JP7288319B2 - レコメンド情報を生成するための装置、方法、システム及びプログラム - Google Patents
レコメンド情報を生成するための装置、方法、システム及びプログラム Download PDFInfo
- Publication number
- JP7288319B2 JP7288319B2 JP2019046807A JP2019046807A JP7288319B2 JP 7288319 B2 JP7288319 B2 JP 7288319B2 JP 2019046807 A JP2019046807 A JP 2019046807A JP 2019046807 A JP2019046807 A JP 2019046807A JP 7288319 B2 JP7288319 B2 JP 7288319B2
- Authority
- JP
- Japan
- Prior art keywords
- user
- cluster
- content
- clusters
- artist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Description
予め定められた数のユーザークラスタを生成するユーザークラスタ処理部と、
1以上のユーザー端末から利用ログを受け取る利用ログ集計部と、
を含み、
前記利用ログは、コンテンツの各々に対するユーザー毎の評価値を含み、
前記利用ログ集計部は、前記評価値をユーザーがコンテンツを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出して、前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをコンテンツ毎に生成し、
前記コンテンツクラスタ処理部は、すべてのコンテンツを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のコンテンツクラスタを生成し、
前記利用ログ集計部は、前記評価値をコンテンツがユーザーに適するか否かを表す適合度として使用し、前記コンテンツクラスタ毎にコンテンツの前記適合度の平均値を算出して、前記コンテンツクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成し、
前記ユーザークラスタ処理部は、すべてのユーザーを前記コンテンツクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成すること
を特徴とする。
予め定められた数のアーティストクラスタを生成するアーティストクラスタ処理部と、
予め定められた数のユーザークラスタを生成するユーザークラスタ処理部と、
コンテンツに出演しているアーティストをコンテンツ毎に対応付けた対応テーブルを記憶した出演アーティスト記憶部と、
1以上のユーザー端末から利用ログを受け取る利用ログ集計部と、
を含み、
前記利用ログは、コンテンツの各々に対するユーザー毎の評価値を含み、
前記利用ログ集計部は、前記対応テーブルを参照して、前記利用ログに含まれる前記コンテンツの各々に対するユーザー毎の前記評価値を、当該コンテンツの各々に出演するアーティスト毎のアーティスト評価値とし、
前記利用ログ集計部は、前記アーティスト評価値をユーザーがアーティストを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出して、前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをアーティスト毎に生成し、
前記アーティストクラスタ処理部は、すべてのアーティストを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のアーティストクラスタを生成し、
前記利用ログ集計部は、前記アーティスト評価値をアーティストがユーザーに適するか否かを表す適合度として使用し、前記複数のアーティストクラスタの各々のアーティストクラスタ内のアーティストの前記適合度の平均値を算出して、前記アーティストクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成し、
前記ユーザークラスタ処理部は、すべてのユーザーを前記アーティストクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成すること
を特徴とする。
前記好み親和度テーブル及び前記適合親和度テーブルの少なくとも一方に基づいてレコメンド情報を生成するレコメンド情報生成部と、
を含み、
前記クラスタ間親和度集計部は、1つのコンテンツクラスタに属するすべてのコンテンツについての前記好み度ベクトルの要素の平均値を要素とする、コンテンツクラスタに対するユーザークラスタの好み親和度ベクトルを算出し、前記好み親和度テーブルは、前記好み親和度ベクトルをすべてのコンテンツクラスタについて並べた行列であり、
前記クラスタ間親和度集計部は、1つのユーザークラスタに属するすべてのユーザーについての前記適合度ベクトルの要素の平均値を要素とする、ユーザークラスタに対するコンテンツクラスタの適合親和度ベクトルを算出し、前記適合親和度テーブルは、前記適合親和度ベクトルをすべてのユーザークラスタについて並べた行列であること
を特徴とする。
前記クラスタ自動生成装置から、前記アーティストの各々についての前記好み度ベクトル及び前記ユーザーの各々についての前記適合度ベクトルを受け取り、前記アーティストクラスタに対する前記ユーザークラスタの好み親和度テーブル及び前記ユーザークラスタに対する前記アーティストクラスタの適合親和度テーブルを生成するクラスタ間親和度集計部と、
前記好み親和度テーブル及び前記適合親和度テーブルの少なくとも一方に基づいてレコメンド情報を生成するレコメンド情報生成部と、
を含み、
前記クラスタ間親和度集計部は、1つのアーティストクラスタに属するすべてのアーティストについての前記好み度ベクトルの要素の平均値を要素とする、アーティストクラスタに対するユーザークラスタの好み親和度ベクトルを算出し、前記好み親和度テーブルは、前記好み親和度ベクトルをすべてのアーティストクラスタについて並べた行列であり、
前記クラスタ間親和度集計部は、1つのユーザークラスタに属するすべてのユーザーについての前記適合度ベクトルの要素の平均値を要素とする、ユーザークラスタに対するアーティストクラスタの適合親和度ベクトルを算出し、前記適合親和度テーブルは、前記適合親和度ベクトルをすべてのユーザークラスタについて並べた行列であること
を特徴とする。
1以上のユーザー端末の各々から、コンテンツの各々に対するユーザー毎の評価値を含む利用ログを受け取るステップと、
前記評価値をユーザーがコンテンツを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出するステップと、
前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをコンテンツ毎に生成するステップと、
すべてのコンテンツを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のコンテンツクラスタを生成するステップと、
前記評価値をコンテンツがユーザーに適するか否かを表す適合度として使用し、前記コンテンツクラスタ毎にコンテンツの前記適合度の平均値を算出するステップと、
前記コンテンツクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成するステップと、
すべてのユーザーを前記コンテンツクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成するステップと、
を含むことを特徴とする。
1以上のユーザー端末の各々から、コンテンツの各々に対するユーザー毎の評価値を含む利用ログを受け取るステップと、
前記情報処理装置の記憶装置に記憶された、コンテンツに出演しているアーティストをコンテンツ毎に対応付けた対応テーブルを参照して、前記利用ログに含まれる前記コンテンツの各々に対するユーザー毎の前記評価値を、当該コンテンツの各々に出演するアーティスト毎のアーティスト評価値とするステップと、
前記アーティスト評価値をユーザーがアーティストを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出するステップと、
前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをアーティスト毎に生成するステップと、
すべてのアーティストを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のアーティストクラスタを生成するステップと、
前記アーティスト評価値をアーティストがユーザーに適するか否かを表す適合度として使用し、前記アーティストクラスタ毎にアーティストの前記適合度の平均値を算出するステップと、
前記アーティストクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成するステップと、
すべてのユーザーを前記アーティストクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成するステップと、
を含むことを特徴とする。
を特徴とする。
を特徴とする。
を特徴とする。
を特徴とする。
・最初だけ利用してすぐにやめた = そのユーザーはそのコンテンツを好まなかった(好み度(LIKE度)=-1)
・最後まで利用した = そのユーザーはそのコンテンツを好んだ(好み度=+1)
・利用していない = そのユーザーはそのコンテンツを好むかどうか不明(好み度=0)
という考え方で、視聴時間に応じて評価値である好み度(LIKE度)が、ユーザー毎に記録される。利用ログへの記録は、上述した前提条件により、すべてのコンテンツについて、少なくともひとりのユーザーが利用していることを前提とする。誰も利用していないコンテンツについては、クラスタ自動生成装置10の処理対象としないことができる。
・最初(コンテンツ全体の1/10未満)だけ利用してすぐにやめた = -1
・コンテンツ全体の1/10以上、1/4未満 = +0.3
・コンテンツ全体の1/4以上、1/2未満 = +0.5
・コンテンツ全体の1/2以上、3/4未満 = +0.7
・コンテンツ全体の3/4以上、全体未満 = +0.9
という考え方で、予め定められた上限値未満かつ予め定められた下限値である場合に、評価値を視聴割合に基づいて定めることができる。
・ユーザークラスタ1に属するユーザーの好み度(LIKE度)の平均 = 0.7
・ユーザークラスタ2に属するユーザーの好み度の平均 = 0.3
・ユーザークラスタ3に属するユーザーの好み度の平均 = -0.4
・・(中略)・・
・ユーザークラスタ50に属するユーザーの好み度の平均 = -0.6
のとき、コンテンツ0000(番組A)の好み度ベクトル(LIKEベクトル)
= [0.7, 0.3, -0.4, ... , -0.6] (要素が50個の配列)となる。
1. 初期化:データ集合をランダムに k 個のクラスタ分割し、初期クラスタを得る。
2. 各クラスタについてセントロイド
を計算する。
3. 全てのデータ
4. 前の反復とクラスタに変化がないか反復数が maxIter を超えたら終了しクラスタ {Xi}を出力し、そうでなければ、ステップ2に戻る。
・コンテンツクラスタ1には129個のコンテンツ 、クラスタの中心点=コンテンツ0023
・コンテンツクラスタ2には73個のコンテンツ 、クラスタの中心点=コンテンツ0342
・コンテンツクラスタ3には303個のコンテンツ 、クラスタの中心点=コンテンツ8870
・・(中略)・・
・コンテンツクラスタ100には98個のコンテンツ 、クラスタの中心点=コンテンツ0913
といったコンテンツクラスタをコンテンツクラスタ処理部110において生成することができる。
・最初だけ利用してすぐにやめた = そのコンテンツはそのユーザーにふさわしくなかった(適合度(FIT度)=-1)
・最後まで利用した = そのコンテンツはそのユーザーにふさわしかった(適合度(FIT度)=+1)
・利用していない = そのコンテンツはそのユーザーにふさわしいかどうか不明(適合度(FIT度)=0)
という考え方で、視聴時間に応じて評価値である適合度(FIT度)が、コンテンツ毎に記録される。適合度(FIT度)についての評価値の決め方は、先に説明した好み度(LIKE度)についての評価値の決め方と同様である。利用ログの一例は、図5に示すとおりである。
・コンテンツクラスタ1に属するコンテンツの適合度(FIT度)の平均 = 0.2
・コンテンツクラスタ2に属するコンテンツの適合度の平均 = 0.8
・コンテンツクラスタ3に属するコンテンツの適合度の平均 = -0.5
・・(中略)・・
・コンテンツクラスタ100に属するコンテンツの適合度の平均 = -0.3
のとき、ユーザー1000(aさん)の適合度ベクトル(FITベクトル)
= [0.2, 0.8, -0.5, ... , -0.3] (要素が100個の配列)となる。
・ユーザークラスタ1 = 12人、中心点=ユーザー076
・ユーザークラスタ2 = 25人、中心点=ユーザー136
・ユーザークラスタ3 = 17人、中心点=ユーザー406
・・(中略)・・
・ユーザークラスタ50= 29人、中心点=ユーザー839
といったユーザークラスタをユーザークラスタ処理部111において生成することができる。
10’ :クラスタ自動生成装置
11 :CPU
12 :メモリ
13 :バス
14 :入出力インターフェース
15 :入力部
16 :出力部
17 :記憶部
18 :通信部
20 :ユーザー端末
20a :ユーザー端末
20b :ユーザー端末
20c :ユーザー端末
21 :CPU
22 :メモリ
23 :バス
24 :入出力インターフェース
25 :入力部
26 :出力部
27 :記憶部
28 :通信部
30 :レコメンド情報生成装置
110 :コンテンツクラスタ処理部
111 :ユーザークラスタ処理部
112 :利用ログ集計部
113 :アーティストクラスタ処理部
114 :出演アーティスト記憶部
310 :レコメンド情報生成部
311 :クラスタ間親和度集計部
N :ネットワーク
Claims (26)
- ユーザーの利用ログに基づいてクラスタを生成するクラスタ自動生成装置であって、
予め定められた数のコンテンツクラスタを生成するコンテンツクラスタ処理部と、
予め定められた数のユーザークラスタを生成するユーザークラスタ処理部と、
1以上のユーザー端末から利用ログを受け取る利用ログ集計部と、
を含み、
前記利用ログは、コンテンツの各々に対するユーザー毎の評価値を含み、
前記利用ログ集計部は、前記評価値をユーザーがコンテンツを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出して、前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをコンテンツ毎に生成し、
前記コンテンツクラスタ処理部は、すべてのコンテンツを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のコンテンツクラスタを生成し、
前記利用ログ集計部は、前記評価値をコンテンツがユーザーに適するか否かを表す適合度として使用し、前記コンテンツクラスタ毎にコンテンツの前記適合度の平均値を算出して、前記コンテンツクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成し、
前記ユーザークラスタ処理部は、すべてのユーザーを前記コンテンツクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成すること
を特徴とするクラスタ自動生成装置。 - ユーザーの利用ログに基づいてクラスタを生成するクラスタ自動生成装置であって、少なくとも
予め定められた数のアーティストクラスタを生成するアーティストクラスタ処理部と、
予め定められた数のユーザークラスタを生成するユーザークラスタ処理部と、
コンテンツに出演しているアーティストをコンテンツ毎に対応付けた対応テーブルを記憶した出演アーティスト記憶部と、
1以上のユーザー端末から利用ログを受け取る利用ログ集計部と、
を含み、
前記利用ログは、コンテンツの各々に対するユーザー毎の評価値を含み、
前記利用ログ集計部は、前記対応テーブルを参照して、前記利用ログに含まれる前記コンテンツの各々に対するユーザー毎の前記評価値を、当該コンテンツの各々に出演するアーティスト毎のアーティスト評価値とし、
前記利用ログ集計部は、前記アーティスト評価値をユーザーがアーティストを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出して、前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをアーティスト毎に生成し、
前記アーティストクラスタ処理部は、すべてのアーティストを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のアーティストクラスタを生成し、
前記利用ログ集計部は、前記アーティスト評価値をアーティストがユーザーに適するか否かを表す適合度として使用し、前記複数のアーティストクラスタの各々のアーティストクラスタ内のアーティストの前記適合度の平均値を算出して、前記アーティストクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成し、
前記ユーザークラスタ処理部は、すべてのユーザーを前記アーティストクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成すること
を特徴とするクラスタ自動生成装置。 - 前記利用ログは、コンテンツの各々に対するユーザー毎の視聴時間を含み、
前記利用ログ集計部は、前記コンテンツの視聴に要する全体時間のうち前記ユーザーの前記視聴時間の割合が、予め定められた上限値以上である場合、前記評価値を+1とし、予め定められた下限値未満である場合、前記評価値を-1とし、前記ユーザーが前記コンテンツを利用していない場合、前記評価値を0とすること
を特徴とする請求項1又は2に記載のクラスタ自動生成装置。 - 前記利用ログ集計部は、前記コンテンツの視聴に要する全体時間のうち前記ユーザーの前記視聴時間の割合が、前記予め定められた上限値未満かつ前記予め定められた下限値である場合、前記評価値を前記割合に基づく値とすること
を特徴とする請求項3に記載のクラスタ自動生成装置。 - 請求項1に記載のクラスタ自動生成装置と通信可能に接続されたレコメンド情報生成装置であって、
前記クラスタ自動生成装置から、前記コンテンツの各々についての前記好み度ベクトル及び前記ユーザーの各々についての前記適合度ベクトルを受け取り、前記コンテンツクラスタに対する前記ユーザークラスタの好み親和度テーブル及び前記ユーザークラスタに対する前記コンテンツクラスタの適合親和度テーブルを生成するクラスタ間親和度集計部と、
前記好み親和度テーブル及び前記適合親和度テーブルの少なくとも一方に基づいてレコメンド情報を生成するレコメンド情報生成部と、
を含み、
前記クラスタ間親和度集計部は、1つのコンテンツクラスタに属するすべてのコンテンツについての前記好み度ベクトルの要素の平均値を要素とする、コンテンツクラスタに対するユーザークラスタの好み親和度ベクトルを算出し、前記好み親和度テーブルは、前記好み親和度ベクトルをすべてのコンテンツクラスタについて並べた行列であり、
前記クラスタ間親和度集計部は、1つのユーザークラスタに属するすべてのユーザーについての前記適合度ベクトルの要素の平均値を要素とする、ユーザークラスタに対するコンテンツクラスタの適合親和度ベクトルを算出し、前記適合親和度テーブルは、前記適合親和度ベクトルをすべてのユーザークラスタについて並べた行列であること
を特徴とするレコメンド情報生成装置。 - 前記レコメンド情報生成部は、前記好み親和度テーブル内で、ユーザーの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いコンテンツクラスタから、任意にコンテンツを選んでユーザーに推薦し、又は、前記適合親和度テーブル内で、ユーザーの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いコンテンツクラスタから、任意にコンテンツを選んでユーザーに推薦すること
を特徴とする請求項6に記載のレコメンド情報生成装置。 - 前記レコメンド情報生成部は、前記好み親和度テーブル内で、コンテンツの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでコンテンツを宣伝し、又は、前記適合親和度テーブル内で、コンテンツの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでコンテンツを宣伝すること
を特徴とする請求項6に記載のレコメンド情報生成装置。 - 請求項2に記載のクラスタ自動生成装置と通信可能に接続されたレコメンド情報生成装置であって、
前記クラスタ自動生成装置から、前記アーティストの各々についての前記好み度ベクトル及び前記ユーザーの各々についての前記適合度ベクトルを受け取り、前記アーティストクラスタに対する前記ユーザークラスタの好み親和度テーブル及び前記ユーザークラスタに対する前記アーティストクラスタの適合親和度テーブルを生成するクラスタ間親和度集計部と、
前記好み親和度テーブル及び前記適合親和度テーブルの少なくとも一方に基づいてレコメンド情報を生成するレコメンド情報生成部と、
を含み、
前記クラスタ間親和度集計部は、1つのアーティストクラスタに属するすべてのアーティストについての前記好み度ベクトルの要素の平均値を要素とする、アーティストクラスタに対するユーザークラスタの好み親和度ベクトルを算出し、前記好み親和度テーブルは、前記好み親和度ベクトルをすべてのアーティストクラスタについて並べた行列であり、
前記クラスタ間親和度集計部は、1つのユーザークラスタに属するすべてのユーザーについての前記適合度ベクトルの要素の平均値を要素とする、ユーザークラスタに対するアーティストクラスタの適合親和度ベクトルを算出し、前記適合親和度テーブルは、前記適合親和度ベクトルをすべてのユーザークラスタについて並べた行列であること
を特徴とするレコメンド情報生成装置。 - 前記レコメンド情報生成部は、前記好み親和度テーブル内で、ユーザーの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いアーティストクラスタから、任意にアーティストを選んでユーザーに推薦し、又は、前記適合親和度テーブル内で、ユーザーの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いアーティストクラスタから、任意にアーティストを選んでユーザーに推薦すること
を特徴とする請求項9に記載のレコメンド情報生成装置。 - 前記レコメンド情報生成部は、前記好み親和度テーブル内で、アーティストの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでアーティストを宣伝し、又は、前記適合親和度テーブル内で、アーティストの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでアーティストを宣伝すること
を特徴とする請求項9に記載のレコメンド情報生成装置。 - 情報処理装置によって実行され、予め定められた数のコンテンツクラスタ及びユーザークラスタに基づいてレコメンド情報を生成するためのレコメンド情報生成方法であって、
1以上のユーザー端末の各々から、コンテンツの各々に対するユーザー毎の評価値を含む利用ログを受け取るステップと、
前記評価値をユーザーがコンテンツを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出するステップと、
前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをコンテンツ毎に生成するステップと、
すべてのコンテンツを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のコンテンツクラスタを生成するステップと、
前記評価値をコンテンツがユーザーに適するか否かを表す適合度として使用し、前記コンテンツクラスタ毎にコンテンツの前記適合度の平均値を算出するステップと、
前記コンテンツクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成するステップと、
すべてのユーザーを前記コンテンツクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成するステップと、
を含むことを特徴とする方法。 - 情報処理装置によって実行され、予め定められた数のアーティストクラスタ及びユーザークラスタに基づいてレコメンド情報を生成するためのレコメンド情報生成方法であって、
1以上のユーザー端末の各々から、コンテンツの各々に対するユーザー毎の評価値を含む利用ログを受け取るステップと、
前記情報処理装置の記憶装置に記憶された、コンテンツに出演しているアーティストをコンテンツ毎に対応付けた対応テーブルを参照して、前記利用ログに含まれる前記コンテンツの各々に対するユーザー毎の前記評価値を、当該コンテンツの各々に出演するアーティスト毎のアーティスト評価値とするステップと、
前記アーティスト評価値をユーザーがアーティストを好むか否かを表す好み度として使用し、前記ユーザークラスタ毎にユーザーの前記好み度の平均値を算出するステップと、
前記ユーザークラスタ毎の前記好み度の平均値を要素とする好み度ベクトルをアーティスト毎に生成するステップと、
すべてのアーティストを前記ユーザークラスタの数だけの次元を持つ前記好み度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のアーティストクラスタを生成するステップと、
前記アーティスト評価値をアーティストがユーザーに適するか否かを表す適合度として使用し、前記アーティストクラスタ毎にアーティストの前記適合度の平均値を算出するステップと、
前記アーティストクラスタ毎の前記適合度の平均値を要素とする適合度ベクトルをユーザー毎に生成するステップと、
すべてのユーザーを前記アーティストクラスタの数だけの次元を持つ前記適合度ベクトルのベクトル空間の点としてクラスタリングを行い、予め定められた数のユーザークラスタを生成するステップと、
を含むことを特徴とする方法。 - 前記利用ログは、コンテンツの各々に対するユーザー毎の視聴時間を含み、
前記コンテンツの視聴に要する全体時間のうち前記ユーザーの前記視聴時間の割合が、予め定められた上限値以上である場合、前記評価値は+1であり、
予め定められた下限値未満である場合、前記評価値は-1であり、
前記ユーザーが前記コンテンツを利用していない場合、前記評価値は0であること
を特徴とする請求項12又は13に記載の方法。 - 前記コンテンツの視聴に要する全体時間のうち前記ユーザーの前記視聴時間の割合が、前記予め定められた上限値未満かつ前記予め定められた下限値である場合、前記評価値は前記割合に基づく値であること
を特徴とする請求項14に記載の方法。 - 請求項12、14から16のいずれか1項に記載の方法であって、
1つのコンテンツクラスタに属するすべてのコンテンツについての前記好み度ベクトルの要素の平均値を要素とする、コンテンツクラスタに対するユーザークラスタの好み親和度ベクトルを算出して、前記好み親和度ベクトルをすべてのコンテンツクラスタについて並べた行列である好み親和度テーブルを生成するステップと、
1つのユーザークラスタに属するすべてのユーザーについての前記適合度ベクトルの要素の平均値を要素とする、ユーザークラスタに対するコンテンツクラスタの適合親和度ベクトルを算出して、前記適合親和度ベクトルをすべてのユーザークラスタについて並べた行列である適合親和度テーブルを生成するステップと、
前記好み親和度テーブル及び前記適合親和度テーブルの少なくとも一方に基づいてレコメンド情報を生成するステップと、
を更に含むこと
を特徴とする方法。 - 前記レコメンド情報を生成するステップは、前記好み親和度テーブル内で、ユーザーの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いコンテンツクラスタから、任意にコンテンツを選んでユーザーに推薦し、又は、前記適合親和度テーブル内で、ユーザーの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いコンテンツクラスタから、任意にコンテンツを選んでユーザーに推薦することを含むこと
を特徴とする請求項17に記載の方法。 - 前記レコメンド情報を生成するステップは、前記好み親和度テーブル内で、コンテンツの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでコンテンツを宣伝し、又は、前記適合親和度テーブル内で、コンテンツの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでコンテンツを宣伝すること
を特徴とする請求項17に記載の方法。 - 請求項13から16のいずれか1項に記載の方法であって、
1つのアーティストクラスタに属するすべてのアーティストについての前記好み度ベクトルの要素の平均値を要素とする、アーティストクラスタに対するユーザークラスタの好み親和度ベクトルを算出して、前記好み親和度ベクトルをすべてのアーティストクラスタについて並べた行列である好み親和度テーブルを生成するステップと、
1つのユーザークラスタに属するすべてのユーザーについての前記適合度ベクトルの要素の平均値を要素とする、ユーザークラスタに対するアーティストクラスタの適合親和度ベクトルを算出して、前記適合親和度ベクトルをすべてのユーザークラスタについて並べた行列である適合親和度テーブルを生成するステップと、
前記好み親和度テーブル及び前記適合親和度テーブルの少なくとも一方に基づいてレコメンド情報を生成するステップと、
を更に含むこと
を特徴とする方法。 - 前記レコメンド情報を生成するステップは、前記好み親和度テーブル内で、ユーザーの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いアーティストクラスタから、任意にアーティストを選んでユーザーに推薦し、又は、前記適合親和度テーブル内で、ユーザーの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いアーティストクラスタから、任意にアーティストを選んでユーザーに推薦することを含むこと
を特徴とする請求項17に記載の方法。 - 前記レコメンド情報を生成するステップは、前記好み親和度テーブル内で、アーティストの属するクラスタの行に注目し、行内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでアーティストを宣伝し、又は、前記適合親和度テーブル内で、アーティストの属するクラスタの列に注目し、列内で値が予め定めた値よりも高いユーザークラスタから、任意にユーザーを選んでアーティストを宣伝すること
を特徴とする請求項17に記載の方法。 - 1以上のユーザー端末と、前記1以上のユーザー端末とネットワークを介して接続された請求項1から4のいずれか1項に記載のクラスタ自動生成装置と、請求項6から11のいずれか1項に記載のレコメンド情報生成装置とを含むこと
を特徴とするレコメンドシステム。 - コンピュータによって実行させることで、前記コンピュータを請求項1から5のいずれか1項に記載のクラスタ自動生成装置として機能させること
を特徴とするクラスタ自動生成プログラム。 - コンピュータによって実行させることで、前記コンピュータを請求項6から11のいずれか1項に記載のレコメンド情報生成装置として機能させること
を特徴とするレコメンド情報生成プログラム。 - コンピュータによって実行させることで、前記コンピュータを請求項12から22のいずれか1項に記載のレコメンド情報生成方法を実行する前記情報処理装置として機能させること
を特徴とするレコメンドプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019046807A JP7288319B2 (ja) | 2019-03-14 | 2019-03-14 | レコメンド情報を生成するための装置、方法、システム及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019046807A JP7288319B2 (ja) | 2019-03-14 | 2019-03-14 | レコメンド情報を生成するための装置、方法、システム及びプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020149405A JP2020149405A (ja) | 2020-09-17 |
JP7288319B2 true JP7288319B2 (ja) | 2023-06-07 |
Family
ID=72431943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019046807A Active JP7288319B2 (ja) | 2019-03-14 | 2019-03-14 | レコメンド情報を生成するための装置、方法、システム及びプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7288319B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6925495B1 (ja) * | 2020-10-07 | 2021-08-25 | 株式会社カカクコム | 情報処理システム、サーバ、情報処理方法及び情報処理プログラム |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007058842A (ja) | 2005-07-26 | 2007-03-08 | Sony Corp | 情報処理装置、特徴抽出方法、記録媒体、および、プログラム |
JP2009217551A (ja) | 2008-03-11 | 2009-09-24 | Funai Electric Co Ltd | メディアプレーヤとその再生方法 |
JP2011081780A (ja) | 2009-09-08 | 2011-04-21 | Apple Inc | 類似性データに基づくメディアアイテムのクラスタリング |
JP2013105215A (ja) | 2011-11-10 | 2013-05-30 | Ntt Docomo Inc | レコメンド情報生成装置、レコメンド情報生成方法及びレコメンド情報生成プログラム |
JP2013125468A (ja) | 2011-12-15 | 2013-06-24 | Yahoo Japan Corp | 広告配信装置 |
US20130262469A1 (en) | 2012-03-29 | 2013-10-03 | The Echo Nest Corporation | Demographic and media preference prediction using media content data analysis |
JP2014215889A (ja) | 2013-04-26 | 2014-11-17 | シャープ株式会社 | 情報処理装置、および情報提供方法 |
US20170031920A1 (en) | 2015-07-31 | 2017-02-02 | RCRDCLUB Corporation | Evaluating performance of recommender system |
-
2019
- 2019-03-14 JP JP2019046807A patent/JP7288319B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007058842A (ja) | 2005-07-26 | 2007-03-08 | Sony Corp | 情報処理装置、特徴抽出方法、記録媒体、および、プログラム |
JP2009217551A (ja) | 2008-03-11 | 2009-09-24 | Funai Electric Co Ltd | メディアプレーヤとその再生方法 |
JP2011081780A (ja) | 2009-09-08 | 2011-04-21 | Apple Inc | 類似性データに基づくメディアアイテムのクラスタリング |
JP2013105215A (ja) | 2011-11-10 | 2013-05-30 | Ntt Docomo Inc | レコメンド情報生成装置、レコメンド情報生成方法及びレコメンド情報生成プログラム |
JP2013125468A (ja) | 2011-12-15 | 2013-06-24 | Yahoo Japan Corp | 広告配信装置 |
US20130262469A1 (en) | 2012-03-29 | 2013-10-03 | The Echo Nest Corporation | Demographic and media preference prediction using media content data analysis |
JP2014215889A (ja) | 2013-04-26 | 2014-11-17 | シャープ株式会社 | 情報処理装置、および情報提供方法 |
US20170031920A1 (en) | 2015-07-31 | 2017-02-02 | RCRDCLUB Corporation | Evaluating performance of recommender system |
Also Published As
Publication number | Publication date |
---|---|
JP2020149405A (ja) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240346072A1 (en) | Systems, methods and apparatus for generating musicrecommendations based on combining song and user influencers with channel rule characterizations | |
US9110955B1 (en) | Systems and methods of selecting content items using latent vectors | |
Berkovsky et al. | Cross-domain mediation in collaborative filtering | |
JP4956416B2 (ja) | リコメンデーションを作成する方法及びシステム | |
JP5044001B2 (ja) | 類似性データに基づくメディアアイテムのクラスタリング | |
US8583791B2 (en) | Maintaining a minimum level of real time media recommendations in the absence of online friends | |
US20090271417A1 (en) | Identifying User Relationships from Situational Analysis of User Comments Made on Media Content | |
US9965478B1 (en) | Automatic generation of online media stations customized to individual users | |
US10423943B2 (en) | Graph-based music recommendation and dynamic media work micro-licensing systems and methods | |
US10387478B2 (en) | Graph-based music recommendation and dynamic media work micro-licensing systems and methods | |
US9369514B2 (en) | Systems and methods of selecting content items | |
KR101352418B1 (ko) | 통신 장비(들)의 이용자(들)의 프로파일(들)에 도입될 잠재적인 향후 관심사들을 결정하기 위한 디바이스 | |
US20090070185A1 (en) | System and method for recommending a digital media subscription service | |
US8185435B2 (en) | Methods, systems, and computer program products for facilitating content-based selection of long-tail business models and billing | |
US20170031919A1 (en) | Systems and methods of providing recommendations of content items | |
US10136189B2 (en) | Method and system for re-aggregation and optimization of media | |
JP5346377B2 (ja) | デジタル資産を提供することおよびそのためのネットワーク | |
TW202335511A (zh) | 用於推薦串流資料的系統、方法及電腦可讀取媒體 | |
JP7288319B2 (ja) | レコメンド情報を生成するための装置、方法、システム及びプログラム | |
EP2912852A1 (en) | Method and system for efficiently compiling media content items for a media-on-demand platform | |
US10820027B2 (en) | Method and system for re-aggregation and optimization of media | |
US20140280303A1 (en) | Replacing equivalent content items | |
CN111523297A (zh) | 一种数据处理方法及装置 | |
Karlsson et al. | A mobile-based system for context-aware music recommendations | |
El Alami et al. | Improving Neighborhood-Based Collaborative Filtering by a Heuristic Approach and an Adjusted Similarity Measure. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220311 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7288319 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |