JP7284551B1 - Sulfur hexafluoride gas storage structure and storage method - Google Patents

Sulfur hexafluoride gas storage structure and storage method Download PDF

Info

Publication number
JP7284551B1
JP7284551B1 JP2023039786A JP2023039786A JP7284551B1 JP 7284551 B1 JP7284551 B1 JP 7284551B1 JP 2023039786 A JP2023039786 A JP 2023039786A JP 2023039786 A JP2023039786 A JP 2023039786A JP 7284551 B1 JP7284551 B1 JP 7284551B1
Authority
JP
Japan
Prior art keywords
sulfur hexafluoride
hexafluoride gas
cylinder
storage structure
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023039786A
Other languages
Japanese (ja)
Inventor
博 森永
Original Assignee
日本協同エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本協同エネルギー株式会社 filed Critical 日本協同エネルギー株式会社
Priority to JP2023039786A priority Critical patent/JP7284551B1/en
Application granted granted Critical
Publication of JP7284551B1 publication Critical patent/JP7284551B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】六フッ化硫黄ガスを大気中へ排出せずに、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留するための六フッ化硫黄ガスの貯留構造及び貯留方法を提供する。【解決手段】六フッ化硫黄ガスの貯留構造は、地下に六フッ化硫黄ガスを貯留するための六フッ化硫黄ガスの貯留構造である。この貯留構造は、六フッ化硫黄ガスを充填したボンベと、地下に存在すると共にボンベの周囲に存在し、六フッ化硫黄を吸着する多孔質材と、を備える。【選択図】図1A sulfur hexafluoride gas storage structure and storage method for safely and permanently storing a large amount of sulfur hexafluoride gas underground without discharging sulfur hexafluoride gas into the atmosphere. offer. A sulfur hexafluoride gas storage structure is a sulfur hexafluoride gas storage structure for storing sulfur hexafluoride gas underground. This storage structure includes a cylinder filled with sulfur hexafluoride gas, and a porous material existing underground and around the cylinder, which adsorbs sulfur hexafluoride. [Selection drawing] Fig. 1

Description

本発明は、六フッ化硫黄ガスの貯留構造及び貯留方法に係り、さらに詳細には、六フッ化硫黄ガスを大気中へ排出せずに、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留するための六フッ化硫黄ガスの貯留構造及び貯留方法に関する。 The present invention relates to a storage structure and storage method for sulfur hexafluoride gas, and more particularly, to a method for storing a large amount of sulfur hexafluoride gas safely and permanently without discharging sulfur hexafluoride gas into the atmosphere. The present invention relates to a storage structure and storage method of sulfur hexafluoride gas for storing it underground.

二酸化炭素ガスや六フッ化硫黄ガスなどの温室効果ガスは、地球温暖化への影響が大きいため、大気中への排出を減らすことが求められている。六フッ化硫黄ガスは、その排出量が二酸化炭素ガスの排出量よりも少ないものの、その温暖化効果係数が二酸化炭素の温暖化効果係数の22,800倍と非常に大きいため、大気中への漏えいや放出が厳しく規制されている(地球温暖化防止法第2条参照)。 Greenhouse gases such as carbon dioxide gas and sulfur hexafluoride gas have a great impact on global warming, so it is required to reduce their emissions into the atmosphere. Although the emission of sulfur hexafluoride gas is less than that of carbon dioxide gas, its global warming potential is 22,800 times that of carbon dioxide, which is very large. Leakage and release are strictly regulated (see Article 2 of the Global Warming Prevention Law).

二酸化炭素の排出量を抑制できる技術として、二酸化炭素の回収・貯留(Carbon dioxide Capture and Storage(CCS))が注目されている。CCSの一例として、炭酸ガスを溶媒に溶解させた状態で海底地盤中の帯水層に圧入し、貯留・隔離するための炭酸ガスの地中貯留システムが提案されている(特許文献1参照。)。 Carbon dioxide capture and storage (CCS) attracts attention as a technology capable of suppressing carbon dioxide emissions. As an example of CCS, an underground carbon dioxide storage system has been proposed in which carbon dioxide dissolved in a solvent is injected into an aquifer in the seafloor for storage and isolation (see Patent Document 1. ).

一方で、六フッ化硫黄ガスは、回収された後に再利用されることが多かったため、恒久的に保管することが考えられていなかった。これに対して、本出願人は、ボンベにおいて六フッ化硫黄ガスを恒久的に保管するための密閉用キャップを提案している(特許文献2参照。)。 On the other hand, since sulfur hexafluoride gas is often reused after being collected, it has not been considered to store it permanently. In response to this, the present applicant has proposed a sealing cap for permanently storing sulfur hexafluoride gas in a cylinder (see Patent Document 2).

特開2009-274047号公報JP 2009-274047 A 実用新案登録第3237687号公報Utility Model Registration No. 3237687

しかしながら、特許文献1に記載されたCCSのように、大量の六フッ化硫黄ガスを、安全、且つ、恒久的に貯留するための技術開発は何らなされていなかった。 However, like the CCS described in Patent Document 1, no technical development has been made to safely and permanently store a large amount of sulfur hexafluoride gas.

本発明は、このような従来技術の有する課題に鑑みてなされたものであって、六フッ化硫黄ガスを大気中へ排出せずに、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留するための六フッ化硫黄ガスの貯留構造及び貯留方法を提供することを目的とする。 The present invention has been made in view of such problems of the prior art, and can safely and permanently generate a large amount of sulfur hexafluoride gas without discharging sulfur hexafluoride gas into the atmosphere. An object of the present invention is to provide a storage structure and storage method for sulfur hexafluoride gas for underground storage.

本発明者は、前記目的を達成するため鋭意検討を重ねた結果、六フッ化硫黄ガスが充填されたボンベを六フッ化硫黄を吸着する多孔質材が存在する地下空間に配置することにより、前記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventor of the present invention has found that by arranging a cylinder filled with sulfur hexafluoride gas in an underground space where a porous material that adsorbs sulfur hexafluoride exists, We have found that the above objects can be achieved, and have completed the present invention.

すなわち、本発明の六フッ化硫黄ガスの貯留構造は、地下に六フッ化硫黄ガスを貯留するための六フッ化硫黄ガスの貯留構造である。
この貯留構造は、六フッ化硫黄ガスを充填したボンベと、地下に存在すると共にボンベの周囲に存在し、六フッ化硫黄を吸着する多孔質材と、を備える。
That is, the sulfur hexafluoride gas storage structure of the present invention is a sulfur hexafluoride gas storage structure for storing sulfur hexafluoride gas underground.
This storage structure includes a cylinder filled with sulfur hexafluoride gas, and a porous material existing underground and around the cylinder, which adsorbs sulfur hexafluoride.

また、本発明の六フッ化硫黄ガスの貯留方法は、地下に六フッ化硫黄ガスを貯留するための六フッ化硫黄ガスの貯留方法である。
この貯留方法は、六フッ化硫黄ガスをボンベに充填する充填工程と、充填工程の後に実行される、ボンベを六フッ化硫黄を吸着する多孔質材が存在する地下空間に配置する配置工程と、を含む。
Further, the method for storing sulfur hexafluoride gas of the present invention is a method for storing sulfur hexafluoride gas for storing sulfur hexafluoride gas underground.
This storage method includes a filling step of filling a cylinder with sulfur hexafluoride gas, and an arrangement step of arranging the cylinder in an underground space where a porous material that adsorbs sulfur hexafluoride exists, which is performed after the filling step. ,including.

本発明によれば、六フッ化硫黄ガスが充填されたボンベを六フッ化硫黄を吸着する多孔質材が存在する地下空間に配置することとしたため、六フッ化硫黄ガスを大気中へ排出せずに、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留するための六フッ化硫黄ガスの貯留構造及び貯留方法を提供できる。 According to the present invention, since the cylinder filled with sulfur hexafluoride gas is arranged in the underground space where the porous material that adsorbs sulfur hexafluoride exists, the sulfur hexafluoride gas cannot be discharged into the atmosphere. It is possible to provide a storage structure and a storage method for sulfur hexafluoride gas for safely and permanently storing a large amount of sulfur hexafluoride gas in the underground without any need.

本発明の六フッ化硫黄ガスの貯留構造の一実施形態を模式的に示す断面図である。1 is a cross-sectional view schematically showing one embodiment of a sulfur hexafluoride gas storage structure of the present invention. FIG. 図1に示した多孔質材が六フッ化硫黄を吸着した状態を模式的に示す断面図である。2 is a cross-sectional view schematically showing a state in which the porous material shown in FIG. 1 has adsorbed sulfur hexafluoride; FIG. 図1に示した密閉ケースを模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the closed case shown in FIG. 1;

以下、本発明の六フッ化硫黄ガスの貯留構造及び貯留方法について詳細に説明する。 The storage structure and storage method for sulfur hexafluoride gas of the present invention will be described in detail below.

図1(A)及び(B)は、六フッ化硫黄ガスが充填されたボンベが配置される六フッ化硫黄を吸着する多孔質材が存在する地下空間を模式的に示す縦断面図及び横断面図である。また、図2は、図1に示した多孔質材が六フッ化硫黄(SF)を吸着した状態を模式的に示す断面図である。さらに、図3は、図1に示した密閉ケースを模式的に示す断面図である。 1 (A) and (B) are vertical cross-sectional views and cross-sectional views schematically showing an underground space in which a cylinder filled with sulfur hexafluoride gas is placed and a porous material that adsorbs sulfur hexafluoride exists. It is a plan view. FIG. 2 is a cross-sectional view schematically showing a state in which the porous material shown in FIG. 1 has adsorbed sulfur hexafluoride (SF 6 ). Furthermore, FIG. 3 is a cross-sectional view schematically showing the sealed case shown in FIG.

図1~図3に示すように、本実施形態の六フッ化硫黄ガスの貯留構造1は、六フッ化硫黄ガスを充填したボンベ10と、地下に存在すると共にボンベ10(図示例ではボンベ10を封入した密閉ケース20)の周囲に存在し、六フッ化硫黄を吸着する多孔質材30とを備えている。 As shown in FIGS. 1 to 3, the sulfur hexafluoride gas storage structure 1 of the present embodiment includes a cylinder 10 filled with sulfur hexafluoride gas and an underground cylinder 10 (in the illustrated example, the cylinder 10 and a porous material 30 that exists around a sealed case 20) that encapsulates and adsorbs sulfur hexafluoride.

本実施形態の六フッ化硫黄ガスの貯留構造1によれば、上述したボンベ10と多孔質材30とを備えているので、ボンベ10の弁機構等が破損して仮にボンベ10から六フッ化硫黄ガスが漏れても、周囲の多孔質材30により六フッ化硫黄が吸着される。そのため、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留できる。 According to the sulfur hexafluoride gas storage structure 1 of the present embodiment, since the cylinder 10 and the porous material 30 described above are provided, if the valve mechanism or the like of the cylinder 10 is damaged, the hexafluoride gas from the cylinder 10 is temporarily discharged. Even if sulfur gas leaks, sulfur hexafluoride is adsorbed by the surrounding porous material 30 . Therefore, a large amount of sulfur hexafluoride gas can be safely and permanently stored underground.

ここで、上述した各構成要素の仕様や材質等について詳細に説明する。 Here, the specifications, materials, etc. of each component described above will be described in detail.

ボンベ10は、例えば、特許文献2に開示された鋼鉄製の密閉用キャップを有する鋼鉄製のボンベであることが好適である。 Cylinder 10 is preferably a steel cylinder having a steel sealing cap, such as that disclosed in US Pat.

多孔質材30は、例えば、採石跡の地下空間USにおける床面、周囲壁(図1(B)における右側の符号30参照)や残柱(図1(B)における左側の符号30参照)に存在する。また、多孔質材30は、例えば、乾燥剤、軽石、スポンジ、ゼオライト鉱石のような多数の微細な空隙を有する岩石であることが好ましい。このような岩石としては、大谷石や十和田石を好適例として挙げることができる。多孔質岩石層の多孔質材30は、SFを吸着することができ、SFガスを保持することもできる(図2参照)。特に、六フッ化硫黄ガスは、空気を1としたときの比重が5.11であって空気より重く、さらにその粘度が高い。そのため、多孔質材30に吸着された六フッ化硫黄は、多孔質材30から脱離、移動し難く、地震等による地殻変動が生じても大気中に排出され難い。また、風の影響がない地下空間においては、六フッ化硫黄は床側に溜まりやすい。六フッ化硫黄の吸着量は、例えば、多孔質岩(大谷石等)の粒度、浸透深さ、経過年数によって異なる。粒度、浸透深さ、経過年数が増すにしたがって六フッ化硫黄の吸着量は増加する。床面下に1mの多孔質岩(大谷石等)があると仮定した場合、六フッ化硫黄の吸着可能量は1年間当たり、約2kg/mである。また、このような地下貯留空間の温度は、通年平均で-1℃~12℃と安定しており、六フッ化硫黄、密閉用キャップ付きボンベ、後述の密閉ケースにおける温度による膨張や金属疲労等が殆ど生じない。 The porous material 30 is applied, for example, to the floor surface in the underground space US of the quarry site, the surrounding wall (see the symbol 30 on the right side in FIG. 1B), and the remaining pillars (see the symbol 30 on the left side in FIG. 1B). exist. Also, the porous material 30 is preferably a rock having a large number of fine pores such as desiccant, pumice, sponge, zeolite ore, for example. Suitable examples of such rocks include Oya stone and Towada stone. The porous material 30 of the porous rock layer can adsorb SF6 and can also retain SF6 gas (see FIG. 2). In particular, sulfur hexafluoride gas has a specific gravity of 5.11 when air is 1, which is heavier than air and has a higher viscosity. Therefore, the sulfur hexafluoride adsorbed by the porous material 30 is difficult to desorb and move from the porous material 30, and is difficult to be discharged into the atmosphere even if a crustal movement occurs due to an earthquake or the like. Moreover, in an underground space that is not affected by wind, sulfur hexafluoride tends to accumulate on the floor side. The amount of sulfur hexafluoride adsorbed varies depending on, for example, the grain size of porous rock (such as Oya stone), the penetration depth, and the age. The amount of sulfur hexafluoride adsorbed increases as the particle size, penetration depth, and age increase. Assuming that there is 1 m 3 of porous rock (such as Oya stone) under the floor, the amount of sulfur hexafluoride that can be adsorbed is about 2 kg/m 3 per year. In addition, the temperature of such an underground storage space is stable at an average of -1°C to 12°C throughout the year, and sulfur hexafluoride, cylinders with sealing caps, expansion and metal fatigue due to temperature in sealed cases described later, etc. hardly occurs.

また、六フッ化硫黄ガスの貯留構造1は、上述したボンベ10を封入した密閉ケース20を更に備えていることが好ましい。このような密閉ケース20としては、例えば、機械加工、溶接などを利用した鋼鉄製の箱型やドラム型のものを用いることが好ましい。このような六フッ化硫黄ガスの貯留構造1は、上述した密閉ケース20を更に備えているので、ボンベ10の弁機構等が仮に破損してボンベ10から六フッ化硫黄ガスが漏れても、多孔質材30で吸着するより前の段階で密閉ケース20の内部20aに六フッ化硫黄ガスを留めることができる。そのため、より確実に、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留できる。 Moreover, it is preferable that the sulfur hexafluoride gas storage structure 1 further includes a closed case 20 that encloses the cylinder 10 described above. As such a sealed case 20, it is preferable to use, for example, a steel box-shaped or drum-shaped one that utilizes machining, welding, or the like. Since such a sulfur hexafluoride gas storage structure 1 further includes the above-described sealed case 20, even if the valve mechanism or the like of the cylinder 10 is damaged and the sulfur hexafluoride gas leaks from the cylinder 10, Sulfur hexafluoride gas can be retained in the interior 20 a of the sealed case 20 before being adsorbed by the porous material 30 . Therefore, a large amount of sulfur hexafluoride gas can be safely and permanently stored underground more reliably.

また、ボンベの体積に対する密閉ケースの内部容積の比が、1.1以上1.5以下であることが好ましい。上述の比が1.1以上の場合には、密閉ケース20の内部20aに六フッ化硫黄ガスを留めやすく、また、ボンベを密閉ケースに封入しやすい。一方、上述の比が1.5以下の場合には、ボンベの破損に繋がる可能性がある密閉ケース20の内部20aでのボンベの移動が抑制されやすい。 Also, the ratio of the internal volume of the sealed case to the volume of the cylinder is preferably 1.1 or more and 1.5 or less. When the above ratio is 1.1 or more, it is easy to keep the sulfur hexafluoride gas in the interior 20a of the closed case 20, and it is easy to enclose the cylinder in the closed case. On the other hand, when the above ratio is 1.5 or less, movement of the cylinder in the interior 20a of the closed case 20, which may lead to damage of the cylinder, is likely to be suppressed.

さらに、六フッ化硫黄ガスの貯留構造1は、上述した密閉ケース20の内部20aにドライ窒素が充填されていることが好ましい。このドライ窒素は、例えば、ドライ窒素充填口21から充填すればよい(図3参照)。このような六フッ化硫黄ガスの貯留構造1は、上述した密閉ケース20の内部20aにドライ窒素が充填されているので、ボンベ10の弁機構等の破損につながる可能性がある腐食を抑制することができる。そのため、より確実に、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留できる。 Further, in the sulfur hexafluoride gas storage structure 1, it is preferable that the inside 20a of the sealed case 20 described above is filled with dry nitrogen. This dry nitrogen may be filled, for example, from the dry nitrogen filling port 21 (see FIG. 3). In such a sulfur hexafluoride gas storage structure 1, since the inside 20a of the sealed case 20 is filled with dry nitrogen, corrosion that may lead to damage to the valve mechanism of the cylinder 10 is suppressed. be able to. Therefore, a large amount of sulfur hexafluoride gas can be safely and permanently stored underground more reliably.

さらに、六フッ化硫黄ガスの貯留構造1は、上述した密閉ケース20に、その内部20aの六フッ化硫黄ガスを検知するガスセンサ(図示せず)を備えていることが好ましい。このガスセンサとしては、例えば、センサー検知範囲が1~1500ppmVのものを用いることが好ましい。このガスセンサは、例えば、ドライ窒素充填口21を兼用して取り付けることができる(図3参照)。このような六フッ化硫黄ガスの貯留構造1は、上述のように密閉ケース20にガスセンサを備えているので、ボンベ10から密閉ケース20の内部20aへの六フッ化硫黄ガスの微量な漏れを検知することができる。 Furthermore, the storage structure 1 for sulfur hexafluoride gas preferably includes a gas sensor (not shown) for detecting the sulfur hexafluoride gas in the interior 20a of the sealed case 20 described above. As this gas sensor, it is preferable to use, for example, a sensor detection range of 1 to 1500 ppmV. This gas sensor can be installed, for example, also using the dry nitrogen filling port 21 (see FIG. 3). Since such a sulfur hexafluoride gas storage structure 1 is equipped with a gas sensor in the sealed case 20 as described above, a minute amount of sulfur hexafluoride gas leakage from the cylinder 10 to the inside 20a of the sealed case 20 can be detected. can be detected.

次に、上述した六フッ化硫黄ガスの貯留構造を構築する方法の一実施形態であって、地下に六フッ化硫黄ガスを貯留するための六フッ化硫黄ガスの貯留方法の一実施形態を説明する。 Next, an embodiment of a method for constructing the above-described sulfur hexafluoride gas storage structure, which is an embodiment of a sulfur hexafluoride gas storage method for storing sulfur hexafluoride gas underground, will be described. explain.

本実施形態の六フッ化硫黄ガスの貯留方法は、六フッ化硫黄ガスをボンベに充填する充填工程と、充填工程の後に実行され、ボンベを六フッ化硫黄を吸着する多孔質材が存在する地下空間に配置する配置工程と、を含んでいる。 The sulfur hexafluoride gas storage method of the present embodiment includes a filling step of filling the cylinder with the sulfur hexafluoride gas, and a porous material that is performed after the filling step and adsorbs the sulfur hexafluoride into the cylinder. and a placement step of placing in an underground space.

本実施形態の六フッ化硫黄ガスの貯留方法によれば、上述した充填工程と配置工程を含んでいるので、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留できる。また、このような六フッ化硫黄ガスの貯留方法は、既に特定地域に多数存在する多孔質岩石層(多孔質材)の採掘跡である地下空間を利用するので、CCSのような大きな地上施設や地中への強制圧入工程を必要とせず、低コストであるという利点もある。さらに、このような六フッ化硫黄ガスの貯留方法は、上述した地域的な特徴を活かして、世界的な問題である地球温暖化の抑制に寄与する六フッ化硫黄の不使用化や六フッ化硫黄の代替化を促進することができるという利点もある。 According to the sulfur hexafluoride gas storage method of the present embodiment, since it includes the above-described filling step and placement step, a large amount of sulfur hexafluoride gas can be safely and permanently stored underground. In addition, since this method of storing sulfur hexafluoride gas utilizes the underground space, which is the remains of mining of many porous rock layers (porous materials) that already exist in specific areas, large ground facilities such as CCS are not required. There is also an advantage that it does not require a forced press-in process into the ground and is low cost. Furthermore, such a storage method of sulfur hexafluoride gas can utilize the above-mentioned regional characteristics to eliminate the use of sulfur hexafluoride and contribute to the suppression of global warming, which is a global problem. There is also the advantage that it is possible to promote the substitution of sulfuric acid.

充填工程においては、六フッ化硫黄ガスをボンベに充填する。密閉用キャップを利用する場合には、ボンベ本体にキャップをねじ込み溶接加工で一体化すればよい。 In the filling step, the cylinder is filled with sulfur hexafluoride gas. When a sealing cap is used, the cap may be screwed onto the cylinder body and integrated by welding.

配置工程においては、ボンベ(又は密閉ケースに封入されたボンベ)を多孔質岩石層の多孔質材の採掘跡である地下空間に配置する。その際、立坑等から搬入する。ボンベの配置にはフォークリフトやクレーン車等が利用できる。 In the arranging step, the cylinder (or the cylinder enclosed in a sealed case) is placed in the underground space where the porous material of the porous rock layer is mined. At that time, it will be brought in from a vertical shaft, etc. A forklift, a crane vehicle, or the like can be used to arrange the cylinders.

また、六フッ化硫黄ガスの貯留方法は、充填工程の後で且つ配置工程の前に実行され、ボンベを密閉ケースに封入する封入工程を更に含んでいることが好ましい。このような六フッ化硫黄ガスの貯留方法は、上述した理由により、より確実に、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留できる。さらに、このような六フッ化硫黄ガスの貯留方法は、既に特定地域に多数存在する多孔質岩石層(多孔質材)の採掘跡に、ボンベを封入した強靱な密閉ケースを配置するので、配置された密閉ケースによって表層地盤を支えることも可能である。これによって、採掘跡で発生する陥没を抑制でき、地域の安全や環境保全に寄与できる。 Moreover, it is preferable that the method for storing sulfur hexafluoride gas further includes a sealing step of sealing the cylinder in a sealed case, which is executed after the filling step and before the disposing step. Such a storage method of sulfur hexafluoride gas can more reliably store a large amount of sulfur hexafluoride gas safely and permanently underground for the reasons described above. Furthermore, in this method of storing sulfur hexafluoride gas, a strong sealed case containing a cylinder is placed in the mining site of many porous rock layers (porous materials) that already exist in a specific area. It is also possible to support the surface ground with a sealed case that has been sealed. As a result, it is possible to suppress depressions that occur at mining sites, contributing to regional safety and environmental conservation.

さらに、六フッ化硫黄ガスの貯留方法は、封入工程において、密閉ケースの内部にドライ窒素を充填することが好ましい。また、その際に密閉ケースにガスセンサを設けることが好ましい。このような六フッ化硫黄ガスの貯留方法は、上述した理由により、より確実に、大量の六フッ化硫黄ガスを安全、且つ、恒久的に地下に貯留できる。 Furthermore, in the method of storing the sulfur hexafluoride gas, it is preferable to fill the inside of the sealed case with dry nitrogen in the sealing step. Moreover, in that case, it is preferable to provide a gas sensor in the sealed case. Such a storage method of sulfur hexafluoride gas can more reliably store a large amount of sulfur hexafluoride gas safely and permanently underground for the reasons described above.

以上、本発明を若干の実施形態によって説明したが、本発明はこれに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。 Although the present invention has been described with some embodiments, the present invention is not limited to these, and various modifications are possible within the scope of the present invention.

1 六フッ化硫黄ガスの貯留構造
10 ボンベ
20 密閉ケース
20a 内部
21 ドライ窒素充填口
30 多孔質材(残柱又は周囲壁)
US 地下空間
VS 立坑
A 横坑
1 Sulfur hexafluoride gas storage structure 10 Cylinder 20 Sealed case 20a Inside 21 Dry nitrogen filling port 30 Porous material (residual column or surrounding wall)
US underground space VS shaft A side shaft

Claims (8)

地下に六フッ化硫黄ガスを貯留するための六フッ化硫黄ガスの貯留構造であって、
六フッ化硫黄ガスを充填したボンベと、
地下に存在すると共に前記ボンベの周囲に存在し、六フッ化硫黄を吸着する多孔質材と、を備えた
ことを特徴とする六フッ化硫黄ガスの貯留構造。
A sulfur hexafluoride gas storage structure for storing sulfur hexafluoride gas underground,
a cylinder filled with sulfur hexafluoride gas;
A sulfur hexafluoride gas storage structure, comprising: a porous material that exists underground and around the cylinder and that adsorbs sulfur hexafluoride.
前記ボンベを封入した密閉ケースを更に備えたことを特徴とする請求項1に記載の六フッ化硫黄ガスの貯留構造。 2. The storage structure for sulfur hexafluoride gas according to claim 1, further comprising a sealed case enclosing said cylinder. 前記密閉ケースの内部にドライ窒素が充填されたことを特徴とする請求項2に記載の六フッ化硫黄ガスの貯留構造。 3. The storage structure for sulfur hexafluoride gas according to claim 2, wherein the inside of said sealed case is filled with dry nitrogen. 前記密閉ケースに、その内部の六フッ化硫黄ガスを検知するガスセンサを更に備えたことを特徴とする請求項2又は3に記載の六フッ化硫黄ガスの貯留構造。 4. The structure for storing sulfur hexafluoride gas according to claim 2, wherein the sealed case further comprises a gas sensor for detecting sulfur hexafluoride gas inside. 前記多孔質材が、大谷石であることを特徴とする請求項1に記載の六フッ化硫黄ガスの貯留構造。 2. A storage structure for sulfur hexafluoride gas according to claim 1, wherein said porous material is Oya stone. 地下に六フッ化硫黄ガスを貯留するための六フッ化硫黄ガスの貯留方法であって、
六フッ化硫黄ガスをボンベに充填する充填工程と、
前記充填工程の後に実行され、前記ボンベを六フッ化硫黄を吸着する多孔質材が存在する地下空間に配置する配置工程と、を含む
ことを特徴とする六フッ化硫黄ガスの貯留方法。
A sulfur hexafluoride gas storage method for storing sulfur hexafluoride gas underground,
A filling step of filling the cylinder with sulfur hexafluoride gas;
A method for storing sulfur hexafluoride gas, comprising: an arrangement step, which is executed after the filling step, for arranging the cylinder in an underground space in which a porous material that adsorbs sulfur hexafluoride exists.
前記充填工程の後で且つ前記配置工程の前に実行され、前記ボンベを密閉ケースに封入する封入工程を更に含むことを特徴とする請求項6に記載の六フッ化硫黄ガスの貯留方法。 7. The method for storing sulfur hexafluoride gas according to claim 6, further comprising an enclosing step of enclosing the cylinder in a sealed case, which is performed after the filling step and before the disposing step. 前記封入工程において、前記密閉ケースの内部にドライ窒素を充填することを特徴とする請求項7に記載の六フッ化硫黄ガスの貯留方法。 8. The method for storing sulfur hexafluoride gas according to claim 7, wherein dry nitrogen is filled in the sealed case in the sealing step.
JP2023039786A 2023-03-14 2023-03-14 Sulfur hexafluoride gas storage structure and storage method Active JP7284551B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023039786A JP7284551B1 (en) 2023-03-14 2023-03-14 Sulfur hexafluoride gas storage structure and storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023039786A JP7284551B1 (en) 2023-03-14 2023-03-14 Sulfur hexafluoride gas storage structure and storage method

Publications (1)

Publication Number Publication Date
JP7284551B1 true JP7284551B1 (en) 2023-05-31

Family

ID=86538354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023039786A Active JP7284551B1 (en) 2023-03-14 2023-03-14 Sulfur hexafluoride gas storage structure and storage method

Country Status (1)

Country Link
JP (1) JP7284551B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319482A (en) * 1992-05-20 1993-12-03 Nippon Steel Corp Arrangement of underground tanks in vertical shaft
JPH119951A (en) * 1997-06-20 1999-01-19 Hitachi Ltd Apparatus and method for recovering and refining sf6 gas
JP2000351611A (en) * 1999-06-11 2000-12-19 Mitsubishi Electric Corp Apparatus for collecting sulfur hexafluoride and collecting method thereof
JP2001103626A (en) * 1999-09-30 2001-04-13 Toshiba Corp Gas recovering apparatus
JP2003103134A (en) * 2001-09-28 2003-04-08 Toshiba Corp Gaseous sf 6 sampling device and method for the same
JP5319482B2 (en) 2009-10-15 2013-10-16 政弘 佐藤 Waterproof tucker cap
JP2014233248A (en) * 2013-06-03 2014-12-15 独立行政法人海洋研究開発機構 Recycling method of carbon dioxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319482A (en) * 1992-05-20 1993-12-03 Nippon Steel Corp Arrangement of underground tanks in vertical shaft
JPH119951A (en) * 1997-06-20 1999-01-19 Hitachi Ltd Apparatus and method for recovering and refining sf6 gas
JP2000351611A (en) * 1999-06-11 2000-12-19 Mitsubishi Electric Corp Apparatus for collecting sulfur hexafluoride and collecting method thereof
JP2001103626A (en) * 1999-09-30 2001-04-13 Toshiba Corp Gas recovering apparatus
JP2003103134A (en) * 2001-09-28 2003-04-08 Toshiba Corp Gaseous sf 6 sampling device and method for the same
JP5319482B2 (en) 2009-10-15 2013-10-16 政弘 佐藤 Waterproof tucker cap
JP2014233248A (en) * 2013-06-03 2014-12-15 独立行政法人海洋研究開発機構 Recycling method of carbon dioxide

Similar Documents

Publication Publication Date Title
Perera et al. Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: carbon dioxide, water and nitrogen saturations
WO2010048188A8 (en) Engineered, scalable underground storage system and method
JP7284551B1 (en) Sulfur hexafluoride gas storage structure and storage method
CN1125938C (en) Gas storage method and system, and gas occluding material
EP3391944A3 (en) Dome-based cyclic inerting system for external floating roof tank and qhse storage and transport method thereof
CN106939965A (en) A kind of storage tank anti-shake damping device
KR20150085187A (en) Lng storage tank having anti-sloshing plate
Vishal et al. Geomechanical attributes of reconstituted Indian coals under carbon dioxide saturation
CN214877028U (en) Liquefied natural gas storage and transportation device
Lukhele et al. EFFECT OF SO 2 CO-FEEDING ON CO 2 ADSORPTION CAPACITY OF SOUTH AFRICAN COALS DURING CO 2 SEQUESTRATION.
CN203781053U (en) Moisture-proof and damp-poof safe explosive storage device
CN211253451U (en) Storage and transportation box for precision shaft
JP3114993U (en) SF6 gas or chlorofluorocarbon gas tank
CN203303818U (en) Gas absorption apparatus
CN204737218U (en) Precision instruments packing plant
EP2301786A1 (en) Waterproof bag
JPS637758Y2 (en)
CN108396786A (en) A kind of isolation mounting
CN208545777U (en) A kind of isolation mounting
CN202642465U (en) Vacuum storage barrel
US20230296205A1 (en) Method of enhancing methane storage capacity in salt caverns
CN105421271A (en) Channel lateral stand column protection device
CN213444157U (en) Shock attenuation protection device of transport tank
KR20150005124A (en) Fender for hull protection of offshore
CN213493815U (en) Movable soil sample placement device for geotechnical engineering construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230314

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R150 Certificate of patent or registration of utility model

Ref document number: 7284551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350