JP7275343B1 - Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon - Google Patents

Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon Download PDF

Info

Publication number
JP7275343B1
JP7275343B1 JP2022046345A JP2022046345A JP7275343B1 JP 7275343 B1 JP7275343 B1 JP 7275343B1 JP 2022046345 A JP2022046345 A JP 2022046345A JP 2022046345 A JP2022046345 A JP 2022046345A JP 7275343 B1 JP7275343 B1 JP 7275343B1
Authority
JP
Japan
Prior art keywords
activated carbon
impregnated
mass
aqueous solution
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022046345A
Other languages
Japanese (ja)
Other versions
JP2023140485A (en
Inventor
亮 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2022046345A priority Critical patent/JP7275343B1/en
Application granted granted Critical
Publication of JP7275343B1 publication Critical patent/JP7275343B1/en
Publication of JP2023140485A publication Critical patent/JP2023140485A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】水銀(Hg0)の吸着性能に十分に優れる添着活性炭の製造方法を提供すること。【解決手段】炭材を賦活処理して得られた活性炭10に、二原子分子のハロゲン化合物20の水溶液を噴霧して、活性炭10にハロゲン化合物20を添着させる工程を有し、炭材は石炭を含んでおり、活性炭10の炭素含有量が70質量%以上である、添着活性炭の製造方法を提供する。【選択図】図1An object of the present invention is to provide a method for producing impregnated activated carbon having sufficiently excellent mercury (Hg0) adsorption performance. The method includes a step of impregnating the activated carbon 10 with the halogen compound 20 by spraying an aqueous solution of a diatomic halogen compound 20 onto the activated carbon 10 obtained by activating the carbon material, wherein the carbon material is coal. and the carbon content of the activated carbon 10 is 70% by mass or more. [Selection drawing] Fig. 1

Description

本開示は、添着活性炭及びその製造方法、並びに添着活性炭の製造設備に関する。 The present disclosure relates to impregnated activated carbon, a method for producing the same, and an impregnated activated carbon production facility.

種々の設備で発生する排ガスには、水銀及びダイオキシン等の有害成分が含まれる場合がある。このような有害成分の吸着材として活性炭が用いられる。通常の活性炭では、100℃を超える高温中では水銀(Hg)を殆ど吸着できないため、添着活性炭を用いる必要がある。添着活性炭としては、ハロゲン化合物、金属化合物及び硫黄等を添着したものが知られている(例えば、特許文献1,2参照)。 Exhaust gases generated by various facilities may contain harmful components such as mercury and dioxins. Activated carbon is used as an adsorbent for such harmful components. Since normal activated carbon can hardly adsorb mercury (Hg 0 ) at high temperatures exceeding 100° C., it is necessary to use impregnated activated carbon. As the impregnated activated carbon, those impregnated with a halogen compound, a metal compound, sulfur, or the like are known (see, for example, Patent Documents 1 and 2).

特開2002-102653号公報Japanese Patent Application Laid-Open No. 2002-102653 特開2020-199425号公報JP 2020-199425 A

水銀(Hg)の吸着力を高めるため、活性炭に添着される化合物としては種々のものが検討されている。本開示は、水銀(Hg)の吸着性能に十分に優れる添着活性炭及びその製造方法を提供する。また、水銀(Hg)の吸着性能に十分に優れる添着活性炭の製造設備を提供する。 In order to increase the adsorption power of mercury (Hg 0 ), various compounds have been studied as compounds to be impregnated with activated carbon. The present disclosure provides an impregnated activated carbon having sufficiently excellent mercury (Hg 0 ) adsorption performance and a method for producing the same. Further, the present invention provides production equipment for impregnated activated carbon having sufficiently excellent mercury (Hg 0 ) adsorption performance.

本開示は、一つの側面において、炭材を賦活処理して得られた活性炭に、二原子分子のハロゲン化合物の水溶液を噴霧して、活性炭にハロゲン化合物を添着させる工程を有し、炭材は石炭を含んでおり、活性炭の炭素含有量が70質量%以上である、添着活性炭の製造方法を提供する。 In one aspect, the present disclosure has a step of impregnating the activated carbon with the halogen compound by spraying an aqueous solution of a diatomic halogen compound onto the activated carbon obtained by activating the carbon material, wherein the carbon material is Provided is a method for producing impregnated activated carbon, which contains coal and has a carbon content of 70% by mass or more.

上記製造方法では、活性炭に添着する化合物として二原子分子のハロゲン化合物を用いている。このような二原子分子のハロゲン化合物は、分子サイズが小さいため、活性炭のミクロ孔内に侵入しやすい。ここで、活性炭は、石炭由来であり且つ炭素含有量が高いため、十分に小さいミクロ孔(細孔径:1nm以下)を有している。このため、水銀(Hg)以外の有害物質を十分に吸着することができる。また、上記活性炭は、十分に小さいミクロ孔とともに、大きめのミクロ孔(細孔径:1~2nm)も有している。このため、水溶液中の上記ハロゲン化合物が大きめのミクロ孔を通って円滑に侵入し、活性炭の粒子の内部に保持される。ハロゲン元素が活性炭の粒子の表面に保持されると、ロンドン分散力(誘起双極作用)を十分に発揮できないが、上記製造方法では、ハロゲン元素が活性炭の内部に保持される。このため、ハロゲン元素によるロンドン分散力を十分に発揮することができる。したがって、上記製造方法で得られる水銀(Hg)の吸着性能に十分に優れる。 In the above production method, a diatomic halogen compound is used as the compound to be impregnated on the activated carbon. Since such a diatomic halogen compound has a small molecular size, it easily penetrates into the micropores of the activated carbon. Here, since the activated carbon is derived from coal and has a high carbon content, it has sufficiently small micropores (pore diameter: 1 nm or less). Therefore, harmful substances other than mercury (Hg 0 ) can be sufficiently adsorbed. Moreover, the activated carbon has not only sufficiently small micropores but also large micropores (pore diameter: 1 to 2 nm). Therefore, the halogen compound in the aqueous solution smoothly enters through the larger micropores and is retained inside the activated carbon particles. If the halogen element is retained on the surface of the activated carbon particles, the London dispersion force (induced dipole action) cannot be sufficiently exerted. However, in the above production method, the halogen element is retained inside the activated carbon. Therefore, the London dispersing power of the halogen element can be sufficiently exhibited. Therefore, the adsorption performance of mercury (Hg 0 ) obtained by the above production method is sufficiently excellent.

上記製造方法において、炭材の炭素含有量は70質量%以上であってよい。このような炭材は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような炭材を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 In the above manufacturing method, the carbon content of the carbonaceous material may be 70% by mass or more. Such a carbonaceous material moderately has both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm). Therefore, the impregnated activated carbon obtained using such a carbonaceous material can have both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at sufficiently high levels. .

上記製造方法において、炭材は、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含んでよい。このような炭材は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような炭材を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 In the above production method, the carbonaceous material may contain at least one selected from the group consisting of bituminous coal and anthracite coal. Such a carbonaceous material moderately has both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm). Therefore, the impregnated activated carbon obtained using such a carbonaceous material can have both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at sufficiently high levels. .

上記製造方法では、活性炭に対するハロゲン化合物の添着割合が1.5~5質量%であってよい。このような添着活性炭は、水銀(Hg)の吸着性能に一層優れる。 In the above production method, the ratio of the halogen compound attached to the activated carbon may be 1.5 to 5% by mass. Such impregnated activated carbon has even better adsorption performance for mercury (Hg 0 ).

上記製造方法で製造する添着活性炭の比表面積は600~1100m/gであってよい。このような添着活性炭は、水銀(Hg)以外の有害物質の吸着性能にも十分に優れる。 The specific surface area of the impregnated activated carbon produced by the above production method may be 600 to 1100 m 2 /g. Such impregnated activated carbon is also sufficiently excellent in adsorption performance for harmful substances other than mercury (Hg 0 ).

上記製造方法の活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をBとしたとき、下記式(1)及び(2)を満たしてよい。
A≧3cm/g/nm (1)
B/A≧0.2 (2)
A is the integrated value of the differential pore volume [dVp/d (dp)] with a pore diameter of 1 nm or less in the activated carbon of the above production method; dp)], the following equations (1) and (2) may be satisfied.
A≧3 cm 3 /g/nm (1)
B/A≧0.2 (2)

このような活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)を、十分に良好なバランスで有する。このため、水銀(Hg)以外の有害物質の吸着性能を十分に高いレベルに維持できるとともに、ハロゲン元素によるロンドン分散力が十分に発揮され、水銀(Hg)の吸着性能を十分に高くすることができる。 Such activated carbon has sufficiently small micropores (pore size: 1 nm or less) and large micropores (pore size: 1 to 2 nm) in a sufficiently good balance. Therefore, the adsorption performance of harmful substances other than mercury (Hg 0 ) can be maintained at a sufficiently high level, and the London dispersing power of the halogen element is sufficiently exhibited, and the adsorption performance of mercury (Hg 0 ) is sufficiently increased. be able to.

水溶液におけるハロゲン化合物の濃度は、40~120g/100mLであってよい。このような水溶液は、適度な濃度を有することから、水溶液中のハロゲン化合物を、活性炭のミクロ孔の内部に適度に分散させて添着することができる。このため、十分に高い水銀(Hg)の吸着性能を有する添着活性炭を安定的に製造することができる。 The concentration of the halogen compound in the aqueous solution may be 40-120 g/100 mL. Since such an aqueous solution has an appropriate concentration, the halogen compound in the aqueous solution can be appropriately dispersed and impregnated inside the micropores of the activated carbon. Therefore, impregnated activated carbon having sufficiently high mercury (Hg 0 ) adsorption performance can be stably produced.

上記ハロゲン化合物が臭化ナトリウムを含有し、上記水溶液における臭化ナトリウムの濃度が30~42質量%であってよい。このような水溶液は、常温においても臭化ナトリウムが析出せず安定的に溶解することができる。このような水溶液を用いれば、臭素を活性炭のミクロ孔の内部に適度に分散させて添着させることができる。このような添着活性炭は、一層高い水銀(Hg)の吸着性能を有する。 The halogen compound may contain sodium bromide, and the concentration of sodium bromide in the aqueous solution may be 30 to 42% by mass. Such an aqueous solution can stably dissolve sodium bromide without precipitation even at room temperature. By using such an aqueous solution, bromine can be appropriately dispersed and impregnated inside the micropores of the activated carbon. Such impregnated activated carbon has higher mercury (Hg 0 ) adsorption performance.

上記製造方法では、活性炭を攪拌する攪拌装置と上記水溶液を噴霧するノズルとを用い、攪拌装置で活性炭を攪拌しながら、ノズルから上記水溶液を活性炭に噴霧して、添着活性炭を得てもよい。これによって、ハロゲン化合物が高い均一性で活性炭に添着する。したがって、水銀(Hg)の吸着性能に十分に優れる添着活性炭を簡便に量産することができる。 In the above production method, a stirring device for stirring activated carbon and a nozzle for spraying the aqueous solution may be used, and the aqueous solution may be sprayed from the nozzle onto the activated carbon while stirring the activated carbon with the stirring device to obtain the impregnated activated carbon. Thereby, the halogen compound is impregnated on the activated carbon with high uniformity. Therefore, impregnated activated carbon having sufficiently excellent mercury (Hg 0 ) adsorption performance can be easily mass-produced.

本開示は、一つの側面において、活性炭と当該活性炭に添着された臭化ナトリウムとを含み、活性炭は、石炭の賦活処理物であって炭素含有量が70質量%以上であり、活性炭に対する、臭化ナトリウムの比率が1.5~5質量%である、添着活性炭を提供する。 In one aspect, the present disclosure includes activated carbon and sodium bromide impregnated on the activated carbon, the activated carbon is a product of activated coal with a carbon content of 70% by mass or more, and has an odor An impregnated activated carbon having a sodium chloride ratio of 1.5 to 5% by mass is provided.

このような添着活性炭は、石炭の賦活処理物であって炭素含有量が70質量%以上の活性炭を含む。このような活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、水銀(Hg)以外の有害物質の吸着性能を維持することができる。また、活性炭の内部に臭素を安定的に保持することができる。このため、十分にロンドン分散力が発揮され、水銀(Hg)の吸着性能を十分に高くすることができる。 Such impregnated activated carbon includes activated carbon that is a product of activated coal and has a carbon content of 70% by mass or more. Such activated carbon moderately has both sufficiently small micropores (pore size: 1 nm or less) and large micropores (pore size: 1 to 2 nm). Therefore, it is possible to maintain the adsorption performance of harmful substances other than mercury (Hg 0 ). In addition, bromine can be stably retained inside the activated carbon. Therefore, the London dispersion force is sufficiently exerted, and the adsorption performance of mercury (Hg 0 ) can be sufficiently enhanced.

本開示は、一つの側面において、石炭由来の活性炭の堆積層を攪拌する攪拌装置と、炭素含有量が70質量%以上である活性炭を攪拌装置に導入する導入部と、堆積層の上方から堆積層に向けて二原子分子のハロゲン化合物の水溶液を噴霧するノズルと、ハロゲン化合物が添着された添着活性炭を攪拌装置から導出する導出部と、を備える、添着活性炭の製造設備を提供する。 In one aspect, the present disclosure provides a stirring device for stirring a sediment layer of coal-derived activated carbon, an introduction unit for introducing activated carbon having a carbon content of 70% by mass or more into the stirring device, and deposition from above the sediment layer. Provided is an impregnated activated carbon production facility comprising: a nozzle for spraying an aqueous solution of a diatomic halogen compound toward a layer;

上記製造設備では、石炭由来で炭素含有量が70質量%以上である活性炭と二原子分子のハロゲン化合物を用いている。二原子分子のハロゲン化合物は、分子サイズが小さいため、活性炭のミクロ孔内に侵入しやすい。活性炭は、石炭由来であり且つ炭素含有量が高いため、十分に小さいミクロ孔(細孔径:1nm以下)を有している。このため、水銀(Hg)以外の有害物質を十分に吸着することができる。また、上記活性炭は、十分に小さいミクロ孔とともに、大きめのミクロ孔(細孔径:1~2nm)も有している。このため、ノズルから噴霧された水溶液中の上記ハロゲン化合物が大きめのミクロ孔を通って円滑に侵入し、活性炭の粒子の内部に保持される。ハロゲン元素が活性炭の粒子の表面に保持されると、ロンドン分散力(誘起双極作用)を十分に発揮できないが、上記製造設備では、ハロゲン元素が活性炭の内部に保持された添着活性炭が導出部から導出される。このような添着活性炭は、ハロゲン元素によるロンドン分散力を十分に発揮することができる。したがって、上記製造設備では、水銀(Hg)の吸着性能に十分に優れる添着活性炭を製造することができる。 In the above manufacturing facility, activated carbon derived from coal and having a carbon content of 70% by mass or more and a diatomic halogen compound are used. Since the diatomic halogen compound has a small molecular size, it easily penetrates into the micropores of the activated carbon. Since activated carbon is derived from coal and has a high carbon content, it has sufficiently small micropores (pore diameter: 1 nm or less). Therefore, harmful substances other than mercury (Hg 0 ) can be sufficiently adsorbed. Moreover, the activated carbon has not only sufficiently small micropores but also large micropores (pore diameter: 1 to 2 nm). Therefore, the halogen compound in the aqueous solution sprayed from the nozzle smoothly penetrates through the larger micropores and is retained inside the activated carbon particles. If the halogen element is retained on the surface of the activated carbon particles, the London dispersion force (induced dipole action) cannot be sufficiently exerted. derived. Such impregnated activated carbon can sufficiently exhibit the London dispersing power of the halogen element. Therefore, the production facility described above can produce impregnated activated carbon having sufficiently excellent mercury (Hg 0 ) adsorption performance.

上記攪拌装置内の堆積層を平面視したときに、堆積層の表面の面積全体に対する、ノズルからの上記水溶液の噴霧面積の比率が40~120%となるように、ノズルから上記水溶液を噴霧してよい。これによって、活性炭に高い均一性でハロゲン化合物を添着することができる。 The aqueous solution is sprayed from the nozzle so that the ratio of the sprayed area of the aqueous solution from the nozzle to the total area of the surface of the deposited layer is 40 to 120% when viewed from the top of the deposited layer in the stirring device. you can Thereby, the halogen compound can be impregnated on the activated carbon with high uniformity.

水銀(Hg)の吸着性能に十分に優れる添着活性炭及びその製造方法を提供することができる。水銀(Hg)の吸着性能に十分に優れる添着活性炭の製造設備を提供することができる。 It is possible to provide an impregnated activated carbon having sufficiently excellent adsorption performance for mercury (Hg 0 ) and a method for producing the same. It is possible to provide production equipment for impregnated activated carbon having sufficiently excellent mercury (Hg 0 ) adsorption performance.

添着活性炭の表面近傍における断面の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a cross section near the surface of impregnated activated carbon. 添着活性炭の製造方法に用いる製造装置の一例を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のIIb-IIb線で切断したときの内部を上方から見たときの図である。It is a figure which shows an example of the manufacturing apparatus used for the manufacturing method of impregnated activated carbon. (A) is a side view of the device, and (B) is a top view of the interior cut along line IIb-IIb of (A). 実施例1の活性炭の成分分析の結果を示す図である。1 is a diagram showing the results of component analysis of activated carbon of Example 1. FIG. 比較例1の添着活性炭の成分分析の結果を示す図である。3 is a diagram showing the result of component analysis of impregnated activated carbon of Comparative Example 1. FIG. 実施例1、及び比較例1,2で用いた活性炭の微分細孔容積[dVp/d(dp)]の分布を示す図である。1 is a diagram showing distributions of differential pore volumes [dVp/d(dp)] of activated carbons used in Example 1 and Comparative Examples 1 and 2. FIG. 実施例10で用いた製造装置を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のVIb-VIb線で切断したときの装置内部を上方から見たときの図である。FIG. 10 is a diagram showing a manufacturing apparatus used in Example 10; (A) is a side view of the device, and (B) is a top view of the inside of the device cut along line VIb-VIb in (A). 実施例11で用いた製造装置を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のVIIb-VIIb線で切断したときの装置内部を上方から見たときの図である。FIG. 11 is a diagram showing a manufacturing apparatus used in Example 11; (A) is a side view of the device, and (B) is a top view of the interior of the device cut along line VIIb-VIIb of (A). 実施例12で用いた製造装置を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のVIIIb-VIIIb線で切断したときの装置内部を上方から見たときの図である。FIG. 12 is a diagram showing a manufacturing apparatus used in Example 12; (A) is a side view of the device, and (B) is a top view of the interior of the device cut along line VIIIb-VIIIb of (A). (A)及び(B)は、比較例の添着活性炭の表面近傍における断面を模式的に示す図である。(A) and (B) are diagrams schematically showing cross sections in the vicinity of the surface of impregnated activated carbon of a comparative example.

以下、場合により図面を参照して、本開示の一実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 An embodiment of the present disclosure will be described below with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and overlapping descriptions are omitted in some cases. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratio of each element is not limited to the illustrated ratio.

一実施形態に係る添着活性炭の製造方法は、炭材を賦活処理して得られた活性炭に、二原子分子のハロゲン化合物の水溶液を噴霧して、活性炭にハロゲン化合物を添着させる工程を有する。 A method for producing impregnated activated carbon according to one embodiment includes a step of impregnating activated carbon with a halogen compound by spraying an aqueous solution of a diatomic halogen compound onto activated carbon obtained by activating a carbonaceous material.

成分分析によって測定される炭材の炭素含有量は、70質量%以上であってよく、80質量%以上であってよく、85質量%以上であってもよい。このように炭素含有量が高い炭材を賦活処理して得られる活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような炭材を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 The carbon content of the carbon material measured by component analysis may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. Activated carbon obtained by activating a carbonaceous material with a high carbon content in this way has both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm). have in Therefore, the impregnated activated carbon obtained using such a carbonaceous material can have both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at sufficiently high levels. .

炭素含有量が70質量%以上の炭材は石炭であってよく、例えば、瀝青炭及び無煙炭が挙げられる。したがって、炭材は、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含む炭材を用いてもよい。 The carbonaceous material having a carbon content of 70% by mass or more may be coal, for example, bituminous coal and anthracite coal. Therefore, as the carbonaceous material, a carbonaceous material containing at least one selected from the group consisting of bituminous coal and anthracite may be used.

炭材の賦活処理は、通常のガス賦活処理によって行ってよい。例えば、炭材を、600~1000℃の温度、又は750~900℃の温度で、水蒸気、二酸化炭素、空気、酸素、燃焼ガス、又はこれらの混合ガスの存在下、炭材を加熱すればよい。これによって、炭材に細孔を形成し、石炭由来の多孔質の活性炭を得ることができる。 The activation treatment of the carbon material may be performed by a normal gas activation treatment. For example, the carbon material may be heated at a temperature of 600 to 1000° C. or at a temperature of 750 to 900° C. in the presence of water vapor, carbon dioxide, air, oxygen, combustion gas, or a mixed gas thereof. . As a result, pores are formed in the carbonaceous material, and coal-derived porous activated carbon can be obtained.

活性炭のBET比表面積は、水銀(Hg)以外の有害物質(ダイオキシン等)の吸着性能を十分に高くする観点から、600m/g以上であってよく、800cm/g以上であってよく、900m/g以上であってよい。活性炭のBET比表面積は、1100m/g以下であってよく、1050m/g以下であってよく、1000m/g以下であってもよい。これによって、ハロゲン化合物が侵入しすい程度のサイズを有するミクロ孔(大きめのミクロ孔)を十分に確保して、添着の際のハロゲン化合物のミクロ孔(十分に小さいミクロ孔)への侵入を促進することができる。活性炭のBET比表面積の一例は、600~1100m/g以下である。 The BET specific surface area of the activated carbon may be 600 m 2 /g or more, or 800 cm 2 /g or more, from the viewpoint of sufficiently increasing the adsorption performance of harmful substances (dioxins, etc.) other than mercury (Hg 0 ). , 900 m 2 /g or more. The BET specific surface area of the activated carbon may be 1100 m 2 /g or less, 1050 m 2 /g or less, or 1000 m 2 /g or less. As a result, sufficient micropores (larger micropores) having a size that allows the halogen compound to easily penetrate are secured, and the penetration of the halogen compound into the micropores (sufficiently small micropores) during attachment is promoted. can do. An example of the BET specific surface area of activated carbon is 600 to 1100 m 2 /g or less.

活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をBとしたとき、下記式(1)及び(2)を満たしてよい。
A≧3cm/g/nm (1)
B/A≧0.2 (2)
A is the integrated value of the differential pore volume [dVp / d (dp)] with a pore diameter of 1 nm or less in the activated carbon, and the differential pore volume with a pore diameter of more than 1 nm and 2 nm or less [dVp / d (dp)]. When the integrated value is B, the following equations (1) and (2) may be satisfied.
A≧3 cm 3 /g/nm (1)
B/A≧0.2 (2)

このような活性炭を用いることによって、添着活性炭の水銀(Hg)の吸着性能を十分に高くすることができる。同様の観点から、Aは3.3cm/g/nm以上であってよく、B/Aは0.24以上であってもよい。活性炭の表面積を十分に大きくする観点から、Aは5cm/g/nm以下であってよい。同様の観点からB/Aは0.5以下であってもよい。 By using such activated carbon, the adsorption performance of the impregnated activated carbon for mercury (Hg 0 ) can be sufficiently enhanced. From the same point of view, A may be 3.3 cm 3 /g/nm or more, and B/A may be 0.24 or more. From the viewpoint of sufficiently increasing the surface area of the activated carbon, A may be 5 cm 3 /g/nm or less. From the same point of view, B/A may be 0.5 or less.

成分分析によって測定される活性炭の炭素含有量は、70質量%以上であってよく、80質量%以上であってよく、85質量%以上であってもよい。このように炭素含有量が高い活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような活性炭を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 The carbon content of the activated carbon measured by component analysis may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. Activated carbon with such a high carbon content moderately has both sufficiently small micropores (pore size: 1 nm or less) and large micropores (pore size: 1 to 2 nm). Therefore, the impregnated activated carbon obtained by using such activated carbon can achieve both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at a sufficiently high level.

二原子分子のハロゲン化合物は、構成元素としてハロゲン元素とアルカリ金属元素とを有する。ハロゲン化合物は、例えば、NaBr、KBr、NaCl及びKClからなる群より選ばれる少なくとも一つを含んでよい。ロンドン分散力を十分に大きくする観点から、ハロゲン化合物は臭化物を含んでよい。これらのハロゲン化合物は、活性炭の大きめのミクロ孔に円滑に侵入し、活性炭の内部に保持される。ハロゲン元素は、活性炭の内部においてロンドン分散力を十分に発揮することができる。これによって、水銀(Hg)が細孔内に吸着されやすくなり、水銀(Hg)の吸着性能を十分に高くすることができる。 A halogen compound of a diatomic molecule has a halogen element and an alkali metal element as constituent elements. The halogen compound may contain, for example, at least one selected from the group consisting of NaBr, KBr, NaCl and KCl. From the viewpoint of sufficiently increasing the London dispersion power, the halogen compound may contain bromide. These halogen compounds smoothly enter the larger micropores of the activated carbon and are retained inside the activated carbon. A halogen element can sufficiently exert the London dispersion force inside the activated carbon. This makes it easier for mercury (Hg 0 ) to be adsorbed in the pores, and the adsorption performance of mercury (Hg 0 ) can be sufficiently enhanced.

このようにして得られる添着活性炭は、例えば、図1に示すような内部構造を有すると考えられる。図1の添着活性炭12は、活性炭10と、活性炭に添着された二原子分子のハロゲン化合物20とを含む。活性炭10の表面近傍には、細孔40が形成されている。細孔40は、十分に小さいミクロ孔40Aと、これよりも大きいミクロ孔40Bとを含む。水銀(Hg)の吸着には、このように小さいミクロ孔40Aが必要である。一方、水銀(Hg)以外の有害物質は、小さいミクロ孔40A及び大きいミクロ孔40Bのどちらにも吸着され得る。 The impregnated activated carbon thus obtained is considered to have an internal structure as shown in FIG. 1, for example. The impregnated activated carbon 12 of FIG. 1 includes activated carbon 10 and a diatomic halogen compound 20 impregnated on the activated carbon. Pores 40 are formed near the surface of the activated carbon 10 . Pores 40 include sufficiently small micropores 40A and larger micropores 40B. Adsorption of mercury (Hg 0 ) requires such small micropores 40A. On the other hand, harmful substances other than mercury (Hg 0 ) can be adsorbed by both small micropores 40A and large micropores 40B.

ハロゲン化合物を添着させる工程では、大きいミクロ孔40Bからハロゲン化合物20が円滑に侵入し、細孔40内に保持される。細孔40内に保持されたハロゲン化合物20のロンドン分散力は、図1に示される広い領域22に及んでいる。このため、領域22に含まれるミクロ孔40Aの内壁に水銀(Hg)30が吸着される。一方、ダイオキシン等の水銀(Hg)以外の有害物質は、ミクロ孔40A及びミクロ孔40Bの両方に吸着される。 In the step of impregnating the halogen compound, the halogen compound 20 smoothly enters through the large micropores 40B and is held within the pores 40. FIG. The London dispersion force of the halide 20 retained within the pores 40 extends over the broad region 22 shown in FIG. Therefore, mercury (Hg 0 ) 30 is adsorbed on the inner walls of micropores 40A included in region 22 . On the other hand, harmful substances other than mercury (Hg 0 ) such as dioxin are adsorbed by both micropores 40A and 40B.

一方、原子数が3個以上の分子であるハロゲン化合物の場合、図9()に示されるように、ハロゲン化合物120のサイズが大きいため、活性炭110の細孔140内に侵入することができず、活性炭110の表面に添着する。この場合、活性炭110の内部においてロンドン分散力が及ぶ領域122が小さくなってしまう。このため、水銀(Hg)30を吸着できる細孔140の割合が小さくなる。したがって、図9()のような添着活性炭では、水銀(Hg)130を十分に吸着できない。 On the other hand, in the case of a halogen compound, which is a molecule having three or more atoms, as shown in FIG . Instead, it adheres to the surface of the activated carbon 110 . In this case, the area 122 within the activated carbon 110 on which the London dispersion force acts becomes smaller. Therefore, the proportion of pores 140 that can adsorb mercury (Hg 0 ) 30 is reduced. Therefore, the impregnated activated carbon as shown in FIG. 9B cannot sufficiently adsorb mercury (Hg 0 ) 130 .

また、十分に小さいミクロ孔が少ない活性炭の場合、図9()に示されるように、ハロゲン化合物121は、大きいミクロ孔から活性炭111の内部に侵入し、ロンドン分散力を比較的広い領域122に及ぼす。しかしながら、領域122に含まれる、十分に小さいミクロ孔が少ないため、水銀(Hg)130を十分に吸着することができない。 In addition, in the case of activated carbon with a small number of sufficiently small micropores, as shown in FIG . affects. However, the region 122 does not contain sufficiently small micropores to sufficiently adsorb mercury (Hg 0 ) 130 .

また、大きいミクロ孔を有さず、十分に小さいミクロ孔のみを有する活性炭の場合、ハロゲン化合物のサイズが十分に小さいミクロ孔よりも小さい場合であっても十分な吸着能力を発揮することができない。これに対し、図1の添着活性炭12における活性炭10は、十分に小さいミクロ孔40Aと、これよりも大きいミクロ孔40Bが良好なバランスで形成されている。このように十分に小さいミクロ孔40Aとこれよりも大きいミクロ孔40Bがバランスよく形成されていることが吸着能力の発揮に有効である。さらに、図1の添着活性炭12では、活性炭10の内部に二原子分子のハロゲン化合物20が保持されている。これらの相乗作用によって、図1の添着活性炭12は、図9の添着活性炭及び大きいミクロ孔を有しない添着活性炭よりも、水銀(Hg)30と水銀以外の有害物質を十分に吸着することができる。 In addition, in the case of activated carbon which does not have large micropores and has only sufficiently small micropores, even if the size of the halogen compound is smaller than the sufficiently small micropores, it is not possible to exhibit sufficient adsorption capacity. . On the other hand, in the activated carbon 10 in the impregnated activated carbon 12 of FIG. 1, sufficiently small micropores 40A and larger micropores 40B are formed in a good balance. Such well-balanced formation of sufficiently small micropores 40A and larger micropores 40B is effective for exhibiting the adsorption ability. Furthermore, in the impregnated activated carbon 12 of FIG. Due to these synergistic effects, the impregnated activated carbon 12 of FIG. 1 can sufficiently adsorb mercury (Hg 0 ) 30 and harmful substances other than mercury than the impregnated activated carbon of FIG. 9 and the impregnated activated carbon without large micropores. can.

活性炭10へのハロゲン化合物20の添着は、ハロゲン化合物20の水溶液を噴霧することによって行う。水溶液におけるハロゲン化合物20の濃度は、40g/100mL以上であってよく、50g/100mL以上であってよく、60g/100mL以上であってもよい。ここでいう「100mL」は、溶媒である水の量である。このような濃度を有する水溶液であれば、噴霧したときに固形分が析出することが抑制され、活性炭10の細孔40内に十分に侵入することができる。水溶液におけるハロゲン化合物20の濃度は、120g/100mL以下であってよい。水溶液に含まれるハロゲン化合物20の濃度が高くなり過ぎると、活性炭10に添着した際に、ハロゲン化合物20の濃い領域が生じ、ハロゲン元素とともに活性炭10内に侵入したアルカリ金属が、水銀(Hg)30の吸着を妨げる場合がある。水溶液におけるハロゲン化合物20の濃度の一例は、40~120g/100mLである。 The impregnation of the halogen compound 20 on the activated carbon 10 is performed by spraying an aqueous solution of the halogen compound 20 . The concentration of the halogen compound 20 in the aqueous solution may be 40 g/100 mL or more, 50 g/100 mL or more, or 60 g/100 mL or more. "100 mL" here is the amount of water as a solvent. An aqueous solution having such a concentration suppresses precipitation of solids when sprayed, and can sufficiently penetrate into the pores 40 of the activated carbon 10 . The concentration of the halogen compound 20 in the aqueous solution may be 120 g/100 mL or less. If the concentration of the halogen compound 20 contained in the aqueous solution becomes too high, when the activated carbon 10 is impregnated, a region with a high concentration of the halogen compound 20 is generated, and the alkali metal that has entered the activated carbon 10 together with the halogen element becomes mercury (Hg 0 ). 30 may interfere with adsorption. An example concentration of the halogen compound 20 in the aqueous solution is 40-120 g/100 mL.

ハロゲン化合物20がNaBr(臭化ナトリウム)を含有する場合、水溶液におけるNaBrの含有量は30~42質量%であってよい。これによって、NaBrの析出を抑制しながら、活性炭10の細孔40内に適量のNaBrを添着することができる。水溶液におけるNaBrの含有量が低くなり過ぎると、NaBrの添着量が減少すること、及び、水の吸着量が増えて、有害物質を吸着し難くなる傾向にある。水溶液におけるNaBrの含有量が高くなり過ぎると、NaBrが析出・結晶化して活性炭10の細孔40内に侵入し難くなる傾向にある。 When the halogen compound 20 contains NaBr (sodium bromide), the content of NaBr in the aqueous solution may be 30-42 mass %. As a result, an appropriate amount of NaBr can be impregnated into the pores 40 of the activated carbon 10 while suppressing precipitation of NaBr. If the NaBr content in the aqueous solution becomes too low, the amount of NaBr impregnated decreases and the amount of water adsorbed increases, which tends to make it difficult to adsorb harmful substances. If the NaBr content in the aqueous solution becomes too high, NaBr tends to precipitate and crystallize, making it difficult to enter the pores 40 of the activated carbon 10 .

添着活性炭12において、活性炭10に対するハロゲン化合物20の添着割合は、1.5質量%以上であってよく、2質量%以上であってよく、2.5質量%以上であってもよい。これによって、活性炭10の細孔40に十分にハロゲン化合物20を添着させることができる。活性炭10に対するハロゲン化合物20の添着割合は、5質量%以下であってよく、4質量%以下であってもよい。添着割合が高くなり過ぎると、図1の領域22が重なり合いやすくなり、ハロゲン元素のロンドン分散力を有効に活用し難くなる。また、ハロゲン化合物20に含まれるアルカリ金属が水銀(Hg)30の吸着を妨げる作用が顕在化する可能性もある。活性炭10に対するハロゲン化合物20の添着割合の一例は、1.5~5質量%である。 In the impregnated activated carbon 12, the impregnation ratio of the halogen compound 20 to the activated carbon 10 may be 1.5% by mass or more, 2% by mass or more, or 2.5% by mass or more. Thereby, the halogen compound 20 can be sufficiently impregnated into the pores 40 of the activated carbon 10 . The attachment ratio of the halogen compound 20 to the activated carbon 10 may be 5% by mass or less, or may be 4% by mass or less. If the attachment ratio is too high, the regions 22 in FIG. 1 are likely to overlap, making it difficult to effectively utilize the London dispersion force of the halogen element. In addition, the action of the alkali metal contained in the halogen compound 20 to hinder the adsorption of mercury (Hg 0 ) 30 may become apparent. An example of the attachment ratio of the halogen compound 20 to the activated carbon 10 is 1.5 to 5% by mass.

添着活性炭12のBET比表面積は、600m/g以上であってよく、700m/g以上であってよく、800m/g以上であってよい。これによって、水銀(Hg)30及び水銀(Hg)以外の有害物質を十分に吸着することができる。添着活性炭12のBET比表面積は、1100m/g以下であってよく、1000m/g以下であってもよい。これによって、ミクロ孔40Bを十分に確保して、ハロゲン化合物20の侵入を促進することができる。 The BET specific surface area of the impregnated activated carbon 12 may be 600 m 2 /g or more, 700 m 2 /g or more, or 800 m 2 /g or more. As a result, mercury (Hg 0 ) 30 and harmful substances other than mercury (Hg 0 ) can be sufficiently adsorbed. The BET specific surface area of the impregnated activated carbon 12 may be 1100 m 2 /g or less, or may be 1000 m 2 /g or less. As a result, the micropores 40B are sufficiently secured, and the infiltration of the halogen compound 20 can be promoted.

活性炭へのハロゲン化合物20の添着は、図2(A)及び図2(B)に示す攪拌装置(リボンブレンダ)を備える製造設備を用いて行ってもよい。この製造設備は、活性炭の堆積層を攪拌する攪拌装置50と、攪拌装置50に活性炭を導入する導入部52と、攪拌装置50で得られた添着活性炭を攪拌装置50から導出する導出部54と、を備える。攪拌装置50は、導入された活性炭の堆積層11を攪拌するリボン型の攪拌羽根72と、攪拌羽根72を回転駆動するモータ70とを備える。攪拌装置50の上壁には、ハロゲン化合物の水溶液をスプレー状に噴霧するノズル60が設けられている。ノズル60には、ポンプ62からハロゲン化合物の水溶液が供給される。この製造設備であれば、攪拌羽根72で活性炭を攪拌しながら、ノズル60から攪拌装置50内の活性炭の堆積層11に向けてハロゲン化合物の水溶液を噴霧することができる。 The impregnation of the halogen compound 20 to the activated carbon may be performed using a production facility equipped with a stirring device (ribbon blender) shown in FIGS. 2(A) and 2(B). This manufacturing facility includes a stirring device 50 for stirring a sediment layer of activated carbon, an introduction section 52 for introducing activated carbon into the stirring device 50, and an outlet section 54 for leading out the impregnated activated carbon obtained by the stirring device 50 from the stirring device 50. , provided. The stirring device 50 includes a ribbon-shaped stirring blade 72 for stirring the introduced deposited layer 11 of activated carbon, and a motor 70 for rotationally driving the stirring blade 72 . A nozzle 60 for spraying an aqueous solution of a halogen compound is provided on the upper wall of the stirring device 50 . An aqueous solution of a halogen compound is supplied from a pump 62 to the nozzle 60 . With this manufacturing equipment, the aqueous solution of the halogen compound can be sprayed from the nozzle 60 toward the deposited layer 11 of activated carbon in the stirring device 50 while stirring the activated carbon with the stirring blade 72 .

ノズル60から噴霧される水溶液の液滴径は100~300μmであってよい。液滴径が小さくなり過ぎると、水溶液が浮遊して攪拌装置50の内壁面に付着し、添着にムラが生じやすく傾向にある。液滴径が大きくなり過ぎても、添着にムラが生じやすく傾向にある。 The droplet size of the aqueous solution sprayed from the nozzle 60 may be 100 to 300 μm. If the droplet diameter becomes too small, the aqueous solution floats and adheres to the inner wall surface of the stirring device 50, which tends to cause uneven adhesion. Even if the droplet diameter becomes too large, there is a tendency that uneven adhesion tends to occur.

図2(B)には、攪拌装置50内における活性炭の堆積層11を平面視したときの堆積層11の表面が示されており、当該表面に、各ノズル60からの噴霧液が直接落下するエリア64を示している。堆積層11の表面の面積全体に対する、複数のエリア64の合計面積(噴霧面積)の比率は、40~120%であってよく、50~100%であってもよい。これによって、活性炭に十分に均一にハロゲン化合物を添着することができる。なお、複数のエリア64が重なり合う部分は重複してカウントされるため、上記面積比率が100%を超える場合もある。なお、ノズル60の本数は特に限定されない。また、添着は、図2に示されるような攪拌装置を用いずに行ってもよい。 FIG. 2(B) shows the surface of the deposited layer 11 of the activated carbon deposited layer 11 in the stirring device 50 when viewed from above, and the sprayed liquid from each nozzle 60 directly drops onto the surface. Area 64 is shown. The ratio of the total area (sprayed area) of the plurality of areas 64 to the total surface area of the deposited layer 11 may be 40 to 120%, or may be 50 to 100%. Thereby, the halogen compound can be sufficiently uniformly impregnated on the activated carbon. Note that the above area ratio may exceed 100% because the portion where the plurality of areas 64 overlap is counted redundantly. Note that the number of nozzles 60 is not particularly limited. Alternatively, the attachment may be performed without using a stirring device such as that shown in FIG.

一実施形態に係る添着活性炭は、活性炭と活性炭に添着された二原子分子のハロゲン化合物を含む。ハロゲン化合物は、例えば、NaBr、KBr、NaCl及びKClからなる群より選ばれる少なくとも一つを含んでよい。活性炭の炭素含有量は、70質量%以上であってよく、80質量%以上であってよく、85質量%以上であってもよい。活性炭は、石炭の賦活処理物である。賦活処理の条件は上述したとおりである。石炭は、例えば、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含んでよい。 The impregnated activated carbon according to one embodiment comprises activated carbon and a diatomic halogen compound impregnated on the activated carbon. The halogen compound may contain, for example, at least one selected from the group consisting of NaBr, KBr, NaCl and KCl. The carbon content of the activated carbon may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. Activated carbon is a product of activated coal. Conditions for the activation treatment are as described above. Coal may include, for example, at least one selected from the group consisting of bituminous coal and anthracite.

活性炭に対するハロゲン化合物(例えば、臭化ナトリウム)の比率は1.5~5質量%であってよい。活性炭に対するハロゲン化合物20の添着割合は、1.5質量%以上であってよく、2質量%以上であってよく、2.5質量%以上であってもよい。活性炭に対するハロゲン化合物20の添着割合は、5質量%以下であってよく、4質量%以下であってもよい。添着活性炭は、上述の製造方法によって製造されてよい。したがって、上述の添着活性炭の製造方法における説明内容は、本実施形態の添着活性炭にも適用される。 The ratio of halogen compound (eg sodium bromide) to activated carbon may be 1.5 to 5% by weight. The loading ratio of the halogen compound 20 to the activated carbon may be 1.5% by mass or more, 2% by mass or more, or 2.5% by mass or more. The attachment ratio of the halogen compound 20 to the activated carbon may be 5% by mass or less, or may be 4% by mass or less. The impregnated activated carbon may be produced by the production method described above. Therefore, the description of the method for producing the impregnated activated carbon described above also applies to the impregnated activated carbon of the present embodiment.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

実施例、参考例、及び比較例を参照して本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。 EXAMPLES The content of the present invention will be described in more detail with reference to examples , reference examples, and comparative examples, but the present invention is not limited to the following examples.

(実施例1)
<活性炭の準備>
炭材として、無煙炭と瀝青炭に由来する粉末状の炭材を準備した。この炭材の炭素含有量は、表1に示すとおりであった。この炭材のガス賦活処理を行って活性炭を調製した。ガス賦活処理は、水蒸気を含むガスを用いて、炭材を加熱することによって行った。
(Example 1)
<Preparation of activated carbon>
Powdery carbonaceous materials derived from anthracite and bituminous coal were prepared as carbonaceous materials. The carbon content of this carbonaceous material was as shown in Table 1. This carbonaceous material was subjected to gas activation treatment to prepare activated carbon. The gas activation treatment was performed by heating the carbon material using a gas containing water vapor.

<活性炭の評価>
上述の手順で得られた活性炭の成分分析を行って炭素含有量を求めた。分析装置及び分析方法の詳細は以下のとおりである。
分析方法:電子顕微鏡付きX線分析
使用機器:走査型電子顕微鏡 JSM-6390型(日本電子株式会社製)
対象元素:B~U
補正方法:ZAF法
<Evaluation of activated carbon>
The component analysis of the activated carbon obtained by the above procedure was performed to determine the carbon content. The details of the analysis equipment and analysis method are as follows.
Analysis method: X-ray analysis with electron microscope Equipment used: Scanning electron microscope JSM-6390 type (manufactured by JEOL Ltd.)
Target elements: B to U
Correction method: ZAF method

成分分析の結果は図3に示すとおりであった。また、活性炭のBET比表面積を、比表面積/細孔分析測定装置(マイクロトラック・ベル株式会社製、装置名:BELSORP mini II)を用いて測定した。測定方法は、N吸着法によって行った。これらの結果は、表1に示すとおりであった。この活性炭の水銀吸着性能を以下の手順で評価した。 The result of component analysis was as shown in FIG. In addition, the BET specific surface area of the activated carbon was measured using a specific surface area/pore analysis measurement device (manufactured by Microtrack Bell Co., device name: BELSORP mini II). The measurement method was the N2 adsorption method. These results were as shown in Table 1. Mercury adsorption performance of this activated carbon was evaluated by the following procedure.

添着活性炭(0.05g)を、カラムクロマト管(内径:30mm,長さ:30cm)の内部に充填した(充填高さ:15cm)。カラムクロマト管にヒータを巻き付けて、カラムクロマト管の内部を180~220℃に加熱した。水銀蒸気発生器を用いて空気に水銀蒸気を混入させて水銀濃度500μg/mの供給ガスを調製した。この供給ガスを220℃に加熱して上述のカラムクロマト管に供給してガス処理を行った。カラムクロマト管から排出される排ガス中の水銀(Hg)濃度を水銀測定装置(日本インスツルメンツ株式会社製、製品名:EMP-2)を用いて測定した。ガス処理と排ガス中の水銀(Hg)の濃度測定を約3時間継続して行った。供給ガス中の水銀(Hg)の濃度の平均値と排ガスに含まれていた水銀(Hg)の濃度の平均値の差から、以下の式によって水銀(Hg)の除去率を算出した。結果は表1に示すとおりであった。 Impregnated activated carbon (0.05 g) was packed inside a column chromatography tube (inner diameter: 30 mm, length: 30 cm) (packing height: 15 cm). A heater was wrapped around the column chromatography tube to heat the inside of the column chromatography tube to 180 to 220°C. A feed gas with a mercury concentration of 500 μg/m 3 was prepared by entraining the air with mercury vapor using a mercury vapor generator. This supply gas was heated to 220° C. and supplied to the above column chromatography tube for gas treatment. The mercury (Hg 0 ) concentration in the exhaust gas discharged from the column chromatography tube was measured using a mercury measuring device (manufactured by Nippon Instruments Co., Ltd., product name: EMP-2). Gas treatment and concentration measurement of mercury (Hg 0 ) in the exhaust gas were continued for about 3 hours. From the difference between the average concentration of mercury (Hg 0 ) in the supplied gas and the average concentration of mercury (Hg 0 ) contained in the exhaust gas, the removal rate of mercury (Hg 0 ) was calculated by the following formula. . The results were as shown in Table 1.

水銀(Hg)の除去率(%)=(供給ガス中の水銀濃度-排ガス中の水銀濃度)/供給ガス中の水銀濃度 Mercury (Hg 0 ) removal rate (%) = (Mercury concentration in supply gas - Mercury concentration in exhaust gas) / Mercury concentration in supply gas

<添着活性炭の製造>
臭化ナトリウム(NaBr)を水に溶解させて水溶液を得た。水溶液中のNaBr濃度は41質量%とした。ポリ容器に、約20gの活性炭を入れた後、この活性炭に対して上記水溶液を噴霧器で噴霧した。活性炭に対する添着割合が3.5質量%となるように、活性炭に対する水溶液の噴霧量を設定した。このようにして、活性炭に臭化ナトリウムを添着して添着活性炭を得た。水溶液を噴霧した後、ポリ容器をよく振ってNaBrを活性炭に十分に添着させた。
<Production of impregnated activated carbon>
An aqueous solution was obtained by dissolving sodium bromide (NaBr) in water. The NaBr concentration in the aqueous solution was set to 41% by mass. After about 20 g of activated carbon was placed in a plastic container, the aqueous solution was sprayed onto the activated carbon with a sprayer. The spray amount of the aqueous solution to the activated carbon was set so that the impregnation ratio to the activated carbon was 3.5% by mass. Thus, the impregnated activated carbon was obtained by impregnating the activated carbon with sodium bromide. After the aqueous solution was sprayed, the plastic container was shaken well so that NaBr was sufficiently impregnated with the activated carbon.

<添着活性炭の評価>
添着後、添着活性炭を十分に乾燥させた。その後、上述の「活性炭の評価」と同じ方法で、BET比表面積及び水銀(Hg)の除去率(%)を測定した。また、臭化物分析(自動燃焼-イオンクロマトグラフ法)によって、活性炭に対するNaBrの添着割合を求めた。その結果は表1に示すとおりであった。
<Evaluation of impregnated activated carbon>
After impregnation, the impregnated activated carbon was sufficiently dried. After that, the BET specific surface area and the removal rate (%) of mercury (Hg 0 ) were measured by the same method as the above-mentioned "evaluation of activated carbon". Also, the impregnation ratio of NaBr to activated carbon was determined by bromide analysis (automatic combustion-ion chromatography method). The results were as shown in Table 1.

(比較例1)
炭材として亜炭(褐炭)を用いたこと以外は、実施例1と同様にして添着活性炭を製造した。この亜炭の炭素含有量は70質量%を大きく下回っていた。そして、実施例1と同じ方法でそれぞれの評価を行った。結果は表1に示すとおりであった。図4には、添着活性炭の成分分析の結果を示した。
(Comparative example 1)
An impregnated activated carbon was produced in the same manner as in Example 1, except that lignite (brown coal) was used as the carbon material. The carbon content of this lignite was well below 70% by mass. And each evaluation was performed by the same method as Example 1. The results were as shown in Table 1. FIG. 4 shows the result of component analysis of the impregnated activated carbon.

(比較例2)
炭材として市販の椰子殻炭を用いたこと以外は、実施例1と同様にして活性炭及び添着活性炭を製造した。そして、実施例1と同じ方法でそれぞれの評価を行った。結果は表1に示すとおりであった。
(Comparative example 2)
Activated carbon and impregnated activated carbon were produced in the same manner as in Example 1, except that commercially available coconut shell carbon was used as the carbon material. And each evaluation was performed by the same method as Example 1. The results were as shown in Table 1.

Figure 0007275343000002
Figure 0007275343000002

表1に示すとおり、実施例1の添着活性炭は、比表面積が十分に高いことから、水銀(Hg)以外の有害物質(ダイオキシン等)の吸着性能に優れる。また、水銀(Hg)の吸着量にも十分に優れることが確認された。一方、比較例1,2の添着活性炭の水銀(Hg)の除去率は実施例1よりも低かった。比較例1の添着活性炭は比表面積が小さいため、これが水銀(Hg)の吸着量が低いことの要因であると考えられる。このような添着活性炭は、水銀(Hg)以外の有害物質(ダイオキシン等)の吸着性能も低いと考えられる。比較例2の添着活性炭の比表面積は、実施例1の添着活性炭の比表面積よりも大きかった。それにもかかわらず、比較例2の添着活性炭の水銀(Hg)の除去率は実施例1よりも低かった。この原因を以下に検討した。 As shown in Table 1, since the impregnated activated carbon of Example 1 has a sufficiently high specific surface area, it has excellent adsorption performance for harmful substances (such as dioxin) other than mercury (Hg 0 ). It was also confirmed that the adsorption amount of mercury (Hg 0 ) was sufficiently excellent. On the other hand, the mercury (Hg 0 ) removal rate of the impregnated activated carbon of Comparative Examples 1 and 2 was lower than that of Example 1. Since the impregnated activated carbon of Comparative Example 1 has a small specific surface area, this is considered to be the cause of the low adsorption amount of mercury (Hg 0 ). Such impregnated activated carbon is considered to have low adsorption performance for harmful substances (such as dioxins) other than mercury (Hg 0 ). The specific surface area of the impregnated activated carbon of Comparative Example 2 was larger than that of the impregnated activated carbon of Example 1. Nevertheless, the mercury (Hg 0 ) removal rate of the impregnated activated carbon of Comparative Example 2 was lower than that of Example 1. The cause of this is discussed below.

実施例1、及び比較例1,2で用いた炭材(無煙炭、亜炭、バイオマス炭)の細孔径分布を測定し、細孔径(d)ごとの微分細孔容積[dVp/d(dp)]を求めた。測定には、比表面積/細孔分析測定装置(マイクロトラック・ベル株式会社製、装置名:BELSORP mini II)を用いた。結果は、表2及び図5に示すとおりであった。これらの結果から、細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値(A)と、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値(B)と、これらの比(B/A)を求めた。これらの結果は表2に示すとおりであった。表2中、B/Aの数値は無次元数である。 The pore size distribution of the carbonaceous materials (anthracite, lignite, biomass coal) used in Example 1 and Comparative Examples 1 and 2 was measured, and the differential pore volume [dVp/ d (dp) for each pore size (d p ) ] asked. For the measurement, a specific surface area/pore analysis measurement device (manufactured by Microtrack Bell Co., Ltd., device name: BELSORP mini II) was used. The results were as shown in Table 2 and FIG. From these results, the integrated value (A) of the differential pore volume [dVp / d (dp)] with a pore diameter of 1 nm or less, and the differential pore volume with a pore diameter of more than 1 nm and 2 nm or less [dVp / d (dp)] and their ratio (B/A) were obtained. These results were as shown in Table 2. In Table 2, the numerical value of B/A is a dimensionless number.

Figure 0007275343000003
Figure 0007275343000003

表2及び図5に示すとおり、比較例2の炭材は、実施例1の炭材よりも、細孔径が1nm以下の細孔の割合が大きいものの細孔径が1~2nmの細孔の割合が小さいことが確認された。このことから、椰子殻炭を用いて製造された活性炭の場合、添着したハロゲン化合物は活性炭の粒子の内部に十分に侵入できず、活性炭の表面に添着されているハロゲン化合物の割合が高くなっていると推察される。このため、水銀(Hg)を吸着できる細孔が限られており、水銀(Hg)の除去率(%)を測定では、早期に破過していた。一方、実施例1で用いた無煙炭と瀝青炭に由来する炭材の場合、細孔径が1nm以下の細孔と、細孔径が1~2nmの細孔をバランスよく含んでいる。これによって、ハロゲン化合物は活性炭の粒子の内部に十分に侵入することができるとともに、ロンドン分散力によって水銀(Hg)を吸着する細孔が十分に存在していると推察される。 As shown in Table 2 and FIG. 5, the carbonaceous material of Comparative Example 2 has a higher ratio of pores with a pore diameter of 1 nm or less than the carbonaceous material of Example 1, but the ratio of pores with a pore diameter of 1 to 2 nm. was confirmed to be small. For this reason, in the case of activated carbon produced using coconut shell coal, the impregnated halogen compound cannot sufficiently penetrate into the interior of the activated carbon particles, and the proportion of the halogen compound impregnated on the surface of the activated carbon increases. It is assumed that there are For this reason, the pores that can adsorb mercury (Hg 0 ) are limited, and in the measurement of the removal rate (%) of mercury (Hg 0 ), breakthrough occurs early. On the other hand, the carbonaceous material derived from anthracite and bituminous coal used in Example 1 contains pores with a pore diameter of 1 nm or less and pores with a pore diameter of 1 to 2 nm in a well-balanced manner. It is presumed that this allows the halogen compound to sufficiently penetrate into the inside of the particles of activated carbon, and that there are sufficient pores for adsorbing mercury (Hg 0 ) due to the London dispersion force.

次に、ハロゲン化合物の水溶液の濃度の影響を調べるため、実施例2~4を行った。 Next, Examples 2 to 4 were carried out in order to investigate the influence of the concentration of the aqueous solution of the halogen compound.

(実施例2~4)
水溶液中のNaBr濃度を表3に示すとおりとしたこと以外は、実施例1と同様にして添着活性炭を製造した。いずれも、活性炭に対するNaBrの添着割合が3.5質量%となるように水溶液の量を設定した。実施例1と同じ方法で、各実施例で得られた添着活性炭のNaBrの添着割合、及び水銀(Hg)の除去率(%)を測定した。結果は表3に示すとおりであった。なお、表3には比較のため実施例1の結果も併せて示した。
(Examples 2-4)
Impregnated activated carbon was produced in the same manner as in Example 1, except that the NaBr concentration in the aqueous solution was as shown in Table 3. In both cases, the amount of the aqueous solution was set so that the NaBr impregnation ratio with respect to the activated carbon was 3.5% by mass. By the same method as in Example 1, the NaBr impregnation ratio and mercury (Hg 0 ) removal rate (%) of the impregnated activated carbon obtained in each example were measured. The results were as shown in Table 3. Table 3 also shows the results of Example 1 for comparison.

Figure 0007275343000004
Figure 0007275343000004

実施例1~3の結果から、水溶液におけるNaBrの濃度が高い方が添着割合が水銀(Hg)の吸着量が大きくなることが確認された。これは、活性炭の細孔表面における水分子の吸着量が減ることと、NaBrが細孔から活性炭の粒子内に効率よく侵入することによるもの推察される。NaBrの常温(20℃)における溶解度は73.3g/100mLであり、この時のNaBr濃度は、42.3質量%である。実施例4では、20℃でNaBrの一部が溶解しなかったので、水溶液を約50℃に加熱して溶解させて噴霧した。ただし、実施例4の水銀(Hg)の吸着量は実施例1よりも低かった。これは、NaBrが活性炭に添着する際に析出・結晶化し、活性炭の細孔内に侵入し難くなったことが要因と推察される。実施例4では、NaBrの添着割合が、目標としていた3.5質量%を大きく超えていた。これは、成分分析の際に、NaBrが結晶化している部分をサンプリングしたことが要因と考えられる。 From the results of Examples 1 to 3, it was confirmed that the higher the concentration of NaBr in the aqueous solution, the greater the adsorption amount of mercury (Hg 0 ) at the impregnation ratio. This is presumed to be due to the fact that the amount of water molecules adsorbed on the surfaces of the pores of the activated carbon is reduced and that NaBr efficiently penetrates into the particles of the activated carbon through the pores. The solubility of NaBr at room temperature (20° C.) is 73.3 g/100 mL, and the NaBr concentration at this time is 42.3% by mass. In Example 4, since part of NaBr did not dissolve at 20°C, the aqueous solution was heated to about 50°C to dissolve and then sprayed. However, the adsorption amount of mercury (Hg 0 ) in Example 4 was lower than that in Example 1. The reason for this is presumed to be that NaBr precipitated and crystallized when it was impregnated with the activated carbon, making it difficult for NaBr to enter the pores of the activated carbon. In Example 4, the impregnation ratio of NaBr greatly exceeded the target of 3.5% by mass. The reason for this is considered to be that the portion where NaBr is crystallized was sampled during the component analysis.

次に、ハロゲン化合物の添着割合の影響を調べるため、実施例5,6を行った。 Next, Examples 5 and 6 were carried out in order to investigate the effect of the attachment ratio of the halogen compound.

(実施例5,6)
活性炭に噴霧するNaBrの量を変更して、活性炭に対するNaBrの添着量を変更したこと以外は、実施例3と同様にして添着活性炭を調整した。実施例5,6では、噴霧前の後の質量差と水溶液の濃度からNaBrの添着割合を算出した。
(Examples 5 and 6)
Impregnated activated carbon was prepared in the same manner as in Example 3, except that the amount of NaBr sprayed onto the activated carbon was changed to change the amount of NaBr impregnated on the activated carbon. In Examples 5 and 6, the impregnation ratio of NaBr was calculated from the difference in mass before and after spraying and the concentration of the aqueous solution.

実施例1と同じ方法で、実施例5,6で得られた添着活性炭の水銀(Hg)の除去率(%)を測定した。結果は表4に示すとおりであった。なお、表4には比較のため実施例3の結果も併せて示した。 By the same method as in Example 1, the removal rate (%) of mercury (Hg 0 ) from the impregnated activated carbon obtained in Examples 5 and 6 was measured. The results were as shown in Table 4. Table 4 also shows the results of Example 3 for comparison.

Figure 0007275343000005
Figure 0007275343000005

実施例3,5,6の結果から、NaBrの添着割合が高過ぎると、水銀(Hg)の吸着量が減少することが確認された。この要因としては、活性炭の細孔内にハロゲン元素が密集し過ぎると、水銀(Hg)が細孔内に侵入し難くなることが考えられる。また、水銀(Hg)の吸着を阻害するNaが増加したことも要因として考えられる。表4の結果から、活性炭に対するNaBrの比率(添着割合)は、1.5~5質量%程度が好ましいと考えられる。 From the results of Examples 3, 5, and 6, it was confirmed that when the impregnation ratio of NaBr is too high, the adsorption amount of mercury (Hg 0 ) decreases. A possible reason for this is that when the halogen element is too dense in the pores of the activated carbon, it becomes difficult for mercury (Hg 0 ) to enter the pores. Another factor is the increase in Na, which inhibits the adsorption of mercury (Hg 0 ). From the results in Table 4, it is considered that the ratio of NaBr to activated carbon (impregnated ratio) is preferably about 1.5 to 5% by mass.

次に、添着活性炭の粒径の影響を調べるため、実施例7~8、及び参考例9を行った。 Next, Examples 7 to 8 and Reference Example 9 were conducted in order to investigate the influence of the particle size of the impregnated activated carbon.

(実施例7,8)
噴霧するNaBrの量を変更して、活性炭に対するNaBrの添着割合を変更したこと以外は、実施例5,6と同様にして、実施例7,8の添着活性炭を調整した。実施例7,8では、噴霧前の後の質量差と水溶液の濃度からNaBrの添着割合を算出した。活性炭に対するNaBrの添着割合は、それぞれ、3.5質量%及び5.0質量%であった。これらの添着活性炭のBET比表面積はいずれも1100m/gであり、かさ比重はいずれも480kg/mであった。これらをペレット状に成形して、粒径が4mmの粒状の添着活性炭を得た。
(Examples 7 and 8)
Impregnated activated carbons of Examples 7 and 8 were prepared in the same manner as in Examples 5 and 6, except that the amount of NaBr to be sprayed was changed to change the impregnation ratio of NaBr to the activated carbon. In Examples 7 and 8, the impregnation ratio of NaBr was calculated from the difference in mass before and after spraying and the concentration of the aqueous solution. The impregnation ratio of NaBr to activated carbon was 3.5% by mass and 5.0% by mass, respectively. Each of these impregnated activated carbons had a BET specific surface area of 1100 m 2 /g and a bulk specific gravity of 480 kg/m 3 . These were molded into pellets to obtain granular impregnated activated carbon with a particle size of 4 mm.

このようにして得られた粒状の添着活性炭の水銀(Hg)の除去率を、実施例1と同様にして測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)における添着活性炭の充填高さと、カラムクロマト管への供給ガスにおける水銀濃度を、表5に示すとおりに変更して行った。結果は表5に示すとおりであった。 The mercury (Hg 0 ) removal rate of the granular impregnated activated carbon thus obtained was measured in the same manner as in Example 1. However, the measurement was performed by changing the filling height of the impregnated activated carbon in the column chromatography tube (inner diameter: 30 mm, length: 30 cm) and the mercury concentration in the gas supplied to the column chromatography tube as shown in Table 5. The results were as shown in Table 5.

Figure 0007275343000006
Figure 0007275343000006

ペレット状に成形した添着活性炭も、粉末状の添着活性炭と同様に水銀を十分に吸着できることが確認された。次に、添着する化合物の種類による影響を調査した。 It was confirmed that the impregnated activated carbon molded into pellets can sufficiently adsorb mercury as well as the powdered impregnated activated carbon. Next, the effect of the type of attached compound was investigated.

参考例9)
<添着活性炭の製造>
塩化ナトリウム(NaCl)を水に溶解させて水溶液を得た。水溶液中のNaCl濃度は25.3質量%とした。ポリ容器に、約20gの活性炭を入れた後、この活性炭に対して上記水溶液を噴霧器で噴霧した。活性炭に対するNaClの添着割合が4.4質量%となるように、活性炭に対する水溶液の噴霧量を設定した。活性炭に水溶液を噴霧した後、ポリ容器をよく振ってNaClを活性炭に十分に添着させた。このようにして、活性炭に塩化ナトリウムが添着された添着活性炭を得た。
( Reference example 9)
<Production of impregnated activated carbon>
An aqueous solution was obtained by dissolving sodium chloride (NaCl) in water. The NaCl concentration in the aqueous solution was set to 25.3% by mass. After about 20 g of activated carbon was placed in a plastic container, the aqueous solution was sprayed onto the activated carbon with a sprayer. The spray amount of the aqueous solution to the activated carbon was set so that the impregnation ratio of NaCl to the activated carbon was 4.4% by mass. After the aqueous solution was sprayed onto the activated carbon, the plastic container was shaken well to impregnate the activated carbon with NaCl. Thus, an impregnated activated carbon in which sodium chloride was impregnated on activated carbon was obtained.

<添着活性炭の評価>
添着活性炭を十分に乾燥させた後、実施例1と同様の方法で水銀(Hg)の除去率(%)を測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)への供給ガスにおける水銀濃度を、表6に示すとおりに変更して行った。結果は表6に示すとおりであった。実施例1の添着活性炭も、参考例9の添着活性炭と同じ条件で水銀(Hg)の除去率(%)を測定した。結果は表6に示すとおりであった。
<Evaluation of impregnated activated carbon>
After sufficiently drying the impregnated activated carbon, the removal rate (%) of mercury (Hg 0 ) was measured in the same manner as in Example 1. However, the measurement was performed by changing the mercury concentration in the gas supplied to the column chromatography tube (inner diameter: 30 mm, length: 30 cm) as shown in Table 6. The results were as shown in Table 6. For the impregnated activated carbon of Example 1, the removal rate (%) of mercury (Hg 0 ) was also measured under the same conditions as for the impregnated activated carbon of Reference Example 9. The results were as shown in Table 6.

Figure 0007275343000007
Figure 0007275343000007

表6に示すとおり、添着物がNaClでも水銀の吸着に十分に優れることが確認された。供給ガス中の水銀濃度が高くなると、NaClよりもNaBrの方がより優位となることが確認された。 As shown in Table 6, it was confirmed that even NaCl as the impregnated material was sufficiently excellent in the adsorption of mercury. It was determined that NaBr became more dominant than NaCl at higher mercury concentrations in the feed gas.

次に、NaBrの添着をリボンブレンダとノズルを備える製造設備を用いて行い、量産化の検討を行った。 Next, NaBr was impregnated using manufacturing equipment equipped with a ribbon blender and a nozzle, and mass production was studied.

参考例10)
<添着活性炭の製造>
図6(A)及び図6(B)に示すような製造設備の攪拌装置50(リボンブレンダ)に実施例1と同じ手順で作製した活性炭を500kg入れた。この活性炭を攪拌しながらノズル60Aから、実施例1と同じNaBrの水溶液を活性炭に20分間かけて噴霧した。液滴径は、300~600μmであった。4つのノズル60Aから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。
( Reference example 10)
<Production of impregnated activated carbon>
500 kg of activated carbon produced by the same procedure as in Example 1 was placed in a stirring device 50 (ribbon blender) of the manufacturing facility as shown in FIGS. 6(A) and 6(B). While stirring the activated carbon, the same NaBr aqueous solution as in Example 1 was sprayed onto the activated carbon from the nozzle 60A for 20 minutes. The droplet size was 300-600 μm. The total amount of the NaBr aqueous solution sprayed from the four nozzles 60A was set so that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass.

図6(B)は、図6(A)のVIb-VIb線で切断して、攪拌装置50の内部を上方から見たときの図である。この図6(B)には、攪拌装置50内の添着活性炭の堆積層11を平面視したときの、堆積層11の表面のうち各ノズル60Aからの噴霧液が直接落下するエリア64を示している。4つのエリア64の合計面積(噴霧面積)と、堆積層11の表面の面積全体に対する、エリア64の合計面積の比率(面積比率)を算出した。これらの結果は表7に示すとおりであった。このように、堆積層11の表面の一部に、ノズル60Aからの水溶液が直接落下するように水溶液を噴霧しながら攪拌羽根72で活性炭を攪拌した。このようにして、添着活性炭を製造した。 FIG. 6(B) is a view of the interior of the stirring device 50 viewed from above, cut along line VIb--VIb of FIG. 6(A). FIG. 6(B) shows an area 64 on the surface of the deposited layer 11 where the liquid sprayed from each nozzle 60A directly drops when the deposited layer 11 of the impregnated activated carbon in the stirring device 50 is viewed from above. there is The total area (spray area) of the four areas 64 and the ratio (area ratio) of the total area of the area 64 to the entire area of the surface of the deposition layer 11 were calculated. These results were as shown in Table 7. In this way, the activated carbon was stirred with the stirring blade 72 while spraying the aqueous solution from the nozzle 60</b>A so that the aqueous solution directly dropped onto a portion of the surface of the sediment layer 11 . Thus, the impregnated activated carbon was produced.

<添着活性炭の評価>
添着活性炭を十分に乾燥させた後、実施例1と同様の方法で水銀(Hg)の除去率(%)を測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)への供給ガスにおける水銀濃度を、表8に示すとおりに変更して行った。結果は表8に示すとおりであった。なお、実施例1の添着活性炭も、参考例10の添着活性炭と同じ条件で水銀(Hg)の除去率(%)を測定した。結果は表8に示すとおりであった。
<Evaluation of impregnated activated carbon>
After sufficiently drying the impregnated activated carbon, the removal rate (%) of mercury (Hg 0 ) was measured in the same manner as in Example 1. However, the measurement was performed by changing the mercury concentration in the gas supplied to the column chromatography tube (inner diameter: 30 mm, length: 30 cm) as shown in Table 8. The results were as shown in Table 8. The impregnated activated carbon of Example 1 was also measured for the removal rate (%) of mercury (Hg 0 ) under the same conditions as the impregnated activated carbon of Reference Example 10. The results were as shown in Table 8.

(実施例11)
図7(A)及び図7(B)に示すような攪拌装置50(リボンブレンダ)及びノズル60Bを備える製造設備を用いたこと以外は、参考例10と同様にして添着活性炭を製造し、評価を行った。この製造設備のノズル60Bは、ノズル60Aよりも広角に噴霧する形式のものであったため、ノズルの本数は2本とした。液滴径は、100~300μmであった。
(Example 11)
Impregnated activated carbon was produced and evaluated in the same manner as in Reference Example 10, except that a production facility equipped with a stirring device 50 (ribbon blender) and a nozzle 60B as shown in FIGS. 7(A) and 7(B) was used. did Since the nozzle 60B of this manufacturing facility was of a type that sprayed at a wider angle than the nozzle 60A, the number of nozzles was two. The droplet size was 100-300 μm.

図7(B)は、図7(A)のVIIb-VIIb線で切断して、攪拌装置50の内部を上方から見たときの図である。この図7(B)には、攪拌装置50内の添着活性炭の堆積層11を平面視したときの、堆積層11の表面と、当該表面のうち各ノズル60Bからの噴霧液が直接落下するエリア64を示している。2つのエリア64の合計面積(噴霧面積)と、堆積層11の表面の面積全体に対する、エリア64の合計面積の比率(面積比率)を算出した。これらの結果は表7に示すとおりであった。2つのノズル60Bから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。水銀(Hg)の除去率(%)を測定結果は表8に示すとおりであった。 FIG. 7B is a view of the interior of the stirring device 50 viewed from above, cut along line VIIb-VIIb of FIG. 7A. FIG. 7(B) shows the surface of the deposited layer 11 when the deposited layer 11 of the impregnated activated carbon in the stirring device 50 is viewed from above, and the area of the surface where the spray liquid from each nozzle 60B directly falls. 64 is shown. The total area (spray area) of the two areas 64 and the ratio (area ratio) of the total area of the area 64 to the entire area of the surface of the deposition layer 11 were calculated. These results were as shown in Table 7. The total amount of the NaBr aqueous solution sprayed from the two nozzles 60B was set so that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass. Table 8 shows the measurement results of the removal rate (%) of mercury (Hg 0 ).

(実施例12)
図8(A)及び図8(B)に示すような攪拌装置50(リボンブレンダ)及びノズル60Bを備える製造設備を用いたこと以外は、実施例11と同様にして添着活性炭を製造し、評価を行った。この攪拌装置50の上面には、実施例11で用いたノズル60Bを4本設置した。したがって、液滴径は、100~300μmであった。
(Example 12)
Impregnated activated carbon was produced and evaluated in the same manner as in Example 11, except that a production facility equipped with a stirring device 50 (ribbon blender) and a nozzle 60B as shown in FIGS. 8(A) and 8(B) was used. did Four nozzles 60B used in Example 11 were installed on the upper surface of this stirring device 50 . Therefore, the droplet size was 100-300 μm.

図8(B)は、図8(A)のVIIIb-VIIIb線で切断して、攪拌装置50の内部を上方から見たときの図である。この図8(B)には、攪拌装置50内の添着活性炭の堆積層11を平面視したときの、堆積層11の表面と、当該表面のうち各ノズル60Bからの噴霧液が直接落下するエリア64とを示している。4つのエリア64の合計面積(噴霧面積)と、堆積層11の表面の面積全体に対する、エリア64の合計面積の比率(面積比率)を算出した。なお、エリア64同士が一部重なっているが、重なり部分の補正は特に行わず、各エリア64の面積を4倍して、合計面積(噴霧面積)を算出した。これらの結果は表7に示すとおりであった。4つのノズル60Bから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。水銀(Hg)の除去率(%)を測定結果は表8に示すとおりであった。 FIG. 8(B) is a view of the interior of the stirring device 50 viewed from above, cut along line VIIIb-VIIIb of FIG. 8(A). FIG. 8(B) shows the surface of the deposited layer 11 when the deposited layer 11 of the impregnated activated carbon in the stirring device 50 is viewed from above, and the area of the surface where the spray liquid from each nozzle 60B directly falls. 64 are shown. The total area (spray area) of the four areas 64 and the ratio (area ratio) of the total area of the area 64 to the entire area of the surface of the deposition layer 11 were calculated. Although the areas 64 partially overlap each other, the area of each area 64 was multiplied by four to calculate the total area (spray area) without correcting the overlapping portion. These results were as shown in Table 7. The total amount of the NaBr aqueous solution sprayed from the four nozzles 60B was set so that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass. Table 8 shows the measurement results of the removal rate (%) of mercury (Hg 0 ).

Figure 0007275343000008
Figure 0007275343000008

Figure 0007275343000009
Figure 0007275343000009

表7及び表8に示すとおり、噴霧面積を大きくすることによって、水銀吸着性能に優れる添着活性炭が得られることが確認された。これは、吸着に寄与するハロゲン元素の分布の均一性が向上するためと考えられる。 As shown in Tables 7 and 8, it was confirmed that an impregnated activated carbon having excellent mercury adsorption performance can be obtained by increasing the spray area. It is considered that this is because the uniformity of the distribution of halogen elements that contribute to adsorption is improved.

水銀(Hg)以外の有害物質の吸着性能を維持しつつ、水銀(Hg)の吸着性能に十分に優れる添着活性炭及びその製造方法が提供される。水銀(Hg)の吸着性能に十分に優れる添着活性炭の製造設備が提供される。 Provided are an impregnated activated carbon having sufficiently excellent adsorption performance for mercury (Hg 0 ) while maintaining adsorption performance for harmful substances other than mercury (Hg 0 ), and a method for producing the same. Provided is a production facility for impregnated activated carbon having sufficiently excellent mercury (Hg 0 ) adsorption performance.

10,110,111…活性炭、11…堆積層、12…添着活性炭、20…ハロゲン化合物、22…領域、40…細孔、40A,40B…ミクロ孔、50…攪拌装置、52…導入部、54…導出部、60,60A,60B…ノズル、62…ポンプ、64…エリア、70…モータ、72…攪拌羽根、120…ハロゲン化合物、122…領域、140…細孔。 10, 110, 111 Activated carbon 11 Sediment layer 12 Impregnated activated carbon 20 Halogen compound 22 Region 40 Pore 40A, 40B Micropore 50 Stirrer 52 Introduction part 54 ... Derivation part, 60, 60A, 60B ... Nozzle, 62 ... Pump, 64 ... Area, 70 ... Motor, 72 ... Stirring blade, 120 ... Halogen compound, 122 ... Region, 140 ... Pore.

Claims (10)

炭材を賦活処理して得られた活性炭に、臭化ナトリウムの水溶液を噴霧して、前記活性炭に前記臭化ナトリウムを添着させる工程を有し、
前記炭材は石炭を含んでおり、前記活性炭の炭素含有量が70質量%以上であり、前記活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA[cm/g/nm]、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をB[cm/g/nm]としたとき、下記式(1)及び(2)を満たす、ガス中の水銀吸着用添着活性炭の製造方法。
3≦A≦5 (1)
0.2≦B/A≦0.5 (2)
A step of spraying an aqueous solution of sodium bromide onto activated carbon obtained by activating a carbonaceous material to impregnate the activated carbon with the sodium bromide;
The carbon material contains coal, the carbon content of the activated carbon is 70% by mass or more, and the integrated value of the differential pore volume [dVp/d (dp)] at which the pore diameter of the activated carbon is 1 nm or less is calculated. When A [cm 3 /g/nm] and the integrated value of the differential pore volume [dVp/d(dp)] with a pore diameter of more than 1 nm and 2 nm or less being B [cm 3 /g/nm], the following A method for producing impregnated activated carbon for adsorbing mercury in gas, which satisfies formulas (1) and (2).
3≤A≤5 (1)
0.2≤B/A≤0.5 (2)
前記炭材の炭素含有量が70質量%以上である、請求項1に記載の添着活性炭の製造方法。 2. The method for producing impregnated activated carbon according to claim 1, wherein the carbon content of the carbonaceous material is 70% by mass or more. 前記炭材は、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含む、請求項1又は2に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to claim 1 or 2, wherein the carbonaceous material includes at least one selected from the group consisting of bituminous coal and anthracite. 前記活性炭に対する前記臭化ナトリウムの添着割合が1.5~5質量%である、請求項1~3のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 3, wherein an impregnated ratio of said sodium bromide to said activated carbon is 1.5 to 5% by mass. 前記添着活性炭の比表面積が600~1100m/gである、請求項1~4のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 4, wherein the impregnated activated carbon has a specific surface area of 600 to 1100 m 2 /g. 前記水溶液における前記臭化ナトリウムの濃度が、40~120g/100mLである、請求項1~5のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 5, wherein the aqueous solution has a concentration of sodium bromide of 40 to 120 g/100 mL. 前記水溶液における前記臭化ナトリウムの濃度が30~42質量%である、請求項1~6のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 6, wherein the sodium bromide concentration in the aqueous solution is 30 to 42% by mass. 前記活性炭を攪拌する攪拌装置と前記水溶液を噴霧するノズルとを用い、前記攪拌装置で前記活性炭を攪拌しながら、前記ノズルから前記水溶液を前記活性炭に噴霧して、前記添着活性炭を得る、請求項1~7のいずれか一項に記載の添着活性炭の製造方法。 The impregnated activated carbon is obtained by using a stirring device for stirring the activated carbon and a nozzle for spraying the aqueous solution, and spraying the aqueous solution from the nozzle onto the activated carbon while stirring the activated carbon with the stirring device. 8. A method for producing impregnated activated carbon according to any one of 1 to 7. 活性炭と前記活性炭に添着された臭化ナトリウムとを含み、
前記活性炭は、石炭の賦活処理物であって炭素含有量が70質量%以上であり、
前記活性炭に対する、前記臭化ナトリウムの比率が1.5~5質量%であり、前記活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA[cm/g/nm]、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をB[cm/g/nm]としたとき、下記式(1)及び(2)を満たす、ガス中の水銀吸着用添着活性炭。
3≦A≦5 (1)
0.2≦B/A≦0.5 (2)
Comprising activated carbon and sodium bromide impregnated on the activated carbon,
The activated carbon is an activated coal product having a carbon content of 70% by mass or more,
The ratio of sodium bromide to the activated carbon is 1.5 to 5% by mass, and the integrated value of the differential pore volume [dVp/d (dp)] when the pore diameter in the activated carbon is 1 nm or less is A [cm 3 /g/nm], and the integrated value of the differential pore volume [dVp/d(dp)] with a pore diameter of more than 1 nm and 2 nm or less is B [cm 3 /g/nm], the following formula (1 ) and (2), an impregnated activated carbon for adsorbing mercury in gas.
3≤A≤5 (1)
0.2≤B/A≤0.5 (2)
石炭由来の活性炭の堆積層を攪拌する攪拌装置と、
炭素含有量が70質量%以上である前記活性炭を前記攪拌装置に導入する導入部と、
前記堆積層の上方から前記堆積層に向けて濃度が30~42質量%の臭化ナトリウムの水溶液を、前記攪拌装置内の前記堆積層を平面視したときに、前記堆積層の表面の面積全体に対する、前記水溶液の噴霧面積の比率が50~120%となるように、噴霧するノズルと、
前記臭化ナトリウムが添着された添着活性炭を前記攪拌装置から導出する導出部と、を備える、添着活性炭の製造設備。
a stirring device for stirring a sediment layer of coal-derived activated carbon;
an introduction section for introducing the activated carbon having a carbon content of 70% by mass or more into the stirring device;
An aqueous solution of sodium bromide with a concentration of 30 to 42% by mass is poured from above the sediment layer toward the sediment layer, and when the sediment layer in the stirring device is viewed from above, the entire surface area of the sediment layer A nozzle that sprays so that the ratio of the spray area of the aqueous solution is 50 to 120%,
an impregnated activated carbon manufacturing facility, comprising: a lead-out unit for leading out the impregnated activated carbon impregnated with sodium bromide from the stirring device.
JP2022046345A 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon Active JP7275343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022046345A JP7275343B1 (en) 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022046345A JP7275343B1 (en) 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon

Publications (2)

Publication Number Publication Date
JP7275343B1 true JP7275343B1 (en) 2023-05-17
JP2023140485A JP2023140485A (en) 2023-10-05

Family

ID=86332444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046345A Active JP7275343B1 (en) 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon

Country Status (1)

Country Link
JP (1) JP7275343B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102639A (en) 2000-09-28 2002-04-09 Nikko Plant:Kk Treatment method and apparatus for lower aldehyde
JP2005349364A (en) 2004-06-14 2005-12-22 Japan Enviro Chemicals Ltd Activated carbon for removing mercury or mercury compound
JP2008238163A (en) 2007-03-01 2008-10-09 Japan Enviro Chemicals Ltd Removal method of mercury vapor in gas
JP2012213549A (en) 2011-04-01 2012-11-08 Kao Corp Manufacturing method of active carbon impregnated with deodorant
WO2013011898A1 (en) 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting adsorbent particles, cigarette filter, filtered cigarette, and method for manufacturing fragrance-supporting adsorbent particles
WO2021055423A1 (en) 2019-09-16 2021-03-25 Albemarle Corporation Processes for reducing environmental availability of environmental pollutants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910343A (en) * 1982-07-08 1984-01-19 Takeda Chem Ind Ltd Adsorbent for mercury vapor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102639A (en) 2000-09-28 2002-04-09 Nikko Plant:Kk Treatment method and apparatus for lower aldehyde
JP2005349364A (en) 2004-06-14 2005-12-22 Japan Enviro Chemicals Ltd Activated carbon for removing mercury or mercury compound
JP2008238163A (en) 2007-03-01 2008-10-09 Japan Enviro Chemicals Ltd Removal method of mercury vapor in gas
JP2012213549A (en) 2011-04-01 2012-11-08 Kao Corp Manufacturing method of active carbon impregnated with deodorant
WO2013011898A1 (en) 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting adsorbent particles, cigarette filter, filtered cigarette, and method for manufacturing fragrance-supporting adsorbent particles
WO2021055423A1 (en) 2019-09-16 2021-03-25 Albemarle Corporation Processes for reducing environmental availability of environmental pollutants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
独立行政法人 石油天然ガス・金属鉱物資源機構 石炭開発部,石炭の分類,2020年03月,URL:https://coal.jogmec.go.jp/content/300366634.pdf,[online][令和4年6月7日検索]

Also Published As

Publication number Publication date
JP2023140485A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
Giannakoudakis et al. Smart textiles of MOF/gC 3 N 4 nanospheres for the rapid detection/detoxification of chemical warfare agents
US8834606B2 (en) Enhanced adsorbents and methods for mercury removal
JP5094468B2 (en) Method for removing mercury vapor from gas
US20110136656A1 (en) Deodorizing catalyst, deodorizing method using the same, and method for regenerating the catalyst
KR20080081274A (en) Porous organo-metallic skeleton material containing an additional polymer
KR101938059B1 (en) Surface modified metal organic franeworks for removal of toxic gases
US20140004262A1 (en) Methods and apparatuses for dilute phase impregnation of a milled sorbent with a chemical compound in an aqueous solution
JP7275343B1 (en) Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon
Peterson et al. Bent‐But‐Not‐Broken: Reactive Metal‐Organic Framework Composites from Elastomeric Phase‐Inverted Polymers
CN1232344C (en) Sublimation of solid organic compounds onto substrate surfaces in the presence of a fluid impregnant
Li et al. Construction of a superhydrophobic microenvironment via polystyrene coating: an unexpected way to stabilize Cu I against oxidation
Piani et al. Trihalomethanes (THMs) removal from aqueous solutions using environmental friendly and effective adsorbent onto Mespilus germanica modified by Fe2 (MoO4) 3 nanocomposite on equilibrium, thermodynamic, and kinetics
AU2002244169A1 (en) Sublimation of solid organic compounds onto substrate surfaces in the presence of a fluid impregnant
JP3204273B2 (en) Oxygen absorber
JP3252866B2 (en) Oxygen absorber
JP2003190783A (en) Adsorbent for solvent vapor and method for preparing the same
JP2000233916A (en) Spherical-granular active carbon and its production
JP2000107274A (en) Deodorant and its production
JP2017192429A (en) Catalyst filter, deodorization device and air cleaning device
JP6879445B2 (en) Oxygen scavenger composition
JPH07116510A (en) Adsorbent and porous adsorbing material
Guo et al. Hydrophobic modification of walnut shell biomass-derived porous carbon for the adsorption of VOCs at high humidity
JP3029764B2 (en) Deodorant
JP4562838B2 (en) Gel deodorant
CN117693514A (en) Organic compound adsorbent and gas blower including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150