC/DC converter Download PDF

Info

Publication number
JP7298448B2
JP7298448B2 JP2019204334A JP2019204334A JP7298448B2 JP 7298448 B2 JP7298448 B2 JP 7298448B2 JP 2019204334 A JP2019204334 A JP 2019204334A JP 2019204334 A JP2019204334 A JP 2019204334A JP 7298448 B2 JP7298448 B2 JP 7298448B2
Authority
JP
Japan
Prior art keywords
semiconductor elements
rectangular wave
capacitor
phase command
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204334A
Other languages
Japanese (ja)
Other versions
JP2021078274A (en
Inventor
勇 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2019204334A priority Critical patent/JP7298448B2/en
Publication of JP2021078274A publication Critical patent/JP2021078274A/en
Application granted granted Critical
Publication of JP7298448B2 publication Critical patent/JP7298448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Description

本発明は、高周波トランスを用いた絶縁型DC/DC変換器の予備充電方法に関する。 The present invention relates to a precharging method for an isolated DC/DC converter using a high frequency transformer.

従来技術における絶縁型DC/DC変換器では、図11,図12に示すような回路構成の場合、二次側に予備充電するために、検出した電流値に基づいて一次側の出力電圧値を調整することで予備充電時の突入電流を抑制している。 In the conventional isolated DC/DC converter, in the case of the circuit configuration as shown in FIG. 11 and FIG. This adjustment suppresses the inrush current during pre-charging.

特許文献1では、一次側と二次側の電位差が大きい場合の突入電流の対策として、図13に示すように過電流防止回路14を設けている。 In Patent Document 1, an overcurrent protection circuit 14 is provided as shown in FIG. 13 as a countermeasure against inrush current when the potential difference between the primary side and the secondary side is large.

特許文献2には、蓄電装置と蓄電装置に接続されるコンデンサの電圧を一致させるように制御することで蓄電装置に流れる突入電流を防止する技術が開示されている。 Patent Literature 2 discloses a technique for preventing rush current from flowing into a power storage device by controlling voltages of the power storage device and a capacitor connected to the power storage device to match.

特開2017-118806号公報JP 2017-118806 A 特開2017-123739号公報JP 2017-123739 A 特開2018-26961号公報JP 2018-26961 A 特開2016-208630号公報JP 2016-208630 A

従来技術における絶縁型DC/DC変換器では、予備充電専用の制御回路と電流検出用センサを設け、電流制御することで予備充電時における突入電流を抑制している。しかし、電流検出用センサが必要となることから装置全体が高コスト化するという課題がある。 In the conventional insulated DC/DC converter, a control circuit dedicated to precharging and a current detection sensor are provided to control the current, thereby suppressing the rush current during precharging. However, since the current detection sensor is required, there is a problem that the cost of the entire device increases.

次に、特許文献1では、一次側と二次側の電位差が大きい場合の突入電流の対策として、図13に示すように過電流防止回路14を設けている。この構成の場合、突入電流は抑制できるがコストアップや装置の大型化につながるという問題がある。 Next, in Patent Document 1, an overcurrent protection circuit 14 is provided as shown in FIG. 13 as a countermeasure against inrush current when the potential difference between the primary side and the secondary side is large. In the case of this configuration, although the inrush current can be suppressed, there is a problem that it leads to an increase in cost and size of the device.

特許文献2は、蓄電装置とコンデンサを接続する前にはコンデンサの電圧を蓄電装置と一致させるために充電を行う必要があるがその詳細に関しては記載がない。 Japanese Patent Laid-Open No. 2002-200003 does not describe the details of charging the capacitor in order to match the voltage of the capacitor with that of the power storage device before connecting the power storage device and the capacitor.

以上示したようなことから、絶縁型DC/DC変換器において、電流検出用センサや過電流防止回路を設けることなく、予備充電時に突入電流を抑制しつつ安全にコンデンサの電圧を充電することが課題となる。 As described above, in the insulated DC/DC converter, it is possible to safely charge the voltage of the capacitor while suppressing the inrush current during precharging without providing a current detection sensor or an overcurrent protection circuit. It becomes an issue.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、第1コンデンサと、前記第1コンデンサの正負極間に直列接続された第1,第2半導体素子と、前記第1コンデンサの正負極間に直列接続された第3,第4半導体素子と、第2コンデンサと、前記第2コンデンサの正負極間に直列接続された第5,第6半導体素子と、前記第2コンデンサの正負極間に直列接続された第7,第8半導体素子と、前記第3,第4半導体素子の接続点に一端が接続された第1リアクトルと、前記第7,第8半導体素子の接続点に一端が接続された第2リアクトルと、前記第1リアクトルの他端と前記第1,第2半導体素子の接続点との間に1次巻線が接続され、前記第2リアクトルの他端と前記第5,第6半導体素子の接続点との間に2次巻線が接続されたトランスと、を備えた絶縁型DC/DC変換器であって、第1コンデンサ電圧と第2コンデンサ電圧の偏差に応じて電圧制御を行い、前記電圧制御の結果に基づいて、ゲート信号を生成する制御回路を備えたことを特徴とする。 The present invention has been devised in view of the conventional problems described above, and one aspect thereof includes a first capacitor, first and second semiconductor elements connected in series between the positive and negative electrodes of the first capacitor, third and fourth semiconductor elements connected in series between the positive and negative electrodes of the first capacitor; a second capacitor; fifth and sixth semiconductor elements connected in series between the positive and negative electrodes of the second capacitor; seventh and eighth semiconductor elements connected in series between the positive and negative electrodes of a second capacitor; a first reactor having one end connected to a connection point of the third and fourth semiconductor elements; and the seventh and eighth semiconductors a second reactor having one end connected to a connection point of an element; a primary winding connected between the other end of the first reactor and a connection point of the first and second semiconductor elements; and a transformer having a secondary winding connected between the other end of and a connection point of the fifth and sixth semiconductor elements, wherein the first capacitor voltage and the second It is characterized by comprising a control circuit that performs voltage control according to the deviation of the voltages of the two capacitors and generates a gate signal based on the result of the voltage control.

また、その一態様として、前記制御回路は、前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差に応じて電圧制御を行い、一次側位相指令値と二次側位相指令値を生成する位相指令値生成部と、キャリア信号と前記一次側位相指令値と前記二次側位相指令値に基づいて、前記第1,第2半導体素子のゲート信号と、前記第3,第4半導体素子のゲート信号と、前記第5,第6半導体素子のゲート信号と、前記第7,第8半導体素子のゲート信号を生成するゲート生成部と、を備えたことを特徴とする。 Further, as one aspect thereof, the control circuit performs voltage control according to a deviation between the first capacitor voltage and the second capacitor voltage, and phase command for generating a primary side phase command value and a secondary side phase command value. a value generator, based on a carrier signal, the primary side phase command value, and the secondary side phase command value, gate signals for the first and second semiconductor elements and gate signals for the third and fourth semiconductor elements; and a gate generator for generating gate signals for the fifth and sixth semiconductor elements and gate signals for the seventh and eighth semiconductor elements.

また、その一態様として、前記ゲート生成部は、前記キャリア信号に同期した第1矩形波を生成する矩形波生成部と、前記一次側位相指令値と前記二次側位相指令値に前記第1矩形波をそれぞれ乗算して一次側の第2矩形波と二次側の第2矩形波を出力する第1乗算器と、前記一次側の第2矩形波と前記キャリア信号とを比較して、前記第1,第2半導体素子のゲート信号と前記第3,第4半導体素子のゲート信号を生成し、前記二次側の第2矩形波と前記キャリア信号とを比較して、前記第5,第6半導体素子のゲート信号と前記第7,第8半導体素子のゲート信号を生成する第1比較器と、を備えたことを特徴とする。 Further, as one aspect thereof, the gate generation section includes a rectangular wave generation section that generates a first rectangular wave synchronized with the carrier signal, and a first A first multiplier that multiplies rectangular waves to output a second rectangular wave on the primary side and a second rectangular wave on the secondary side, and compares the second rectangular wave on the primary side with the carrier signal, generating gate signals for the first and second semiconductor elements and gate signals for the third and fourth semiconductor elements; and a first comparator for generating a gate signal for the sixth semiconductor element and a gate signal for the seventh and eighth semiconductor elements.

また、他の態様として、前記制御回路は、所望の位相差を有する一次側の第3矩形波と二次側の第3矩形波を生成して出力電力を制御する電力制御部と、前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差に応じて電圧制御により位相指令値を生成し、前記一次側の第3矩形波と前記二次側の第3矩形波と前記位相指令値に基づいて、前記第1,第2半導体素子のゲート信号と、前記第3,第4半導体素子のゲート信号と、前記第5,第6半導体素子のゲート信号と、前記第7,第8半導体素子のゲート信号と、を生成する出力電圧制御部と、を備えたことを特徴とする。 In another aspect, the control circuit includes a power control unit that generates a primary-side third rectangular wave and a secondary-side third rectangular wave having a desired phase difference and controls output power; A phase command value is generated by voltage control according to a deviation between the first capacitor voltage and the second capacitor voltage, and based on the third rectangular wave on the primary side, the third rectangular wave on the secondary side, and the phase command value , the gate signals of the first and second semiconductor elements, the gate signals of the third and fourth semiconductor elements, the gate signals of the fifth and sixth semiconductor elements, and the gates of the seventh and eighth semiconductor elements and an output voltage control unit that generates a signal.

また、その一態様として、前記電力制御部は、キャリア信号に同期した第1矩形波を生成する矩形波生成部と、一次側位相指令値および二次側位相指令値に前記第1矩形波をそれぞれ乗算して一次側の第2矩形波と二次側の第2矩形波を出力する第1乗算器と、前記一次側の第2矩形波と前記キャリア信号とを比較して前記一次側の第3矩形波を生成し、前記二次側の第2矩形波と前記キャリア信号とを比較して前記二次側の第3矩形波を生成する第1比較器と、を備え、前記出力電圧制御部は、前記一次側の第3矩形波と前記二次側の第3矩形波に基づいて一次側位相制御用三角波と二次側位相制御用三角波を生成する三角波生成部と、前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差に応じて位相指令値を生成する電圧制御部と、前記一次側の第3矩形波と前記位相指令値に基づいて第1,第2半導体素子の位相指令値と第3,第4半導体素子の位相指令値を出力し、前記二次側の第3矩形波と前記位相指令値に基づいて、第5,第6半導体素子の位相指令値と第7,第8半導体素子の位相指令値を出力する第2乗算器と、前記第1,第2半導体素子の位相指令値と前記一次側位相制御用三角波とを比較して前記第1,第2半導体素子のゲート信号を生成し、前記第3,第4半導体素子の位相指令値と前記一次側位相制御用三角波とを比較して前記第3,第4半導体素子のゲート信号を生成し、前記第5,第6半導体素子の位相指令値と前記二次側位相制御用三角波とを比較して前記第5,第6半導体素子のゲート信号を生成し、前記第7,第8半導体素子の位相指令値と前記二次側位相制御用三角波とを比較して前記第7,第8半導体素子のゲート信号を生成する第2比較器と、を備えたことを特徴とする。 Further, as one aspect thereof, the power control unit includes a rectangular wave generation unit that generates a first rectangular wave synchronized with a carrier signal, and a primary side phase command value and a secondary side phase command value that generate the first rectangular wave. A first multiplier for multiplying and outputting a second rectangular wave on the primary side and a second rectangular wave on the secondary side, and comparing the second rectangular wave on the primary side and the carrier signal to determine the output of the primary side. a first comparator that generates a third rectangular wave and compares the second rectangular wave on the secondary side with the carrier signal to generate the third rectangular wave on the secondary side; The control unit includes a triangular wave generator that generates a triangular wave for primary side phase control and a triangular wave for secondary side phase control based on the third rectangular wave on the primary side and the third rectangular wave on the secondary side; a voltage control unit that generates a phase command value according to the deviation between the capacitor voltage and the second capacitor voltage; and a phase command for the first and second semiconductor elements based on the third rectangular wave on the primary side and the phase command value. and phase command values for the third and fourth semiconductor elements, and based on the third rectangular wave on the secondary side and the phase command value, the phase command values for the fifth and sixth semiconductor elements and the phase command values for the seventh and fourth semiconductor elements are output. A second multiplier for outputting a phase command value for an eighth semiconductor element compares the phase command values for the first and second semiconductor elements with the triangular wave for primary side phase control to and comparing the phase command values of the third and fourth semiconductor elements with the triangular wave for primary side phase control to generate the gate signals of the third and fourth semiconductor elements; , the phase command value of the sixth semiconductor element and the triangular wave for secondary side phase control are compared to generate the gate signals of the fifth and sixth semiconductor elements, and the phase command values of the seventh and eighth semiconductor elements are generated. and a second comparator for comparing the triangular wave for secondary side phase control with the triangular wave for secondary side phase control to generate gate signals for the seventh and eighth semiconductor elements.

また、その一態様として、前記制御回路は、予備充電時に、前記キャリア信号の周波数を通常運転時のキャリア信号よりも高くすることを特徴とする。 In one aspect, the control circuit makes the frequency of the carrier signal higher during preliminary charging than during normal operation.

本発明によれば、絶縁型DC/DC変換器において、電流検出用センサや過電流防止回路を設けることなく、予備充電時に突入電流を抑制しつつ安全にコンデンサの電圧を充電することが可能となる。 According to the present invention, in an insulated DC/DC converter, it is possible to safely charge the voltage of the capacitor while suppressing the inrush current during precharging without providing a current detection sensor or an overcurrent protection circuit. Become.

実施形態1~3における絶縁型DC/DC変換器を示す回路構成図。FIG. 2 is a circuit configuration diagram showing an insulated DC/DC converter according to Embodiments 1 to 3; 電圧Va,Vb,電流i1の動作波形例を示すタイムチャート。4 is a time chart showing examples of operation waveforms of voltages Va, Vb, and current i1; 予備充電回路を設けた絶縁型DC/DC変換器の代表例を示す回路構成図。FIG. 2 is a circuit configuration diagram showing a representative example of an insulated DC/DC converter provided with a precharging circuit; 実施形態1における制御回路を示すブロック図。2 is a block diagram showing a control circuit according to the first embodiment; FIG. 実施形態1適用前の各種波形を示すタイムチャート。4 is a time chart showing various waveforms before the first embodiment is applied; 実施形態1適用後の各種波形を示すタイムチャート。4 is a time chart showing various waveforms after application of the first embodiment; 実施形態2における制御回路を示すブロック図。6 is a block diagram showing a control circuit according to the second embodiment; FIG. 実施形態2における生成波形例を示すタイムチャート。6 is a time chart showing an example of generated waveforms in the second embodiment; スイッチングパターン例を示す図。FIG. 4 is a diagram showing an example of switching patterns; 実施形態3における制御回路を示すブロック図。FIG. 11 is a block diagram showing a control circuit in Embodiment 3; 従来技術における絶縁型DC/DC変換器を示す回路構成図。FIG. 2 is a circuit configuration diagram showing an isolated DC/DC converter in the prior art; 従来技術における絶縁型DC/DC変換器の制御回路を示すブロック図。FIG. 2 is a block diagram showing a control circuit of an isolated DC/DC converter in the prior art; 特許文献1における絶縁型DC/DC変換器を示す回路構成図。FIG. 2 is a circuit configuration diagram showing an insulated DC/DC converter in Patent Document 1;

以下、本願発明における絶縁型DC/DC変換器の実施形態1~3を図1~図10に基づいて詳述する。 Embodiments 1 to 3 of the insulated DC/DC converter according to the present invention will be described in detail below with reference to FIGS. 1 to 10. FIG.

[実施形態1]
図1に本実施形態1における絶縁型DC/DC変換器の主回路構成例を示す。図1に示すように、絶縁型DC/DC変換器は、第1コンデンサC1と第2コンデンサC2を有する。第1コンデンサC1の正負極間に第1,第2半導体素子U1,V1が直列接続される。また、第1コンデンサC1の正負極間に第3,第4半導体素子X1,Y1が直列接続される。第1~第4半導体素子U1,V1,X1,Y1で第1電力変換器を構成する。
[Embodiment 1]
FIG. 1 shows an example of a main circuit configuration of an insulated DC/DC converter according to the first embodiment. As shown in FIG. 1, the isolated DC/DC converter has a first capacitor C1 and a second capacitor C2. The first and second semiconductor elements U1 and V1 are connected in series between the positive and negative terminals of the first capacitor C1. Also, the third and fourth semiconductor elements X1 and Y1 are connected in series between the positive and negative terminals of the first capacitor C1. The first to fourth semiconductor devices U1, V1, X1 and Y1 constitute a first power converter.

第2コンデンサC2の正負極間に第5,第6半導体素子U2,V2が直列接続される。第2コンデンサC2の正負極間に第7,第8半導体素子X2,Y2が直列接続される。第5~第8半導体素子U2,V2,X2,Y2で第2電力変換器を構成する。 Fifth and sixth semiconductor elements U2 and V2 are connected in series between the positive and negative terminals of the second capacitor C2. Seventh and eighth semiconductor elements X2 and Y2 are connected in series between the positive and negative terminals of the second capacitor C2. The fifth to eighth semiconductor devices U2, V2, X2 and Y2 constitute a second power converter.

第3,第4半導体素子X1,Y1の接続点に第1リアクトルL1の一端が接続される。第7,第8半導体素子X2,Y2の接続点に第2リアクトルL2の一端が接続される。 One end of the first reactor L1 is connected to the connection point between the third and fourth semiconductor elements X1 and Y1. One end of the second reactor L2 is connected to the connection point between the seventh and eighth semiconductor elements X2 and Y2.

トランスTrは、第1リアクトルL1の他端と第1,第2半導体素子U1,V1の接続点との間に1次巻線が接続され、第2リアクトルL2の他端と第5,第6半導体素子U2,V2の接続点との間に2次巻線が接続される。 The transformer Tr has a primary winding connected between the other end of the first reactor L1 and the connection point of the first and second semiconductor elements U1 and V1, and the other end of the second reactor L2 and the fifth and sixth semiconductor elements U1 and V1. A secondary winding is connected between the connection point of the semiconductor elements U2 and V2.

ここで、第1,第2コンデンサ電圧(直流電圧)をE1,E2とし、トランスTrの1次巻線の電圧をVaとし、トランスTrの2次巻線の電圧をVbとする。また、第3,第4半導体素子X1,Y1の接続点の電流をi1とし、第5,第6半導体素子U2,V2の接続点の電流をi2とする。 Here, the first and second capacitor voltages (DC voltages) are E1 and E2, the voltage of the primary winding of the transformer Tr is Va, and the voltage of the secondary winding of the transformer Tr is Vb. The current at the connection point between the third and fourth semiconductor elements X1 and Y1 is i1, and the current at the connection point between the fifth and sixth semiconductor elements U2 and V2 is i2.

図1はフルブリッジの第1,第2電力変換器を2台使用し、2台の第1,第2電力変換器が出力する電圧Va,Vbの位相差δを調整すること(つまり、第1,第2電力変換器内の半導体素子のゲート信号(オンオフ指令信号)を調整すること)で、電力を伝送している。 FIG. 1 uses two full-bridge first and second power converters, and adjusts the phase difference δ between the voltages Va and Vb output by the two first and second power converters (that is, the first 1. Power is transmitted by adjusting the gate signal (on/off command signal) of the semiconductor element in the second power converter.

出力電力Pの大きさは以下の(1)式で定義される。ωはスイッチング周波数,E1,E2は第1,第2コンデンサ電圧(直流電圧)、Lは第1,第2リアクトルのインダクタンス値(L1+L2)、δは電圧Va,Vbの位相差を表している。 The magnitude of the output power P is defined by the following equation (1). is the switching frequency, E1 and E2 are the first and second capacitor voltages (DC voltages), L is the inductance value (L1+L2) of the first and second reactors, and .delta. is the phase difference between the voltages Va and Vb.

Figure 0007298448000001
Figure 0007298448000001

(1)式からわかるように、位相差δを可変にすることで、第1,第2リアクトルL1,L2に流れる電流を制御することができるため出力電力Pを制御できる。位相差δ=90°の時に出力できる出力電力Pは最大となる。なお、(1)式は、トランスTrの損失等を考慮していない理論式である。 As can be seen from the equation (1), by making the phase difference δ variable, the currents flowing through the first and second reactors L1 and L2 can be controlled, so the output power P can be controlled. The output power P that can be output becomes maximum when the phase difference δ=90°. Note that the formula (1) is a theoretical formula that does not consider the loss of the transformer Tr.

図2は、図1の回路における電圧Va,Vb,電流i1の動作波形の例である。電圧Vaが正のとき、ゲート信号によって第2,第3半導体素子V1,X1がオンしている。電圧Vaが負のとき、ゲート信号によって第1,第4半導体素子U1,Y1がオンしている。電圧Vbが正のとき、ゲート信号によって第6,第7半導体素子V2,X2がオンしている。電圧Vbが負のとき、ゲート信号によって第5,第8半導体素子U2,Y2がオンしている。また、スイッチング周期Tsは、Ts=2π/ωである。 FIG. 2 shows examples of operating waveforms of voltages Va, Vb and current i1 in the circuit of FIG. When the voltage Va is positive, the gate signal turns on the second and third semiconductor elements V1 and X1. When the voltage Va is negative, the gate signal turns on the first and fourth semiconductor elements U1 and Y1. When the voltage Vb is positive, the gate signal turns on the sixth and seventh semiconductor elements V2 and X2. When the voltage Vb is negative, the gate signal turns on the fifth and eighth semiconductor elements U2 and Y2. Also, the switching cycle Ts is Ts=2π/ω.

図1の回路を直流母線と接続するアプリケーションにおいて、予備充電を行う場合、図3のような回路構成が考えられる。本実施形態1では、電圧が確立された直流母線に絶縁型DC/DC変換器を接続する場合の予備充電方法を説明する。図3に示すように、直流母線21と第1コンデンサC1との間には、スイッチSW1が接続される。また、スイッチSW1には、予備充電回路20が並列接続される。予備充電回路20は、予備充電抵抗Rと、予備充電抵抗Rに直列接続されたスイッチSW2と、を備える。 In an application where the circuit in FIG. 1 is connected to a DC bus, a circuit configuration as shown in FIG. 3 is conceivable for precharging. In the first embodiment, a preliminary charging method for connecting an insulated DC/DC converter to a DC bus with established voltage will be described. As shown in FIG. 3, a switch SW1 is connected between the DC bus 21 and the first capacitor C1. A preliminary charging circuit 20 is connected in parallel to the switch SW1. The pre-charging circuit 20 includes a pre-charging resistor R and a switch SW2 connected in series with the pre-charging resistor R.

この場合、図3に示している予備充電回路20(スイッチSW2)が投入されると同時に第1,第2電力変換器の運転を開始することで第1コンデンサC1及び第2コンデンサC2を同時に充電し、充電電流を抑制することができる。 In this case, the first capacitor C1 and the second capacitor C2 are simultaneously charged by starting the operation of the first and second power converters at the same time that the preliminary charging circuit 20 (switch SW2) shown in FIG. 3 is turned on. and the charging current can be suppressed.

しかし、第1コンデンサC1よりも第2コンデンサC2の容量が大きい場合、時定数が異なるため、過渡的に第1コンデンサ電圧E1が第2コンデンサ電圧E2よりも大きくなる。これにより、大きな充電電流が発生してしまうケースがある。 However, when the capacitance of the second capacitor C2 is larger than that of the first capacitor C1, the time constants are different, so the first capacitor voltage E1 transiently becomes higher than the second capacitor voltage E2. As a result, there are cases where a large charging current is generated.

過大な充電電流はコンデンサの寿命低下や、トランス、変換器の焼損につながる恐れがあり防ぐ必要がある。その解決策の一例として特許文献1のような過電流防止回路が電流抑制に有効となるが追加部品が必要となるためコストアップ、体積の大型化につながるため望ましくない。本実施形態1は上述の問題を解決するための制御手法である。 Excessive charging current may shorten the life of the capacitor and burn out the transformer and converter, so it is necessary to prevent it. As an example of a solution to this problem, an overcurrent prevention circuit such as that disclosed in Patent Document 1 is effective in suppressing the current, but it is not desirable because it requires additional parts, which leads to an increase in cost and an increase in volume. The first embodiment is a control method for solving the above problem.

本実施形態1は先行技術のような電流検出用センサ、過電流防止回路を用いることなく予備充電時の突入電流を防止できる手法を説明する。 Embodiment 1 will explain a technique for preventing a rush current during precharging without using a current detection sensor and an overcurrent prevention circuit as in the prior art.

本実施形態1では図3のような構成において、予備充電時に過渡的に発生する第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差を小さくすることで突入電流を抑制する。具体的な制御回路の構成を図4に示す。 In the first embodiment, in the configuration shown in FIG. 3, the inrush current is suppressed by reducing the deviation between the first capacitor voltage E1 and the second capacitor voltage E2 that occurs transiently during precharging. FIG. 4 shows the configuration of a specific control circuit.

図4の回路は第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差の大きさに応じて一次側と二次側の出力電圧の位相差δを制御することで伝送電力を制御する。第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差が大きい場合には位相差δを大きくすることで伝送電力を大きくし、第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差を小さくすることで、突入電流を抑制する。 The circuit of FIG. 4 controls transmission power by controlling the phase difference .delta. When the deviation between the first capacitor voltage E1 and the second capacitor voltage E2 is large, the transmission power is increased by increasing the phase difference δ, and the deviation between the first capacitor voltage E1 and the second capacitor voltage E2 is decreased. , to suppress the inrush current.

図4に示すように、本実施形態1の制御回路は、位相指令値生成部1とゲート生成部2とを備える。 As shown in FIG. 4 , the control circuit of the first embodiment includes a phase command value generator 1 and a gate generator 2 .

位相指令値生成部1は、減算器3において、第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差を演算する。PI制御部4は、前記偏差の大きさに基づいて電圧制御を行い、一次側位相指令値と二次側位相指令値を生成する。 In the subtractor 3, the phase command value generator 1 calculates the deviation between the first capacitor voltage E1 and the second capacitor voltage E2. The PI control unit 4 performs voltage control based on the magnitude of the deviation and generates a primary side phase command value and a secondary side phase command value.

ゲート生成部2は、まず、矩形波生成部5にキャリア信号を入力することで、キャリア信号に同期した第1矩形波を生成する。第1乗算器6a,6bは、一次側位相指令値,二次側位相指令値と第1矩形波の振幅を掛け合わせて振幅を調整し一次側の第2矩形波と二次側の第2矩形波を生成する。第1比較器7aは、一次側の第2矩形波とキャリア信号と比較することで、第3,第4半導体素子X1,Y1のゲート信号,第1,第2半導体素子U1,V1のゲート信号を生成する。第1比較器7bは、二次側の第2矩形波とキャリア信号とを比較することで、第7,第8半導体素子X2,Y2のゲート信号,第5,第6半導体素子U2,V2のゲート信号を生成する。これにより、1次側と2次側で必要な位相差δを持ったゲート信号を生成できる。 The gate generator 2 first inputs a carrier signal to the rectangular wave generator 5 to generate a first rectangular wave synchronized with the carrier signal. The first multipliers 6a and 6b multiply the primary side phase command value, the secondary side phase command value, and the amplitude of the first rectangular wave to adjust the amplitudes of the second rectangular wave on the primary side and the second rectangular wave on the secondary side. Generate a square wave. The first comparator 7a compares the second square wave on the primary side with the carrier signal to generate gate signals for the third and fourth semiconductor elements X1 and Y1 and gate signals for the first and second semiconductor elements U1 and V1. to generate The first comparator 7b compares the second square wave on the secondary side with the carrier signal to generate gate signals for the seventh and eighth semiconductor elements X2 and Y2 and gate signals for the fifth and sixth semiconductor elements U2 and V2. Generate a gate signal. Thereby, a gate signal having a necessary phase difference δ between the primary side and the secondary side can be generated.

図5に本実施形態1適用前の動作波形例を示し、図6に本実施形態1適用後の動作波形例を示す。図5と図6を比較するとわかるように制御を行わない場合と比較して電流i1,i2が抑制できていることがわかる。 FIG. 5 shows an example of operating waveforms before applying the first embodiment, and FIG. 6 shows an example of operating waveforms after applying the first embodiment. As can be seen by comparing FIG. 5 and FIG. 6, the currents i1 and i2 can be suppressed as compared with the case where no control is performed.

以上示したように、本実施形態1によれば、予備充電時に電流検出用センサや過電流防止回路を設けることなく突入電流を抑制しつつ、安全にコンデンサの電圧を充電することが可能となる。 As described above, according to the first embodiment, during preliminary charging, it is possible to safely charge the voltage of the capacitor while suppressing the inrush current without providing a current detection sensor or an overcurrent prevention circuit. .

[実施形態2]
本実施形態2では第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差が大きい場合に電圧が大きいほうの電力変換器の出力電圧を小さくすることで突入電流を抑制する。
[Embodiment 2]
In the second embodiment, when the difference between the first capacitor voltage E1 and the second capacitor voltage E2 is large, the output voltage of the power converter having the larger voltage is reduced to suppress the inrush current.

本実施形態2における制御回路を図7に示し、生成波形例を図8に示す。本実施形態2による図7の制御回路は、電力制御部8と出力電圧制御部9とを備える。電力制御部8は、一次側位相指令値と二次側位相指令値に応じて位相差δを有する一次側と二次側の出力電圧を生成する。出力電圧制御部9は、第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差の大きさに応じて出力電圧を調整する。 FIG. 7 shows the control circuit in the second embodiment, and FIG. 8 shows an example of generated waveforms. The control circuit of FIG. 7 according to Embodiment 2 includes a power control section 8 and an output voltage control section 9 . The power control unit 8 generates primary-side and secondary-side output voltages having a phase difference δ according to the primary-side phase command value and the secondary-side phase command value. The output voltage control section 9 adjusts the output voltage according to the magnitude of the deviation between the first capacitor voltage E1 and the second capacitor voltage E2.

電力制御部8は、まず矩形波生成部5にキャリア信号を入力することで、キャリア信号に同期した第1矩形波を生成する。その後、第1乗算器6a,6bは、一次側位相指令値,二次側位相指令値と第1矩形波の振幅を掛け合わせて振幅を調整した一次側の第2矩形波と二次側の第2矩形波を生成する。第1比較器7a,7bは、第2矩形波とキャリア信号と比較することで、所望の位相差δを持った一次側の第3矩形波と二次側の第3矩形波を生成する。これにより、1次側と2次側で必要な位相差δを有するゲート信号を生成できる。 The power controller 8 first inputs a carrier signal to the rectangular wave generator 5 to generate a first rectangular wave synchronized with the carrier signal. After that, the first multipliers 6a and 6b multiply the primary side phase command value, the secondary side phase command value, and the amplitude of the first rectangular wave to adjust the amplitude of the second rectangular wave on the primary side and the amplitude on the secondary side. Generate a second square wave. The first comparators 7a and 7b compare the second rectangular wave with the carrier signal to generate a third rectangular wave on the primary side and a third rectangular wave on the secondary side with a desired phase difference δ. Thereby, a gate signal having a required phase difference δ between the primary side and the secondary side can be generated.

出力電圧制御部9は電力制御部8にて生成した一次側の第3矩形波と二次側の第3矩形波を入力する。三角波生成部10a,10bでは一次側の第3矩形波,二次側の第3矩形波に同期した一次側位相制御用三角波,二次側位相制御用三角波を生成する。 The output voltage control unit 9 inputs the primary-side third rectangular wave and the secondary-side third rectangular wave generated by the power control unit 8 . The triangular wave generators 10a and 10b generate a triangular wave for phase control on the primary side and a triangular wave for phase control on the secondary side synchronized with the third rectangular wave on the primary side and the third rectangular wave on the secondary side.

また、出力電圧の大きさを決める位相指令値は第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差の大きさに応じて生成される。すなわち、減算器3において、第1コンデンサ電圧E1と第2コンデンサ電圧E2の偏差が演算する。PI制御部4は、前記偏差に基づいて電圧制御を行い、位相指令値を生成する。 Also, the phase command value that determines the magnitude of the output voltage is generated according to the magnitude of the deviation between the first capacitor voltage E1 and the second capacitor voltage E2. That is, the subtractor 3 calculates the deviation between the first capacitor voltage E1 and the second capacitor voltage E2. The PI control unit 4 performs voltage control based on the deviation and generates a phase command value.

第2乗算器11a~11dにおいて、一次側の第3矩形波,二次側の第3矩形波は位相指令値と掛け合わされ、一次側の第3矩形波と二次側の第3矩形波を調整し、第3,第4半導体素子X1,Y1の位相指令値,第1,第2半導体素子U1,V1の位相指令値,第7,第8半導体素子X2,Y2の位相指令値,第5,第6半導体素子U2,V2の位相指令値を出力する。 In the second multipliers 11a to 11d, the third rectangular wave on the primary side and the third rectangular wave on the secondary side are multiplied by the phase command value to obtain the third rectangular wave on the primary side and the third rectangular wave on the secondary side. The phase command values for the third and fourth semiconductor elements X1 and Y1, the phase command values for the first and second semiconductor elements U1 and V1, the phase command values for the seventh and eighth semiconductor elements X2 and Y2, and the fifth , the phase command values of the sixth semiconductor devices U2 and V2.

そして、第2比較器12aにおいて、一次側位相制御用三角波と第3,第4半導体素子X1,Y1の位相指令値とを比較し、第3,第4半導体素子X1,Y1のゲート信号を生成する。第2比較器12bにおいて、一次側位相制御用三角波と第1,第2半導体素子U1,V1の位相指令値とを比較し、第1,第2半導体素子U1,V1のゲート信号を生成する。第2比較器12cにおいて、二次側位相制御用三角波と第7,第8半導体素子X2,Y2の位相指令値とを比較し、第7,第8半導体素子X2,Y2のゲート信号を生成する。第2比較器12dにおいて、二次側位相制御用三角波と第5,第6半導体素子U2,V2の位相指令値とを比較し、第5,第6半導体素子U2,V2のゲート信号を生成する。これにより、一次側と二次側で必要な位相差δを持ち、且つ、所望の出力電圧値を出力できるゲート信号を生成できる。 Then, the second comparator 12a compares the triangular wave for phase control on the primary side with the phase command values of the third and fourth semiconductor elements X1 and Y1 to generate gate signals for the third and fourth semiconductor elements X1 and Y1. do. The second comparator 12b compares the triangular wave for primary side phase control with the phase command values for the first and second semiconductor elements U1 and V1 to generate gate signals for the first and second semiconductor elements U1 and V1. The second comparator 12c compares the triangular wave for secondary side phase control with the phase command values of the seventh and eighth semiconductor elements X2 and Y2 to generate gate signals for the seventh and eighth semiconductor elements X2 and Y2. . The second comparator 12d compares the triangular wave for secondary side phase control with the phase command values of the fifth and sixth semiconductor elements U2 and V2 to generate gate signals for the fifth and sixth semiconductor elements U2 and V2. . This makes it possible to generate a gate signal that has a required phase difference δ between the primary side and the secondary side and that can output a desired output voltage value.

図9に、従来手法と本実施形態2による動作波形の違いを示す。図9では一次側の動作波形を示し、二次側の動作波形は省略する。図9中のU1,X1,V1,Y1は各半導体素子の導通状態(ゲート信号)を表す。図9(b)に示すように、本実施形態2では、第1,第2半導体素子U1,V1の位相指令値と第3,第4半導体素子X1,Y1の位相指令値とを有する。第1,第2半導体素子U1,V1の位相指令値と第3,第4半導体素子X1,Y1の位相指令値は、キャリア周波数に同期した矩形波であり、位相差を有する。 FIG. 9 shows the difference in operating waveforms between the conventional method and the second embodiment. FIG. 9 shows operation waveforms on the primary side, and operation waveforms on the secondary side are omitted. U1, X1, V1, and Y1 in FIG. 9 represent the conduction state (gate signal) of each semiconductor element. As shown in FIG. 9B, the second embodiment has phase command values for the first and second semiconductor elements U1 and V1 and phase command values for the third and fourth semiconductor elements X1 and Y1. The phase command values for the first and second semiconductor elements U1 and V1 and the phase command values for the third and fourth semiconductor elements X1 and Y1 are rectangular waves synchronized with the carrier frequency and have a phase difference.

図9(b)に示すように、一次側位相制御用三角波と第1,第2半導体素子U1,V1の位相指令値を比較することで第1,第2半導体素子U1,V1の導通状態(ゲート信号)を制御する。また、一次側位相制御用三角波と第3,第4半導体素子X1,Y1の位相指令値を比較することで第3,第4半導体素子X1,Y1の導通状態(ゲート信号)を制御する。 As shown in FIG. 9(b), by comparing the triangular wave for primary side phase control and the phase command values of the first and second semiconductor elements U1 and V1, the conducting state ( gate signal). Also, by comparing the triangular wave for primary side phase control and the phase command values of the third and fourth semiconductor elements X1 and Y1, the conductive states (gate signals) of the third and fourth semiconductor elements X1 and Y1 are controlled.

例えば、一次側位相制御用三角波よりも第1,第2半導体素子U1,V1の位相指令値が大きい場合は、第1半導体素子U1がOFF,第2半導体素子V1がON状態となり、一次側位相制御用三角波よりも第3,第4半導体素子X1,Y1の位相指令値が大きい場合は、第3半導体素子X1がON,第4半導体素子Y1がOFF状態となる。 For example, when the phase command values of the first and second semiconductor elements U1 and V1 are larger than the triangular wave for primary side phase control, the first semiconductor element U1 is turned off, the second semiconductor element V1 is turned on, and the primary side phase When the phase command values of the third and fourth semiconductor elements X1 and Y1 are larger than the control triangular wave, the third semiconductor element X1 is turned on and the fourth semiconductor element Y1 is turned off.

また、第1,第2半導体素子U1,V1の位相指令値と第3,第4半導体素子X1,Y1の位相指令値の振幅を制御することで第1,第2半導体素子U1,V1のゲート信号と、第3,第4半導体素子X1,Y1のゲート信号の位相差を制御することができる。第1,第2半導体素子U1,V1の位相指令値と第3,第4半導体素子X1,Y1の位相指令値の振幅が0の時、第1,第2半導体素子U1,V1と、第3,第4半導体素子X1,Y1の位相差は0°となる。 Further, by controlling the amplitude of the phase command values of the first and second semiconductor elements U1 and V1 and the phase command values of the third and fourth semiconductor elements X1 and Y1, the gates of the first and second semiconductor elements U1 and V1 are controlled. The phase difference between the signal and the gate signal of the third and fourth semiconductor elements X1 and Y1 can be controlled. When the amplitudes of the phase command values of the first and second semiconductor elements U1 and V1 and the phase command values of the third and fourth semiconductor elements X1 and Y1 are 0, the first and second semiconductor elements U1 and V1 and the third , the fourth semiconductor elements X1 and Y1 have a phase difference of 0°.

従来手法の場合、第1,第2半導体素子U1,V1のゲート信号と、第3,第4半導体素子X1,Y1のゲート信号の位相差は0°のため、トランスTrに印加される電圧Vaは矩形波となる。 In the case of the conventional method, the phase difference between the gate signals of the first and second semiconductor elements U1 and V1 and the gate signals of the third and fourth semiconductor elements X1 and Y1 is 0°. becomes a square wave.

これに対して、本実施形態2では、第1,第2半導体素子U1,V1のゲート信号と第3,第4半導体素子X1,Y1のゲート信号の位相差を0°よりも大きくすることで、トランスTrに印加される電圧は3段階の波形となる。これにより、印加される電圧の実効値を低減することができるため、励磁電流を低減することが可能となる。 In contrast, in the second embodiment, the phase difference between the gate signals of the first and second semiconductor elements U1 and V1 and the gate signals of the third and fourth semiconductor elements X1 and Y1 is made larger than 0°. , the voltage applied to the transformer Tr has a three-step waveform. As a result, the effective value of the applied voltage can be reduced, so that the excitation current can be reduced.

また、位相指令値が0の場合、矩形波の出力電圧が出力されるため、直流電圧に応じた出力電圧が出力される。一方、位相指令値が0以上の場合、出力電圧が0の期間を含んだ3段階の波形となるため、出力電圧を下げることができる。流れる電流は出力電圧値に比例するため、突入電流を抑制できる。 Further, when the phase command value is 0, a square-wave output voltage is output, so an output voltage corresponding to the DC voltage is output. On the other hand, when the phase command value is 0 or more, the output voltage has a three-step waveform including a period of 0, so the output voltage can be lowered. Since the flowing current is proportional to the output voltage value, the inrush current can be suppressed.

以上示したように、本実施形態2によれば、予備充電時に電流検出用センサや過電流防止回路を設けることなく突入電流を抑制しつつ、安全にコンデンサの電圧を充電することが可能となる。 As described above, according to the second embodiment, during preliminary charging, it is possible to safely charge the voltage of the capacitor while suppressing the inrush current without providing a current detection sensor or an overcurrent prevention circuit. .

[実施形態3]
本実施形態3ではキャリア信号の周波数を高くすることで、予備充電時に発生する突入電流を抑制する。突入電流はキャリア周波数と反比例する特性を持つためキャリア周波数を変化させることで突入電流も変化させることができる。制御回路は、実施形態1もしくは実施形態2のものを適用する。
[Embodiment 3]
In the third embodiment, by increasing the frequency of the carrier signal, the inrush current that occurs during preliminary charging is suppressed. Since the inrush current has a characteristic that is inversely proportional to the carrier frequency, the inrush current can be changed by changing the carrier frequency. The control circuit of Embodiment 1 or Embodiment 2 is applied.

図10に本実施形態3における制御回路を示す。図10の回路は図4の回路に対して選択回路13を追加した点に特徴がある。選択回路13は、通常のキャリア信号と予備充電用キャリア信号とを入力する。ここで、予備充電用キャリア信号は通常のキャリア信号よりもキャリア周波数が高いものとする。 FIG. 10 shows a control circuit in the third embodiment. The circuit of FIG. 10 is characterized in that a selection circuit 13 is added to the circuit of FIG. A selection circuit 13 inputs a normal carrier signal and a pre-charging carrier signal. Here, it is assumed that the pre-charging carrier signal has a higher carrier frequency than the normal carrier signal.

選択回路13は、通常運転時は通常のキャリア信号を出力し、予備充電時には予備充電用キャリア信号を出力する。これにより、予備充電時は通常動作時よりもキャリア周波数が高くなり、突入電流を抑制することが可能となる。 The selection circuit 13 outputs a normal carrier signal during normal operation, and outputs a preliminary charging carrier signal during preliminary charging. As a result, the carrier frequency becomes higher during pre-charging than during normal operation, making it possible to suppress rush current.

なお、ここでは実施形態1に実施形態3を適用する方法について説明したが、実施形態2に実施形態3を適用しても良い。 Although the method of applying the third embodiment to the first embodiment has been described here, the third embodiment may be applied to the second embodiment.

以上示したように、本実施形態3によれば、実施形態1,2の作用効果に加え、予備充電時にキャリア周波数を高く設定することで突入電流を抑制することが可能となる。 As described above, according to the third embodiment, in addition to the effects of the first and second embodiments, it is possible to suppress the inrush current by setting the carrier frequency high during preliminary charging.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the present invention has been described in detail only with respect to the specific examples described above, it is obvious to those skilled in the art that various modifications and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are, of course, covered by the claims.

U1,V1,X1,Y1,U2,V2,X2,Y2…第1~第8半導体素子
L1,L2…第1,第2リアクトル
C1,C2…第1,第2コンデンサ
Tr…トランス
1…位相指令値生成部
2…ゲート生成部
3…減算器
4…PI制御部
5…矩形波生成部
6a,6b…第1乗算器
7a,7b…第1比較器
8…電力制御部
9…出力電圧制御部
10a,10b…三角波生成部
11a~11d…第2乗算器
12a~12d…第2比較器
13…選択回路
U1, V1, X1, Y1, U2, V2, X2, Y2... First to eighth semiconductor elements L1, L2... First and second reactors C1, C2... First and second capacitors Tr... Transformer 1... Phase command DESCRIPTION OF SYMBOLS Value generation part 2... Gate generation part 3... Subtractor 4... PI control part 5... Rectangular wave generation part 6a, 6b... First multiplier 7a, 7b... First comparator 8... Power control part 9... Output voltage control part 10a, 10b... triangular wave generator 11a to 11d... second multiplier 12a to 12d... second comparator 13... selection circuit

Claims (4)

第1コンデンサと、
前記第1コンデンサの正負極間に直列接続された第1,第2半導体素子と、
前記第1コンデンサの正負極間に直列接続された第3,第4半導体素子と、
第2コンデンサと、
前記第2コンデンサの正負極間に直列接続された第5,第6半導体素子と、
前記第2コンデンサの正負極間に直列接続された第7,第8半導体素子と、
前記第3,第4半導体素子の接続点に一端が接続された第1リアクトルと、
前記第7,第8半導体素子の接続点に一端が接続された第2リアクトルと、
前記第1リアクトルの他端と前記第1,第2半導体素子の接続点との間に1次巻線が接続され、前記第2リアクトルの他端と前記第5,第6半導体素子の接続点との間に2次巻線が接続されたトランスと、
制御回路と、
を備えた絶縁型DC/DC変換器であって、
前記制御回路は、
第1コンデンサ電圧と第2コンデンサ電圧の偏差に応じて電圧制御を行い、一次側位相指令値と二次側位相指令値を生成する位相指令値生成部と、
ゲート生成部と、
を備え、
前記ゲート生成部は、
キャリア信号に同期した第1矩形波を生成する矩形波生成部と、
前記一次側位相指令値と前記二次側位相指令値に前記第1矩形波をそれぞれ乗算して一次側の第2矩形波と二次側の第2矩形波を出力する第1乗算器と、
前記一次側の第2矩形波と前記キャリア信号とを比較して、前記第1,第2半導体素子のゲート信号と前記第3,第4半導体素子のゲート信号を生成し、前記二次側の第2矩形波と前記キャリア信号とを比較して、前記第5,第6半導体素子のゲート信号と前記第7,第8半導体素子のゲート信号を生成する第1比較器と、
を備え、
前記制御回路は、
前記電圧制御の結果に基づいて、予備充電時に前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差を小さくするゲート信号を生成することを特徴とする絶縁型DC/DC変換器。
a first capacitor;
first and second semiconductor elements connected in series between the positive and negative electrodes of the first capacitor;
third and fourth semiconductor elements connected in series between the positive and negative electrodes of the first capacitor;
a second capacitor;
fifth and sixth semiconductor elements connected in series between the positive and negative electrodes of the second capacitor;
seventh and eighth semiconductor elements connected in series between the positive and negative electrodes of the second capacitor;
a first reactor having one end connected to a connection point of the third and fourth semiconductor elements;
a second reactor having one end connected to a connection point of the seventh and eighth semiconductor elements;
A primary winding is connected between the other end of the first reactor and a connection point between the first and second semiconductor elements, and a connection point between the other end of the second reactor and the fifth and sixth semiconductor elements. a transformer having a secondary winding connected between
a control circuit;
An isolated DC/DC converter comprising:
The control circuit is
a phase command value generation unit that performs voltage control according to a deviation between the first capacitor voltage and the second capacitor voltage to generate a primary side phase command value and a secondary side phase command value;
a gate generator;
with
The gate generation unit
a rectangular wave generator that generates a first rectangular wave synchronized with a carrier signal;
a first multiplier that multiplies the primary-side phase command value and the secondary-side phase command value by the first rectangular wave, respectively, and outputs a second rectangular wave on the primary side and a second rectangular wave on the secondary side;
The second square wave on the primary side and the carrier signal are compared to generate gate signals for the first and second semiconductor elements and gate signals for the third and fourth semiconductor elements, and a first comparator that compares the second rectangular wave with the carrier signal to generate gate signals for the fifth and sixth semiconductor elements and gate signals for the seventh and eighth semiconductor elements;
with
The control circuit is
An isolated DC/DC converter that generates a gate signal that reduces a deviation between the first capacitor voltage and the second capacitor voltage during precharging based on the result of the voltage control.
第1コンデンサと、
前記第1コンデンサの正負極間に直列接続された第1,第2半導体素子と、
前記第1コンデンサの正負極間に直列接続された第3,第4半導体素子と、
第2コンデンサと、
前記第2コンデンサの正負極間に直列接続された第5,第6半導体素子と、
前記第2コンデンサの正負極間に直列接続された第7,第8半導体素子と、
前記第3,第4半導体素子の接続点に一端が接続された第1リアクトルと、
前記第7,第8半導体素子の接続点に一端が接続された第2リアクトルと、
前記第1リアクトルの他端と前記第1,第2半導体素子の接続点との間に1次巻線が接続され、前記第2リアクトルの他端と前記第5,第6半導体素子の接続点との間に2次巻線が接続されたトランスと、
制御回路と、
を備えた絶縁型DC/DC変換器であって、
前記制御回路は、
所望の位相差を有する一次側の第3矩形波と二次側の第3矩形波を生成して出力電力を制御する電力制御部と、
第1コンデンサ電圧と第2コンデンサ電圧の偏差に応じて電圧制御により位相指令値を生成し、前記一次側の第3矩形波と前記二次側の第3矩形波と前記位相指令値に基づいて、前記第1,第2半導体素子のゲート信号と、前記第3,第4半導体素子のゲート信号と、前記第5,第6半導体素子のゲート信号と、前記第7,第8半導体素子のゲート信号と、を生成する出力電圧制御部と、
を備え
前記制御回路は、
前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差に応じて前記電圧制御を行い、前記電圧制御の結果に基づいて、予備充電時に前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差を小さくするゲート信号を生成することを特徴とする絶縁型DC/DC変換器。
a first capacitor;
first and second semiconductor elements connected in series between the positive and negative electrodes of the first capacitor;
third and fourth semiconductor elements connected in series between the positive and negative electrodes of the first capacitor;
a second capacitor;
fifth and sixth semiconductor elements connected in series between the positive and negative electrodes of the second capacitor;
seventh and eighth semiconductor elements connected in series between the positive and negative electrodes of the second capacitor;
a first reactor having one end connected to a connection point of the third and fourth semiconductor elements;
a second reactor having one end connected to a connection point of the seventh and eighth semiconductor elements;
A primary winding is connected between the other end of the first reactor and a connection point between the first and second semiconductor elements, and a connection point between the other end of the second reactor and the fifth and sixth semiconductor elements. a transformer having a secondary winding connected between
a control circuit;
An isolated DC/DC converter comprising:
The control circuit is
a power control unit that generates a primary-side third rectangular wave and a secondary-side third rectangular wave having a desired phase difference and controls output power;
A phase command value is generated by voltage control according to the deviation between the first capacitor voltage and the second capacitor voltage, and based on the third rectangular wave on the primary side, the third rectangular wave on the secondary side, and the phase command value , the gate signals of the first and second semiconductor elements, the gate signals of the third and fourth semiconductor elements, the gate signals of the fifth and sixth semiconductor elements, and the gates of the seventh and eighth semiconductor elements an output voltage controller that generates a signal;
with
The control circuit is
The voltage control is performed according to the deviation between the first capacitor voltage and the second capacitor voltage, and the deviation between the first capacitor voltage and the second capacitor voltage is reduced during precharging based on the result of the voltage control. An isolated DC/DC converter that generates a gate signal .
前記電力制御部は、
キャリア信号に同期した第1矩形波を生成する矩形波生成部と、
一次側位相指令値および二次側位相指令値に前記第1矩形波をそれぞれ乗算して一次側の第2矩形波と二次側の第2矩形波を出力する第1乗算器と、
前記一次側の第2矩形波と前記キャリア信号とを比較して前記一次側の第3矩形波を生成し、前記二次側の第2矩形波と前記キャリア信号とを比較して前記二次側の第3矩形波を生成する第1比較器と、を備え、
前記出力電圧制御部は、
前記一次側の第3矩形波と前記二次側の第3矩形波に基づいて一次側位相制御用三角波と二次側位相制御用三角波を生成する三角波生成部と、
前記第1コンデンサ電圧と前記第2コンデンサ電圧の偏差に応じて前記位相指令値を生成する電圧制御部と、
前記一次側の第3矩形波と前記位相指令値に基づいて第1,第2半導体素子の位相指令値と第3,第4半導体素子の位相指令値を出力し、前記二次側の第3矩形波と前記位相指令値に基づいて第5,第6半導体素子の位相指令値と第7,第8半導体素子の位相指令値を出力する第2乗算器と、
前記第1,第2半導体素子の位相指令値と前記一次側位相制御用三角波とを比較して前記第1,第2半導体素子のゲート信号を生成し、前記第3,第4半導体素子の位相指令値と前記一次側位相制御用三角波とを比較して前記第3,第4半導体素子のゲート信号を生成し、前記第5,第6半導体素子の位相指令値と前記二次側位相制御用三角波とを比較して前記第5,第6半導体素子のゲート信号を生成し、前記第7,第8半導体素子の位相指令値と前記二次側位相制御用三角波とを比較して前記第7,第8半導体素子のゲート信号を生成する第2比較器と、を備えたことを特徴とする請求項2記載の絶縁型DC/DC変換器。
The power control unit
a rectangular wave generator that generates a first rectangular wave synchronized with a carrier signal;
a first multiplier that multiplies the primary-side phase command value and the secondary-side phase command value by the first rectangular wave, respectively, and outputs a primary-side second rectangular wave and a secondary-side second rectangular wave;
The second rectangular wave on the primary side and the carrier signal are compared to generate a third rectangular wave on the primary side, and the second rectangular wave on the secondary side and the carrier signal are compared to generate the secondary wave. a first comparator that generates a third rectangular wave on the side of
The output voltage control unit
a triangular wave generator that generates a triangular wave for primary side phase control and a triangular wave for secondary side phase control based on the third rectangular wave on the primary side and the third rectangular wave on the secondary side;
a voltage control unit that generates the phase command value according to the deviation between the first capacitor voltage and the second capacitor voltage;
Based on the third rectangular wave on the primary side and the phase command value, phase command values for the first and second semiconductor elements and phase command values for the third and fourth semiconductor elements are output, and the third rectangular wave on the secondary side is output. a second multiplier that outputs phase command values for fifth and sixth semiconductor elements and phase command values for seventh and eighth semiconductor elements based on the rectangular wave and the phase command value;
Phase command values for the first and second semiconductor elements are compared with the triangular wave for primary side phase control to generate gate signals for the first and second semiconductor elements, and phases for the third and fourth semiconductor elements are generated. A command value is compared with the triangular wave for primary side phase control to generate a gate signal for the third and fourth semiconductor elements, and a phase command value for the fifth and sixth semiconductor elements and the secondary side phase control The triangular wave is compared with the fifth and sixth semiconductor elements to generate gate signals for the fifth and sixth semiconductor elements, and the phase command values of the seventh and eighth semiconductor elements are compared with the triangular wave for secondary side phase control to generate the seventh semiconductor element. , and a second comparator for generating a gate signal for the eighth semiconductor device.
前記制御回路は、
予備充電時に、前記キャリア信号の周波数を通常運転時のキャリア信号よりも高くすることを特徴とする請求項1または3記載の絶縁型DC/DC変換器。
The control circuit is
4. The insulated DC/DC converter according to claim 1 , wherein the frequency of said carrier signal is set higher during pre-charging than during normal operation.
JP2019204334A 2019-11-12 2019-11-12 Isolated DC/DC converter Active JP7298448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204334A JP7298448B2 (en) 2019-11-12 2019-11-12 Isolated DC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204334A JP7298448B2 (en) 2019-11-12 2019-11-12 Isolated DC/DC converter

Publications (2)

Publication Number Publication Date
JP2021078274A JP2021078274A (en) 2021-05-20
JP7298448B2 true JP7298448B2 (en) 2023-06-27

Family

ID=75898873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204334A Active JP7298448B2 (en) 2019-11-12 2019-11-12 Isolated DC/DC converter

Country Status (1)

Country Link
JP (1) JP7298448B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251998A (en) 2012-06-01 2013-12-12 Meidensha Corp Controller of bidirectional insulation dc-dc converter
JP2014121194A (en) 2012-12-18 2014-06-30 Nissan Motor Co Ltd Power supply device
WO2016152366A1 (en) 2015-03-24 2016-09-29 三菱電機株式会社 Power conversion device
JP2019058029A (en) 2017-09-22 2019-04-11 株式会社豊田中央研究所 Power conversion apparatus
JP2019115130A (en) 2017-12-22 2019-07-11 三菱電機株式会社 DC converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251998A (en) 2012-06-01 2013-12-12 Meidensha Corp Controller of bidirectional insulation dc-dc converter
JP2014121194A (en) 2012-12-18 2014-06-30 Nissan Motor Co Ltd Power supply device
WO2016152366A1 (en) 2015-03-24 2016-09-29 三菱電機株式会社 Power conversion device
JP2019058029A (en) 2017-09-22 2019-04-11 株式会社豊田中央研究所 Power conversion apparatus
JP2019115130A (en) 2017-12-22 2019-07-11 三菱電機株式会社 DC converter

Also Published As

Publication number Publication date
JP2021078274A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US9209701B2 (en) Electric power conversion system
US9137885B2 (en) DC power supply device, and control method for DC power supply device
US20160099649A1 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US10097106B1 (en) Power converter
KR20190041094A (en) On-board charger system
JP2022122847A (en) Converter and power adapter
JP7226287B2 (en) DC power supply and control method for DC power supply
US20160118904A1 (en) Power conversion apparatus
CN116599337A (en) Cascade starting method of medium-voltage power electronic transformer
WO2015052743A1 (en) Electrical power converter
JP7298448B2 (en) Isolated DC/DC converter
CN110366814B (en) Power supply control device, power conversion system, and power supply control method
JP6470832B2 (en) Power converter and initial charging method thereof
JP2008125169A (en) Power transformer for system coordination
RU2567849C1 (en) Multi-channel constant-voltage transformer
JP7226219B2 (en) Isolated DC/DC converter
RU2447571C1 (en) Converter
KR102542941B1 (en) Charging apparatus capable of reducing low frequency leakage current
JP7375701B2 (en) Bidirectional isolated DC/DC converter and its control method
Guan et al. A High Step-Down Partial Power Processing Switched-Capacitor Converter for Wide Input Voltage Range Medium Voltage DC Applications
JP6333699B2 (en) Series resonant power transfer device
JP7099351B2 (en) Bidirectional isolated DC-DC converter and control method
CN112491273B (en) Active bridge converter and direct current component suppression method thereof
JP7384136B2 (en) Bidirectional isolated DC/DC converter and its control method
JP2018099011A (en) Charger with wide output voltage range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R150 Certificate of patent or registration of utility model

Ref document number: 7298448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150