JP7288651B2 - planar transformer - Google Patents

planar transformer Download PDF

Info

Publication number
JP7288651B2
JP7288651B2 JP2019021293A JP2019021293A JP7288651B2 JP 7288651 B2 JP7288651 B2 JP 7288651B2 JP 2019021293 A JP2019021293 A JP 2019021293A JP 2019021293 A JP2019021293 A JP 2019021293A JP 7288651 B2 JP7288651 B2 JP 7288651B2
Authority
JP
Japan
Prior art keywords
coil conductor
magnetic
primary coil
secondary coil
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019021293A
Other languages
Japanese (ja)
Other versions
JP2020129598A (en
Inventor
勉 水野
穎剛 卜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2019021293A priority Critical patent/JP7288651B2/en
Publication of JP2020129598A publication Critical patent/JP2020129598A/en
Application granted granted Critical
Publication of JP7288651B2 publication Critical patent/JP7288651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

特許法第30条第2項適用 平成30年3月9日豊岡市城崎健康福祉センターにおいて開催された電気学会が主催する「マグネティックス研究会(テーマ:パワーマグネティックス、磁気応用一般)」における研究会資料(発行日:平成30年3月9日)で公開するとともに、同研究会で発表Article 30, Paragraph 2 of the Patent Act applies Research at the "Magnetics Study Group (Theme: Power Magnetics, General Magnetic Applications)" sponsored by the Institute of Electrical Engineers of Japan held at the Kinosaki Health and Welfare Center in Toyooka City on March 9, 2018 Published in the meeting materials (date of issue: March 9, 2018) and announced at the study meeting

特許法第30条第2項適用 平成30年4月27日Marina Bay Sands Convention Centreにおいて開催されたThe IEEE Magnetics Societyが主催する「2018 Intermag Conference」におけるDigest Book(ウェブサイトの掲載日:平成30年4月13日)で公開するとともに、同会議で発表Article 30, Paragraph 2 of the Patent Act applies Digest Book at "2018 Intermag Conference" hosted by The IEEE Magnetics Society held at Marina Bay Sands Convention Center on April 27, 2018 (website publication date: 2018 April 13) and presented at the same conference

特許法第30条第2項適用 平成30年5月23日長野市生涯学習センターにおいて開催された電気学会(産業応用部門)が主催する「第30回『電磁力関連のダイナミクス』シンポジウム(SEAD30)」における講演論文集(発行日:平成30年5月23日)で公開するとともに、同シンポジウムで発表Application of Article 30, Paragraph 2 of the Patent Act May 23, 2018 The 30th ``Dynamics Related to Electromagnetic Force'' Symposium (SEAD30) hosted by the Institute of Electrical Engineers of Japan (Industrial Application Division) held at the Nagano City Lifelong Learning Center ” (published on May 23, 2018) and presented at the symposium

特許法第30条第2項適用 平成31年1月15日Marina Bay Sands Convention Centreにおいて開催されたThe IEEE Magnetics Societyが主催する「2019 Joint MMM-Intermag Conference」におけるBOOK OF ABSTRACTS(ウェブサイトの掲載日:平成31年1月4日)で公開するとともに、同会議で発表Application of Article 30, Paragraph 2 of the Patent Law The BOOK OF ABSTRACTS (website publication date of : January 4, 2019) and announced at the same conference

特許法第30条第2項適用 平成30年10月4日京都大学において開催された電子情報通信学会が主催する「無線電力伝送研究会(テーマ:電力変換技術、無線電力伝送、一般)」における技術研究報告(ウェブサイトの掲載日:平成30年9月26日)で公開するとともに、同会議で発表Application of Article 30, Paragraph 2 of the Patent Act At the "Wireless Power Transmission Study Group (Theme: Power Conversion Technology, Wireless Power Transmission, General)" hosted by the Institute of Electronics, Information and Communication Engineers held at Kyoto University on October 4, 2018 Disclosed in the technical research report (published on the website: September 26, 2018) and presented at the conference

本開示は、DC-DCコンバーター等におけるスイッチング電源用途の、高効率でしかも小型の平面トランスに関する。 The present disclosure relates to high efficiency and compact planar transformers for switching power supply applications such as in DC-DC converters.

一般にトランスは、スイッチング電源を構成する他の素子と比較して体積が大きく、電源の大型化の要因となっている。そこで近年、導体埋め込み平面トランス(以下、埋め込みトランス)が提案されている(特許文献1)。当文献では、トランスを平面状に構成するのみならず、一次コイル導体と二次コイル導体とを、上下位置に重畳して相対向した状態で螺旋状に積層し、且つ一次コイル導体と二次コイル導体との間に、非磁性絶縁体を介在させて、その一部或いは全部を磁性体で囲むことにより、コイルが生成する漏れ磁束のうち磁性体内を鎖交する成分を少なくし、磁性体の比透磁率の損失成分による実効抵抗を小さくしている。 In general, a transformer has a larger volume than other elements that constitute a switching power supply, and is a factor in increasing the size of the power supply. Therefore, in recent years, a conductor-embedded planar transformer (hereinafter referred to as an embedded transformer) has been proposed (Patent Document 1). In this document, not only is the transformer configured in a planar shape, but the primary coil conductor and the secondary coil conductor are stacked in a spiral manner in a state in which they are vertically superimposed and opposed to each other, and the primary coil conductor and the secondary coil conductor By interposing a non-magnetic insulator between the coil conductor and enclosing part or all of it with a magnetic material, the leakage magnetic flux component generated by the coil that interlinks with the magnetic material is reduced, and the magnetic material The effective resistance due to the loss component of the relative magnetic permeability is reduced.

また、同じく導体埋め込み平面トランスであって、非磁性基板両側にそれぞれ薄膜状の一次コイル導体と二次コイル導体を設け、各コイルを磁性膜で覆いかつ基板両側の磁性膜がビアを通して結合する構成としたことにより、交流損失を低減する技術も提案されている(特許文献2) Also, the conductor-embedded planar transformer has a configuration in which a thin-film primary coil conductor and a thin-film secondary coil conductor are provided on both sides of the non-magnetic substrate, each coil is covered with a magnetic film, and the magnetic films on both sides of the substrate are coupled through vias. By doing so, a technique for reducing AC loss has also been proposed (Patent Document 2)

トランスに限らず、平面コイルの表面の一部または全面を、コイル線間隔に対する所定の厚み比の非磁性絶縁層で被覆し、さらに全体を磁性体で覆うことにより、インダクタンスやQ値の減少を招くことなしに、コイルの許容電流を向上させる技術も既に開示されている(特許文献3) Not limited to transformers, reduction in inductance and Q value can be reduced by covering part or the entire surface of a planar coil with a non-magnetic insulating layer having a predetermined thickness ratio with respect to the coil wire spacing, and further covering the entire surface with a magnetic material. A technique for improving the allowable current of the coil has already been disclosed (Patent Document 3).

特開平5-258958号公報JP-A-5-258958 特開平10-74626号公報JP-A-10-74626 特開2002-299121号公報Japanese Patent Application Laid-Open No. 2002-299121

しかし、前記従来の平面トランスはコイルの占有率を高めるため、断面形状が長方形にならざるを得ず、その結果、表皮効果が顕著に現れる。さらに、コイルの占積率の増加に伴って巻線間の距離が近くなるため、近接効果に起因する交流抵抗も増加する However, in order to increase the occupancy rate of the coil, the conventional planar transformer has to have a rectangular cross-sectional shape, and as a result, the skin effect appears remarkably. Furthermore, as the space factor of the coil increases, the distance between the windings becomes closer, so the AC resistance due to the proximity effect also increases.

本開示の平面トランスは、平板状または薄膜状の一次コイル導体と前記一次コイル導体に積層する二次コイル導体とを有する平面トランスであって、前記一次コイル導体と前記二次コイル導体の間に非磁性絶縁層と、前記一次コイル導体の前記非磁性絶縁層と反対側の面内の中央部に第1の非磁性絶縁体と、前記二次コイル導体の前記非磁性絶縁層と反対側の面内の中央部に第2の非磁性絶縁体とを有し、さらに、前記非磁性絶縁層、前記一次コイル導体、前記二次コイル導体、前記第1の非磁性絶縁体、および前記第2の非磁性絶縁体を覆う磁性体を有し、前記一次コイル導体の前記第1の非磁性絶縁体側の面の両端部および両側面、ならびに前記二次コイル導体の前記第2の非磁性絶縁体側の面の両端部および両側面において、前記磁性体が、前記一次コイル導体および前記二次コイル導体に接し、前記一次コイル導体および前記二次コイル導体を被る構造を有する。 A planar transformer of the present disclosure is a planar transformer having a flat or thin-film primary coil conductor and a secondary coil conductor laminated on the primary coil conductor, wherein the primary coil conductor and the secondary coil conductor are interposed between the primary coil conductor and the secondary coil conductor. a non-magnetic insulating layer; a first non-magnetic insulating material at the center of the surface of the primary coil conductor opposite to the non-magnetic insulating layer; A second nonmagnetic insulator is provided in the in-plane central portion, and the nonmagnetic insulating layer, the primary coil conductor, the secondary coil conductor, the first nonmagnetic insulator, and the second coil conductor are further provided. Both ends and both side surfaces of the first nonmagnetic insulator side surface of the primary coil conductor, and the second nonmagnetic insulator side of the secondary coil conductor The magnetic body is in contact with the primary coil conductor and the secondary coil conductor and covers the primary coil conductor and the secondary coil conductor at both ends and both side surfaces of the surface of (1 ) .

前記第1の非磁性絶縁体の前記一次コイル導体の面に垂直な方向の厚みは、前記一次コイル導体の幅の0.8倍以上であってもよく、前記第2の非磁性絶縁体の前記二次コイル導体の面に垂直な方向の厚みは、前記二次コイル導体の幅の0.8倍以上であってもよい。 The thickness of the first non-magnetic insulator in the direction perpendicular to the surface of the primary coil conductor may be 0.8 times or more the width of the primary coil conductor, and the thickness of the second non-magnetic insulator The thickness of the secondary coil conductor in the direction perpendicular to the plane may be 0.8 times or more the width of the secondary coil conductor.

前記第1の非磁性絶縁体の幅は前記一次コイル導体の幅の0.6~0.8倍であってもよく、前記第2の非磁性絶縁体の幅は前記二次コイル導体の幅の0.6~0.8倍であってもよい。 The width of the first nonmagnetic insulator may be 0.6 to 0.8 times the width of the primary coil conductor, and the width of the second nonmagnetic insulator may be the width of the secondary coil conductor. 0.6 to 0.8 times.

前記非磁性絶縁層と前記第1の非磁性絶縁体と前記第2の非磁性絶縁体の組成は空気であってもよい。 A composition of the nonmagnetic insulating layer, the first nonmagnetic insulator, and the second nonmagnetic insulator may be air.

本開示の一実施形態の上面図および断面図1A and 1B are top and cross-sectional views of an embodiment of the present disclosure; 本開示の一実施形態の動作説明図Operation explanatory diagram of one embodiment of the present disclosure 本開示の実施例1のシミュレーション条件を示す構成図A configuration diagram showing simulation conditions of Example 1 of the present disclosure 本開示の実施例1のシミュレーション結果を示すグラフGraph showing simulation results of Example 1 of the present disclosure 本開示の実施例2および比較例のシミュレーション条件を示す構成図Configuration diagram showing simulation conditions of Example 2 of the present disclosure and a comparative example 本開示の実施例2および比較例のシミュレーション結果を示す濃淡図Gray scale diagram showing simulation results of Example 2 of the present disclosure and Comparative Example 本開示の実施例2および比較例のシミュレーション結果を示すグラフGraph showing simulation results of Example 2 and Comparative Example of the present disclosure 本開示の実施例3の全体図、回路図、および断面図An overall view, a circuit diagram, and a cross-sectional view of Example 3 of the present disclosure 本開示の実施例3の外観図および断面図Appearance view and cross-sectional view of Example 3 of the present disclosure 本開示の実施例4の全体図、回路図、および断面図An overall view, a circuit diagram, and a cross-sectional view of Example 4 of the present disclosure 本開示の実施例4の外観図および断面図External view and cross-sectional view of Example 4 of the present disclosure 本開示の実施例5の全体図、回路図、および断面図Overall view, circuit diagram, and cross-sectional view of Example 5 of the present disclosure 本開示の実施例5の外観図および断面図Appearance view and cross-sectional view of Example 5 of the present disclosure 本開示の実施例6の全体図、回路図、および断面図Overall view, circuit diagram, and cross-sectional view of Example 6 of the present disclosure 本開示の実施例6の外観図および断面図Exterior view and cross-sectional view of Example 6 of the present disclosure

以下、本開示の一態様に係る実施の形態について図面を参照しながら詳細に説明する。図1に本実施形態における平面トランス(1)の上面図(上)およびA-A‘における半断面図(下)を示す。なお、図1における平面トランス(1)は円筒形状を成す。図1において、11、12は磁性体である。磁性体11、12は、後述のように予め成型された固体をそれぞれ貼り合わせたものであってもよく、流動性のある磁性コンポジット材料等を固めて一体に成型したものであってもよい。 Hereinafter, embodiments according to one aspect of the present disclosure will be described in detail with reference to the drawings. FIG. 1 shows a top view (upper) and a half cross-sectional view (lower) taken along line AA' of the planar transformer (1) in this embodiment. The planar transformer (1) in FIG. 1 has a cylindrical shape. In FIG. 1, 11 and 12 are magnetic bodies. The magnetic bodies 11 and 12 may be formed by laminating preformed solids as described later, or may be integrally formed by solidifying a fluid magnetic composite material or the like.

21、22はそれぞれ一次コイル導体と二次コイル導体であり、例えばスパイラル状に形成された平板状または薄膜状の導体より成る。34は一次コイル導体21と二次コイル導体22の間に設けられた非磁性絶縁層である。材質としては使用される電圧において十分な絶縁性が維持できるものであれば特には限定されず、油紙、樹脂、セラミック、空気、等であってもよい。また本実施の形態においては、非磁性絶縁層34は一次コイル導体21および二次コイル導体22と同一の幅であり、一次コイル導体21および二次コイル導体22に沿って設けられている。 Reference numerals 21 and 22 denote a primary coil conductor and a secondary coil conductor, respectively, which are made of, for example, spiral flat or thin film conductors. A nonmagnetic insulating layer 34 is provided between the primary coil conductor 21 and the secondary coil conductor 22 . The material is not particularly limited as long as it can maintain sufficient insulation at the voltage used, and may be oil paper, resin, ceramic, air, or the like. In the present embodiment, nonmagnetic insulating layer 34 has the same width as primary coil conductor 21 and secondary coil conductor 22 and is provided along primary coil conductor 21 and secondary coil conductor 22 .

さらに、図1において、31および32は非磁性絶縁体であり、それぞれ一次コイ
ル導体21および二次コイル導体22のそれぞれの表面の、非磁性絶縁層34と反対の面内に設けられている。非磁性絶縁体31、32の材質は特に限定されず、例えば、樹脂、セラミック、空気(空隙)であってもよい。コイル導体表面の「面内に設けられ」とは、言い換えれば、非磁性絶縁体31および32の幅は一次コイル導体21および二次コイル導体22の幅よりも狭く形成されていることを意味する。ただ狭すぎると効果が出ないので、具体的寸法については、後述の実施例で示されるように、コイル導体の0.6~0.8倍程度が好ましい。また、非磁性絶縁体31および32の厚み(一次コイル導体21および二次コイル導体22の表面に対する垂線方向の長さ)は平面コイル1の形状寸法の制約内であれば、できるだけ大きい方が良い。好ましくは、後述の実施例に示されるように、一次コイル21および二次コイル22の幅の0.8倍以上がよい。
Furthermore, in FIG. 1, non-magnetic insulators 31 and 32 are provided on the surfaces of the primary coil conductor 21 and the secondary coil conductor 22, respectively, in the plane opposite to the non-magnetic insulating layer 34. As shown in FIG. The material of the non-magnetic insulators 31 and 32 is not particularly limited, and may be, for example, resin, ceramic, or air (void). "Provided in the plane" of the coil conductor surface means, in other words, that the widths of the non-magnetic insulators 31 and 32 are formed narrower than the widths of the primary coil conductor 21 and the secondary coil conductor 22. . However, if it is too narrow, the effect will not be obtained, so as to the specific dimension, it is preferable to be about 0.6 to 0.8 times the size of the coil conductor, as will be shown in the examples described later. Also, the thickness of the non-magnetic insulators 31 and 32 (the length in the direction perpendicular to the surfaces of the primary coil conductor 21 and the secondary coil conductor 22) should be as large as possible within the limitations of the shape and dimensions of the planar coil 1. . Preferably, the width is 0.8 times or more the width of the primary coil 21 and the secondary coil 22, as shown in the examples described later.

さらに、一次コイル導体21、二次コイル導体22、非磁性絶縁層34、非磁性絶縁体31、非磁性絶縁体32は磁性体11、12で覆われている。磁性体11、12は被被覆物の形状を予め型取りして成形されたフェライト等の磁性体であってもよい。また、被被覆物の周囲にコンポジット磁性材料を流し込んで成型したものであってもよい。なお、非磁性絶縁体31、32が空気の場合、空隙にコンポジット材料が流れ込まないように、薄い覆いで空隙部を保護するような部材を予め設けても良い。 Furthermore, the primary coil conductor 21 , secondary coil conductor 22 , nonmagnetic insulating layer 34 , nonmagnetic insulator 31 , and nonmagnetic insulator 32 are covered with magnetic bodies 11 and 12 . The magnetic bodies 11 and 12 may be magnetic bodies such as ferrite molded in advance from the shape of the object to be coated. Alternatively, it may be molded by pouring a composite magnetic material around the object to be coated. When the non-magnetic insulators 31 and 32 are air, a thin cover may be provided in advance to protect the gap so that the composite material does not flow into the gap.

図1に示された本実施の形態の動作および効果を図2に示す。図2は最内周部の巻における一次コイル導体21および22、非磁性絶縁層34、非磁性絶縁体31および32の断面を表す。併せて図2に、コイルの内周側に生じる磁力線の例を示す(図中、実曲線)。任意の巻のコイルに電流が流れると磁力線が発生するが、従来は、この磁力線は隣の巻のコイルにより発生する磁力線の影響(近接効果)を受け、特に最内周に位置する巻のコイル(21、22)が発する磁力線は、外周側のコイルから、外周側に引き寄せられる力を受けていた(図中、破曲線)。磁力線が外周側に強く引き寄せられると、内周側の一部の磁力線はコイルの導体の中に入り込み、渦電流を発生させる。その結果、交流抵抗が増えることとなる。最外周の巻きでは、これとは反対に、磁力線が内周側に引き寄せられる現象が生じる。 FIG. 2 shows the operation and effects of this embodiment shown in FIG. FIG. 2 shows cross sections of the primary coil conductors 21 and 22, the nonmagnetic insulating layer 34, and the nonmagnetic insulators 31 and 32 in the innermost turns. In addition, FIG. 2 shows an example of magnetic lines of force generated on the inner peripheral side of the coil (solid curves in the figure). Magnetic lines of force are generated when a current flows through a coil of an arbitrary winding. The magnetic lines of force emitted by (21, 22) received a force drawn toward the outer circumference from the coil on the outer circumference (broken curve in the figure). When the magnetic lines of force are strongly attracted to the outer circumference, some of the magnetic lines of force on the inner circumference enter the conductor of the coil, generating eddy currents. As a result, AC resistance will increase. On the outermost winding, on the contrary, a phenomenon occurs in which the lines of magnetic force are attracted toward the inner circumference.

そこで本実施の形態では、磁力線の通り道であるコイル表面上部に非磁性絶縁体31、32を設ける。すると、磁力線はこの非磁性絶縁体31、32を避けて通ろうと紙面上向きに進もうとする。このため、外周側に引き寄せられても、コイル導体内に入り込む磁力線は圧倒的に少なくなる。その結果、磁性層11、12を設けないタイプや、非磁性絶縁体31、32を設けずに一次コイル導体21と二次コイル導体22を直接磁性体11、12で覆ったタイプの従来方式の平面トランスと比べて交流抵抗の少ない、言い換えればコイル間効率が高い、平面トランスを実現することができる。 Therefore, in the present embodiment, non-magnetic insulators 31 and 32 are provided on the upper surface of the coil, which is the path of the lines of magnetic force. Then, the lines of magnetic force attempt to move upward on the paper to avoid the non-magnetic insulators 31 and 32 . Therefore, even if the magnetic field lines are attracted to the outer peripheral side, the number of magnetic lines of force that enter the coil conductor is greatly reduced. As a result, conventional methods such as a type without the magnetic layers 11 and 12 and a type in which the primary coil conductor 21 and the secondary coil conductor 22 are directly covered with the magnetic materials 11 and 12 without providing the non-magnetic insulators 31 and 32 are available. It is possible to realize a planar transformer that has less AC resistance than a planar transformer, in other words, that has a high inter-coil efficiency.

以下、本開示の実施例について説明する。
(実施例1)
本実施例では非磁性絶縁体31、32のパラメータ解析を行う。図3に本実施例の解析モデルを示す。本実施例においては、非磁性絶縁層34と非磁性絶縁体31、32は空気で構成されているとする。すなわち、一次(Primary)コイル導体と二次(Secondary)コイル導体の層間に磁性体がなく、一次側コイル導体上部と二次側コイル導体下部にそれぞれ空隙(Void)が設けられている構造を有する。
Examples of the present disclosure will be described below.
(Example 1)
In this embodiment, parameter analysis of the non-magnetic insulators 31 and 32 is performed. FIG. 3 shows the analysis model of this embodiment. In this embodiment, the nonmagnetic insulating layer 34 and the nonmagnetic insulators 31 and 32 are made of air. That is, it has a structure in which there is no magnetic material between the layers of the primary coil conductor and the secondary coil conductor, and voids are provided above the primary coil conductor and below the secondary coil conductor, respectively. .

表1に本実施例における解析条件を示す。

Figure 0007288651000001

解析にはJSOL社のJMAG-Designer(登録商標)ver.17.0を用いた。解析方法は二次元軸対称周波数応答解析である。z軸を中心としてzr平面をθ方向に回転させた軸対称モデルを解析モデルとした。平面トランスは外半径8.8mm、高さ2.5mmの円筒形状とした。一次コイル導体、二次コイル導体ともに巻数N=6のスパイラルコイルとし、外半径を8.3mm、銅箔パターンの幅を0.8mm、銅箔パターンの厚さを0.1mm、銅箔パターン間の幅を0.5mmとしている。さらに空隙(Void)(非磁性絶縁体31、32)の高さをh、幅をwとし、h=0.1~1mm、w=0.1~0.8mmとした条件で解析を行った。コアである磁性体11、12は高周波で低損失な磁性コンポジット材料を想定し複素比透磁率をμ’=10、μ” =0.1とした。電流はI=1Amax、周波数はISMバンドである13.56MHzとし、二次側開放時における鉄損を考慮した抵抗R、インダクタンスL、および二次側短絡時におけるインダクタンスLshを解析した。 Table 1 shows the analysis conditions in this example.

Figure 0007288651000001

JMAG-Designer (registered trademark) ver. 17.0 was used. The analysis method is two-dimensional axisymmetric frequency response analysis. An axisymmetric model obtained by rotating the zr plane in the θ direction around the z axis was used as the analysis model. The plane transformer had a cylindrical shape with an outer radius of 8.8 mm and a height of 2.5 mm. Both the primary coil conductor and the secondary coil conductor were spiral coils with the number of turns N = 6, the outer radius was 8.3 mm, the width of the copper foil pattern was 0.8 mm, the thickness of the copper foil pattern was 0.1 mm, and the distance between the copper foil patterns is 0.5 mm. Further, under the conditions that h t =0.1 to 1 mm and w a =0.1 to 0.8 mm, the height of the void (the nonmagnetic insulators 31 and 32) is h t and the width is w a . I did the analysis. The magnetic bodies 11 and 12, which are the cores, are assumed to be a high-frequency, low-loss magnetic composite material, and the complex relative permeability is set to μ′=10 and μ″=0.1. The current is I=1 A max and the frequency is the ISM band. is 13.56 MHz, and the resistance R p , the inductance L p , and the inductance L sh when the secondary side is short-circuited are analyzed in consideration of iron loss when the secondary side is open.

なお、トランス一次側コイルのQ値は下式を用いて算出した。

Figure 0007288651000002
ここに、ω:角周波数(rad/s)、L:二次側開放時のインダクタンス(H)、R:二次側開放時の一次側抵抗(Ω)である。さらに結合係数kは下式を用いて算出した。
Figure 0007288651000003
ここに、L:二次側開放時のインダクタンス(H)、Lsh:二次側短絡時のインダクタンス(H)である。 The Q value of the primary side coil of the transformer was calculated using the following formula.
Figure 0007288651000002
Here, ω: angular frequency (rad/s), L p : inductance (H) when the secondary side is open, and R p : primary side resistance (Ω) when the secondary side is open. Furthermore, the coupling coefficient k was calculated using the following formula.
Figure 0007288651000003
Here, L p : inductance (H) when the secondary side is open, L sh : inductance (H) when the secondary side is short-circuited.

以下、解析結果を示す。図4はμ”=0.1のときの平面トランス1のインピーダンス特性を示したものである。まず、図4(a)は二次側開放時の抵抗Rを示す。空隙が大きくなる(h=0.1→1.0、w=0.1→0.7)と磁性体が減り、鉄損に起因する抵抗が減るため、結果としてRは小さくなることが示される。 The analysis results are shown below. FIG. 4 shows the impedance characteristics of the planar transformer 1 when μ″=0.1. First, FIG. 4(a) shows the resistance Rp when the secondary side is open. h t =0.1→1.0, w a =0.1→0.7), the amount of magnetic material decreases, the resistance caused by iron loss decreases, and as a result, R p decreases.

次に、同図(b)に二次側開放時のインダクタンスLを示す。空隙が大きくなるにしたがい磁性体が減るため、L(二次側開放時のインダクタンス)も小さくなる。 Next, FIG. 4(b) shows the inductance Lp when the secondary side is open. Since the magnetic material decreases as the air gap increases, L p (inductance when the secondary side is open) also decreases.

次に、同図(c)は二次側開放時のQ値を示す。Q値の場合、空隙の大きさに最適値が存在する。本実施例の場合、h=1.0、w=0.7において、Qは最大値120.6を示す。 Next, FIG. 4(c) shows the Q value when the secondary side is open. For the Q value, there is an optimum value for the size of the void. In this example, Q exhibits a maximum value of 120.6 when h t =1.0 and w a =0.7.

同図(d)は二次側短絡時のインダクタンス(Laekage inductance)Lshを示す。この場合、空隙のパラメータ変化に対しLshは0.03%程度しか変動しなかった。 FIG. 4(d) shows the inductance (Laekage inductance) Lsh when the secondary side is short-circuited. In this case, Lsh fluctuated by only about 0.03% with respect to the parameter change of the void.

同図(e)は結合係数kを示す。結合係数kは空隙が大きくなるほど低下する傾向にはあるが、本実施例のパラメータの範囲において0.96以上は確保できている。全体的に見れば、h=1.0、w=0.7においてQ値は最大となり、h=1.0、w=0.8またはh=1.0、w=0.6では却ってQ値は低下する。そこで、w=0.6~0.8の範囲で空隙を設けることでコイル間効率は向上すると考えられる。 The figure (e) shows the coupling coefficient k. Although the coupling coefficient k tends to decrease as the gap increases, 0.96 or more can be ensured within the parameter range of this example. Overall, the Q value is highest at h t =1.0, w a =0.7, h t =1.0, w a =0.8 or h t =1.0, w a = At 0.6, the Q value is rather lowered. Therefore, it is considered that the inter-coil efficiency is improved by providing an air gap in the range of w a =0.6 to 0.8.

以上、本実施例によれば、h=1、w=0.6~0.8の範囲で空隙(非磁性絶縁体)を設けることにより、交流抵抗の低減とQ値の向上が実現でき、全体としてコイル間効率を向上させることができる。 As described above, according to this embodiment, by providing an air gap (non-magnetic insulator) in the range of h t = 1 and w a = 0.6 to 0.8, it is possible to reduce the AC resistance and improve the Q value. It is possible to improve the inter-coil efficiency as a whole.

以下、本開示の実施例2について説明する。
(実施例2)
図5(a)に従来の平面トランス(比較例)を、図5(b)に本実施の形態における平面トランスの解析モデルを示す。比較例の平面トランスは一次コイル導体も二次コイル導体も磁性材料に完全に埋め込まれている。本実施の形態に係る埋め込みトランスは一次コイル導体と二次コイル導体の層間に磁性体が設けられず、さらに一次コイル導体上部と二次コイル導体下部に高さ1mm、幅0.7mmの空隙が設けられている。さらに、巻線両端に幅0.05mmの磁性キャップ構造が形成されている。
A second embodiment of the present disclosure will be described below.
(Example 2)
FIG. 5(a) shows a conventional planar transformer (comparative example), and FIG. 5(b) shows an analytical model of the planar transformer according to the present embodiment. In the planar transformer of the comparative example, both the primary coil conductor and the secondary coil conductor are completely embedded in the magnetic material. In the embedded transformer according to this embodiment, no magnetic material is provided between the layers of the primary coil conductor and the secondary coil conductor, and a gap of 1 mm in height and 0.7 mm in width is provided between the upper part of the primary coil conductor and the lower part of the secondary coil conductor. is provided. Furthermore, a magnetic cap structure with a width of 0.05 mm is formed on both ends of the winding.

表2に二次側開放時の抵抗R、インダクタンスL、二次側短絡時の抵抗RshおよびインダクタンスLshの解析結果を示す。なお、表2において、上段(Embedded transformer)は比較例を、下段(Embedded transformer with MPC)は本実施例の解析結果である。ここでMPCとはMagnetic Flux Path Control Technologyの略称であり、磁性体を適切に配置することにより磁力線を制御する技術を意味する。本実施の形態において、非磁性絶縁体を空気とした場合(要所に磁性体を設けない場合)と等価である。解析には、実施例1と同様、JSOL社のJMAG-Designer(登録商標)ver.17.0を用いた。

Figure 0007288651000004
Table 2 shows the analysis results of the resistance R p and inductance L p when the secondary side is open, and the resistance R sh and inductance L sh when the secondary side is short-circuited. In Table 2, the upper row (Embedded transformer) is the comparative example, and the lower row (Embedded transformer with MPC) is the analysis result of the present example. Here, MPC is an abbreviation for Magnetic Flux Path Control Technology, and means a technology for controlling magnetic lines of force by appropriately arranging magnetic bodies. In the present embodiment, this is equivalent to the case where air is used as the non-magnetic insulator (no magnetic material is provided at important points). As in Example 1, JMAG-Designer (registered trademark) ver. 17.0 was used.

Figure 0007288651000004

図6に実動状態に近い二次側短絡時の埋め込みトランスの電流密度分布を示す。比較例(同図(a))では、コイルの端部、特に最内周内周側に電流密度が偏っている。しかし、非磁性絶縁体である空隙を設けた本実施例では、導線内の電流密度分布がほぼ一様となっている。これは、空隙を設けて磁性キャップ構造をとることにより、平角線の端部に鎖交する磁束が減少したためである。 FIG. 6 shows the current density distribution of the embedded transformer when the secondary side is short-circuited, which is close to the actual operation. In the comparative example ((a) in the figure), the current density is biased toward the ends of the coil, particularly toward the innermost circumference. However, in the present embodiment in which the air gap, which is a non-magnetic insulator, is provided, the current density distribution within the conducting wire is substantially uniform. This is because magnetic flux interlinking with the ends of the rectangular wire is reduced by providing a gap and adopting a magnetic cap structure.

本実施例においては、二次側開放時の抵抗Rは0.32Ωと計算され、従来の0.96Ωより66.7%も低減した。これは、空隙を設けることにより磁性キャップ構造になり、銅線端部に鎖交する磁束が減少したためである。また空隙を開けた分の鉄損に起因する抵抗の減少も考えられる。 In this embodiment, the resistance Rp when the secondary side is open is calculated to be 0.32Ω, which is 66.7% lower than the conventional value of 0.96Ω. This is because the magnetic cap structure is formed by providing the air gap, and the magnetic flux interlinking with the end of the copper wire is reduced. It is also conceivable that the resistance is reduced due to iron loss corresponding to the opening of the gap.

また、本実施例においては二次側開放時のインダクタンスLは0.45μHとなり、比較例の1.04μHの56.9%に低下する。これは空隙を設けたことにより、磁性体の総量が減ったためと考えられる。さらに、本実施例では二次側短絡時のインダクタンス、つまり漏れインダクタンスLshは0.03μHになり、比較例の0.21μHの85.2%に低下する。これは一次側巻線と二次側巻線の線間に空隙を設けたことにより、閉磁路が塞がったためと考えられる。 In this embodiment, the inductance Lp when the secondary side is open is 0.45 μH, which is 56.9% of the 1.04 μH of the comparative example. It is considered that this is because the total amount of the magnetic material was reduced by providing the air gap. Furthermore, in this embodiment, the inductance when the secondary side is short-circuited, that is, the leakage inductance Lsh is 0.03 μH, which is 85.2% of the 0.21 μH of the comparative example. It is considered that this is because the closed magnetic circuit is blocked by providing a gap between the wires of the primary winding and the secondary winding.

以下、本実施例におけるコイル間効率を求める。コイル間効率ηは、結合係数kとQ値の積を用いて以下のように求められる。

Figure 0007288651000005
図7に(3)式よりコイル間効率ηを算出した結果を示す。本実施例(Embedded transformer with MPC)ではη=98.3%になり、比較例(Embedded transformer)の97.6%よりも0.7%向上した。 The inter-coil efficiency in this embodiment will be obtained below. The inter-coil efficiency η c is obtained as follows using the product of the coupling coefficient k and the Q value.
Figure 0007288651000005
FIG. 7 shows the result of calculating the inter-coil efficiency ηc from the equation (3). In this example (embedded transformer with MPC), η c =98.3%, which is 0.7% higher than 97.6% in the comparative example (embedded transformer).

以上、実施例1と実施例2をまとめると、h=1、w=0.7においてQ値は最高値120.6となった。このとき、銅線内部の電流密度の偏りは減っているため交流抵抗は低減した。また、従来の埋め込み型の比較例と比較して、コイル導体の端部に鎖交する磁束が減少し、開放抵抗Rが66.7%低減した。また漏れインダクタンスLshが85.2%低減したことにより結合係数kは7.6%向上し、最終的に0.965となった。 Summarizing the results of Examples 1 and 2, the maximum Q value was 120.6 when h t =1 and w a =0.7. At this time, the current density inside the copper wire was less uneven, so the AC resistance was reduced. In addition, compared to the conventional embedded type comparative example, the magnetic flux interlinking with the end of the coil conductor was reduced, and the open resistance Rp was reduced by 66.7%. Further, the coupling coefficient k was improved by 7.6% due to the 85.2% reduction in the leakage inductance Lsh , and finally became 0.965.

結合係数kとQ値からコイル間効率ηを求めると、上記実施例(Embedded transformer with MPC)では比較例(Embedded transformer)よりも0.7%向上し、損失は30%減少した。以上の実施例において、結合係数kとQ値を増加させコイル間効率を向上させることができることが実証された。 When the inter-coil efficiency η c is obtained from the coupling coefficient k and the Q value, the above example (Embedded transformer with MPC) is 0.7% higher than the comparative example (Embedded transformer), and the loss is 30% lower. In the above examples, it was demonstrated that the efficiency between the coils can be improved by increasing the coupling coefficient k and the Q value.

以下、形状を変えた平面トランス1の他の実施例について説明する。
(実施例3)
図8に実施例3の平面トランス1の全体図(a)、回路図(b)、断面図(c)を示す。本実施例は一時側と二次側で巻線比を変え、昇圧機能を持たせたものである。一次側と二次側のコイル導体が同じ巻数で対向している場合、昇圧比は1:1となるが、本実施例は、図8(c)に示されているように一次コイル導体21が巻数(N=)4であるのに対し、二次側は二次コイル導体22と二次コイル導体23を直列に接続(回路図上は同図(b)に示す通り)して、巻数(N)を実質8としたものであり、昇圧比を1:2とすることができる。
Another embodiment of the planar transformer 1 having a different shape will be described below.
(Example 3)
FIG. 8 shows an overall view (a), a circuit diagram (b), and a sectional view (c) of the planar transformer 1 of the third embodiment. In this embodiment, the winding ratio is changed between the primary side and the secondary side to provide a step-up function. When the primary and secondary coil conductors face each other with the same number of turns, the step-up ratio is 1:1. has 4 turns (N=), while on the secondary side, the secondary coil conductor 22 and the secondary coil conductor 23 are connected in series (as shown in the circuit diagram (b)), and the number of turns is (N) is substantially 8, and the step-up ratio can be set to 1:2.

本実施例における平面トランスの外観および、一次コイル導体と二次コイル導体の平面形状(それぞれB-B‘断面、C-C’断面)を図9に示す。なお、二次側のコイルは同図右下のコイルを2枚重ねたものになるが、直列接続のための配線については省略する。 FIG. 9 shows the appearance of the planar transformer and the planar shapes of the primary coil conductor and the secondary coil conductor (BB' cross section and CC' cross section, respectively) in this embodiment. The coil on the secondary side is formed by stacking two coils shown in the lower right of the figure, but the wiring for series connection is omitted.

(実施例4)
図10に実施例4に係る平面トランス1の実施例の全体図(a)、回路図(b)、断面図(c)を、図11にその外観と一次コイル導体と二次コイル導体の平面図(それぞれB-B‘断面、C-C’断面)を示す。本実施例においては一次側の巻数は(N=)3、二次側の巻数は(N=)2であるので、昇圧比は3:2となる(図10(b)参照)。一次側と二次側でコイル導体のピッチは異なるが、一次コイル導体の上部と二次コイル導体の下部には空隙(非磁性絶縁体)が設けられている。
(Example 4)
FIG. 10 shows an overall view (a), a circuit diagram (b), and a sectional view (c) of a planar transformer 1 according to the fourth embodiment, and FIG. Figures (BB' cross section and CC' cross section, respectively) are shown. In this embodiment, the number of turns on the primary side is (N=) 3, and the number of turns on the secondary side is (N=) 2, so the step-up ratio is 3:2 (see FIG. 10(b)). Although the pitch of the coil conductors is different between the primary side and the secondary side, an air gap (non-magnetic insulator) is provided above the primary coil conductor and below the secondary coil conductor.

(実施例5)
図12に実施例5に係る平面トランス1の実施例の全体図(a)、回路図(b)、断面図(c)を、図13にその外観と一次コイル導体と二次コイル導体の平面図を示す。本実施例はスパイラルでも同心円でもなく、ミアンダ(九十九折)形状のコイル導体を有することを特徴とする。コイルをミアンダ状にすることにより、それぞれのコイルの2端を並べて配置することができる。
(Example 5)
FIG. 12 shows an overall view (a), a circuit diagram (b), and a sectional view (c) of a planar transformer 1 according to Example 5, and FIG. Figure shows. This embodiment is characterized by having a meander-shaped coil conductor that is neither spiral nor concentric. By making the coils meandering, the two ends of each coil can be arranged side by side.

(実施例6)
図14に実施例6に係る平面トランス1の実施例の全体図(a)、回路図(b)、断面図(c)を、図15にその外観と一次コイル導体と二次コイル導体の平面図を示す。本実施例は一次側と二次側とで巻線数を変えたミアンダ形状コイル型の平面トランスに係る。本実施例において、一次側の巻数は(N=)2、二次側の巻数は(N=)1であるので、昇圧比は2:1となる(図14(b)参照)。一次側と二次側でコイル導体のピッチは異なるが、一次コイル導体の上部と二次コイル導体の下部には空隙(非磁性絶縁体)が設けられている。
(Example 6)
FIG. 14 shows an overall view (a), a circuit diagram (b), and a sectional view (c) of a planar transformer 1 according to Example 6, and FIG. Figure shows. This embodiment relates to a plane transformer of a meandering coil type in which the number of turns is changed between the primary side and the secondary side. In this embodiment, the number of turns on the primary side is (N=) 2, and the number of turns on the secondary side is (N=) 1, so the step-up ratio is 2:1 (see FIG. 14(b)). Although the pitch of the coil conductors is different between the primary side and the secondary side, an air gap (non-magnetic insulator) is provided above the primary coil conductor and below the secondary coil conductor.

以上、本実施の形態によれば、平板状の一次コイル導体21と二次コイル導体22とを、非磁性絶縁層(空隙)34を介在させて積層し、一次コイル導体21の非磁性絶縁層34と反対側に非磁性絶縁体(空隙)31を、二次コイル導体22の非磁性絶縁層34と反対側に非磁性絶縁体(空隙)32を設け、非磁性絶縁層34、一次コイル導体21、二次コイル導体22、非磁性絶縁体31、32をすべて覆う磁性体を設けたことにより、小型でコイル間効率が高い平面トランスを実現することができる。 As described above, according to the present embodiment, the flat primary coil conductor 21 and the secondary coil conductor 22 are laminated with the nonmagnetic insulating layer (air gap) 34 interposed therebetween, and the nonmagnetic insulating layer of the primary coil conductor 21 A non-magnetic insulator (air gap) 31 is provided on the side opposite to 34, and a non-magnetic insulator (air gap) 32 is provided on the side opposite to the non-magnetic insulating layer 34 of the secondary coil conductor 22. The non-magnetic insulating layer 34 and the primary coil conductor 21, the secondary coil conductor 22, and the non-magnetic insulators 31, 32, a small planar transformer with high inter-coil efficiency can be realized.

なお、本実施形態において、非磁性絶縁体は空隙としたが、これに限定されず、例えばエポキシ等の樹脂やセラミック等、非磁性で絶縁性が保証できるものであれば、他の材質を用いてもよい。 In the present embodiment, the non-magnetic insulator is an air gap, but it is not limited to this, and other materials such as resin such as epoxy or ceramics can be used as long as they are non-magnetic and can guarantee insulation. may

本発明は、スイッチング電源のトランスに応用することにより、機器の小型化と高効率化を図ることができる。特に精密なコイル導体が強固な磁性体で覆われていることから、構造的にも頑丈であり人工衛星搭載機器など過酷な状況下での用途に向いている。 INDUSTRIAL APPLICABILITY By applying the present invention to a transformer of a switching power supply, it is possible to achieve miniaturization and high efficiency of equipment. In particular, since the precision coil conductor is covered with a strong magnetic material, it is structurally robust and suitable for applications under harsh conditions such as equipment onboard artificial satellites.

1 平面トランス
11、12 磁性体
21 一次コイル導体
22、23 二次コイル導体
31、32 非磁性絶縁体
34 非磁性絶縁層
Reference Signs List 1 planar transformer 11, 12 magnetic material 21 primary coil conductor 22, 23 secondary coil conductor 31, 32 nonmagnetic insulator 34 nonmagnetic insulating layer

Claims (4)

平板状または薄膜状の一次コイル導体と前記一次コイル導体に積層する二次コイル導体とを有する平面トランスであって、
前記一次コイル導体と前記二次コイル導体の間に非磁性絶縁層と、
前記一次コイル導体の前記非磁性絶縁層と反対側の面内の中央部に第1の非磁性絶縁体と、
前記二次コイル導体の前記非磁性絶縁層と反対側の面内の中央部に第2の非磁性絶縁体とを有し、
さらに、前記非磁性絶縁層、前記一次コイル導体、前記二次コイル導体、前記第1の非磁性絶縁体、および前記第2の非磁性絶縁体を覆う磁性体を有し、
前記一次コイル導体の前記第1の非磁性絶縁体側の面の両端部および両側面、ならびに前記二次コイル導体の前記第2の非磁性絶縁体側の面の両端部および両側面において、前記磁性体が、前記一次コイル導体および前記二次コイル導体に接し、前記一次コイル導体および前記二次コイル導体を被る、平面トランス。
A planar transformer having a flat or thin-film primary coil conductor and a secondary coil conductor laminated on the primary coil conductor,
a non-magnetic insulating layer between the primary coil conductor and the secondary coil conductor;
a first non-magnetic insulator in the center of the plane of the primary coil conductor opposite to the non-magnetic insulating layer;
a second non-magnetic insulator in the center of the surface of the secondary coil conductor opposite to the non-magnetic insulating layer;
further comprising a magnetic body covering the non-magnetic insulating layer, the primary coil conductor, the secondary coil conductor, the first non-magnetic insulator, and the second non-magnetic insulator;
At both ends and both side surfaces of the first non-magnetic insulator side surface of the primary coil conductor and at both end portions and both side surfaces of the second non-magnetic insulator side surface of the secondary coil conductor, the magnetic material contacts said primary coil conductor and said secondary coil conductor and covers said primary coil conductor and said secondary coil conductor.
前記第1の非磁性絶縁体の前記一次コイル導体の面に垂直な方向の厚みは、前記一次コイル導体の幅の0.8倍以上であり、前記第2の非磁性絶縁体の前記二次コイル導体の面に垂直な方向の厚みは、前記二次コイル導体の幅の0.8倍以上であることを特徴とする、請求項1に記載の平面トランス。 The thickness of the first non-magnetic insulator in the direction perpendicular to the plane of the primary coil conductor is 0.8 times or more the width of the primary coil conductor, and the secondary coil conductor of the second non-magnetic insulator is 2. The planar transformer according to claim 1, wherein the thickness of the coil conductor in the direction perpendicular to the plane thereof is 0.8 times or more the width of the secondary coil conductor. 前記第1の非磁性絶縁体の幅は前記一次コイル導体の幅の0.6~0.8倍であり、前記第2の非磁性絶縁体の幅は前記二次コイル導体の幅の0.6~0.8倍であることを特徴とする、請求項1に記載の平面トランス。 The width of the first non-magnetic insulator is 0.6 to 0.8 times the width of the primary coil conductor, and the width of the second non-magnetic insulator is 0.00 of the width of the secondary coil conductor. A planar transformer according to claim 1, characterized in that it is 6 to 0.8 times. 前記非磁性絶縁層と前記第1の非磁性絶縁体と前記第2の非磁性絶縁体の組成は空気であることを特徴とする請求項1に記載の平面トランス。

2. The planar transformer according to claim 1, wherein said non-magnetic insulating layer, said first non-magnetic insulator and said second non-magnetic insulator are composed of air.

JP2019021293A 2019-02-08 2019-02-08 planar transformer Active JP7288651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019021293A JP7288651B2 (en) 2019-02-08 2019-02-08 planar transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019021293A JP7288651B2 (en) 2019-02-08 2019-02-08 planar transformer

Publications (2)

Publication Number Publication Date
JP2020129598A JP2020129598A (en) 2020-08-27
JP7288651B2 true JP7288651B2 (en) 2023-06-08

Family

ID=72175385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021293A Active JP7288651B2 (en) 2019-02-08 2019-02-08 planar transformer

Country Status (1)

Country Link
JP (1) JP7288651B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299121A (en) 2001-04-02 2002-10-11 Kawasaki Steel Corp Planar magnetic element
JP2012195471A (en) 2011-03-17 2012-10-11 Murata Mfg Co Ltd Method for producing multilayer substrate and multilayer substrate produced by the method
JP2015035486A (en) 2013-08-08 2015-02-19 Tdk株式会社 Laminated coil component
JP2016018926A (en) 2014-07-09 2016-02-01 株式会社村田製作所 Impedance conversion element and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258958A (en) * 1992-03-13 1993-10-08 Matsushita Electric Works Ltd Laminated transformer
JP3208842B2 (en) * 1992-05-07 2001-09-17 株式会社村田製作所 LC composite electronic components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299121A (en) 2001-04-02 2002-10-11 Kawasaki Steel Corp Planar magnetic element
JP2012195471A (en) 2011-03-17 2012-10-11 Murata Mfg Co Ltd Method for producing multilayer substrate and multilayer substrate produced by the method
JP2015035486A (en) 2013-08-08 2015-02-19 Tdk株式会社 Laminated coil component
JP2016018926A (en) 2014-07-09 2016-02-01 株式会社村田製作所 Impedance conversion element and method of manufacturing the same

Also Published As

Publication number Publication date
JP2020129598A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
US20200243240A1 (en) Isolated power converter with magnetics on chip
Ouyang et al. Overview of planar magnetic technology—Fundamental properties
EP2652755B1 (en) Thin film inductor with integrated gaps
JP5339398B2 (en) Multilayer inductor
US9047890B1 (en) Inductor with non-uniform lamination thicknesses
US20170194088A1 (en) Isolation Transformer Topology
US20120299681A1 (en) Flat band winding for an inductor core
US20210383958A1 (en) Patterned magnetic cores
EP2787515B1 (en) Inductor gap spacer
CN109686549B (en) Integrated transformer with multiple winding coils manufactured through micro-nano processing
EP3457416A1 (en) Electromagnetic induction device and manufacturing method therefor
JP6233246B2 (en) Multilayer electronic components
JP7288651B2 (en) planar transformer
US20190057807A1 (en) Electromagnetic induction device and method for manufacturing same
EP2530688A1 (en) Flat band winding for an inductor core
JP6344540B2 (en) Power conversion module
JP7244708B2 (en) coil element
JP6856059B2 (en) Inductor
JP7296081B2 (en) inductor
CN114730654A (en) Electromagnetic induction device
JP7182766B2 (en) chip inductor
RU118469U1 (en) TOROIDAL TRANSFORMER
CN117837052A (en) Electromagnetic component with planar and non-planar conductors
CN114783735A (en) Inductor and power supply circuit
WO2005031765A1 (en) Laminated magnetic component

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190308

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7288651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150