JP7284334B1 - Core unit and rotor - Google Patents

Core unit and rotor Download PDF

Info

Publication number
JP7284334B1
JP7284334B1 JP2022163885A JP2022163885A JP7284334B1 JP 7284334 B1 JP7284334 B1 JP 7284334B1 JP 2022163885 A JP2022163885 A JP 2022163885A JP 2022163885 A JP2022163885 A JP 2022163885A JP 7284334 B1 JP7284334 B1 JP 7284334B1
Authority
JP
Japan
Prior art keywords
core
pipe
peripheral surface
dust
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022163885A
Other languages
Japanese (ja)
Other versions
JP2024057272A (en
Inventor
誠 井野元
良次 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2022163885A priority Critical patent/JP7284334B1/en
Application granted granted Critical
Publication of JP7284334B1 publication Critical patent/JP7284334B1/en
Publication of JP2024057272A publication Critical patent/JP2024057272A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】圧粉磁心の形状を維持できると共に鉄心の冷却性能を向上した鉄心ユニット、および、回転子を提供する。【解決手段】鉄心ユニットは、少なくとも1つの鉄心と、パイプとを備える。少なくとも1つの鉄心にはそれぞれ、第1方向に貫通された圧粉磁心孔が形成される。パイプは第1方向に延在する。さらに、パイプは圧粉磁心孔に差し込まれる。これにより、圧粉磁心の形状を維持できると共に鉄心の冷却性能を向上した鉄心ユニットが実現される。【選択図】図2AAn object of the present invention is to provide an iron core unit and a rotor that can maintain the shape of a powder magnetic core and improve the cooling performance of the iron core. A core unit includes at least one core and a pipe. At least one iron core is formed with a dust core hole penetrating in the first direction. A pipe extends in a first direction. Furthermore, the pipe is inserted into the dust core hole. As a result, an iron core unit is realized in which the shape of the powder magnetic core can be maintained and the cooling performance of the iron core is improved. [Selection drawing] Fig. 2A

Description

本開示は、鉄心ユニット、および、回転子に関する。 The present disclosure relates to core units and rotors.

従来、圧粉磁心を含む鉄心ユニットが知られている。例えば特許文献1は、圧粉磁心によって構成されるステータコアを鉄心ユニットの一例として開示する(同文献の図2参照)。 Conventionally, an iron core unit including a dust core is known. For example, Patent Literature 1 discloses a stator core composed of a dust core as an example of an iron core unit (see FIG. 2 of the same literature).

特開2008-271713号公報JP 2008-271713 A

上記の鉄心ユニットの圧粉磁心にて例えば引張り応力が発生すると、圧粉磁心の欠損が発生し、鉄心ユニットの形状を維持することが困難になるおそれがある。また、例えば鉄損などに起因して鉄心ユニットの温度は上昇するおそれがある。 If, for example, a tensile stress occurs in the dust core of the core unit, the dust core may be damaged, making it difficult to maintain the shape of the core unit. Also, the temperature of the core unit may rise due to, for example, iron loss.

本開示の目的は、圧粉磁心の形状を維持できると共に鉄心の冷却性能を向上した鉄心ユニット、および、回転子を提供することである。 An object of the present disclosure is to provide an iron core unit and a rotor that can maintain the shape of the dust core and improve the cooling performance of the iron core.

本開示の少なくとも一実施形態に係る鉄心ユニットは、
第1方向に貫通された圧粉磁心孔が形成された少なくとも1つの圧粉磁心を含む鉄心と、
前記第1方向に延在し、前記圧粉磁心孔に差し込まれるパイプと、
を備える。
A core unit according to at least one embodiment of the present disclosure includes:
an iron core including at least one powder magnetic core having a powder magnetic core hole penetrating in a first direction;
a pipe extending in the first direction and inserted into the dust core hole;
Prepare.

本開示の一実施形態に係る回転子は、
上記の複数の鉄心ユニットと、前記第1方向と直交する方向である周方向において前記複数の鉄心ユニットと交互に配置される複数の非磁性体とを含むリングユニットと、
前記リングユニットの前記第1方向の両端部にそれぞれ連結される一対のフランジであって、前記第1方向に延在する回転軸に連結されるようにそれぞれ構成される一対のフランジと、
を備え、
前記各々のフランジには、前記複数の鉄心ユニットの各々の前記パイプの内側空間と連通する少なくとも1つのフランジ孔が形成される。
A rotor according to an embodiment of the present disclosure includes:
a ring unit including the plurality of core units and a plurality of non-magnetic bodies arranged alternately with the plurality of core units in a circumferential direction perpendicular to the first direction;
a pair of flanges respectively connected to both ends of the ring unit in the first direction, the pair of flanges being configured to be connected to a rotating shaft extending in the first direction;
with
At least one flange hole communicating with the inner space of the pipe of each of the plurality of core units is formed in each of the flanges.

本開示によれば、圧粉磁心の形状を維持できると共に鉄心の冷却性能を向上した鉄心ユニット、および、回転子を提供する。 ADVANTAGE OF THE INVENTION According to this indication, the iron core unit which can maintain the shape of a powder magnetic core and improved the cooling performance of an iron core, and a rotor are provided.

一実施形態に係る鉄心ユニットの概略図である。1 is a schematic diagram of a core unit according to one embodiment; FIG. 一実施形態に係る鉄心を示す概略図である。It is a schematic diagram showing an iron core concerning one embodiment. 他の実施形態に係る鉄心を示す概略図である。It is a schematic diagram showing an iron core concerning other embodiments. 一実施形態に係る鉄心とパイプとの接合構造を示す概略図である。It is a schematic diagram showing a joint structure of an iron core and a pipe concerning one embodiment. 一実施形態に係るパイプの詳細構造を示す概略図である。It is a schematic diagram showing a detailed structure of a pipe according to one embodiment. 他の実施形態に係る鉄心とパイプとの接合構造を示す概略図である。It is the schematic which shows the joining structure of the iron core and pipe which concern on other embodiment. 一実施形態に係るパイプを示す概略図である(第1の例示)。1 is a schematic diagram showing a pipe according to one embodiment (first illustration); FIG. 一実施形態に係るパイプを示す概略図である(第2の例示)。Fig. 2 is a schematic diagram showing a pipe according to one embodiment (second illustration); 一実施形態に係るパイプを示す概略図である(第3の例示)。FIG. 3 is a schematic diagram showing a pipe according to one embodiment (third illustration); 一実施形態に係る回転子の概略図である。1 is a schematic diagram of a rotor according to one embodiment; FIG. 一実施形態に係るリングユニットの構成の一部を示す概略図である。FIG. 4 is a schematic diagram showing part of the configuration of a ring unit according to one embodiment; 一実施形態に係る磁気ギヤード電気機械の概略図である。1 is a schematic diagram of a magnetic geared electric machine according to one embodiment; FIG.

以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
なお、同様の構成については同じ符号を付し説明を省略することがある。
Several embodiments of the present disclosure will now be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiment or shown in the drawings are not meant to limit the scope of the present disclosure, but are merely illustrative examples. do not have.
For example, expressions denoting relative or absolute arrangements such as "in a direction", "along a direction", "parallel", "perpendicular", "center", "concentric" or "coaxial" are strictly not only represents such an arrangement, but also represents a state of relative displacement with a tolerance or an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which express that things are in the same state, not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. The shape including the part etc. shall also be represented.
On the other hand, the expressions "comprising", "including", or "having" one component are not exclusive expressions excluding the presence of other components.
In addition, the same code|symbol may be attached|subjected about the same structure and description may be abbreviate|omitted.

<1.鉄心ユニット10の概要>
図1は、本開示の一実施形態に係る鉄心ユニット10の概略的な分解斜視図である。電機子に組み込まれてもよい鉄心ユニット10は、第1方向に延在する鉄心60を備える。
電機子の一例としての固定子に鉄心ユニット10が組み込まれる場合には、鉄心60に電機子コイルが巻かれてもよい。電機子の一例としての回転子30(図7参照)に鉄心ユニット10が組み込まれる場合には、鉄心60に電機子コイルが巻かれなくてもよい。第1方向はどのような方向であってもよく、鉛直方向であってもよいし、水平方向であってもよいし、鉛直方向及び水平方向と交差する方向であってもよい。
<1. Overview of Core Unit 10>
FIG. 1 is a schematic exploded perspective view of a core unit 10 according to one embodiment of the present disclosure. A core unit 10 that may be incorporated into an armature includes a core 60 extending in a first direction.
When the iron core unit 10 is incorporated in a stator as an example of an armature, an armature coil may be wound around the iron core 60 . When the iron core unit 10 is incorporated in the rotor 30 (see FIG. 7) as an example of the armature, the armature coil does not have to be wound around the iron core 60 . The first direction may be any direction, and may be a vertical direction, a horizontal direction, or a direction intersecting the vertical direction and the horizontal direction.

鉄心60の中心部には差込穴68が形成されている。図1で例示される差込穴68は第1方向に貫通された貫通孔であるが、本開示はこれに限定されず、第1方向の片側において差込穴68は閉塞され、もう片側においてのみ開放されていてもよい(詳細は後述する)。鉄心ユニット10は第1方向に延在するパイプ80をさらに備えており、パイプ80は鉄心60の差込穴68に差し込まれている。パイプ80と差込穴68との篏合は締まり嵌め、中間嵌め、または、隙間嵌めのいずれであってもよい。いずれの篏合が採用される場合であっても、差込穴68を規定する内周面とパイプ80との間に接着剤9(図3参照)が介在してもよい。差込穴68に差し込まれたパイプ80(図1参照)は鉄心60を支持する。 An insertion hole 68 is formed in the center of the iron core 60 . Although the insertion hole 68 illustrated in FIG. 1 is a through hole that penetrates in the first direction, the present disclosure is not limited to this, and the insertion hole 68 is closed on one side in the first direction and only may be opened (details will be described later). The core unit 10 further includes a pipe 80 extending in the first direction, and the pipe 80 is inserted into the insertion hole 68 of the core 60 . The fit between the pipe 80 and the insertion hole 68 may be an interference fit, an intermediate fit, or a clearance fit. Adhesive 9 (see FIG. 3) may be interposed between the pipe 80 and the inner peripheral surface that defines the insertion hole 68, regardless of which fitting method is employed. A pipe 80 (see FIG. 1) inserted into the insertion hole 68 supports the iron core 60 .

図1の例では、差込穴68は第1方向視において円形状であり、かつ、パイプ80は円筒状であるが、本開示はこれに限定されない。他の実施形態では、差込穴68は第1方向視において矩形状であってもよく、この場合、パイプ80は四角筒状に形成される。以下の説明では、円形状の単一の差込穴68にパイプ80が差し込まれる例を主として説明する。 In the example of FIG. 1, the insertion hole 68 has a circular shape when viewed in the first direction, and the pipe 80 has a cylindrical shape, but the present disclosure is not limited to this. In another embodiment, the insertion hole 68 may have a rectangular shape when viewed from the first direction, in which case the pipe 80 is formed in the shape of a square cylinder. In the following description, an example in which a pipe 80 is inserted into a single circular insertion hole 68 will be mainly described.

また図1の例では、単一の差込穴68が形成されているが、本開示はこれに限定されない。他の実施形態では、第1方向と直交する方向に間隔を空けて2つの差込穴68が配置されてもよい(図示は省略する)。この場合、2つの差込穴68はいずれも第1方向に貫通された貫通孔であってもよい。あるいは、2つの差込穴68が第1方向に間隔を空けて配置されてもよい。いずれの実施形態においても、2つのパイプ80がそれぞれ2つの差込穴68に差し込まれてもよい。 Also, although a single insertion hole 68 is formed in the example of FIG. 1, the present disclosure is not so limited. In another embodiment, two insertion holes 68 may be spaced apart in a direction perpendicular to the first direction (not shown). In this case, both of the two insertion holes 68 may be through holes penetrating in the first direction. Alternatively, two insertion holes 68 may be spaced apart in the first direction. In either embodiment, two pipes 80 may be inserted into the two insertion holes 68, respectively.

<2.鉄心60の構造の詳細>
図2A、図2Bは、本開示の幾つかの実施形態に係る鉄心60A,60B(60)を示す概略図である。鉄心60A,60B(60)は、少なくとも1つの圧粉磁心70を含む。図2Aで例示される鉄心60Aは、第1方向に連続して積層された複数の圧粉磁心70を含む。図2Bで例示される鉄心60Bは、第1方向に連続して積層される複数の鋼板77を含む鋼板積層体79と、鋼板積層体79の第1方向の両側にそれぞれ配置される一対の圧粉磁心70とを含む。
<2. Details of Structure of Iron Core 60>
2A, 2B are schematic diagrams illustrating cores 60A, 60B (60) according to some embodiments of the present disclosure. Iron cores 60A, 60B (60) include at least one dust core 70. An iron core 60A illustrated in FIG. 2A includes a plurality of powder magnetic cores 70 successively laminated in a first direction. The iron core 60B illustrated in FIG. 2B includes a steel plate laminate 79 including a plurality of steel plates 77 continuously laminated in a first direction, and a pair of pressure plates arranged on both sides of the steel plate laminate 79 in the first direction. A powder magnetic core 70 is included.

図2A、図2Bで例示される各圧粉磁心70の中央部には第1方向に貫通された圧粉磁心孔75が形成されている。圧粉磁心孔75は差込穴68の構成要素である。図2Aの例において、複数の圧粉磁心孔75によって形成される差込穴68A(68)は、第1方向に貫通された貫通孔である。図2Bの例において、各鋼板77の中央部には鋼板孔78が形成されており、差込穴68は、複数の鋼板孔78と2つの圧粉磁心孔75とによって形成される。図2Bの例においても、差込穴68は第1方向に貫通された貫通孔である。 A dust core hole 75 penetrating in the first direction is formed in the central portion of each dust core 70 illustrated in FIGS. 2A and 2B. The dust core hole 75 is a component of the insertion hole 68 . In the example of FIG. 2A, an insertion hole 68A (68) formed by a plurality of powder magnetic core holes 75 is a through hole penetrating in the first direction. In the example of FIG. 2B , a steel plate hole 78 is formed in the central portion of each steel plate 77 , and the insertion hole 68 is formed by a plurality of steel plate holes 78 and two dust core holes 75 . In the example of FIG. 2B as well, the insertion hole 68 is a through hole penetrating in the first direction.

上記構成によれば、パイプ80が差し込まれるための圧粉磁心孔75が圧粉磁心70に形成されることで、パイプ80の内側空間を流れる空気が鉄心60を冷却できる。これにより、例えば渦電流の発生などに起因する鉄心60の温度上昇を抑制できる。また、圧粉磁心70は、例えば第1方向における引張応力が発生すると欠損するおそれがある。この点、上記構成によれば、パイプ80が圧粉磁心孔75に差し込まれるため、圧粉磁心70の欠損が起きても、片状の圧粉磁心70が鉄心60から落ちるのを抑制できる。よって、圧粉磁心70の形状を維持できると共に鉄心60の冷却性能を向上した鉄心ユニット10が実現される。 According to the above configuration, the dust core 70 is formed with the dust core hole 75 into which the pipe 80 is inserted. As a result, it is possible to suppress the temperature rise of the iron core 60 caused by, for example, the generation of eddy currents. In addition, the powder magnetic core 70 may be damaged, for example, when a tensile stress is generated in the first direction. In this respect, according to the above configuration, since the pipe 80 is inserted into the dust core hole 75 , even if the dust core 70 is damaged, the flake dust core 70 can be prevented from falling off the iron core 60 . Therefore, the iron core unit 10 in which the shape of the dust core 70 can be maintained and the cooling performance of the iron core 60 is improved is realized.

なお、鉄心60の温度上昇は渦電流の発生に限定されない。例えば、鉄心60に電機子コイルが巻かれる実施形態においては、電機子コイルにおける通電によって生じた熱が鉄心60に伝わり、鉄心60の温度が上昇することもある。当該実施形態においても、圧粉磁心孔75に差し込まれたパイプ80の内側空間を空気が流れることで、鉄心60の冷却性能の向上が期待できる。また、差込穴68は、第1方向に貫通された貫通孔であることに限定されない。より具体的には、図2Bの鋼板77に鋼板孔78が形成されていなくてもよい。この場合、鋼板積層体79の両側にそれぞれ配置される2つの圧粉磁心70によって2つの差込穴68が形成される。つまり、2つの差込穴68が第1方向に間隔を空けて配置される。2つの差込穴68はいずれも鋼板積層体79によって閉塞される(つまり、各差込穴68の第1方向における片側は鋼板積層体79によって閉塞される。)。当該実施形態においては、2つのパイプ80がそれぞれ2つの圧粉磁心孔75に差し込まれる。この場合でも、パイプ80の内側空間を空気が流れることができるため、鉄心60の冷却性能の向上は期待できる。また、片状の圧粉磁心70が鉄心60から落ちるのを抑制することもできる。 Note that the temperature rise of the iron core 60 is not limited to the generation of eddy currents. For example, in an embodiment in which an armature coil is wound around an iron core 60, heat generated by energization in the armature coil may be transferred to the iron core 60 and the temperature of the iron core 60 may rise. Also in this embodiment, the cooling performance of the iron core 60 can be expected to be improved by air flowing through the inner space of the pipe 80 inserted into the dust core hole 75 . Also, the insertion hole 68 is not limited to being a through hole penetrating in the first direction. More specifically, the steel plate hole 78 may not be formed in the steel plate 77 of FIG. 2B. In this case, two insertion holes 68 are formed by two dust cores 70 arranged on both sides of the steel plate laminate 79 . That is, the two insertion holes 68 are spaced apart in the first direction. Both of the two insertion holes 68 are closed by the steel plate laminate 79 (that is, one side of each insertion hole 68 in the first direction is closed by the steel plate laminate 79). In this embodiment, two pipes 80 are inserted into the two dust core holes 75, respectively. Even in this case, since air can flow through the inner space of the pipe 80, an improvement in the cooling performance of the iron core 60 can be expected. Also, it is possible to prevent the flake dust core 70 from falling off the iron core 60 .

本開示の必須の構成ではないが、図2A、図2Bの例では、鉄心60A,60B(60)よりも第1方向に長い単一のパイプ80が、鉄心60における一方側の端部から他方側の端部に亘って差し込まれている。上記構成によれば、鉄心60を貫通するようにパイプ80が差し込まれるため、パイプ80は鉄心60をより強固に支持することができ、鉄心ユニット10の機械的強度を向上できる。 Although not an essential configuration of the present disclosure, in the example of FIGS. 2A and 2B, a single pipe 80 longer in the first direction than cores 60A and 60B (60) extends from one end of core 60 to the other. It is inserted across the side edges. According to the above configuration, since the pipe 80 is inserted so as to penetrate the core 60 , the pipe 80 can support the core 60 more firmly, and the mechanical strength of the core unit 10 can be improved.

また、図2Aの例では上述のように、鉄心60A(60)は第1方向に連続して積層された複数の圧粉磁心70を含み、単一のパイプ80が各々の圧粉磁心孔75に差し込まれる。また、図2Bの例では、鉄心60B(60)は、鋼板積層体79を挟んで第1方向に積層された2つの圧粉磁心70を含み、単一のパイプ80が各々の圧粉磁心孔75に差し込まれる。上記構成によれば、鉄心60が複数の圧粉磁心70を含むことで、鉄心60を形成する各圧粉磁心70の小型化が実現される。これにより、鉄心60の組立工程において各圧粉磁心70をパイプ80に差し込む作業を簡易にできる。また、圧粉磁心70の小型化が実現されることによって、圧粉磁心70の成形工程を担う成形機に求められる成形圧力を低減し、圧粉磁心70の製造を易化できる。
なお、上述したように、図2Bの鋼板77に鋼板孔78が形成されていなくてもよく、鉄心60の両端部に配置される2つの圧粉磁心70にそれぞれ2本のパイプ80が差し込まれてもよい。この場合、各パイプ80は第1方向において鉄心60よりも短い。当該実施形態においても、鉄心60が複数の圧粉磁心70を含むので、各圧粉磁心70の小型化が実現される。従って、上記利点は得られる。
In the example of FIG. 2A, as described above, the core 60A (60) includes a plurality of powder cores 70 continuously stacked in the first direction, and a single pipe 80 is provided for each powder core hole 75. inserted into the Further, in the example of FIG. 2B, the iron core 60B (60) includes two dust cores 70 laminated in the first direction with a steel plate laminate 79 interposed therebetween, and a single pipe 80 is provided in each dust core hole. It is plugged into 75. According to the above configuration, since the iron core 60 includes a plurality of dust cores 70, each dust core 70 forming the iron core 60 can be miniaturized. As a result, the work of inserting each dust core 70 into the pipe 80 in the assembly process of the iron core 60 can be simplified. In addition, since the dust core 70 is made smaller, the molding pressure required for the molding machine that performs the molding process of the dust core 70 can be reduced, and the manufacture of the dust core 70 can be facilitated.
As described above, the steel plate hole 78 may not be formed in the steel plate 77 of FIG. may In this case, each pipe 80 is shorter than the core 60 in the first direction. Also in this embodiment, since the iron core 60 includes a plurality of dust cores 70, each dust core 70 can be miniaturized. Therefore, the above advantages are obtained.

本開示の一実施形態に係るパイプ80は、非磁性材料によって形成されることが好ましく、非磁性金属材料によって形成されることがさらに好ましい。非磁性金属材料としては、例えばアルミニウム、オーステナイト系ステンレス、または、銅などが挙げられる。上記構成によれば、パイプ80が非磁性材料によって形成されることで、パイプ80の磁化に伴うヒステリシス損の発生を抑制できると共に、鉄心60による磁束の変調機能を維持することができる。また、パイプ80が非磁性金属材料によって形成されることで、パイプ80の熱伝導率が向上し、圧粉磁心70からパイプ80への熱伝導性を向上できる。なお、パイプ80は、樹脂材料などの非金属の非磁性材料によって形成されてもよい。この場合であっても、パイプ80の磁化に伴うヒステリシス損の発生の抑制および鉄心60による磁束の変調機能の維持という上記利点は得られる。 The pipe 80 according to one embodiment of the present disclosure is preferably made of a non-magnetic material, more preferably made of a non-magnetic metallic material. Examples of non-magnetic metal materials include aluminum, austenitic stainless steel, and copper. According to the above configuration, since the pipe 80 is made of a non-magnetic material, the occurrence of hysteresis loss due to the magnetization of the pipe 80 can be suppressed, and the magnetic flux modulation function of the iron core 60 can be maintained. Further, since the pipe 80 is made of a non-magnetic metal material, the thermal conductivity of the pipe 80 is improved, and the thermal conductivity from the dust core 70 to the pipe 80 can be improved. Note that the pipe 80 may be made of a non-metallic, non-magnetic material such as a resin material. Even in this case, the above advantages of suppressing the generation of hysteresis loss due to the magnetization of the pipe 80 and maintaining the magnetic flux modulation function of the iron core 60 can be obtained.

図2Bの例において、第1方向における一方側の鉄心60の端部を形成する圧粉磁心70は一方側圧粉磁心71であり、他方側の端部を形成する圧粉磁心70は他方側圧粉磁心72である。一方側圧粉磁心71は鋼板積層体79よりも第1方向の一方側に配置され、他方側圧粉磁心72は鋼板積層体79よりも第1方向の他方側に配置される。上記構成によれば、一方側圧粉磁心71が設けられることで、鉄心60の一方側の端部で発生する傾向の高い漏れ磁束を抑制でき、鉄心60において渦電流が発生するのを抑制できる。よって、鉄心60の温度上昇を抑制できる。また、他方側圧粉磁心72が設けられることで、同様の理由により鉄心60の温度上昇を抑制できる。なお、一方側圧粉磁心71と鋼板積層体79との間に少なくとも1つの圧粉磁心70がさらに配置されてもよい。同様に、他方側圧粉磁心72と鋼板積層体79との間に少なくとも1つの圧粉磁心70がさらに配置されてもよい。いずれの実施形態においても、上記利点は得られる。 In the example of FIG. 2B, the dust core 70 forming the end of the iron core 60 on one side in the first direction is the one-side dust core 71, and the dust core 70 forming the other end is the other-side dust core. It is the magnetic core 72 . The one-side powder magnetic core 71 is arranged on one side in the first direction of the steel plate laminate 79 , and the other-side powder magnetic core 72 is arranged on the other side of the steel plate laminate 79 in the first direction. According to the above configuration, by providing one-side dust core 71 , it is possible to suppress leakage magnetic flux that tends to occur at one end of iron core 60 , and to suppress generation of eddy current in iron core 60 . Therefore, the temperature rise of the iron core 60 can be suppressed. Further, by providing the other side powder magnetic core 72, the temperature rise of the iron core 60 can be suppressed for the same reason. At least one powder magnetic core 70 may be further arranged between the one-side powder magnetic core 71 and the steel plate laminate 79 . Similarly, at least one dust core 70 may be further arranged between the other side dust core 72 and the steel plate laminate 79 . In either embodiment, the above advantages are obtained.

また、本開示の一実施形態に係るパイプ80の厚さは、圧粉磁心孔75の内径の最小値に対して10%以下である。上記構成によれば、パイプ80を薄くすることができるので、パイプ80の内側空間を流れる空気と圧粉磁心70との熱交換を促進することができ、鉄心ユニット10の冷却性能の向上が期待できる。 Also, the thickness of the pipe 80 according to an embodiment of the present disclosure is 10% or less of the minimum value of the inner diameter of the dust core hole 75 . According to the above configuration, the pipe 80 can be made thinner, so heat exchange between the air flowing in the inner space of the pipe 80 and the dust core 70 can be promoted, and an improvement in the cooling performance of the core unit 10 is expected. can.

<3.絶縁体110>
図1に戻り、本開示の一実施形態に係る鉄心ユニット10は、鉄心60の第1方向の端部に積み重なるように配置された絶縁体110をさらに備える。絶縁体110は、鉄心ユニット10の第1方向における端部を形成する。図1で例示される絶縁体110は、第1方向に厚さを有する板状である。一例として、絶縁体110を形成する材料は繊維強化複合材料(FRP;Fiber Reinforced Plastics)であり、より詳細にはガラス繊維強化プラスチック(GFRP;Glass Fiber Reinforced Plastics)である。絶縁体110を形成する材料の他の例として、樹脂材料またはセラミック材料などが採用されてもよい。また、図1の例では、鉄心60に対して第1方向の両側にそれぞれ絶縁体110が配置される。各絶縁体110の中央部には第1方向に貫通された絶縁体孔115が形成されており、各絶縁体孔115は、鉄心60の差込穴68と第1方向に対向する。そして、本開示の一実施形態に係るパイプ80は、差込穴68のみならず絶縁体孔115にも差し込まれている。より具体的には一例として、パイプ80の第1方向における端部は絶縁体孔115に収容されている。つまり、パイプ80は絶縁体孔115から鉄心ユニット10とは反対側に突出してはいない。パイプ80と絶縁体孔115との篏合は締まり嵌め、中間嵌め、または、隙間嵌めのいずれであってもよい。
<3. Insulator 110>
Returning to FIG. 1 , the core unit 10 according to an embodiment of the present disclosure further includes insulators 110 arranged so as to be stacked on the ends of the core 60 in the first direction. The insulator 110 forms an end of the core unit 10 in the first direction. The insulator 110 illustrated in FIG. 1 is plate-shaped with a thickness in the first direction. As an example, the material forming the insulator 110 is Fiber Reinforced Plastics (FRP), more specifically Glass Fiber Reinforced Plastics (GFRP). As another example of the material forming the insulator 110, a resin material, a ceramic material, or the like may be employed. In the example of FIG. 1, the insulators 110 are arranged on both sides of the iron core 60 in the first direction. An insulator hole 115 penetrating in the first direction is formed in the central portion of each insulator 110 , and each insulator hole 115 faces the insertion hole 68 of the iron core 60 in the first direction. A pipe 80 according to an embodiment of the present disclosure is inserted not only into the insertion hole 68 but also into the insulator hole 115 . More specifically, as an example, the end of the pipe 80 in the first direction is accommodated in the insulator hole 115 . That is, the pipe 80 does not protrude from the insulator hole 115 to the side opposite to the core unit 10 . The fit between pipe 80 and insulator bore 115 may be an interference fit, an intermediate fit, or a clearance fit.

上記構成によれば、鉄心60の端部に積み重なるように配置された絶縁体110の絶縁体孔115にパイプ80が差し込まれることで、パイプ80を圧粉磁心孔75から外れにくくできる。従って、鉄心ユニット10の機械的強度は向上する。また、絶縁体110が設けられることで、鉄心60の第1方向における端部で発生する傾向の高い漏れ磁束を抑制でき、鉄心60において渦電流が発生するのを抑制できる。よって、鉄心60の温度上昇を抑制することもできる。
また、圧粉磁心70の欠損が生じた場合であっても、鉄心60の端部に積み重なるように絶縁体110は、片状の圧粉磁心70が鉄心60から落ちるのを抑制する機能を果たすことができる。
According to the above configuration, by inserting the pipe 80 into the insulator hole 115 of the insulator 110 arranged so as to be stacked at the end of the iron core 60 , the pipe 80 is less likely to come off from the dust core hole 75 . Therefore, the mechanical strength of the core unit 10 is improved. In addition, by providing insulator 110 , it is possible to suppress leakage magnetic flux that tends to occur at the ends of iron core 60 in the first direction, and to suppress generation of eddy current in iron core 60 . Therefore, the temperature rise of the iron core 60 can also be suppressed.
In addition, even if the dust core 70 is damaged, the insulator 110 stacks on the end of the iron core 60 to prevent the flake dust core 70 from falling off the iron core 60. be able to.

また、第1方向の一方側におけるパイプ80の一端87は、一方側における絶縁体110の端111よりも、一方側とは反対側(即ち他方側)に位置してもよい(図3、図5参照)。鉄心ユニット10が後述の回転子30(図7参照)に組み込まれる実施形態においては、回転子30の構成部品であるエンドリング31と上述の鉄心60とによって絶縁体110は挟まれる。この点、パイプ80の一端87が、絶縁体110の端111よりも他方側に位置することで、絶縁体孔115に収容されている一端87と、金属製であってもよいエンドリング31との接触は回避される。これにより、鉄心60とエンドリング31とが意図せず導通するのを避けることができる。
但し、本開示は、パイプ80の一端87と絶縁体110の端111が、第1方向において互いに同じ位置にある実施形態を除外しない(図4参照)。また、本開示は、パイプ80の一端87が絶縁体110の端111よりも一方側に位置する実施形態を除外しない(図示外)。
Also, the one end 87 of the pipe 80 on one side in the first direction may be located on the opposite side (that is, the other side) of the end 111 of the insulator 110 on the one side (FIGS. 3 and 4). 5). In an embodiment in which the core unit 10 is incorporated into a rotor 30 (see FIG. 7) described later, the insulator 110 is sandwiched between the end ring 31, which is a component of the rotor 30, and the core 60 described above. In this respect, the one end 87 of the pipe 80 is positioned on the other side of the end 111 of the insulator 110, so that the one end 87 accommodated in the insulator hole 115 and the end ring 31, which may be made of metal, are separated from each other. contact is avoided. As a result, unintentional conduction between the iron core 60 and the end ring 31 can be avoided.
However, the present disclosure does not exclude embodiments in which the end 87 of the pipe 80 and the end 111 of the insulator 110 are co-located with each other in the first direction (see FIG. 4). Also, the present disclosure does not exclude embodiments in which one end 87 of pipe 80 is located to one side of end 111 of insulator 110 (not shown).

<4.鉄心60A(60)とパイプ80との接合構造>
図3は、本開示の一実施形態に係る鉄心60A(60)とパイプ80との接合構造を示す概略的な断面図である。同図で示される既述の鉄心60Aには、絶縁体110が第1方向において積み重なっている。
<4. Joint structure between iron core 60A (60) and pipe 80>
FIG. 3 is a schematic cross-sectional view showing a joint structure between an iron core 60A (60) and a pipe 80 according to an embodiment of the present disclosure. Insulators 110 are stacked in the first direction on the core 60A shown in the figure.

圧粉磁心70は圧粉磁心孔75を規定する圧粉磁心内周面76を有し、絶縁体110は絶縁体孔115を規定する絶縁体内周面116を有し、パイプ80はパイプ外周面89を有する。図3で例示されるパイプ80は、圧粉磁心孔75と絶縁体孔115とに差し込まれている。パイプ外周面89は、圧粉磁心内周面76と軸方向において重なる部位と、絶縁体内周面116と軸方向において重なる部位とを有する。なお、パイプ80の軸方向は第1方向と一致する。 The dust core 70 has a dust core inner peripheral surface 76 defining a dust core hole 75, the insulator 110 has an insulator inner peripheral surface 116 defining an insulator hole 115, and the pipe 80 has a pipe outer peripheral surface. 89. The pipe 80 illustrated in FIG. 3 is inserted into the dust core hole 75 and the insulator hole 115 . The pipe outer peripheral surface 89 has a portion that axially overlaps the dust core inner peripheral surface 76 and a portion that axially overlaps the insulator inner peripheral surface 116 . Note that the axial direction of the pipe 80 coincides with the first direction.

図3の例では、圧粉磁心内周面76とパイプ外周面89との間に接着剤9が介在する。同図の例では、鉄心60Aの一方向における略全長に亘って接着剤9があり、より詳細には、鉄心60Aを構成する全ての圧粉磁心70の圧粉磁心内周面76と、パイプ外周面89との間に接着剤9が介在する。但し、接着剤9は、パイプ外周面89と圧粉磁心内周面76との間のみに介在することに本開示は限定されない。同図で例示されるように絶縁体内周面116とパイプ外周面89との間に接着剤9は介在してもよい。また、接着剤9は、絶縁性を有することが好ましく、絶縁性および非磁性を有することがさらに好ましい。 In the example of FIG. 3, the adhesive 9 is interposed between the inner peripheral surface 76 of the dust core and the outer peripheral surface 89 of the pipe. In the example shown in the figure, the adhesive 9 is present over substantially the entire length in one direction of the iron core 60A. The adhesive 9 is interposed between the outer peripheral surface 89 and the outer peripheral surface 89 . However, the present disclosure is not limited to the adhesive 9 intervening only between the pipe outer peripheral surface 89 and the dust core inner peripheral surface 76 . The adhesive 9 may be interposed between the insulator inner peripheral surface 116 and the pipe outer peripheral surface 89 as illustrated in the figure. Moreover, the adhesive 9 preferably has insulating properties, and more preferably has insulating properties and non-magnetism.

上記構成によれば、パイプ外周面89と圧粉磁心内周面76との間に接着剤9が介在するので、欠損により生じた片状の圧粉磁心70が鉄心60から落ちるのを抑制できる。また、パイプ外周面89と圧粉磁心内周面76とが接着剤9を介して密着できるので、圧粉磁心70からパイプ80への熱伝導性をさらに向上できる。
なお、鉄心ユニット10は、絶縁体110を備えなくてもよい。また、鉄心60Aに代えて鉄心60B(図2B)に接着剤9が配置されてもよい。より具体的には、差込穴68Bを形成する内周面(つまり、圧粉磁心内周面76と後述の鋼板内周面176)とパイプ外周面89との間に接着剤9が配置されてもよい。当該実施形態においても、上記利点は得られる。
According to the above configuration, since the adhesive 9 is interposed between the outer peripheral surface 89 of the pipe and the inner peripheral surface 76 of the dust core, it is possible to suppress the fall of the piece-shaped dust core 70 caused by chipping from the iron core 60. . Further, since the outer peripheral surface 89 of the pipe and the inner peripheral surface 76 of the dust core can be brought into close contact with each other through the adhesive 9, the thermal conductivity from the dust core 70 to the pipe 80 can be further improved.
Note that the core unit 10 may not include the insulator 110 . Also, the adhesive 9 may be placed on the iron core 60B (FIG. 2B) instead of the iron core 60A. More specifically, the adhesive 9 is arranged between the inner peripheral surface forming the insertion hole 68B (that is, the powder magnetic core inner peripheral surface 76 and the steel plate inner peripheral surface 176 described later) and the pipe outer peripheral surface 89. may The above advantages are also obtained in this embodiment.

図4は、パイプ80の一例であるパイプ80A(80)の詳細構造を示す概略図である。同図のパイプ80Aは鉄心60Aの差込穴68Aに差し込まれている。パイプ80Aのパイプ外周面89A(89)は、外周面凹部181または外周面凸部183の少なくとも一方を有する。同図では、外周面凹部181と外周面凸部183の双方が設けられており、より詳細な一例として、複数の外周面凹部181が第1方向に間隔を空けて設けれており、複数の外周面凸部183が第1方向に間隔を空けて設けられている。外周面凹部181または外周面凸部183は、パイプ外周面89Aに対してブラスト加工、ローレット加工、または、筋彫り加工などの機械加工を施すことで形成される。なお、外周面凹部181または外周面凸部183の少なくとも一方は、パイプ外周面89の全面に亘って形成されてもよいし、パイプ外周面89Aのうちで圧粉磁心内周面76と軸方向に重なる部位のみに形成されてもよい。また、パイプ外周面89Aには、外周面凹部181または外周面凸部183のいずれか一方のみが設けられてもよい。さらに、外周面凸部183はパイプ外周面89とは別体の部材であってもよい。上記構成によれば、外周面凹部181または外周面凸部183の少なくとも一方が設けられることで、パイプ外周面89A(89)と圧粉磁心内周面76との間に介在する接着剤9の量が増大する。これにより、欠損により生じた片状の圧粉磁心70が鉄心60A(60)から落ちるのをさらに抑制できる。 FIG. 4 is a schematic diagram showing the detailed structure of a pipe 80A (80), which is an example of the pipe 80. As shown in FIG. The pipe 80A in the figure is inserted into the insertion hole 68A of the iron core 60A. A pipe outer peripheral surface 89A (89) of the pipe 80A has at least one of an outer peripheral surface concave portion 181 and an outer peripheral surface convex portion 183. As shown in FIG. In the figure, both the outer peripheral surface recessed portion 181 and the outer peripheral surface convex portion 183 are provided. Outer peripheral surface convex portions 183 are provided at intervals in the first direction. The outer peripheral surface concave portion 181 or the outer peripheral surface convex portion 183 is formed by subjecting the pipe outer peripheral surface 89A to machining such as blasting, knurling, or carving. At least one of the outer peripheral surface concave portion 181 and the outer peripheral surface convex portion 183 may be formed over the entire surface of the pipe outer peripheral surface 89, or may be formed on the outer peripheral surface 89A of the pipe along the inner peripheral surface 76 of the dust core in the axial direction. It may be formed only in a portion overlapping with . Further, only one of the outer peripheral surface recessed portion 181 and the outer peripheral surface convex portion 183 may be provided on the pipe outer peripheral surface 89A. Furthermore, the outer peripheral surface convex portion 183 may be a separate member from the pipe outer peripheral surface 89 . According to the above configuration, at least one of the outer peripheral surface concave portion 181 and the outer peripheral surface convex portion 183 is provided, so that the adhesive 9 interposed between the pipe outer peripheral surface 89A (89) and the dust core inner peripheral surface 76 is removed. increase in volume. As a result, it is possible to further prevent the piece-shaped dust core 70 caused by the chipping from falling off the iron core 60A (60).

なお本開示の必須の構成要素ではないが、パイプ80A(80)は、パイプ内周面86と、パイプ内周面86に設けられた内周面凸部861または内周面凹部863の少なくとも一方とをさらに備えてもよい。図4の例では内周面凸部861と内周面凹部863の双方が設けられている。内周面凸部861は、一例としてパイプ内周面86とは別体のフィンであり、パイプ80Aの周方向の全長に亘って延在する。そして、複数の内周面凸部861が軸方向に沿って間隔を空けて配置されている。内周面凹部863は、パイプ内周面86に設けられた溝であり、パイプ80Aの周方向の全長に亘って延在する。そして、複数の内周面凹部863が軸方向に沿って間隔を空けて配置されている。内周面凸部861は、パイプ内周面86のうち鉄心60Aの差込穴68Aと軸方向に重なる部位に設けられていることが好ましく、内周面凹部863も同様である。なお、パイプ内周面86には、内周面凸部861または内周面凹部863のいずれか一方のみが設けられてもよい。また、パイプ内周面86のうちで、絶縁体内周面116と軸方向に重なる部位に内周面凸部861または内周面凹部863が設けられてもよい(図4の例では、パイプ内周面86の当該部位に内周面凹部863が設けられている)。内周面凸部861または内周面凹部863の少なくとも一方が設けられるパイプ80は、例えばライフル管である。 Although not an essential component of the present disclosure, the pipe 80A (80) has a pipe inner peripheral surface 86 and at least one of an inner peripheral surface convex portion 861 or an inner peripheral surface concave portion 863 provided on the pipe inner peripheral surface 86. and may be further provided. In the example of FIG. 4, both the inner peripheral surface convex portion 861 and the inner peripheral surface concave portion 863 are provided. The inner peripheral surface convex portion 861 is, for example, a fin separate from the pipe inner peripheral surface 86 and extends over the entire circumferential length of the pipe 80A. A plurality of inner peripheral surface convex portions 861 are arranged at intervals along the axial direction. The inner peripheral surface concave portion 863 is a groove provided in the pipe inner peripheral surface 86 and extends over the entire circumferential length of the pipe 80A. A plurality of inner peripheral recesses 863 are arranged at intervals along the axial direction. The inner peripheral surface convex portion 861 is preferably provided at a portion of the pipe inner peripheral surface 86 that axially overlaps the insertion hole 68A of the iron core 60A, and the inner peripheral surface concave portion 863 is the same. Only one of the inner peripheral surface convex portion 861 and the inner peripheral surface concave portion 863 may be provided on the pipe inner peripheral surface 86 . Further, an inner peripheral surface convex portion 861 or an inner peripheral surface concave portion 863 may be provided at a portion of the pipe inner peripheral surface 86 that overlaps the insulator inner peripheral surface 116 in the axial direction (in the example of FIG. An inner peripheral surface recessed portion 863 is provided at that portion of the peripheral surface 86). The pipe 80 provided with at least one of the inner peripheral surface convex portion 861 and the inner peripheral surface concave portion 863 is, for example, a rifle tube.

上記構成によれば、パイプ内周面86と空気との熱交換が促進されるので、鉄心60A(60)の冷却性能を向上できる。なお、パイプ80Aが鉄心60Aの差込穴68Aに差し込まれていることに本開示は限定されない。パイプ80Aは、鉄心60B(図2B参照)の差込穴68Bに差し込まれてもよい。この場合、内周面凸部861と内周面凹部863は、差込穴68Bを形成する内周面(圧粉磁心内周面76と後述の鋼板内周面176)と軸方向において重なるように配置されてもよい。 According to the above configuration, heat exchange between the pipe inner peripheral surface 86 and the air is promoted, so the cooling performance of the iron core 60A (60) can be improved. The present disclosure is not limited to the fact that the pipe 80A is inserted into the insertion hole 68A of the iron core 60A. Pipe 80A may be inserted into insertion hole 68B of core 60B (see FIG. 2B). In this case, the inner peripheral surface convex portion 861 and the inner peripheral surface concave portion 863 overlap in the axial direction with the inner peripheral surface (the powder magnetic core inner peripheral surface 76 and the steel plate inner peripheral surface 176 described later) forming the insertion hole 68B. may be placed in

<5.鉄心60B(60)とパイプ80との接合構造>
図5は、本開示の他の実施形態に係る鉄心60B(60)とパイプ80との接合構造を示す概略的な断面図である。同図で示される既述の鉄心60Bには、絶縁体110が第1方向において積み重なっている。上述の通り、鉄心60Bは、複数の鋼板77を有する含む鋼板積層体79を含む。そして、各鋼板77は、第1方向に貫通された鋼板孔78を規定する鋼板内周面176を有する。
<5. Joint structure between iron core 60B (60) and pipe 80>
FIG. 5 is a schematic cross-sectional view showing a joint structure between an iron core 60B (60) and a pipe 80 according to another embodiment of the present disclosure. Insulators 110 are stacked in the first direction on the core 60B shown in the figure. As described above, core 60B includes a steel plate stack 79 that includes a plurality of steel plates 77 . Each steel plate 77 has a steel plate inner peripheral surface 176 defining a steel plate hole 78 penetrating in the first direction.

パイプ80は、差込穴68B(68)と絶縁体孔115とに差し込まれている。図5で例示されるパイプ80のパイプ外周面89は、圧粉磁心内周面76と軸方向において重なる部位と、鋼板内周面176と軸方向において重なる部位と、絶縁体内周面116と軸方向において重なる部位とを有する。 The pipe 80 is inserted into the insertion hole 68B (68) and the insulator hole 115. As shown in FIG. The pipe outer peripheral surface 89 of the pipe 80 exemplified in FIG. and a portion that overlaps in direction.

本例では、パイプ外周面89と鋼板内周面176との間に少なくとも介在する絶縁部材120がさらに配置される。同図で例示される絶縁部材120は、パイプ外周面89および鋼板内周面176の間と、パイプ外周面89および圧粉磁心内周面76の間と、パイプ外周面89および絶縁体内周面116の間とに配置される。絶縁部材120は、パイプ外周面89を絶縁コーティングすることで形成されてもよいし、樹脂材料、セラミック材料、またはゴム材料によって形成される部材であってもよい。 In this example, an insulating member 120 interposed at least between the pipe outer peripheral surface 89 and the steel plate inner peripheral surface 176 is further arranged. The insulating member 120 exemplified in FIG. 116. The insulating member 120 may be formed by insulating the pipe outer peripheral surface 89, or may be a member formed of a resin material, a ceramic material, or a rubber material.

一般に、外表面に絶縁被膜が形成された鋼板材(図示外)に打ち抜き加工が実行されることで、鋼板内周面176を備える鋼板77が得られる。従って、鋼板内周面176には絶縁被膜が形成されていない。そのため、積層された複数の鋼板77のいずれかで渦電流が発生すると、電流が鋼板内周面176を経由して他の鋼板77に流れるおそれがある。つまり、電流が鋼板積層体79を第1方向に流れるおそれがある。この点、上記構成によれば、パイプ外周面89と鋼板内周面176との間に絶縁体110が配置されるので、いずれかの鋼板77で生じた電流が鋼板積層体79を第1方向に流れるのを抑制できる。 In general, a steel plate 77 having a steel plate inner peripheral surface 176 is obtained by punching a steel plate material (not shown) having an insulating coating formed on the outer surface thereof. Therefore, an insulating coating is not formed on the inner peripheral surface 176 of the steel plate. Therefore, if an eddy current is generated in one of the plurality of laminated steel plates 77 , the current may flow to the other steel plates 77 via the steel plate inner peripheral surface 176 . In other words, the current may flow through the steel plate laminate 79 in the first direction. In this respect, according to the above configuration, the insulator 110 is arranged between the outer peripheral surface 89 of the pipe and the inner peripheral surface 176 of the steel plate, so that the electric current generated in any one of the steel plates 77 moves the stacked steel plate 79 in the first direction. can be prevented from flowing into

<6.パイプ80のスリット85>
図6A~図6Cは、パイプ80の一例としてのパイプ81,82,83(80)を示す概略図である。図6A~図6Cで例示されるパイプ81~83は、周壁84A,84B,84C(84)と、パイプ80の径方向に周壁84を貫通するスリット85A,85B,85C(85)とを含む。スリット85A,85B,85Cは第1方向に沿って延在する。より詳細には、スリット85A,85Bは第1方向に沿って直線状に延在し、スリット85Cは第1方向に沿って螺旋状に延在する。
<6. Slit 85 of pipe 80>
6A to 6C are schematic diagrams showing pipes 81, 82, 83 (80) as an example of pipe 80. FIG. The pipes 81-83 illustrated in FIGS. 6A-6C include peripheral walls 84A, 84B, 84C (84) and slits 85A, 85B, 85C (85) penetrating the peripheral wall 84 in the radial direction of the pipe 80. As shown in FIG. The slits 85A, 85B, 85C extend along the first direction. More specifically, the slits 85A and 85B linearly extend in the first direction, and the slit 85C spirally extends in the first direction.

また、図6A、図6Cで例示されるように、スリット85A,85C(85)は、パイプ81,83(80)の第1方向における一方側の端部から他方側の端部に亘って形成されてもよる。つまり、スリット85A,85Cは第1方向の一方側と他方側とに開放される。また、図6Bで例示されるように、スリット85B(85)は、第1方向の一方側に開放される一方で、スリット85Bの他方側には開放されない。この場合、スリット85Bの第1方向における他方側の端部は、パイプ82(80)の他方側の端部よりも一方側に位置する。また、詳細な図示は省略するが、スリット85の第1方向における両端部は、第1方向において開放されてなくてもよい。即ち、スリット85の第1方向における両端部は、パイプ80の第1方向における両端部に対して、パイプ80の第1方向の中央側に位置してもよい。また、パイプ80に形成されるスリット85の本数は1本であることが好ましく、これによりパイプ80の構造を簡易にできる。 Also, as illustrated in FIGS. 6A and 6C, the slits 85A and 85C (85) are formed from one end to the other end in the first direction of the pipes 81 and 83 (80). It depends. That is, the slits 85A and 85C are open on one side and the other side in the first direction. Also, as illustrated in FIG. 6B, the slit 85B (85) is open to one side in the first direction, but is not open to the other side of the slit 85B. In this case, the other end of the slit 85B in the first direction is located on one side of the other end of the pipe 82 (80). Although detailed illustration is omitted, both ends of the slit 85 in the first direction may not be open in the first direction. In other words, both ends of the slit 85 in the first direction may be located on the central side of the pipe 80 in the first direction with respect to both ends of the pipe 80 in the first direction. Moreover, it is preferable that the number of slits 85 formed in the pipe 80 is one, thereby simplifying the structure of the pipe 80 .

上記構成によれば、スリット85が設けられているため、鉄心ユニット10の製造工程において、パイプ80を軸心側に圧縮した状態で差込穴68に差し込むことができる。差し込みの完了後、圧縮されていたパイプ80が軸心から遠ざかるように広がり、パイプ80の周壁84の少なくとも一部は差込穴68を構成する内周面(より詳細には一例として、圧粉磁心内周面76)に押し当たる。これにより、圧粉磁心70からパイプ80への熱伝導性が向上するので、鉄心ユニット10の冷却性能はさらに向上する。 According to the above configuration, since the slit 85 is provided, the pipe 80 can be inserted into the insertion hole 68 in a state of being compressed to the axial center side in the manufacturing process of the core unit 10 . After the insertion is completed, the compressed pipe 80 spreads away from the axial center, and at least a part of the peripheral wall 84 of the pipe 80 extends to the inner peripheral surface (more specifically, as an example, dust powder) forming the insertion hole 68 It presses against the magnetic core inner peripheral surface 76). As a result, the heat conductivity from the dust core 70 to the pipe 80 is improved, so that the cooling performance of the core unit 10 is further improved.

<7.鉄心ユニット10が組み込まれた回転子30の例示>
図7、図8を参照し、鉄心ユニット10が組み込まれた回転子30を例示する。回転子30は、第1方向と直交する方向である周方向に回転するように構成されており、例えば磁気ギヤード電気機械1(図9参照)を構成する回転軸5に連結される(磁気ギヤード電気機械1の構成の概要は後述する)。第1方向は回転子30の軸方向と一致し、回転軸5は第1方向に延在する。以下の説明では、回転子30の軸線を基準とした径方向を単に「径方向」という場合がある。
<7. Illustration of rotor 30 incorporating core unit 10>
7 and 8 illustrate a rotor 30 incorporating the core unit 10. FIG. The rotor 30 is configured to rotate in a circumferential direction, which is a direction perpendicular to the first direction, and is connected to, for example, a rotating shaft 5 that constitutes the magnetic geared electric machine 1 (see FIG. 9) (magnetically geared The outline of the configuration of the electric machine 1 will be described later). The first direction coincides with the axial direction of the rotor 30, and the rotating shaft 5 extends in the first direction. In the following description, the radial direction with respect to the axis of the rotor 30 may be simply referred to as "radial direction".

図7は、一実施形態に係る回転子30の概略図である。回転子30は、周方向に延在するリングユニット50を備える。リングユニット50は、複数の鉄心ユニット10と、複数の非磁性体52とを含む。複数の鉄心ユニット10と複数の非磁性体52は、周方向に交互に配置されており、各鉄心ユニット10は、周方向の両側に位置する一対の非磁性体52によって挟まれている。同図の例では、リングユニット50の第1方向の両端部にはそれぞれ、回転子30の構成要素としての一対のエンドリング31が設けられている。エンドリング31は、周方向に延在すると共に、第1方向に厚さを有する板状である。 FIG. 7 is a schematic diagram of a rotor 30 according to one embodiment. The rotor 30 comprises a ring unit 50 extending in the circumferential direction. Ring unit 50 includes a plurality of core units 10 and a plurality of non-magnetic bodies 52 . The plurality of core units 10 and the plurality of non-magnetic bodies 52 are alternately arranged in the circumferential direction, and each core unit 10 is sandwiched between a pair of non-magnetic bodies 52 located on both sides in the circumferential direction. In the example shown in the figure, a pair of end rings 31 as components of the rotor 30 are provided at both ends of the ring unit 50 in the first direction. The end ring 31 has a plate shape extending in the circumferential direction and having a thickness in the first direction.

回転子30は、リングユニット50の第1方向の両端部にそれぞれ連結される一対のフランジ41をさらに備え、各フランジ41は回転軸5に連結されるように構成される。フランジ41の構成の詳細例は、以下の通りである。フランジ41は、周方向に延在するリング部42と、リング部42から径方向の内側に延在する複数の延在部47と、延在部47の内側端部に連結する軸連結部48とを備える。本例のリング部42は、第1方向に厚さを有する板状であり、エンドリング31を介してリングユニット50の端部に連結する(即ち、フランジ41はリングユニット50の端部に間接的に連結する。)。軸連結部48は第1方向に沿った円筒状であり、軸連結部48の内周面は回転軸5(図9参照)に連結される。 The rotor 30 further includes a pair of flanges 41 connected to both ends of the ring unit 50 in the first direction, and each flange 41 is configured to be connected to the rotating shaft 5 . A detailed example of the configuration of the flange 41 is as follows. The flange 41 includes a ring portion 42 extending in the circumferential direction, a plurality of extension portions 47 extending radially inward from the ring portion 42 , and a shaft connection portion 48 connected to the inner end portion of the extension portions 47 . and The ring portion 42 of this example has a plate shape having a thickness in the first direction, and is connected to the end portion of the ring unit 50 via the end ring 31 (that is, the flange 41 is indirectly connected to the end portion of the ring unit 50). directly connected.). The shaft connecting portion 48 has a cylindrical shape along the first direction, and the inner peripheral surface of the shaft connecting portion 48 is connected to the rotating shaft 5 (see FIG. 9).

さらに、フランジ41のリング部42には、鉄心ユニット10の各々のパイプ80(図2A、図2B参照)の内側空間と第1方向に連通する少なくとも1つのフランジ孔43が形成される。図7の例では、フランジ孔43は、エンドリング31に形成された複数のエンドリング孔(図示外)と第1方向に対向しており、複数のエンドリング孔はそれぞれ複数の鉄心ユニット10の絶縁体孔115(図1参照)と第1方向に対向する。これにより、フランジ孔43はパイプ80の内側空間に連通し、回転子30の回転に伴って空気がパイプ80の内側空間を流れることができる。 Further, the ring portion 42 of the flange 41 is formed with at least one flange hole 43 communicating with the inner space of each pipe 80 (see FIGS. 2A and 2B) of the core unit 10 in the first direction. In the example of FIG. 7, the flange hole 43 faces a plurality of end ring holes (not shown) formed in the end ring 31 in the first direction. It faces the insulator hole 115 (see FIG. 1) in the first direction. As a result, the flange hole 43 communicates with the inner space of the pipe 80, and air can flow through the inner space of the pipe 80 as the rotor 30 rotates.

より詳細な構成例を説明すると、少なくとも1つのフランジ孔43は、周方向に間隔を空けて配置された複数のフランジ孔43であり、複数のフランジ孔43はそれぞれ複数のエンドリング孔と第1方向に対向する。但し本開示は上記構成に限定されない。他の実施形態に係るリング部42は、周方向に延在する板状のリングであることに代えて、周方向に延在する枠状(換言すると中空状)のリングであってもよい。この場合、枠の内側に形成される単一の開放孔がフランジ孔43に該当する。従って、フランジ孔43の個数は1個となる。また、回転子30は一対のエンドリング31を備えなくてもよい。この場合、リング部42がリングユニット50の端部に直接的に連結してもよい。そして、パイプ80の一端87が、絶縁体110の端111よりも第1方向の他方側に位置する場合(図3、図5参照)、パイプ80の一端87と金属製であってもよいリング部42との接触が回避されることで、鉄心60とリングユニット50との意図しない導通を避けることができる。 To explain a more detailed configuration example, at least one flange hole 43 is a plurality of flange holes 43 arranged at intervals in the circumferential direction, and the plurality of flange holes 43 are respectively connected to a plurality of end ring holes and a first ring hole. facing direction. However, the present disclosure is not limited to the above configuration. The ring portion 42 according to another embodiment may be a frame-shaped (in other words, hollow) ring extending in the circumferential direction instead of being a plate-shaped ring extending in the circumferential direction. In this case, the single open hole formed inside the frame corresponds to the flange hole 43 . Therefore, the number of flange holes 43 is one. Also, the rotor 30 may not have the pair of end rings 31 . In this case, the ring portion 42 may be directly connected to the end portion of the ring unit 50 . When the one end 87 of the pipe 80 is positioned on the other side in the first direction from the end 111 of the insulator 110 (see FIGS. 3 and 5), the one end 87 of the pipe 80 and the ring which may be made of metal By avoiding contact with the portion 42, unintended conduction between the iron core 60 and the ring unit 50 can be avoided.

図8は、本開示の一実施形態に係るリングユニット50の構成の一部を示す概略図である。同図では、周方向が紙面左右方向と一致するに図示される。非磁性体52は既述のFRPによって形成される。FRPは、例えば、ガラス繊維強化プラスチック(GFRP;Glass Fiber Reinforced Plastics)、または、炭素繊維強化プラスチック(CFRP;Carbon Fiber Reinforced Plastics)などであってもよい。 FIG. 8 is a schematic diagram showing part of the configuration of the ring unit 50 according to one embodiment of the present disclosure. In the figure, the circumferential direction is shown to match the lateral direction of the paper. The non-magnetic body 52 is made of FRP as described above. FRP may be, for example, glass fiber reinforced plastics (GFRP) or carbon fiber reinforced plastics (CFRP).

さらにリングユニット50は、鉄心60と非磁性体52との間に介在する可撓性部材150を備える。可撓性部材150は、鉄心60よりもヤング率が小さく、かつ、第1方向に弾性変形可能な部材である。可撓性部材150は、例えば、ゴム、樹脂、または、エラストマーによって形成される。可撓性部材150はシート状であることが好ましい。また、同図の例では、第1方向における鉄心60の全長に亘って、可撓性部材150は鉄心60と非磁性体52との間に介在する。 Further, the ring unit 50 has a flexible member 150 interposed between the iron core 60 and the non-magnetic body 52 . The flexible member 150 is a member that has a Young's modulus smaller than that of the iron core 60 and is elastically deformable in the first direction. The flexible member 150 is made of rubber, resin, or elastomer, for example. Flexible member 150 is preferably in the form of a sheet. In addition, in the example shown in the figure, the flexible member 150 is interposed between the iron core 60 and the non-magnetic body 52 over the entire length of the iron core 60 in the first direction.

上記構成によれば、非磁性体52が繊維強化複合材料であることで、非磁性体52の絶縁性が確保されると共に、回転子30の軽量化および高剛性化が実現される。他方で、FRPによって形成される非磁性体52の線膨張係数は圧粉磁心70の線膨張係数よりも小さい。このため、圧粉磁心70と非磁性体52とが直接的に接触する構成を有する回転子30の温度が上昇すると、圧粉磁心70よりも非磁性体52の方が第1方向に延びる。結果、非磁性体52の膨張に起因する引張応力が熱応力として圧粉磁心70にて発生し、機械的な強度が比較的弱い圧粉磁心70は破損する可能性がある。つまり、圧粉磁心70の欠損が起こる可能性がある。この点、上記構成によれば、可撓性部材150には、非磁性体52に接触する部位と鉄心60に接触する部位とがあり、両部位の第1方向における延伸量を違えることが可能となる。つまり、可撓性部材150は圧粉磁心70に発生する熱応力を低減できる。これにより、回転子30は圧粉磁心70の破壊を抑制できる。 According to the above configuration, since the non-magnetic body 52 is made of a fiber-reinforced composite material, the non-magnetic body 52 can ensure insulation, and the weight and rigidity of the rotor 30 can be reduced. On the other hand, the coefficient of linear expansion of the non-magnetic body 52 formed of FRP is smaller than that of the dust core 70 . Therefore, when the temperature of the rotor 30 having the structure in which the dust core 70 and the non-magnetic material 52 are in direct contact increases, the non-magnetic material 52 extends more than the dust core 70 in the first direction. As a result, tensile stress resulting from the expansion of the non-magnetic material 52 is generated as thermal stress in the powder magnetic core 70, and the powder magnetic core 70, which has relatively low mechanical strength, may be damaged. In other words, there is a possibility that the dust core 70 will be damaged. In this regard, according to the above configuration, the flexible member 150 has a portion in contact with the non-magnetic body 52 and a portion in contact with the iron core 60, and it is possible to make the extension amounts of the two portions different in the first direction. becomes. That is, the flexible member 150 can reduce the thermal stress generated in the dust core 70 . Thereby, the rotor 30 can suppress the destruction of the dust core 70 .

一実施形態に係る可撓性部材150は、熱可塑性のエラストマーによって形成される。上記構成によれば、エラストマーに接着機能が含まれるので、鉄心60、非磁性体52、および、可撓性部材150を接合するための単独の接着材料を用意する必要がない。よって、回転子30の構成を簡易化できる。 Flexible member 150 according to one embodiment is formed from a thermoplastic elastomer. According to the above configuration, since the elastomer has an adhesive function, it is not necessary to prepare a separate adhesive material for joining the iron core 60 , the non-magnetic body 52 and the flexible member 150 . Therefore, the configuration of the rotor 30 can be simplified.

さらに、図3の例では、可撓性部材150と同一材料によって形成される可撓性部材151,152が、鉄心ユニット10の径方向の外側面と内側面にそれぞれ配置される。本例の可撓性部材150~152は、一体的に形成されたエラストマーからなるシート材であり、鉄心ユニット10を包むように設けられる。さらに、同図の回転子30は、リングユニット50を径方向の外側から覆う外カバー55Aと、リングユニット50を径方向の内側から覆う内カバー55Bとをさらに備える。本例の外カバー55Aと内カバー55Bは、CFRP等を繊維基材に熱硬化性樹脂を含浸させたプリプレグ材である。外カバー55Aと内カバー55Bは接着剤層59を介して可撓性部材151,152に密着することで、リングユニット50に接合される。外カバー55Aと内カバー55Bがリングユニット50の周方向の全長に亘って設けられることで、リングユニット50を補強することができる。 Furthermore, in the example of FIG. 3, flexible members 151 and 152 made of the same material as the flexible member 150 are arranged on the radial outer surface and inner surface of the core unit 10, respectively. The flexible members 150 to 152 of this example are sheet materials made of an elastomer integrally formed, and are provided so as to wrap the core unit 10 . Further, the rotor 30 in the figure further includes an outer cover 55A that covers the ring unit 50 from the outside in the radial direction, and an inner cover 55B that covers the ring unit 50 from the inside in the radial direction. The outer cover 55A and the inner cover 55B of this example are prepreg materials obtained by impregnating a fiber base material such as CFRP with a thermosetting resin. The outer cover 55A and the inner cover 55B are joined to the ring unit 50 by adhering them to the flexible members 151 and 152 via the adhesive layer 59 . The ring unit 50 can be reinforced by providing the outer cover 55A and the inner cover 55B over the entire circumferential length of the ring unit 50 .

<8.鉄心ユニット10が組み込まれた回転子30の例示>
図9は、回転子30を備える磁気ギヤード電気機械1の概略図である。磁気ギヤード電気機械1は第1方向に延在する回転軸5を備え、回転子30は上述の通り一対のフランジ41を備える。各フランジ41は回転軸5に直接的に連結される。磁気ギヤード電気機械1は、さらに、一対のフランジ41の間において回転軸5によってベアリングを介して支持される磁石回転子15を備える。磁石回転子15は、鉄心ユニット10よりも内側において周方向に並ぶ複数の回転子磁石19を備える。また、磁気ギヤード電気機械1は、鉄心ユニット10よりも径方向の外側で固定された固定子20を備える。固定子20は、周方向に並ぶ複数の固定子磁石29と、複数の固定子磁石29を支持する固定子継鉄25と、固定子継鉄25に巻かれた電機子コイルとしてのコイル27とを含む。そして、コイル27は電力系統6に電気的に接続される。上記構造を有する磁気ギヤード電気機械1においては、鉄心ユニット10は磁極片ユニットとして機能し、回転子30は磁極片回転子として機能する。
<8. Illustration of rotor 30 incorporating core unit 10>
FIG. 9 is a schematic illustration of a magnetically geared electric machine 1 with a rotor 30. FIG. The magnetic geared electric machine 1 comprises a rotating shaft 5 extending in a first direction and the rotor 30 comprises a pair of flanges 41 as described above. Each flange 41 is directly connected to the rotating shaft 5 . The magnetic geared electric machine 1 further includes a magnet rotor 15 supported by the rotating shaft 5 between the pair of flanges 41 via bearings. The magnet rotor 15 includes a plurality of rotor magnets 19 arranged in the circumferential direction inside the core unit 10 . The magnetic geared electric machine 1 also includes a stator 20 fixed radially outside the core unit 10 . The stator 20 includes a plurality of stator magnets 29 arranged in a circumferential direction, a stator yoke 25 supporting the plurality of stator magnets 29, and a coil 27 as an armature coil wound around the stator yoke 25. including. Coil 27 is then electrically connected to power system 6 . In the magnetic geared electric machine 1 having the structure described above, the core unit 10 functions as a pole piece unit, and the rotor 30 functions as a pole piece rotor.

回転軸5は外部回転機器7に連結されている。磁気ギヤード電気機械1は、例えば、電力系統6から電力の供給を受けて外部回転機器7を駆動する磁気ギヤードモータである。磁気ギヤードモータとしての磁気ギヤード電気機械1の動作原理は以下の通りである。コイル27の通電によって発生する回転磁界によって、磁石回転子15が回転する。複数の回転子磁石19および複数の固定子磁石29に対する複数の鉄心ユニット10の相対的な位置関係が変化し、磁石回転子15と固定子20の間の磁束が変調されて、回転子30が回転軸5と共に回転する。回転軸5から外部回転機器7にトルクが伝達されて外部回転機器7は駆動できる。 The rotating shaft 5 is connected to an external rotating device 7 . The magnetic geared electric machine 1 is, for example, a magnetic geared motor that receives power supply from a power system 6 to drive an external rotating device 7 . The operating principle of the magnetic geared electric machine 1 as a magnetic geared motor is as follows. A rotating magnetic field generated by energization of the coil 27 causes the magnet rotor 15 to rotate. The relative positional relationship of the plurality of core units 10 with respect to the plurality of rotor magnets 19 and the plurality of stator magnets 29 changes, the magnetic flux between the magnet rotor 15 and the stator 20 is modulated, and the rotor 30 It rotates together with the rotating shaft 5 . Torque is transmitted from the rotating shaft 5 to the external rotating device 7 so that the external rotating device 7 can be driven.

なお、磁気ギヤード電気機械1は磁気ギヤードモータに代えて磁気ギヤード発電機であってもよい。この場合、外部回転機器7が回転軸5を駆動する構成が採用されればよい。回転軸5と共に回転子30が回転すると、複数の回転子磁石19および複数の固定子磁石29に対する複数の鉄心ユニット10の相対的な位置関係が変化し、磁石回転子15が回転する。回転子30と磁石回転子15の回転に伴って起こる電磁誘導によってコイル27に電流が発生し、電力系統6に電力が供給される。 The magnetic geared electric machine 1 may be a magnetic geared generator instead of the magnetic geared motor. In this case, a configuration in which the external rotating device 7 drives the rotating shaft 5 may be adopted. When the rotor 30 rotates together with the rotating shaft 5, the relative positional relationship of the plurality of core units 10 with respect to the plurality of rotor magnets 19 and the plurality of stator magnets 29 changes, and the magnet rotor 15 rotates. A current is generated in the coil 27 by electromagnetic induction caused by the rotation of the rotor 30 and the magnet rotor 15 , and power is supplied to the power system 6 .

鉄心ユニット10を備える回転子30では、既述の理由によって冷却性能を向上できる。また、磁気ギヤード電気機械1の作動に伴って、遠心力、振動、または電磁力の少なくとも1つが鉄心ユニット10に作用するため、圧粉磁心70の欠損が起こるおそれがある。この場合であっても、既述の理由によって、回転子30は圧粉磁心70が鉄心ユニット10から落ちるのを抑制できる。 The rotor 30 including the core unit 10 can improve the cooling performance for the reason described above. In addition, since at least one of centrifugal force, vibration, and electromagnetic force acts on the iron core unit 10 as the magnetic geared electric machine 1 operates, there is a possibility that the dust core 70 may be damaged. Even in this case, the rotor 30 can prevent the dust core 70 from falling off the core unit 10 for the reason described above.

<9.その他>
鉄心ユニット10が回転子30に組み込まれることに本開示は限定されない。鉄心ユニット10は上述した磁気ギヤード電気機械1の固定子20に組み込まれてもよい。あるいは、アキシャルギャップモータを構成する固定子(図示外)に、鉄心ユニット10が組み込まれてもよい。
<9. Others>
The present disclosure is not limited to incorporating the core unit 10 into the rotor 30 . The core unit 10 may be incorporated into the stator 20 of the magnetic geared electric machine 1 described above. Alternatively, the core unit 10 may be incorporated in a stator (not shown) that constitutes the axial gap motor.

<10.まとめ>
上述した幾つかの実施形態に記載の内容は、例えば以下のように把握される。
<10. Summary>
The contents described in the several embodiments described above can be understood, for example, as follows.

1)本開示の少なくとも一実施形態に係る鉄心ユニット(10)は、
第1方向に貫通された圧粉磁心孔(75)が形成された少なくとも1つの圧粉磁心(70)を含む鉄心(60)と、
前記第1方向に延在し、前記圧粉磁心孔に差し込まれるパイプ(80)と、
を備える。
1) A core unit (10) according to at least one embodiment of the present disclosure,
an iron core (60) including at least one dust core (70) having a dust core hole (75) penetrating in a first direction;
a pipe (80) extending in the first direction and inserted into the dust core hole;
Prepare.

上記1)の構成によれば、パイプが差し込まれる圧粉磁心孔が圧粉磁心に形成されることで、パイプの内側空間を流れる空気が鉄心を冷却できる。これにより、例えば渦電流の発生または電機子コイルの通電などに起因する鉄心の温度上昇を抑制できる。また、例えば第1方向における引張応力が発生すると圧粉磁心は欠損するおそれがある。この点、上記1)の構成によれば、パイプが圧粉磁心孔に差し込まれるため、圧粉磁心の欠損が起きても、片状の圧粉磁心が鉄心から落ちるのを抑制できる。よって、圧粉磁心の形状を維持できると共に鉄心の冷却性能を向上した鉄心ユニットが実現される。 According to the above configuration 1), the powder magnetic core hole into which the pipe is inserted is formed in the powder magnetic core, so that the air flowing through the inner space of the pipe can cool the iron core. As a result, it is possible to suppress the temperature rise of the iron core caused by, for example, the generation of eddy currents or the energization of the armature coils. Further, for example, if a tensile stress occurs in the first direction, the dust core may be damaged. In this respect, according to the configuration 1) above, since the pipe is inserted into the dust core hole, even if the dust core is damaged, it is possible to prevent the piece-shaped dust core from falling off from the iron core. Therefore, an iron core unit that can maintain the shape of the dust core and improve the cooling performance of the iron core is realized.

2)幾つかの実施形態では、上記1)に記載の鉄心ユニットであって、
前記パイプは、
周壁(84)と、
前記周壁を径方向に貫通すると共に前記第1方向に沿って延在するスリット(85)と、
を含む。
2) In some embodiments, the core unit according to 1) above,
The pipe is
a peripheral wall (84);
a slit (85) radially penetrating the peripheral wall and extending along the first direction;
including.

上記2)の構成によれば、スリットが設けられているため、鉄心ユニットの製造工程において、パイプを軸心側に圧縮した状態で差込穴に差し込むことができる。差し込みの完了後、圧縮されていたパイプが軸心から遠ざかるように広がり、パイプの周壁の少なくとも一部は圧粉磁心内周面に押し当たる。これにより、圧粉磁心からパイプへの熱伝導性が向上するので、鉄心ユニットの冷却性能はさらに向上する。 According to the above configuration 2), since the slit is provided, the pipe can be inserted into the insertion hole in a state of being compressed toward the axial center in the manufacturing process of the core unit. After the insertion is completed, the compressed pipe spreads away from the axial center, and at least a part of the peripheral wall of the pipe presses against the inner peripheral surface of the dust core. This improves the thermal conductivity from the dust core to the pipe, further improving the cooling performance of the core unit.

3)幾つかの実施形態では、上記1)または2)に記載の鉄心ユニットであって、
前記パイプのパイプ外周面(89)と前記圧粉磁心孔を規定する前記圧粉磁心の圧粉磁心内周面(76)との間に介在する接着剤(9)をさらに備える。
3) In some embodiments, the core unit according to 1) or 2) above,
It further comprises an adhesive (9) interposed between a pipe outer peripheral surface (89) of the pipe and a dust core inner peripheral surface (76) of the dust core defining the dust core hole.

上記3)の構成によれば、パイプ外周面と圧粉磁心内周面との間に接着剤が介在するので、欠損により生じた片状の圧粉磁心が鉄心から落ちるのを抑制できる。また、パイプ外周面と圧粉磁心内周面が接着剤を介して密着できるので、圧粉磁心からパイプへの熱伝導性をさらに向上できる。 According to the above configuration 3), since the adhesive is interposed between the outer peripheral surface of the pipe and the inner peripheral surface of the dust core, it is possible to suppress the fall of the flake-shaped dust core caused by chipping from the iron core. In addition, since the outer peripheral surface of the pipe and the inner peripheral surface of the dust core can be brought into close contact with each other via the adhesive, the thermal conductivity from the dust core to the pipe can be further improved.

4)幾つかの実施形態では、上記3)に記載の鉄心ユニットであって、
前記パイプ外周面は、外周面凹部(181)または外周面凸部(183)の少なくとも一方を有する。
4) In some embodiments, the core unit according to 3) above,
The pipe outer peripheral surface has at least one of an outer peripheral surface concave portion (181) or an outer peripheral surface convex portion (183).

上記4)の構成によれば、パイプ外周面と圧粉磁心内周面との間に介在する接着剤の量が増大するので、欠損により生じた片状の圧粉磁心が鉄心から落ちるのをさらに抑制できる。 According to the above configuration 4), since the amount of the adhesive interposed between the outer peripheral surface of the pipe and the inner peripheral surface of the dust core increases, it is possible to prevent the flake-shaped dust core from falling off from the iron core. can be suppressed further.

5)幾つかの実施形態では、上記1)から4)のいずれかに記載の鉄心ユニットであって、
前記鉄心の前記第1方向における端部に積み重なるように配置される絶縁体(110)であって、前記第1方向に貫通された絶縁体孔(115)が形成される絶縁体をさらに備え、
前記パイプは、前記絶縁体孔に差し込まれる。
5) In some embodiments, the core unit according to any one of 1) to 4) above,
further comprising an insulator (110) arranged so as to be stacked at an end portion of the iron core in the first direction, the insulator having an insulator hole (115) penetrating in the first direction;
The pipe is inserted into the insulator hole.

上記5)の構成によれば、鉄心の端部に積み重なるように配置された絶縁体の絶縁体孔にパイプが差し込まれることで、パイプを圧粉磁心孔から外れにくくできる。従って、鉄心ユニットの機械的強度は向上する。また、絶縁体が設けられることで、鉄心の第1方向における端部で発生する傾向の高い漏れ磁束を抑制でき、鉄心において渦電流が発生するのを抑制できる。よって、鉄心の温度上昇を抑制することもできる。 According to the above configuration 5), by inserting the pipe into the insulator hole of the insulator arranged so as to be stacked at the end of the iron core, the pipe can be made difficult to come off from the dust core hole. Therefore, the mechanical strength of the core unit is improved. In addition, by providing the insulator, it is possible to suppress leakage magnetic flux that tends to occur at the ends of the iron core in the first direction, and to suppress the occurrence of eddy current in the iron core. Therefore, it is possible to suppress the temperature rise of the iron core.

6)幾つかの実施形態では、上記5)に記載の鉄心ユニットであって、
前記第1方向の一方側における前記パイプの一端(87)は、前記一方側における前記絶縁体の端(111)よりも、前記一方側とは反対側に位置する。
6) In some embodiments, the core unit of 5) above,
One end (87) of the pipe on one side in the first direction is located on the opposite side of the one side from the end (111) of the insulator on the one side.

上記6)の構成によれば、鉄心ユニットが組付けられる他のユニット(例えば回転子30)の構成部品(例えばエンドリング31)とパイプの一端が接触することが回避される。これにより、当該構成部品と鉄心とが意図せず導通するのを避けることができる。 According to the configuration 6) above, contact between one end of the pipe and a component (for example, the end ring 31) of another unit (for example, the rotor 30) to which the core unit is assembled is avoided. This makes it possible to avoid unintentional conduction between the component and the iron core.

7)幾つかの実施形態では、上記1)から6)のいずれかに記載の鉄心ユニットであって、
前記鉄心は、前記第1方向に積層された複数の前記圧粉磁心を含み、
前記パイプは、各々の前記圧粉磁心の前記圧粉磁心孔に差し込まれる。
7) In some embodiments, the core unit according to any one of 1) to 6) above,
The iron core includes a plurality of the dust cores stacked in the first direction,
The pipe is inserted into the dust core hole of each of the dust cores.

上記7)の構成によれば、鉄心が複数の圧粉磁心を含むことで、鉄心を形成する各圧粉磁心の小型化が実現される。これにより、鉄心の組立工程における各圧粉磁心をパイプに差し込む作業を簡易にできる。また、圧粉磁心の小型化が実現されることによって、圧粉磁心の成形工程で使用される成形機の成形圧力を低減し、圧粉磁心の製造を易化できる。 According to the above configuration 7), since the iron core includes a plurality of dust cores, each dust core forming the iron core can be miniaturized. This makes it possible to simplify the work of inserting each dust core into a pipe in the core assembly process. In addition, by realizing the miniaturization of the dust core, the molding pressure of the molding machine used in the molding process of the dust core can be reduced, and the manufacture of the dust core can be facilitated.

8)幾つかの実施形態では、上記1)から7)のいずれかに記載の鉄心ユニットであって、
前記鉄心は、
前記第1方向に積層される複数の鋼板(77)を有する鋼板積層体(79)と、
前記鋼板積層体よりも前記第1方向の一方側に配置される前記圧粉磁心であって、前記鉄心の前記一方側における端部を形成する一方側圧粉磁心(71)と、
をさらに含む。
8) In some embodiments, the core unit according to any one of 1) to 7) above,
The core is
a steel plate laminate (79) having a plurality of steel plates (77) laminated in the first direction;
a one-side powder magnetic core (71) that is arranged on one side of the steel plate laminate in the first direction and that forms an end portion on the one side of the iron core;
further includes

上記8)の構成によれば、鉄心の第1方向における端部が一方側圧粉磁心によって形成されることで、鉄心の一方側の端部で発生する傾向の高い漏れ磁束を抑制でき、鉄心において渦電流が発生するのを抑制できる。よって、鉄心の温度上昇を抑制できる。 According to the above configuration 8), since the end portion of the iron core in the first direction is formed by the one-side powder magnetic core, leakage magnetic flux that tends to occur at the one-side end portion of the iron core can be suppressed, and in the iron core It is possible to suppress the occurrence of eddy currents. Therefore, the temperature rise of the iron core can be suppressed.

9)幾つかの実施形態では、上記1)から8)のいずれかに記載の鉄心ユニットであって、
前記パイプは、前記第1方向において前記鉄心よりも長く、且つ、前記鉄心の前記第1方向における一方側の端部から他方側の端部に亘って差し込まれる。
9) In some embodiments, the core unit according to any one of 1) to 8) above,
The pipe is longer than the core in the first direction and is inserted from one end of the core to the other end in the first direction.

上記9)の構成によれば、鉄心を貫通するようにパイプが差し込まれるため、パイプは鉄心をより強固に支持することができ、鉄心ユニットの機械的強度を向上できる。 According to the configuration 9) above, since the pipe is inserted so as to penetrate the iron core, the pipe can support the iron core more firmly, and the mechanical strength of the iron core unit can be improved.

10)幾つかの実施形態では、上記1)から9)のいずれかに記載の鉄心ユニットであって、
前記パイプは、非磁性材料によって形成される。
10) In some embodiments, the core unit according to any one of 1) to 9) above,
The pipe is made of non-magnetic material.

上記10)の構成によれば、パイプの磁化に伴うヒステリシス損の発生を抑制できると共に、鉄心による磁束の変調機能を維持できる。 According to the above configuration 10), the generation of hysteresis loss due to the magnetization of the pipe can be suppressed, and the magnetic flux modulation function of the iron core can be maintained.

11)幾つかの実施形態では、上記10)に記載の鉄心ユニットであって、
前記パイプは、非磁性金属材料によって形成される。
11) In some embodiments, the core unit of 10) above,
The pipe is made of a non-magnetic metallic material.

上記11)の構成によれば、パイプの熱伝導率が向上するので、圧粉磁心からパイプへの熱伝導性をさらに向上できる。 According to the configuration 11) above, the thermal conductivity of the pipe is improved, so that the thermal conductivity from the dust core to the pipe can be further improved.

12)幾つかの実施形態では、上記1)から11)のいずれかに記載の鉄心ユニットであって、
前記鉄心は、
前記第1方向に積層される複数の鋼板(77)であって、前記第1方向に貫通された鋼板孔(78)がそれぞれに形成される複数の鋼板を含み、
前記鉄心ユニットは、前記パイプのパイプ外周面(89)と前記鋼板孔を規定する前記鋼板の鋼板内周面(176)との間に介在する絶縁部材(120)をさらに備える。
12) In some embodiments, the core unit of any one of 1) to 11) above,
The core is
including a plurality of steel plates (77) stacked in the first direction, each having a steel plate hole (78) penetrating in the first direction,
The core unit further includes an insulating member (120) interposed between a pipe outer peripheral surface (89) of the pipe and a steel plate inner peripheral surface (176) of the steel plate defining the steel plate hole.

一般に、鋼板内周面には絶縁被膜が形成されていないため、いずれかの鋼板で渦電流が発生すると、該電流は、鋼板内周面を経由して鋼板積層体を第1方向に流れるおそれがある。この点、上記12)の構成によれば、パイプ外周面と鋼板内周面との間に絶縁部材が配置されるので、いずれかの鋼板で生じた電流が鋼板積層体を第1方向に流れるのを抑制できる。 In general, since an insulating coating is not formed on the inner peripheral surface of the steel plate, if an eddy current is generated in one of the steel plates, the current may flow through the steel plate laminate in the first direction via the inner peripheral surface of the steel plate. There is In this regard, according to the configuration of 12) above, since the insulating member is arranged between the outer peripheral surface of the pipe and the inner peripheral surface of the steel plate, the current generated in any one of the steel plates flows through the steel plate laminate in the first direction. can be suppressed.

13)幾つかの実施形態では、上記1)から12)のいずれかに記載の鉄心ユニットであって、
前記パイプは、
パイプ内周面(86)と、
前記パイプ内周面に設けられる内周面凸部(861)または内周面凹部(863)の少なくとも一方と、
をさらに備える。
13) In some embodiments, the core unit of any one of 1) to 12) above,
The pipe is
a pipe inner peripheral surface (86);
At least one of an inner peripheral surface convex portion (861) or an inner peripheral surface concave portion (863) provided on the inner peripheral surface of the pipe;
further provide.

上記13)の構成によれば、パイプ内周面と空気との熱交換が促進されるので、鉄心の冷却性能を向上できる。 According to the above configuration 13), the heat exchange between the inner peripheral surface of the pipe and the air is promoted, so that the cooling performance of the iron core can be improved.

14)本開示の少なくとも一実施形態に係る回転子(30)は、
上記1)乃至12)の何れかに記載の複数の鉄心ユニット(10)と、前記第1方向と直交する方向である周方向において前記複数の鉄心ユニットと交互に配置される複数の非磁性体(52)とを含むリングユニット(50)と、
前記リングユニットの前記第1方向の両端部にそれぞれ連結される一対のフランジ(34)であって、前記第1方向に延在する回転軸に連結されるようにそれぞれ構成される一対のフランジと、
を備え、
前記各々のフランジには、前記複数の鉄心ユニットの各々の前記パイプ(80)の内側空間と連通する少なくとも1つのフランジ孔(43)が形成される。
14) A rotor (30) according to at least one embodiment of the present disclosure comprises:
A plurality of core units (10) according to any one of 1) to 12) above, and a plurality of non-magnetic bodies arranged alternately with the plurality of core units in a circumferential direction orthogonal to the first direction. a ring unit (50) comprising (52);
a pair of flanges (34) respectively connected to both ends of the ring unit in the first direction, the pair of flanges being respectively configured to be connected to a rotating shaft extending in the first direction; ,
with
Each flange is formed with at least one flange hole (43) that communicates with the inner space of the pipe (80) of each of the plurality of core units.

上記14)の構成によれば、上記1)と同様の理由によって、圧粉磁心の形状を維持できると共に鉄心の冷却性能を向上した回転子が実現される。 According to configuration 14) above, for the same reason as above 1), a rotor in which the shape of the dust core can be maintained and the cooling performance of the iron core is improved is realized.

15)幾つかの実施形態では、上記14)に記載の回転子(30)であって、
各々の前記非磁性体は繊維強化複合材料によって形成され、
前記リングユニットは、前記鉄心と前記非磁性体との間に介在する可撓性部材(150)をさらに備える。
15) In some embodiments, the rotor (30) of 14) above, comprising:
Each non-magnetic body is formed of a fiber-reinforced composite material,
The ring unit further includes a flexible member (150) interposed between the iron core and the non-magnetic body.

上記14)の構成によれば、非磁性体が繊維強化複合材料であることで、非磁性体の絶縁性が確保されると共に、回転子の軽量化および高剛性化が実現される。他方で、繊維強化複合材料によって形成される非磁性体の線膨張係数は圧粉磁心の線膨張係数よりも小さい。このため、圧粉磁心と非磁性体とが直接的に接触する構成を有する回転子の温度が上昇すると、圧粉磁心よりも非磁性体の方が第1方向に延びる。結果、非磁性体の膨張に起因する引張応力が熱応力として圧粉磁心に発生し、機械的な強度が比較的弱い圧粉磁心は破損する可能性がある。つまり、圧粉磁心の欠損が起こる可能性がある。この点、上記15)の構成によれば、可撓性部材には、非磁性体に接触する部位と鉄心に接触する部位とがあり、両部位の第1方向における延伸量を違えることが可能となる。つまり、可撓性部材は圧粉磁心に発生する熱応力を低減できる。これにより、回転子は圧粉磁心の破壊を抑制できる。 According to the above configuration 14), since the non-magnetic material is a fiber-reinforced composite material, the insulating properties of the non-magnetic material are ensured, and the weight and rigidity of the rotor can be reduced. On the other hand, the coefficient of linear expansion of the non-magnetic material formed by the fiber-reinforced composite material is smaller than that of the dust core. Therefore, when the temperature of the rotor having the structure in which the dust core and the non-magnetic material are in direct contact increases, the non-magnetic material extends in the first direction more than the dust core. As a result, the tensile stress resulting from the expansion of the non-magnetic material is generated in the powder magnetic core as thermal stress, and the powder magnetic core with relatively low mechanical strength may be damaged. That is, there is a possibility that defects in the dust core may occur. In this regard, according to the configuration of 15) above, the flexible member has a portion that contacts the non-magnetic material and a portion that contacts the iron core, and it is possible to make different amounts of stretching in the first direction between the two portions. becomes. That is, the flexible member can reduce the thermal stress generated in the dust core. Thereby, the rotor can suppress the destruction of the dust core.

16)幾つかの実施形態では、上記15)に記載の回転子であって、
前記可撓性部材は、エラストマーによって形成される。
16) In some embodiments, the rotor of 15) above,
The flexible member is made of elastomer.

上記16)の構成によれば、エラストマーに接着機能が含まれるので、鉄心、非磁性体、および、可撓性部材を接合するための単独の接着材料を用意する必要がない。よって、回転子の構成を簡易化できる。 According to the configuration 16) above, since the elastomer includes an adhesive function, it is not necessary to prepare a separate adhesive material for joining the iron core, the non-magnetic body, and the flexible member. Therefore, the configuration of the rotor can be simplified.

5 :回転軸
9 :接着剤
10 :鉄心ユニット
30 :回転子
41 :フランジ
43 :フランジ孔
50 :リングユニット
52 :非磁性体
60 :鉄心
70 :圧粉磁心
71 :一方側圧粉磁心
75 :圧粉磁心孔
76 :圧粉磁心内周面
77 :鋼板
78 :鋼板孔
79 :鋼板積層体
80(80A,81~83) :パイプ
84 :周壁
85 :スリット
86 :パイプ内周面
87 :一端
89 :パイプ外周面
110 :絶縁体
111 :端
115 :絶縁体孔
120 :絶縁部材
150 :可撓性部材
176 :鋼板内周面
181 :外周面凹部
183 :外周面凸部
861 :内周面凸部
863 :内周面凹部
5: Rotating shaft 9: Adhesive 10: Iron core unit 30: Rotor 41: Flange 43: Flange hole 50: Ring unit 52: Non-magnetic material 60: Iron core 70: Dust core 71: One side dust core 75: Dust Magnetic core hole 76 : Dust core inner peripheral surface 77 : Steel plate 78 : Steel plate hole 79 : Steel plate laminate 80 (80A, 81 to 83) : Pipe 84 : Peripheral wall 85 : Slit 86 : Pipe inner peripheral surface 87 : One end 89 : Pipe Outer peripheral surface 110 : Insulator 111 : End 115 : Insulator hole 120 : Insulating member 150 : Flexible member 176 : Steel plate inner peripheral surface 181 : Outer peripheral surface concave portion 183 : Outer peripheral surface convex portion 861 : Inner peripheral surface convex portion 863 : Inner peripheral recess

Claims (14)

第1方向に貫通された圧粉磁心孔が形成された少なくとも1つの圧粉磁心を含む鉄心と、
前記第1方向に延在し、前記圧粉磁心孔に差し込まれるパイプと、
を備え
前記パイプは、
周壁と、
前記周壁を径方向に貫通すると共に前記第1方向に沿って延在するスリットと、
を含み、
前記スリットは、前記第1方向の少なくとも一方側に開放される、
鉄心ユニット。
an iron core including at least one powder magnetic core having a powder magnetic core hole penetrating in a first direction;
a pipe extending in the first direction and inserted into the dust core hole;
with
The pipe is
a peripheral wall;
a slit radially penetrating the peripheral wall and extending along the first direction;
including
The slit is open to at least one side in the first direction,
core unit.
前記パイプのパイプ外周面と前記圧粉磁心孔を規定する前記圧粉磁心の圧粉磁心内周面との間に介在する接着剤をさらに備える、
請求項1に記載の鉄心ユニット。
Further comprising an adhesive interposed between the pipe outer peripheral surface of the pipe and the dust core inner peripheral surface of the dust core defining the dust core hole,
The core unit according to claim 1 .
前記パイプ外周面は、外周面凹部または外周面凸部の少なくとも一方を有する、
請求項に記載の鉄心ユニット。
The outer peripheral surface of the pipe has at least one of an outer peripheral surface concave portion and an outer peripheral surface convex portion,
The core unit according to claim 2 .
第1方向に貫通された圧粉磁心孔が形成された少なくとも1つの圧粉磁心を含む鉄心と、
前記第1方向に延在し、前記圧粉磁心孔に差し込まれるパイプと、
前記鉄心の前記第1方向における一方側の端部に積み重なるように配置される一方側絶縁体であって、前記第1方向に貫通された絶縁体孔が形成される一方側絶縁体と、
を備え、
前記パイプは、前記第1方向の前記一方側における前記パイプの一端が前記一方側絶縁体の端よりも前記第1方向の他方側に位置するように、前記絶縁体孔に差し込まれる、
鉄心ユニット。
an iron core including at least one powder magnetic core having a powder magnetic core hole penetrating in a first direction;
a pipe extending in the first direction and inserted into the dust core hole;
a one-side insulator disposed so as to be stacked on one end of the iron core in the first direction, the one-side insulator having an insulator hole penetrating in the first direction ;
with
the pipe is inserted into the insulator hole such that one end of the pipe on the one side in the first direction is located on the other side in the first direction with respect to the end of the one-side insulator ;
core unit.
前記鉄心は、前記第1方向に積層された複数の前記圧粉磁心を含み、
前記パイプは、各々の前記圧粉磁心の前記圧粉磁心孔に差し込まれる、
請求項1または4に記載の鉄心ユニット。
The iron core includes a plurality of the dust cores stacked in the first direction,
The pipe is inserted into the dust core hole of each of the dust cores,
The core unit according to claim 1 or 4 .
前記鉄心は、
前記第1方向に積層される複数の鋼板を有する鋼板積層体と、
前記鋼板積層体よりも前記第1方向の一方側に配置される前記圧粉磁心であって、前記鉄心の前記一方側における端部を形成する一方側圧粉磁心と、
をさらに含む、
請求項1または4に記載の鉄心ユニット。
The core is
a steel plate laminate having a plurality of steel plates laminated in the first direction;
a one-side powder magnetic core that is arranged on one side in the first direction relative to the steel plate laminate and that forms an end portion on the one side of the iron core;
further comprising
The core unit according to claim 1 or 4 .
前記パイプは、前記第1方向において前記鉄心よりも長く、且つ、前記鉄心の前記第1方向における一方側の端部から他方側の端部に亘って差し込まれる、
請求項1または4に記載の鉄心ユニット。
The pipe is longer than the core in the first direction, and is inserted from one end of the core to the other end in the first direction,
The core unit according to claim 1 or 4 .
前記パイプは、非磁性材料によって形成される、
請求項1または4に記載の鉄心ユニット。
The pipe is made of a non-magnetic material,
The core unit according to claim 1 or 4 .
前記パイプは、非磁性金属材料によって形成される、
請求項に記載の鉄心ユニット。
The pipe is made of a non-magnetic metallic material,
The core unit according to claim 8 .
前記鉄心は、
前記第1方向に積層される複数の鋼板であって、前記第1方向に貫通された鋼板孔がそれぞれに形成される複数の鋼板を含み、
前記鉄心ユニットは、前記パイプのパイプ外周面と前記鋼板孔を規定する前記鋼板の鋼板内周面との間に介在する絶縁部材をさらに備える、
請求項1または4に記載の鉄心ユニット。
The core is
A plurality of steel plates stacked in the first direction, wherein a plurality of steel plates each having a steel plate hole penetrating in the first direction are formed,
The core unit further comprises an insulating member interposed between the pipe outer peripheral surface of the pipe and the steel plate inner peripheral surface of the steel plate defining the steel plate hole,
The core unit according to claim 1 or 4 .
前記パイプは、
パイプ内周面と、
前記パイプ内周面に設けられる内周面凸部または内周面凹部の少なくとも一方と、
をさらに備える、
請求項1または4に記載の鉄心ユニット。
The pipe is
the inner peripheral surface of the pipe;
At least one of an inner peripheral surface convex portion or an inner peripheral surface concave portion provided on the inner peripheral surface of the pipe;
further comprising
The core unit according to claim 1 or 4 .
第1方向に貫通された圧粉磁心孔が形成された少なくとも1つの圧粉磁心を含む鉄心と、前記第1方向に延在し、前記圧粉磁心孔に差し込まれるパイプとを各々が含む複数の鉄心ユニットと、前記第1方向と直交する方向である周方向において前記複数の鉄心ユニットと交互に配置される複数の非磁性体とを含むリングユニットと、
前記リングユニットの前記第1方向の両端部にそれぞれ連結される一対のフランジであって、前記第1方向に延在する回転軸に連結されるようにそれぞれ構成される一対のフランジと、
を備え、
前記各々のフランジには、前記複数の鉄心ユニットの各々の前記パイプの内側空間と連通する少なくとも1つのフランジ孔が形成される、
回転子。
a plurality of iron cores each including: at least one dust core having a dust core hole penetrating in a first direction; and a pipe extending in the first direction and inserted into the dust core hole and a plurality of non-magnetic bodies arranged alternately with the plurality of core units in a circumferential direction perpendicular to the first direction;
a pair of flanges respectively connected to both ends of the ring unit in the first direction, the pair of flanges being configured to be connected to a rotating shaft extending in the first direction;
with
At least one flange hole communicating with the inner space of the pipe of each of the plurality of core units is formed in each of the flanges,
rotor.
各々の前記非磁性体は繊維強化複合材料によって形成され、
前記リングユニットは、前記鉄心と前記非磁性体との間に介在する可撓性部材をさらに備える、
請求項1に記載の回転子。
Each non-magnetic body is formed of a fiber-reinforced composite material,
The ring unit further comprises a flexible member interposed between the iron core and the non-magnetic material,
A rotor according to claim 12 .
前記可撓性部材は、エラストマーによって形成される、
請求項1に記載の回転子。
The flexible member is made of an elastomer,
A rotor according to claim 1-3 .
JP2022163885A 2022-10-12 2022-10-12 Core unit and rotor Active JP7284334B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022163885A JP7284334B1 (en) 2022-10-12 2022-10-12 Core unit and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022163885A JP7284334B1 (en) 2022-10-12 2022-10-12 Core unit and rotor

Publications (2)

Publication Number Publication Date
JP7284334B1 true JP7284334B1 (en) 2023-05-30
JP2024057272A JP2024057272A (en) 2024-04-24

Family

ID=86538259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022163885A Active JP7284334B1 (en) 2022-10-12 2022-10-12 Core unit and rotor

Country Status (1)

Country Link
JP (1) JP7284334B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220340A (en) 2009-03-16 2010-09-30 Toyota Motor Corp Rotary electric machine
JP2012143041A (en) 2010-12-28 2012-07-26 Toyota Motor Corp Superconducting motor
US20120299409A1 (en) 2011-05-26 2012-11-29 Choi Jinha Electric motor and electric vehicle having the same
US20190372410A1 (en) 2018-05-30 2019-12-05 Trane International Inc. Electrical machine having cooling features formed in a stator winding
JP2019216555A (en) 2018-06-13 2019-12-19 本田技研工業株式会社 Rotor and rotary electric machine
JP2022026498A (en) 2020-07-31 2022-02-10 本田技研工業株式会社 Magnetizing yoke and manufacturing method of the same
JP2022114150A (en) 2021-01-26 2022-08-05 本田技研工業株式会社 Rotary electric machine
JP2022114761A (en) 2021-01-27 2022-08-08 本田技研工業株式会社 motor cooling structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010220340A (en) 2009-03-16 2010-09-30 Toyota Motor Corp Rotary electric machine
JP2012143041A (en) 2010-12-28 2012-07-26 Toyota Motor Corp Superconducting motor
US20120299409A1 (en) 2011-05-26 2012-11-29 Choi Jinha Electric motor and electric vehicle having the same
US20190372410A1 (en) 2018-05-30 2019-12-05 Trane International Inc. Electrical machine having cooling features formed in a stator winding
JP2019216555A (en) 2018-06-13 2019-12-19 本田技研工業株式会社 Rotor and rotary electric machine
JP2022026498A (en) 2020-07-31 2022-02-10 本田技研工業株式会社 Magnetizing yoke and manufacturing method of the same
JP2022114150A (en) 2021-01-26 2022-08-05 本田技研工業株式会社 Rotary electric machine
JP2022114761A (en) 2021-01-27 2022-08-08 本田技研工業株式会社 motor cooling structure

Similar Documents

Publication Publication Date Title
JP5879121B2 (en) Axial gap rotating electric machine
EP1701428B1 (en) Motor
WO2017159858A1 (en) Rotor for electric motor, and brushless motor
US10532912B2 (en) Rotating electrical machine, hoisting machine and elevator
JP6584331B2 (en) Single-phase brushless motor and method for manufacturing single-phase brushless motor
JP5365074B2 (en) Axial gap type rotating electrical machine
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
US10298091B2 (en) Rotor of rotating motor, rotating motor, and air-conditioning apparatus
JP2006050853A (en) Motor
US10714990B2 (en) Rotating electrical machine and robot device
WO2018016026A1 (en) Motor and air conditioner
CN114465382A (en) Rotary motor and method for manufacturing rotor
JP7284334B1 (en) Core unit and rotor
JP6365516B2 (en) Stator and axial gap type rotating electric machine including the stator
JP2019129638A (en) Stator, rotary electric machine, and vehicle
WO2024080143A1 (en) Core unit and rotor
JP6210003B2 (en) Stator core, rotating electric machine, and stator core manufacturing method
JP2019208360A (en) Motor, method of manufacturing the same, vacuum cleaner including the same, and method of manufacturing the same
JP2024057272A (en) Core unit and rotor
WO2023281898A1 (en) Rotating electric machine
JP6685166B2 (en) Axial gap type rotating electric machine
JP2005312124A (en) Structure of rotary electric machine
WO2021166920A1 (en) Compressor
JP2019146463A (en) Rotor of rotary electric machine, rotary electric machine, and method for manufacturing rotor of rotary electric machine
JP2019129636A (en) Stator, rotating electric machine, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7284334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150