JP2023140485A - Loaded activated carbon and method for producing the same, and production equipment for loaded activated carbon - Google Patents

Loaded activated carbon and method for producing the same, and production equipment for loaded activated carbon Download PDF

Info

Publication number
JP2023140485A
JP2023140485A JP2022046345A JP2022046345A JP2023140485A JP 2023140485 A JP2023140485 A JP 2023140485A JP 2022046345 A JP2022046345 A JP 2022046345A JP 2022046345 A JP2022046345 A JP 2022046345A JP 2023140485 A JP2023140485 A JP 2023140485A
Authority
JP
Japan
Prior art keywords
activated carbon
impregnated
aqueous solution
carbon
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022046345A
Other languages
Japanese (ja)
Other versions
JP7275343B1 (en
Inventor
亮 矢野
Akira Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2022046345A priority Critical patent/JP7275343B1/en
Application granted granted Critical
Publication of JP7275343B1 publication Critical patent/JP7275343B1/en
Publication of JP2023140485A publication Critical patent/JP2023140485A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a method for producing loaded activated carbon with sufficiently excellent mercury (Hg0) adsorptivity.SOLUTION: A method for producing loaded activated carbon includes the step for spraying activated carbon 10, prepared by activating carbon material, with an aqueous solution of a diatomic halogen compound 20, to load the activated carbon 10 with the halogen compound 20. The carbon material includes coal, and the activated carbon 10 has a carbon content of 70 mass% or more.SELECTED DRAWING: Figure 1

Description

本開示は、添着活性炭及びその製造方法、並びに添着活性炭の製造設備に関する。 The present disclosure relates to impregnated activated carbon, a method for manufacturing the same, and equipment for manufacturing impregnated activated carbon.

種々の設備で発生する排ガスには、水銀及びダイオキシン等の有害成分が含まれる場合がある。このような有害成分の吸着材として活性炭が用いられる。通常の活性炭では、100℃を超える高温中では水銀(Hg)を殆ど吸着できないため、添着活性炭を用いる必要がある。添着活性炭としては、ハロゲン化合物、金属化合物及び硫黄等を添着したものが知られている(例えば、特許文献1,2参照)。 Exhaust gases generated by various equipment may contain harmful components such as mercury and dioxins. Activated carbon is used as an adsorbent for such harmful components. Since ordinary activated carbon can hardly adsorb mercury (Hg 0 ) at high temperatures exceeding 100° C., it is necessary to use impregnated activated carbon. As impregnated activated carbon, those impregnated with halogen compounds, metal compounds, sulfur, etc. are known (see, for example, Patent Documents 1 and 2).

特開2002-102653号公報Japanese Patent Application Publication No. 2002-102653 特開2020-199425号公報JP2020-199425A

水銀(Hg)の吸着力を高めるため、活性炭に添着される化合物としては種々のものが検討されている。本開示は、水銀(Hg)の吸着性能に十分に優れる添着活性炭及びその製造方法を提供する。また、水銀(Hg)の吸着性能に十分に優れる添着活性炭の製造設備を提供する。 In order to increase the adsorption power of mercury (Hg 0 ), various compounds have been studied as compounds to be impregnated with activated carbon. The present disclosure provides impregnated activated carbon that has sufficiently excellent mercury (Hg 0 ) adsorption performance and a method for producing the same. Furthermore, the present invention provides equipment for producing impregnated activated carbon that has sufficiently excellent adsorption performance for mercury (Hg 0 ).

本開示は、一つの側面において、炭材を賦活処理して得られた活性炭に、二原子分子のハロゲン化合物の水溶液を噴霧して、活性炭にハロゲン化合物を添着させる工程を有し、炭材は石炭を含んでおり、活性炭の炭素含有量が70質量%以上である、添着活性炭の製造方法を提供する。 In one aspect, the present disclosure includes a step of impregnating the activated carbon with the halogen compound by spraying an aqueous solution of a diatomic halogen compound onto the activated carbon obtained by activating the carbon material. Provided is a method for producing impregnated activated carbon that contains coal and has a carbon content of 70% by mass or more.

上記製造方法では、活性炭に添着する化合物として二原子分子のハロゲン化合物を用いている。このような二原子分子のハロゲン化合物は、分子サイズが小さいため、活性炭のミクロ孔内に侵入しやすい。ここで、活性炭は、石炭由来であり且つ炭素含有量が高いため、十分に小さいミクロ孔(細孔径:1nm以下)を有している。このため、水銀(Hg)以外の有害物質を十分に吸着することができる。また、上記活性炭は、十分に小さいミクロ孔とともに、大きめのミクロ孔(細孔径:1~2nm)も有している。このため、水溶液中の上記ハロゲン化合物が大きめのミクロ孔を通って円滑に侵入し、活性炭の粒子の内部に保持される。ハロゲン元素が活性炭の粒子の表面に保持されると、ロンドン分散力(誘起双極作用)を十分に発揮できないが、上記製造方法では、ハロゲン元素が活性炭の内部に保持される。このため、ハロゲン元素によるロンドン分散力を十分に発揮することができる。したがって、上記製造方法で得られる水銀(Hg)の吸着性能に十分に優れる。 In the above manufacturing method, a diatomic halogen compound is used as a compound attached to activated carbon. Since such diatomic halogen compounds have small molecular sizes, they easily penetrate into the micropores of activated carbon. Here, since activated carbon is derived from coal and has a high carbon content, it has sufficiently small micropores (pore diameter: 1 nm or less). Therefore, harmful substances other than mercury (Hg 0 ) can be sufficiently adsorbed. Furthermore, the activated carbon has sufficiently small micropores as well as larger micropores (pore diameter: 1 to 2 nm). Therefore, the halogen compound in the aqueous solution smoothly enters through the larger micropores and is retained inside the activated carbon particles. If the halogen element is retained on the surface of the activated carbon particles, the London dispersion force (induced dipole effect) cannot be fully exerted, but in the above production method, the halogen element is retained inside the activated carbon. Therefore, the London dispersion force of the halogen element can be fully exhibited. Therefore, the mercury (Hg 0 ) adsorption performance obtained by the above production method is sufficiently excellent.

上記製造方法において、炭材の炭素含有量は70質量%以上であってよい。このような炭材は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような炭材を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 In the above manufacturing method, the carbon content of the carbonaceous material may be 70% by mass or more. Such a carbon material has both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm) at an appropriate level. Therefore, the impregnated activated carbon obtained using such a carbon material can achieve both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at a sufficiently high level. .

上記製造方法において、炭材は、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含んでよい。このような炭材は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような炭材を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 In the above manufacturing method, the carbonaceous material may include at least one selected from the group consisting of bituminous coal and anthracite coal. Such a carbon material has both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm) at an appropriate level. Therefore, the impregnated activated carbon obtained using such a carbon material can achieve both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at a sufficiently high level. .

上記製造方法では、活性炭に対するハロゲン化合物の添着割合が1.5~5質量%であってよい。このような添着活性炭は、水銀(Hg)の吸着性能に一層優れる。 In the above production method, the impregnation ratio of the halogen compound to the activated carbon may be 1.5 to 5% by mass. Such impregnated activated carbon has even better adsorption performance for mercury (Hg 0 ).

上記製造方法で製造する添着活性炭の比表面積は600~1100m/gであってよい。このような添着活性炭は、水銀(Hg)以外の有害物質の吸着性能にも十分に優れる。 The impregnated activated carbon produced by the above production method may have a specific surface area of 600 to 1100 m 2 /g. Such impregnated activated carbon has sufficient adsorption performance for harmful substances other than mercury (Hg 0 ).

上記製造方法の活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をBとしたとき、下記式(1)及び(2)を満たしてよい。
A≧3cm/g/nm (1)
B/A≧0.2 (2)
The integrated value of the differential pore volume [dVp/d(dp)] in which the pore diameter is 1 nm or less in the activated carbon produced by the above production method is A, and the differential pore volume [dVp/d(dp)] in which the pore diameter is greater than 1 nm and 2 nm or less is dp)], the following equations (1) and (2) may be satisfied.
A≧ 3cm3 /g/nm (1)
B/A≧0.2 (2)

このような活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)を、十分に良好なバランスで有する。このため、水銀(Hg)以外の有害物質の吸着性能を十分に高いレベルに維持できるとともに、ハロゲン元素によるロンドン分散力が十分に発揮され、水銀(Hg)の吸着性能を十分に高くすることができる。 Such activated carbon has sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm) in a sufficiently good balance. Therefore, the adsorption performance of harmful substances other than mercury (Hg 0 ) can be maintained at a sufficiently high level, and the London dispersion power of the halogen element is fully exerted, making the adsorption performance of mercury (Hg 0 ) sufficiently high. be able to.

水溶液におけるハロゲン化合物の濃度は、40~120g/100mLであってよい。このような水溶液は、適度な濃度を有することから、水溶液中のハロゲン化合物を、活性炭のミクロ孔の内部に適度に分散させて添着することができる。このため、十分に高い水銀(Hg)の吸着性能を有する添着活性炭を安定的に製造することができる。 The concentration of the halogen compound in the aqueous solution may be between 40 and 120 g/100 mL. Since such an aqueous solution has an appropriate concentration, the halogen compound in the aqueous solution can be appropriately dispersed and impregnated inside the micropores of the activated carbon. Therefore, impregnated activated carbon having sufficiently high mercury (Hg 0 ) adsorption performance can be stably produced.

上記ハロゲン化合物が臭化ナトリウムを含有し、上記水溶液における臭化ナトリウムの濃度が30~42質量%であってよい。このような水溶液は、常温においても臭化ナトリウムが析出せず安定的に溶解することができる。このような水溶液を用いれば、臭素を活性炭のミクロ孔の内部に適度に分散させて添着させることができる。このような添着活性炭は、一層高い水銀(Hg)の吸着性能を有する。 The halogen compound may contain sodium bromide, and the concentration of sodium bromide in the aqueous solution may be 30 to 42% by mass. In such an aqueous solution, sodium bromide does not precipitate and can be stably dissolved even at room temperature. By using such an aqueous solution, bromine can be appropriately dispersed and impregnated inside the micropores of activated carbon. Such impregnated activated carbon has higher mercury (Hg 0 ) adsorption performance.

上記製造方法では、活性炭を攪拌する攪拌装置と上記水溶液を噴霧するノズルとを用い、攪拌装置で活性炭を攪拌しながら、ノズルから上記水溶液を活性炭に噴霧して、添着活性炭を得てもよい。これによって、ハロゲン化合物が高い均一性で活性炭に添着する。したがって、水銀(Hg)の吸着性能に十分に優れる添着活性炭を簡便に量産することができる。 In the above manufacturing method, using a stirring device that stirs the activated carbon and a nozzle that sprays the aqueous solution, the aqueous solution may be sprayed onto the activated carbon from the nozzle while stirring the activated carbon with the stirring device to obtain impregnated activated carbon. As a result, the halogen compound is impregnated onto the activated carbon with high uniformity. Therefore, impregnated activated carbon having sufficiently excellent adsorption performance for mercury (Hg 0 ) can be easily mass-produced.

本開示は、一つの側面において、活性炭と当該活性炭に添着された臭化ナトリウムとを含み、活性炭は、石炭の賦活処理物であって炭素含有量が70質量%以上であり、活性炭に対する、臭化ナトリウムの比率が1.5~5質量%である、添着活性炭を提供する。 In one aspect, the present disclosure includes activated carbon and sodium bromide impregnated on the activated carbon, the activated carbon is an activated product of coal and has a carbon content of 70% by mass or more, and the activated carbon has an odor. The impregnated activated carbon has a sodium content of 1.5 to 5% by weight.

このような添着活性炭は、石炭の賦活処理物であって炭素含有量が70質量%以上の活性炭を含む。このような活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、水銀(Hg)以外の有害物質の吸着性能を維持することができる。また、活性炭の内部に臭素を安定的に保持することができる。このため、十分にロンドン分散力が発揮され、水銀(Hg)の吸着性能を十分に高くすることができる。 Such impregnated activated carbon is an activated product of coal and contains activated carbon having a carbon content of 70% by mass or more. Such activated carbon has a suitable amount of both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm). Therefore, the adsorption performance for harmful substances other than mercury (Hg 0 ) can be maintained. Moreover, bromine can be stably retained inside the activated carbon. Therefore, the London dispersion force is fully exhibited, and the mercury (Hg 0 ) adsorption performance can be sufficiently increased.

本開示は、一つの側面において、石炭由来の活性炭の堆積層を攪拌する攪拌装置と、炭素含有量が70質量%以上である活性炭を攪拌装置に導入する導入部と、堆積層の上方から堆積層に向けて二原子分子のハロゲン化合物の水溶液を噴霧するノズルと、ハロゲン化合物が添着された添着活性炭を攪拌装置から導出する導出部と、を備える、添着活性炭の製造設備を提供する。 In one aspect, the present disclosure includes a stirring device that stirs a deposited layer of activated carbon derived from coal, an introduction part that introduces activated carbon having a carbon content of 70% by mass or more into the stirring device, and a carbon deposited from above the deposited layer. Provided is a production facility for impregnated activated carbon, which includes a nozzle that sprays an aqueous solution of a diatomic halogen compound toward a layer, and a delivery section that leads out the impregnated activated carbon impregnated with the halogen compound from a stirring device.

上記製造設備では、石炭由来で炭素含有量が70質量%以上である活性炭と二原子分子のハロゲン化合物を用いている。二原子分子のハロゲン化合物は、分子サイズが小さいため、活性炭のミクロ孔内に侵入しやすい。活性炭は、石炭由来であり且つ炭素含有量が高いため、十分に小さいミクロ孔(細孔径:1nm以下)を有している。このため、水銀(Hg)以外の有害物質を十分に吸着することができる。また、上記活性炭は、十分に小さいミクロ孔とともに、大きめのミクロ孔(細孔径:1~2nm)も有している。このため、ノズルから噴霧された水溶液中の上記ハロゲン化合物が大きめのミクロ孔を通って円滑に侵入し、活性炭の粒子の内部に保持される。ハロゲン元素が活性炭の粒子の表面に保持されると、ロンドン分散力(誘起双極作用)を十分に発揮できないが、上記製造設備では、ハロゲン元素が活性炭の内部に保持された添着活性炭が導出部から導出される。このような添着活性炭は、ハロゲン元素によるロンドン分散力を十分に発揮することができる。したがって、上記製造設備では、水銀(Hg)の吸着性能に十分に優れる添着活性炭を製造することができる。 The above manufacturing equipment uses activated carbon derived from coal and having a carbon content of 70% by mass or more and a diatomic halogen compound. Since the diatomic molecule halogen compound has a small molecular size, it easily penetrates into the micropores of activated carbon. Since activated carbon is derived from coal and has a high carbon content, it has sufficiently small micropores (pore diameter: 1 nm or less). Therefore, harmful substances other than mercury (Hg 0 ) can be sufficiently adsorbed. Furthermore, the activated carbon has sufficiently small micropores as well as larger micropores (pore diameter: 1 to 2 nm). Therefore, the halogen compound in the aqueous solution sprayed from the nozzle smoothly enters through the larger micropores and is retained inside the activated carbon particles. If the halogen element is retained on the surface of the activated carbon particles, the London dispersion force (induced dipole effect) cannot be fully exerted. However, in the above manufacturing equipment, the impregnated activated carbon with the halogen element retained inside the activated carbon is released from the lead-out section. derived. Such impregnated activated carbon can fully exhibit the London dispersion force due to the halogen element. Therefore, the above production equipment can produce impregnated activated carbon that has sufficiently excellent adsorption performance for mercury (Hg 0 ).

上記攪拌装置内の堆積層を平面視したときに、堆積層の表面の面積全体に対する、ノズルからの上記水溶液の噴霧面積の比率が40~120%となるように、ノズルから上記水溶液を噴霧してよい。これによって、活性炭に高い均一性でハロゲン化合物を添着することができる。 The aqueous solution is sprayed from the nozzle so that when the deposited layer in the stirring device is viewed from above, the ratio of the spray area of the aqueous solution from the nozzle to the entire surface area of the deposited layer is 40 to 120%. It's fine. This allows the halogen compound to be impregnated onto the activated carbon with high uniformity.

水銀(Hg)の吸着性能に十分に優れる添着活性炭及びその製造方法を提供することができる。水銀(Hg)の吸着性能に十分に優れる添着活性炭の製造設備を提供することができる。 It is possible to provide impregnated activated carbon that has sufficiently excellent adsorption performance for mercury (Hg 0 ) and a method for producing the same. It is possible to provide production equipment for impregnated activated carbon that has sufficiently excellent adsorption performance for mercury (Hg 0 ).

添着活性炭の表面近傍における断面の一例を模式的に示す図である。FIG. 3 is a diagram schematically showing an example of a cross section near the surface of impregnated activated carbon. 添着活性炭の製造方法に用いる製造装置の一例を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のIIb-IIb線で切断したときの内部を上方から見たときの図である。It is a figure showing an example of the manufacturing device used for the manufacturing method of impregnated activated carbon. (A) is a diagram when the device is viewed from the side, and (B) is a diagram when the interior is viewed from above when cut along line IIb-IIb in (A). 実施例1の活性炭の成分分析の結果を示す図である。FIG. 3 is a diagram showing the results of component analysis of activated carbon of Example 1. 比較例1の添着活性炭の成分分析の結果を示す図である。3 is a diagram showing the results of component analysis of impregnated activated carbon of Comparative Example 1. FIG. 実施例1、及び比較例1,2で用いた活性炭の微分細孔容積[dVp/d(dp)]の分布を示す図である。FIG. 2 is a diagram showing the distribution of differential pore volume [dVp/d(dp)] of activated carbon used in Example 1 and Comparative Examples 1 and 2. 実施例10で用いた製造装置を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のVIb-VIb線で切断したときの装置内部を上方から見たときの図である。FIG. 7 is a diagram showing a manufacturing apparatus used in Example 10. (A) is a view when the device is viewed from the side, and (B) is a view when the inside of the device is viewed from above when cut along line VIb-VIb in (A). 実施例11で用いた製造装置を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のVIIb-VIIb線で切断したときの装置内部を上方から見たときの図である。FIG. 7 is a diagram showing a manufacturing apparatus used in Example 11. (A) is a diagram when the device is viewed from the side, and (B) is a diagram when the inside of the device is viewed from above when cut along line VIIb-VIIb in (A). 実施例12で用いた製造装置を示す図である。(A)は、装置を側方から見たときの図であり、(B)は(A)のVIIIb-VIIIb線で切断したときの装置内部を上方から見たときの図である。FIG. 7 is a diagram showing a manufacturing apparatus used in Example 12. (A) is a view when the device is viewed from the side, and (B) is a view when the inside of the device is viewed from above when cut along line VIIIb-VIIIb in (A). (A)及び(B)は、比較例の添着活性炭の表面近傍における断面を模式的に示す図である。(A) and (B) are diagrams schematically showing a cross section near the surface of impregnated activated carbon of a comparative example.

以下、場合により図面を参照して、本開示の一実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 Hereinafter, one embodiment of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals will be used for the same elements or elements having the same function, and redundant description will be omitted in some cases. In addition, the positional relationships such as top, bottom, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. Furthermore, the dimensional ratio of each element is not limited to the ratio shown in the drawings.

一実施形態に係る添着活性炭の製造方法は、炭材を賦活処理して得られた活性炭に、二原子分子のハロゲン化合物の水溶液を噴霧して、活性炭にハロゲン化合物を添着させる工程を有する。 A method for producing impregnated activated carbon according to one embodiment includes a step of impregnating the activated carbon with a halogen compound by spraying an aqueous solution of a diatomic halogen compound onto activated carbon obtained by activating a carbon material.

成分分析によって測定される炭材の炭素含有量は、70質量%以上であってよく、80質量%以上であってよく、85質量%以上であってもよい。このように炭素含有量が高い炭材を賦活処理して得られる活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような炭材を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 The carbon content of the carbonaceous material measured by component analysis may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. Activated carbon obtained by activating carbon materials with high carbon content has both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm). has. Therefore, the impregnated activated carbon obtained using such a carbon material can achieve both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at a sufficiently high level. .

炭素含有量が70質量%以上の炭材は石炭であってよく、例えば、瀝青炭及び無煙炭が挙げられる。したがって、炭材は、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含む炭材を用いてもよい。 The carbon material having a carbon content of 70% by mass or more may be coal, and examples thereof include bituminous coal and anthracite coal. Therefore, the carbon material may include at least one selected from the group consisting of bituminous coal and anthracite coal.

炭材の賦活処理は、通常のガス賦活処理によって行ってよい。例えば、炭材を、600~1000℃の温度、又は750~900℃の温度で、水蒸気、二酸化炭素、空気、酸素、燃焼ガス、又はこれらの混合ガスの存在下、炭材を加熱すればよい。これによって、炭材に細孔を形成し、石炭由来の多孔質の活性炭を得ることができる。 The activation treatment of the carbonaceous material may be performed by a normal gas activation treatment. For example, the carbonaceous material may be heated at a temperature of 600 to 1000°C or 750 to 900°C in the presence of water vapor, carbon dioxide, air, oxygen, combustion gas, or a mixed gas thereof. . Thereby, pores are formed in the carbon material, and porous activated carbon derived from coal can be obtained.

活性炭のBET比表面積は、水銀(Hg)以外の有害物質(ダイオキシン等)の吸着性能を十分に高くする観点から、600m/g以上であってよく、800cm/g以上であってよく、900m/g以上であってよい。活性炭のBET比表面積は、1100m/g以下であってよく、1050m/g以下であってよく、1000m/g以下であってもよい。これによって、ハロゲン化合物が侵入しすい程度のサイズを有するミクロ孔(大きめのミクロ孔)を十分に確保して、添着の際のハロゲン化合物のミクロ孔(十分に小さいミクロ孔)への侵入を促進することができる。活性炭のBET比表面積の一例は、600~1100m/g以下である。 The BET specific surface area of the activated carbon may be 600 m 2 /g or more, and may be 800 cm 2 /g or more, from the viewpoint of sufficiently increasing the adsorption performance of harmful substances (dioxins, etc.) other than mercury (Hg 0 ). , 900 m 2 /g or more. The BET specific surface area of the activated carbon may be 1100 m 2 /g or less, 1050 m 2 /g or less, or 1000 m 2 /g or less. This ensures that there are sufficient micropores (large micropores) that are large enough for the halogen compound to easily penetrate, and facilitates the penetration of the halogen compound into the micropores (sufficiently small micropores) during attachment. can do. An example of the BET specific surface area of activated carbon is 600 to 1100 m 2 /g or less.

活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をBとしたとき、下記式(1)及び(2)を満たしてよい。
A≧3cm/g/nm (1)
B/A≧0.2 (2)
A is the integrated value of the differential pore volume [dVp/d(dp)] in activated carbon where the pore diameter is 1 nm or less, and A is the integrated value of the differential pore volume [dVp/d(dp)] where the pore diameter is more than 1 nm and 2 nm or less. When the integrated value is B, the following formulas (1) and (2) may be satisfied.
A≧ 3cm3 /g/nm (1)
B/A≧0.2 (2)

このような活性炭を用いることによって、添着活性炭の水銀(Hg)の吸着性能を十分に高くすることができる。同様の観点から、Aは3.3cm/g/nm以上であってよく、B/Aは0.24以上であってもよい。活性炭の表面積を十分に大きくする観点から、Aは5cm/g/nm以下であってよい。同様の観点からB/Aは0.5以下であってもよい。 By using such activated carbon, the mercury (Hg 0 ) adsorption performance of the impregnated activated carbon can be made sufficiently high. From the same viewpoint, A may be 3.3 cm 3 /g/nm or more, and B/A may be 0.24 or more. From the viewpoint of sufficiently increasing the surface area of the activated carbon, A may be 5 cm 3 /g/nm or less. From the same viewpoint, B/A may be 0.5 or less.

成分分析によって測定される活性炭の炭素含有量は、70質量%以上であってよく、80質量%以上であってよく、85質量%以上であってもよい。このように炭素含有量が高い活性炭は、十分に小さいミクロ孔(細孔径:1nm以下)と、大きめのミクロ孔(細孔径:1~2nm)の両方を適度に有している。このため、このような活性炭を用いて得られる添着活性炭は、水銀(Hg)以外の有害物質の吸着性能と、水銀(Hg)の吸着性能を十分に高い水準で両立することができる。 The carbon content of the activated carbon measured by component analysis may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. Activated carbon with such a high carbon content has a suitable amount of both sufficiently small micropores (pore diameter: 1 nm or less) and large micropores (pore diameter: 1 to 2 nm). Therefore, the impregnated activated carbon obtained using such activated carbon can achieve both adsorption performance for harmful substances other than mercury (Hg 0 ) and adsorption performance for mercury (Hg 0 ) at a sufficiently high level.

二原子分子のハロゲン化合物は、構成元素としてハロゲン元素とアルカリ金属元素とを有する。ハロゲン化合物は、例えば、NaBr、KBr、NaCl及びKClからなる群より選ばれる少なくとも一つを含んでよい。ロンドン分散力を十分に大きくする観点から、ハロゲン化合物は臭化物を含んでよい。これらのハロゲン化合物は、活性炭の大きめのミクロ孔に円滑に侵入し、活性炭の内部に保持される。ハロゲン元素は、活性炭の内部においてロンドン分散力を十分に発揮することができる。これによって、水銀(Hg)が細孔内に吸着されやすくなり、水銀(Hg)の吸着性能を十分に高くすることができる。 A diatomic molecule halogen compound has a halogen element and an alkali metal element as constituent elements. The halogen compound may include, for example, at least one selected from the group consisting of NaBr, KBr, NaCl, and KCl. From the viewpoint of sufficiently increasing the London dispersion force, the halogen compound may contain bromide. These halogen compounds smoothly enter the larger micropores of the activated carbon and are retained inside the activated carbon. The halogen element can fully exhibit the London dispersion force inside the activated carbon. As a result, mercury (Hg 0 ) is easily adsorbed into the pores, and the adsorption performance of mercury (Hg 0 ) can be made sufficiently high.

このようにして得られる添着活性炭は、例えば、図1に示すような内部構造を有すると考えられる。図1の添着活性炭12は、活性炭10と、活性炭に添着された二原子分子のハロゲン化合物20とを含む。活性炭10の表面近傍には、細孔40が形成されている。細孔40は、十分に小さいミクロ孔40Aと、これよりも大きいミクロ孔40Bとを含む。水銀(Hg)の吸着には、このように小さいミクロ孔40Aが必要である。一方、水銀(Hg)以外の有害物質は、小さいミクロ孔40A及び大きいミクロ孔40Bのどちらにも吸着され得る。 The impregnated activated carbon obtained in this manner is considered to have an internal structure as shown in FIG. 1, for example. The impregnated activated carbon 12 in FIG. 1 includes activated carbon 10 and a diatomic molecule halogen compound 20 impregnated to the activated carbon. Pores 40 are formed near the surface of activated carbon 10 . The pores 40 include sufficiently small micropores 40A and larger micropores 40B. Such small micropores 40A are necessary for adsorption of mercury (Hg 0 ). On the other hand, harmful substances other than mercury (Hg 0 ) can be adsorbed in both the small micropores 40A and the large micropores 40B.

ハロゲン化合物を添着させる工程では、大きいミクロ孔40Bからハロゲン化合物20が円滑に侵入し、細孔40内に保持される。細孔40内に保持されたハロゲン化合物20のロンドン分散力は、図1に示される広い領域22に及んでいる。このため、領域22に含まれるミクロ孔40Aの内壁に水銀(Hg)30が吸着される。一方、ダイオキシン等の水銀(Hg)以外の有害物質は、ミクロ孔40A及びミクロ孔40Bの両方に吸着される。 In the step of attaching the halogen compound, the halogen compound 20 smoothly enters through the large micropores 40B and is retained within the pores 40. The London dispersion force of the halogen compound 20 held within the pores 40 extends over the wide area 22 shown in FIG. Therefore, mercury (Hg 0 ) 30 is adsorbed on the inner walls of the micropores 40A included in the region 22. On the other hand, harmful substances other than mercury (Hg 0 ), such as dioxins, are adsorbed in both the micropores 40A and 40B.

一方、原子数が3個以上の分子であるハロゲン化合物の場合、図9(A)に示されるように、ハロゲン化合物120のサイズが大きいため、活性炭110の細孔140内に侵入することができず、活性炭110の表面に添着する。この場合、活性炭110の内部においてロンドン分散力が及ぶ領域122が小さくなってしまう。このため、水銀(Hg)30を吸着できる細孔140の割合が小さくなる。したがって、図9(A)のような添着活性炭では、水銀(Hg)130を十分に吸着できない。 On the other hand, in the case of a halogen compound that is a molecule with three or more atoms, as shown in FIG. First, it is attached to the surface of activated carbon 110. In this case, the region 122 within the activated carbon 110 that is affected by the London dispersion force becomes small. Therefore, the proportion of pores 140 that can adsorb mercury (Hg 0 ) 30 becomes small. Therefore, impregnated activated carbon as shown in FIG. 9(A) cannot sufficiently adsorb mercury (Hg 0 ) 130.

また、十分に小さいミクロ孔が少ない活性炭の場合、図9(B)に示されるように、ハロゲン化合物は、大きいミクロ孔から活性炭111の内部に侵入し、ロンドン分散力を比較的広い領域122に及ぼす。しかしながら、領域122に含まれる、十分に小さいミクロ孔が少ないため、水銀(Hg)130を十分に吸着することができない。 In addition, in the case of activated carbon with few sufficiently small micropores, the halogen compound penetrates into the activated carbon 111 through the large micropores and applies the London dispersion force to a relatively wide area 122, as shown in FIG. 9(B). affect However, since there are few sufficiently small micropores included in the region 122, mercury (Hg 0 ) 130 cannot be sufficiently adsorbed.

また、大きいミクロ孔を有さず、十分に小さいミクロ孔のみを有する活性炭の場合、ハロゲン化合物のサイズが十分に小さいミクロ孔よりも小さい場合であっても十分な吸着能力を発揮することができない。これに対し、図1の添着活性炭12における活性炭10は、十分に小さいミクロ孔40Aと、これよりも大きいミクロ孔40Bが良好なバランスで形成されている。このように十分に小さいミクロ孔40Aとこれよりも大きいミクロ孔40Bがバランスよく形成されていることが吸着能力の発揮に有効である。さらに、図1の添着活性炭12では、活性炭10の内部に二原子分子のハロゲン化合物20が保持されている。これらの相乗作用によって、図1の添着活性炭12は、図9の添着活性炭及び大きいミクロ孔を有しない添着活性炭よりも、水銀(Hg)30と水銀以外の有害物質を十分に吸着することができる。 In addition, activated carbon that does not have large micropores and only has sufficiently small micropores cannot exhibit sufficient adsorption ability even if the size of the halogen compound is smaller than the sufficiently small micropores. . On the other hand, in the activated carbon 10 in the impregnated activated carbon 12 of FIG. 1, sufficiently small micropores 40A and larger micropores 40B are formed in a good balance. In this way, forming the sufficiently small micropores 40A and the larger micropores 40B in a well-balanced manner is effective for exhibiting the adsorption ability. Furthermore, in the impregnated activated carbon 12 of FIG. 1, a diatomic molecule halogen compound 20 is held inside the activated carbon 10. Due to these synergistic effects, the impregnated activated carbon 12 in FIG. 1 is able to adsorb mercury (Hg 0 ) 30 and harmful substances other than mercury more fully than the impregnated activated carbon in FIG. 9 and the impregnated activated carbon without large micropores. can.

活性炭10へのハロゲン化合物20の添着は、ハロゲン化合物20の水溶液を噴霧することによって行う。水溶液におけるハロゲン化合物20の濃度は、40g/100mL以上であってよく、50g/100mL以上であってよく、60g/100mL以上であってもよい。ここでいう「100mL」は、溶媒である水の量である。このような濃度を有する水溶液であれば、噴霧したときに固形分が析出することが抑制され、活性炭10の細孔40内に十分に侵入することができる。水溶液におけるハロゲン化合物20の濃度は、120g/100mL以下であってよい。水溶液に含まれるハロゲン化合物20の濃度が高くなり過ぎると、活性炭10に添着した際に、ハロゲン化合物20の濃い領域が生じ、ハロゲン元素とともに活性炭10内に侵入したアルカリ金属が、水銀(Hg)30の吸着を妨げる場合がある。水溶液におけるハロゲン化合物20の濃度の一例は、40~120g/100mLである。 The halogen compound 20 is impregnated onto the activated carbon 10 by spraying an aqueous solution of the halogen compound 20. The concentration of the halogen compound 20 in the aqueous solution may be 40 g/100 mL or more, 50 g/100 mL or more, or 60 g/100 mL or more. "100 mL" here is the amount of water which is a solvent. With an aqueous solution having such a concentration, precipitation of solid content is suppressed when sprayed, and the aqueous solution can sufficiently penetrate into the pores 40 of the activated carbon 10. The concentration of the halogen compound 20 in the aqueous solution may be 120 g/100 mL or less. If the concentration of the halogen compound 20 contained in the aqueous solution becomes too high, a dense region of the halogen compound 20 will occur when the halogen compound 20 is impregnated onto the activated carbon 10, and the alkali metal that has entered into the activated carbon 10 together with the halogen element will become mercury (Hg 0 ). 30 may be prevented from being adsorbed. An example of the concentration of the halogen compound 20 in the aqueous solution is 40 to 120 g/100 mL.

ハロゲン化合物20がNaBr(臭化ナトリウム)を含有する場合、水溶液におけるNaBrの含有量は30~42質量%であってよい。これによって、NaBrの析出を抑制しながら、活性炭10の細孔40内に適量のNaBrを添着することができる。水溶液におけるNaBrの含有量が低くなり過ぎると、NaBrの添着量が減少すること、及び、水の吸着量が増えて、有害物質を吸着し難くなる傾向にある。水溶液におけるNaBrの含有量が高くなり過ぎると、NaBrが析出・結晶化して活性炭10の細孔40内に侵入し難くなる傾向にある。 When the halogen compound 20 contains NaBr (sodium bromide), the content of NaBr in the aqueous solution may be 30 to 42% by mass. Thereby, an appropriate amount of NaBr can be impregnated into the pores 40 of the activated carbon 10 while suppressing the precipitation of NaBr. If the content of NaBr in the aqueous solution becomes too low, the amount of NaBr impregnated will decrease and the amount of water adsorbed will increase, making it difficult to adsorb harmful substances. If the content of NaBr in the aqueous solution becomes too high, NaBr tends to precipitate and crystallize, making it difficult to enter the pores 40 of the activated carbon 10.

添着活性炭12において、活性炭10に対するハロゲン化合物20の添着割合は、1.5質量%以上であってよく、2質量%以上であってよく、2.5質量%以上であってもよい。これによって、活性炭10の細孔40に十分にハロゲン化合物20を添着させることができる。活性炭10に対するハロゲン化合物20の添着割合は、5質量%以下であってよく、4質量%以下であってもよい。添着割合が高くなり過ぎると、図1の領域22が重なり合いやすくなり、ハロゲン元素のロンドン分散力を有効に活用し難くなる。また、ハロゲン化合物20に含まれるアルカリ金属が水銀(Hg)30の吸着を妨げる作用が顕在化する可能性もある。活性炭10に対するハロゲン化合物20の添着割合の一例は、1.5~5質量%である。 In the impregnated activated carbon 12, the impregnation ratio of the halogen compound 20 to the activated carbon 10 may be 1.5% by mass or more, 2% by mass or more, or 2.5% by mass or more. Thereby, the halogen compound 20 can be sufficiently attached to the pores 40 of the activated carbon 10. The impregnation ratio of the halogen compound 20 to the activated carbon 10 may be 5% by mass or less, and may be 4% by mass or less. If the impregnation ratio becomes too high, the regions 22 in FIG. 1 tend to overlap, making it difficult to effectively utilize the London dispersion force of the halogen element. Furthermore, there is a possibility that the effect of the alkali metal contained in the halogen compound 20 preventing the adsorption of mercury (Hg 0 ) 30 becomes apparent. An example of the impregnation ratio of the halogen compound 20 to the activated carbon 10 is 1.5 to 5% by mass.

添着活性炭12のBET比表面積は、600m/g以上であってよく、700m/g以上であってよく、800m/g以上であってよい。これによって、水銀(Hg)30及び水銀(Hg)以外の有害物質を十分に吸着することができる。添着活性炭12のBET比表面積は、1100m/g以下であってよく、1000m/g以下であってもよい。これによって、ミクロ孔40Bを十分に確保して、ハロゲン化合物20の侵入を促進することができる。 The BET specific surface area of the impregnated activated carbon 12 may be 600 m 2 /g or more, 700 m 2 /g or more, or 800 m 2 /g or more. Thereby, mercury (Hg 0 ) 30 and harmful substances other than mercury (Hg 0 ) can be sufficiently adsorbed. The BET specific surface area of the impregnated activated carbon 12 may be 1100 m 2 /g or less, or 1000 m 2 /g or less. This makes it possible to sufficiently secure the micropores 40B and promote the penetration of the halogen compound 20.

活性炭へのハロゲン化合物20の添着は、図2(A)及び図2(B)に示す攪拌装置(リボンブレンダ)を備える製造設備を用いて行ってもよい。この製造設備は、活性炭の堆積層を攪拌する攪拌装置50と、攪拌装置50に活性炭を導入する導入部52と、攪拌装置50で得られた添着活性炭を攪拌装置50から導出する導出部54と、を備える。攪拌装置50は、導入された活性炭の堆積層11を攪拌するリボン型の攪拌羽根72と、攪拌羽根72を回転駆動するモータ70とを備える。攪拌装置50の上壁には、ハロゲン化合物の水溶液をスプレー状に噴霧するノズル60が設けられている。ノズル60には、ポンプ62からハロゲン化合物の水溶液が供給される。この製造設備であれば、攪拌羽根72で活性炭を攪拌しながら、ノズル60から攪拌装置50内の活性炭の堆積層11に向けてハロゲン化合物の水溶液を噴霧することができる。 The halogen compound 20 may be impregnated onto the activated carbon using a production facility equipped with a stirring device (ribbon blender) shown in FIGS. 2(A) and 2(B). This manufacturing equipment includes a stirring device 50 that stirs a deposited layer of activated carbon, an introduction section 52 that introduces activated carbon into the stirring device 50, and a derivation section 54 that leads out the impregnated activated carbon obtained by the stirring device 50 from the stirring device 50. , is provided. The stirring device 50 includes a ribbon-shaped stirring blade 72 that stirs the deposited layer 11 of activated carbon that has been introduced, and a motor 70 that rotationally drives the stirring blade 72. A nozzle 60 for spraying an aqueous solution of a halogen compound is provided on the upper wall of the stirring device 50. An aqueous solution of a halogen compound is supplied to the nozzle 60 from a pump 62 . With this manufacturing equipment, the aqueous solution of the halogen compound can be sprayed from the nozzle 60 toward the deposited layer 11 of activated carbon in the stirring device 50 while stirring the activated carbon with the stirring blade 72 .

ノズル60から噴霧される水溶液の液滴径は100~300μmであってよい。液滴径が小さくなり過ぎると、水溶液が浮遊して攪拌装置50の内壁面に付着し、添着にムラが生じやすく傾向にある。液滴径が大きくなり過ぎても、添着にムラが生じやすく傾向にある。 The droplet diameter of the aqueous solution sprayed from the nozzle 60 may be 100 to 300 μm. If the droplet diameter becomes too small, the aqueous solution will float and adhere to the inner wall surface of the stirring device 50, tending to cause uneven adhesion. Even if the droplet diameter becomes too large, uneven adhesion tends to occur.

図2(B)には、攪拌装置50内における活性炭の堆積層11を平面視したときの堆積層11の表面が示されており、当該表面に、各ノズル60からの噴霧液が直接落下するエリア64を示している。堆積層11の表面の面積全体に対する、複数のエリア64の合計面積(噴霧面積)の比率は、40~120%であってよく、50~100%であってもよい。これによって、活性炭に十分に均一にハロゲン化合物を添着することができる。なお、複数のエリア64が重なり合う部分は重複してカウントされるため、上記面積比率が100%を超える場合もある。なお、ノズル60の本数は特に限定されない。また、添着は、図2に示されるような攪拌装置を用いずに行ってもよい。 FIG. 2(B) shows the surface of the activated carbon deposit layer 11 when viewed from above in the stirring device 50, and the spray liquid from each nozzle 60 falls directly onto the surface. Area 64 is shown. The ratio of the total area (sprayed area) of the plurality of areas 64 to the entire surface area of the deposited layer 11 may be 40 to 120%, or 50 to 100%. This allows the halogen compound to be impregnated onto the activated carbon sufficiently and uniformly. Note that since areas where a plurality of areas 64 overlap are counted redundantly, the area ratio may exceed 100%. Note that the number of nozzles 60 is not particularly limited. Further, the impregnation may be performed without using a stirring device as shown in FIG.

一実施形態に係る添着活性炭は、活性炭と活性炭に添着された二原子分子のハロゲン化合物を含む。ハロゲン化合物は、例えば、NaBr、KBr、NaCl及びKClからなる群より選ばれる少なくとも一つを含んでよい。活性炭の炭素含有量は、70質量%以上であってよく、80質量%以上であってよく、85質量%以上であってもよい。活性炭は、石炭の賦活処理物である。賦活処理の条件は上述したとおりである。石炭は、例えば、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含んでよい。 The impregnated activated carbon according to one embodiment includes activated carbon and a diatomic halogen compound impregnated to the activated carbon. The halogen compound may include, for example, at least one selected from the group consisting of NaBr, KBr, NaCl, and KCl. The carbon content of the activated carbon may be 70% by mass or more, 80% by mass or more, or 85% by mass or more. Activated carbon is an activated product of coal. The conditions for the activation treatment are as described above. The coal may include, for example, at least one selected from the group consisting of bituminous coal and anthracite coal.

活性炭に対するハロゲン化合物(例えば、臭化ナトリウム)の比率は1.5~5質量%であってよい。活性炭に対するハロゲン化合物20の添着割合は、1.5質量%以上であってよく、2質量%以上であってよく、2.5質量%以上であってもよい。活性炭に対するハロゲン化合物20の添着割合は、5質量%以下であってよく、4質量%以下であってもよい。添着活性炭は、上述の製造方法によって製造されてよい。したがって、上述の添着活性炭の製造方法における説明内容は、本実施形態の添着活性炭にも適用される。 The ratio of halogen compound (eg sodium bromide) to activated carbon may be from 1.5 to 5% by weight. The impregnation ratio of the halogen compound 20 to the activated carbon may be 1.5% by mass or more, 2% by mass or more, or 2.5% by mass or more. The impregnation ratio of the halogen compound 20 to the activated carbon may be 5% by mass or less, and may be 4% by mass or less. Impregnated activated carbon may be manufactured by the above-mentioned manufacturing method. Therefore, the content of the explanation regarding the method for producing impregnated activated carbon described above also applies to the impregnated activated carbon of this embodiment.

以上、本発明の一実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment at all.

実施例及び比較例を参照して本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The contents of the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
<活性炭の準備>
炭材として、無煙炭と瀝青炭に由来する粉末状の炭材を準備した。この炭材の炭素含有量は、表1に示すとおりであった。この炭材のガス賦活処理を行って活性炭を調製した。ガス賦活処理は、水蒸気を含むガスを用いて、炭材を加熱することによって行った。
(Example 1)
<Preparation of activated carbon>
Powdered carbonaceous materials derived from anthracite and bituminous coal were prepared as carbonaceous materials. The carbon content of this carbon material was as shown in Table 1. This carbon material was subjected to gas activation treatment to prepare activated carbon. The gas activation treatment was performed by heating the carbon material using a gas containing water vapor.

<活性炭の評価>
上述の手順で得られた活性炭の成分分析を行って炭素含有量を求めた。分析装置及び分析方法の詳細は以下のとおりである。
分析方法:電子顕微鏡付きX線分析
使用機器:走査型電子顕微鏡 JSM-6390型(日本電子株式会社製)
対象元素:B~U
補正方法:ZAF法
<Evaluation of activated carbon>
Component analysis of the activated carbon obtained by the above procedure was performed to determine the carbon content. Details of the analytical device and analytical method are as follows.
Analysis method: X-ray analysis with electron microscope Equipment used: Scanning electron microscope JSM-6390 type (manufactured by JEOL Ltd.)
Target elements: B~U
Correction method: ZAF method

成分分析の結果は図3に示すとおりであった。また、活性炭のBET比表面積を、比表面積/細孔分析測定装置(マイクロトラック・ベル株式会社製、装置名:BELSORP mini II)を用いて測定した。測定方法は、N吸着法によって行った。これらの結果は、表1に示すとおりであった。この活性炭の水銀吸着性能を以下の手順で評価した。 The results of component analysis were as shown in FIG. Further, the BET specific surface area of the activated carbon was measured using a specific surface area/pore analysis measuring device (manufactured by Microtrac Bell Co., Ltd., device name: BELSORP mini II). The measurement method was N 2 adsorption method. These results were as shown in Table 1. The mercury adsorption performance of this activated carbon was evaluated using the following procedure.

添着活性炭(0.05g)を、カラムクロマト管(内径:30mm,長さ:30cm)の内部に充填した(充填高さ:15cm)。カラムクロマト管にヒータを巻き付けて、カラムクロマト管の内部を180~220℃に加熱した。水銀蒸気発生器を用いて空気に水銀蒸気を混入させて水銀濃度500μg/mの供給ガスを調製した。この供給ガスを220℃に加熱して上述のカラムクロマト管に供給してガス処理を行った。カラムクロマト管から排出される排ガス中の水銀(Hg)濃度を水銀測定装置(日本インスツルメンツ株式会社製、製品名:EMP-2)を用いて測定した。ガス処理と排ガス中の水銀(Hg)の濃度測定を約3時間継続して行った。供給ガス中の水銀(Hg)の濃度の平均値と排ガスに含まれていた水銀(Hg)の濃度の平均値の差から、以下の式によって水銀(Hg)の除去率を算出した。結果は表1に示すとおりであった。 Impregnated activated carbon (0.05 g) was packed inside a column chromatography tube (inner diameter: 30 mm, length: 30 cm) (filling height: 15 cm). A heater was wrapped around the column chromatography tube to heat the inside of the column chromatography tube to 180 to 220°C. A feed gas with a mercury concentration of 500 μg/m 3 was prepared by mixing air with mercury vapor using a mercury vapor generator. This supplied gas was heated to 220° C. and supplied to the above-mentioned column chromatography tube for gas treatment. The mercury (Hg 0 ) concentration in the exhaust gas discharged from the column chromatography tube was measured using a mercury measuring device (manufactured by Nippon Instruments Co., Ltd., product name: EMP-2). Gas treatment and measurement of the concentration of mercury (Hg 0 ) in the exhaust gas were continued for about 3 hours. The removal rate of mercury (Hg 0 ) was calculated using the following formula from the difference between the average concentration of mercury (Hg 0 ) in the supplied gas and the average concentration of mercury (Hg 0 ) contained in the exhaust gas. . The results were as shown in Table 1.

水銀(Hg)の除去率(%)=(供給ガス中の水銀濃度-排ガス中の水銀濃度)/供給ガス中の水銀濃度 Mercury (Hg 0 ) removal rate (%) = (mercury concentration in supply gas - mercury concentration in exhaust gas) / mercury concentration in supply gas

<添着活性炭の製造>
臭化ナトリウム(NaBr)を水に溶解させて水溶液を得た。水溶液中のNaBr濃度は41質量%とした。ポリ容器に、約20gの活性炭を入れた後、この活性炭に対して上記水溶液を噴霧器で噴霧した。活性炭に対する添着割合が3.5質量%となるように、活性炭に対する水溶液の噴霧量を設定した。このようにして、活性炭に臭化ナトリウムを添着して添着活性炭を得た。水溶液を噴霧した後、ポリ容器をよく振ってNaBrを活性炭に十分に添着させた。
<Production of impregnated activated carbon>
Sodium bromide (NaBr) was dissolved in water to obtain an aqueous solution. The NaBr concentration in the aqueous solution was 41% by mass. After about 20 g of activated carbon was placed in a plastic container, the above aqueous solution was sprayed onto the activated carbon using a sprayer. The amount of spraying of the aqueous solution to the activated carbon was set so that the impregnation ratio to the activated carbon was 3.5% by mass. In this way, activated carbon was impregnated with sodium bromide to obtain impregnated activated carbon. After spraying the aqueous solution, the plastic container was shaken well to fully adhere NaBr to the activated carbon.

<添着活性炭の評価>
添着後、添着活性炭を十分に乾燥させた。その後、上述の「活性炭の評価」と同じ方法で、BET比表面積及び水銀(Hg)の除去率(%)を測定した。また、臭化物分析(自動燃焼-イオンクロマトグラフ法)によって、活性炭に対するNaBrの添着割合を求めた。その結果は表1に示すとおりであった。
<Evaluation of impregnated activated carbon>
After impregnation, the impregnated activated carbon was sufficiently dried. Thereafter, the BET specific surface area and the removal rate (%) of mercury (Hg 0 ) were measured in the same manner as in the above-mentioned "evaluation of activated carbon". Furthermore, the impregnation ratio of NaBr to activated carbon was determined by bromide analysis (automatic combustion-ion chromatography method). The results were as shown in Table 1.

(比較例1)
炭材として亜炭(褐炭)を用いたこと以外は、実施例1と同様にして添着活性炭を製造した。この亜炭の炭素含有量は70質量%を大きく下回っていた。そして、実施例1と同じ方法でそれぞれの評価を行った。結果は表1に示すとおりであった。図4には、添着活性炭の成分分析の結果を示した。
(Comparative example 1)
Impregnated activated carbon was produced in the same manner as in Example 1, except that lignite (brown coal) was used as the carbon material. The carbon content of this lignite was well below 70% by mass. Then, each evaluation was performed in the same manner as in Example 1. The results were as shown in Table 1. FIG. 4 shows the results of component analysis of the impregnated activated carbon.

(比較例2)
炭材として市販の椰子殻炭を用いたこと以外は、実施例1と同様にして活性炭及び添着活性炭を製造した。そして、実施例1と同じ方法でそれぞれの評価を行った。結果は表1に示すとおりであった。
(Comparative example 2)
Activated carbon and impregnated activated carbon were produced in the same manner as in Example 1, except that commercially available coconut shell charcoal was used as the carbon material. Then, each evaluation was performed in the same manner as in Example 1. The results were as shown in Table 1.

Figure 2023140485000002
Figure 2023140485000002

表1に示すとおり、実施例1の添着活性炭は、比表面積が十分に高いことから、水銀(Hg)以外の有害物質(ダイオキシン等)の吸着性能に優れる。また、水銀(Hg)の吸着量にも十分に優れることが確認された。一方、比較例1,2の添着活性炭の水銀(Hg)の除去率は実施例1よりも低かった。比較例1の添着活性炭は比表面積が小さいため、これが水銀(Hg)の吸着量が低いことの要因であると考えられる。このような添着活性炭は、水銀(Hg)以外の有害物質(ダイオキシン等)の吸着性能も低いと考えられる。比較例2の添着活性炭の比表面積は、実施例1の添着活性炭の比表面積よりも大きかった。それにもかかわらず、比較例2の添着活性炭の水銀(Hg)の除去率は実施例1よりも低かった。この原因を以下に検討した。 As shown in Table 1, the impregnated activated carbon of Example 1 has a sufficiently high specific surface area, and therefore has excellent adsorption performance for harmful substances (such as dioxins) other than mercury (Hg 0 ). It was also confirmed that the adsorption amount of mercury (Hg 0 ) was sufficiently excellent. On the other hand, the removal rate of mercury (Hg 0 ) of the impregnated activated carbon of Comparative Examples 1 and 2 was lower than that of Example 1. Since the impregnated activated carbon of Comparative Example 1 has a small specific surface area, this is considered to be a factor in the low adsorption amount of mercury (Hg 0 ). Such impregnated activated carbon is also considered to have low adsorption performance for harmful substances (such as dioxins) other than mercury (Hg 0 ). The specific surface area of the impregnated activated carbon of Comparative Example 2 was larger than that of the impregnated activated carbon of Example 1. Nevertheless, the mercury (Hg 0 ) removal rate of the impregnated activated carbon of Comparative Example 2 was lower than that of Example 1. The cause of this was discussed below.

実施例1、及び比較例1,2で用いた炭材(無煙炭、亜炭、バイオマス炭)の細孔径分布を測定し、細孔径(d)ごとの微分細孔容積[dVp/d(dp)]を求めた。測定には、比表面積/細孔分析測定装置(マイクロトラック・ベル株式会社製、装置名:BELSORP mini II)を用いた。結果は、表2及び図5に示すとおりであった。これらの結果から、細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値(A)と、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値(B)と、これらの比(B/A)を求めた。これらの結果は表2に示すとおりであった。表2中、B/Aの数値は無次元数である。 The pore size distribution of the carbon materials (anthracite, lignite, biomass coal) used in Example 1 and Comparative Examples 1 and 2 was measured, and the differential pore volume [ dVp /d (dp) ] was sought. For the measurement, a specific surface area/pore analysis measuring device (manufactured by Microtrac Bell Co., Ltd., device name: BELSORP mini II) was used. The results were as shown in Table 2 and FIG. 5. From these results, the integrated value (A) of the differential pore volume [dVp/d(dp)] where the pore diameter is 1 nm or less and the differential pore volume [dVp/d (dp)] where the pore diameter is more than 1 nm and 2 nm or less (dp)] and their ratio (B/A) were determined. These results are as shown in Table 2. In Table 2, the value of B/A is a dimensionless number.

Figure 2023140485000003
Figure 2023140485000003

表2及び図5に示すとおり、比較例2の炭材は、実施例1の炭材よりも、細孔径が1nm以下の細孔の割合が大きいものの細孔径が1~2nmの細孔の割合が小さいことが確認された。このことから、椰子殻炭を用いて製造された活性炭の場合、添着したハロゲン化合物は活性炭の粒子の内部に十分に侵入できず、活性炭の表面に添着されているハロゲン化合物の割合が高くなっていると推察される。このため、水銀(Hg)を吸着できる細孔が限られており、水銀(Hg)の除去率(%)を測定では、早期に破過していた。一方、実施例1で用いた無煙炭と瀝青炭に由来する炭材の場合、細孔径が1nm以下の細孔と、細孔径が1~2nmの細孔をバランスよく含んでいる。これによって、ハロゲン化合物は活性炭の粒子の内部に十分に侵入することができるとともに、ロンドン分散力によって水銀(Hg)を吸着する細孔が十分に存在していると推察される。 As shown in Table 2 and Figure 5, the carbon material of Comparative Example 2 has a larger proportion of pores with a pore diameter of 1 nm or less than the carbon material of Example 1, but the proportion of pores with a pore diameter of 1 to 2 nm. was confirmed to be small. From this, in the case of activated carbon manufactured using coconut shell charcoal, the impregnated halogen compounds cannot sufficiently penetrate inside the activated carbon particles, and the proportion of halogen compounds impregnated on the surface of the activated carbon becomes high. It is presumed that there are. For this reason, the number of pores that can adsorb mercury (Hg 0 ) is limited, and when measuring the removal rate (%) of mercury (Hg 0 ), it breaks through early. On the other hand, in the case of the carbon material derived from anthracite and bituminous coal used in Example 1, it contains pores with a pore diameter of 1 nm or less and pores with a pore diameter of 1 to 2 nm in a well-balanced manner. It is presumed that this allows the halogen compound to sufficiently penetrate inside the activated carbon particles, and that there are sufficient pores to adsorb mercury (Hg 0 ) due to the London dispersion force.

次に、ハロゲン化合物の水溶液の濃度の影響を調べるため、実施例2~4を行った。 Next, Examples 2 to 4 were conducted to investigate the influence of the concentration of the aqueous solution of the halogen compound.

(実施例2~4)
水溶液中のNaBr濃度を表3に示すとおりとしたこと以外は、実施例1と同様にして添着活性炭を製造した。いずれも、活性炭に対するNaBrの添着割合が3.5質量%となるように水溶液の量を設定した。実施例1と同じ方法で、各実施例で得られた添着活性炭のNaBrの添着割合、及び水銀(Hg)の除去率(%)を測定した。結果は表3に示すとおりであった。なお、表3には比較のため実施例1の結果も併せて示した。
(Examples 2 to 4)
Impregnated activated carbon was produced in the same manner as in Example 1, except that the NaBr concentration in the aqueous solution was as shown in Table 3. In each case, the amount of the aqueous solution was set so that the impregnation ratio of NaBr to activated carbon was 3.5% by mass. In the same manner as in Example 1, the impregnated ratio of NaBr and the removal rate (%) of mercury (Hg 0 ) of the impregnated activated carbon obtained in each example were measured. The results were as shown in Table 3. Note that Table 3 also shows the results of Example 1 for comparison.

Figure 2023140485000004
Figure 2023140485000004

実施例1~3の結果から、水溶液におけるNaBrの濃度が高い方が添着割合が水銀(Hg)の吸着量が大きくなることが確認された。これは、活性炭の細孔表面における水分子の吸着量が減ることと、NaBrが細孔から活性炭の粒子内に効率よく侵入することによるもの推察される。NaBrの常温(20℃)における溶解度は73.3g/100mLであり、この時のNaBr濃度は、42.3質量%である。実施例4では、20℃でNaBrの一部が溶解しなかったので、水溶液を約50℃に加熱して溶解させて噴霧した。ただし、実施例4の水銀(Hg)の吸着量は実施例1よりも低かった。これは、NaBrが活性炭に添着する際に析出・結晶化し、活性炭の細孔内に侵入し難くなったことが要因と推察される。実施例4では、NaBrの添着割合が、目標としていた3.5質量%を大きく超えていた。これは、成分分析の際に、NaBrが結晶化している部分をサンプリングしたことが要因と考えられる。 From the results of Examples 1 to 3, it was confirmed that the higher the concentration of NaBr in the aqueous solution, the greater the amount of mercury (Hg 0 ) adsorbed. This is presumed to be due to a decrease in the amount of water molecules adsorbed on the surface of the pores of the activated carbon and to the efficient infiltration of NaBr into the particles of the activated carbon from the pores. The solubility of NaBr at room temperature (20° C.) is 73.3 g/100 mL, and the NaBr concentration at this time is 42.3% by mass. In Example 4, a part of NaBr did not dissolve at 20°C, so the aqueous solution was heated to about 50°C to dissolve and spray. However, the adsorption amount of mercury (Hg 0 ) in Example 4 was lower than that in Example 1. The reason for this is presumed to be that NaBr precipitates and crystallizes when attached to the activated carbon, making it difficult to penetrate into the pores of the activated carbon. In Example 4, the impregnated proportion of NaBr greatly exceeded the target of 3.5% by mass. This is considered to be due to the fact that during the component analysis, a portion where NaBr was crystallized was sampled.

次に、ハロゲン化合物の添着割合の影響を調べるため、実施例5,6を行った。 Next, Examples 5 and 6 were conducted in order to investigate the influence of the impregnation ratio of the halogen compound.

(実施例5,6)
活性炭に噴霧するNaBrの量を変更して、活性炭に対するNaBrの添着量を変更したこと以外は、実施例3と同様にして添着活性炭を調整した。実施例5,6では、噴霧前の後の質量差と水溶液の濃度からNaBrの添着割合を算出した。
(Examples 5 and 6)
Impregnated activated carbon was prepared in the same manner as in Example 3, except that the amount of NaBr sprayed onto the activated carbon was changed to change the amount of NaBr impregnated onto the activated carbon. In Examples 5 and 6, the impregnation ratio of NaBr was calculated from the mass difference before and after spraying and the concentration of the aqueous solution.

実施例1と同じ方法で、実施例5,6で得られた添着活性炭の水銀(Hg)の除去率(%)を測定した。結果は表4に示すとおりであった。なお、表4には比較のため実施例3の結果も併せて示した。 In the same manner as in Example 1, the removal rate (%) of mercury (Hg 0 ) of the impregnated activated carbon obtained in Examples 5 and 6 was measured. The results were as shown in Table 4. Note that Table 4 also shows the results of Example 3 for comparison.

Figure 2023140485000005
Figure 2023140485000005

実施例3,5,6の結果から、NaBrの添着割合が高過ぎると、水銀(Hg)の吸着量が減少することが確認された。この要因としては、活性炭の細孔内にハロゲン元素が密集し過ぎると、水銀(Hg)が細孔内に侵入し難くなることが考えられる。また、水銀(Hg)の吸着を阻害するNaが増加したことも要因として考えられる。表4の結果から、活性炭に対するNaBrの比率(添着割合)は、1.5~5質量%程度が好ましいと考えられる。 From the results of Examples 3, 5, and 6, it was confirmed that when the impregnation ratio of NaBr is too high, the amount of mercury (Hg 0 ) adsorbed decreases. A possible reason for this is that when the halogen elements are too densely packed in the pores of activated carbon, it becomes difficult for mercury (Hg 0 ) to penetrate into the pores. Another possible factor is an increase in Na, which inhibits the adsorption of mercury (Hg 0 ). From the results in Table 4, it is considered that the ratio of NaBr to activated carbon (impregnated ratio) is preferably about 1.5 to 5% by mass.

次に、添着活性炭の粒径の影響を調べるため、実施例7~9を行った。 Next, Examples 7 to 9 were conducted to investigate the influence of the particle size of the impregnated activated carbon.

(実施例7,8)
噴霧するNaBrの量を変更して、活性炭に対するNaBrの添着割合を変更したこと以外は、実施例5,6と同様にして、実施例7,8の添着活性炭を調整した。実施例7,8では、噴霧前の後の質量差と水溶液の濃度からNaBrの添着割合を算出した。活性炭に対するNaBrの添着割合は、それぞれ、3.5質量%及び5.0質量%であった。これらの添着活性炭のBET比表面積はいずれも1100m/gであり、かさ比重はいずれも480kg/mであった。これらをペレット状に成形して、粒径が4mmの粒状の添着活性炭を得た。
(Examples 7 and 8)
Impregnated activated carbon in Examples 7 and 8 was prepared in the same manner as in Examples 5 and 6, except that the amount of NaBr to be sprayed was changed and the impregnated ratio of NaBr to activated carbon was changed. In Examples 7 and 8, the impregnation ratio of NaBr was calculated from the mass difference before and after spraying and the concentration of the aqueous solution. The impregnation ratios of NaBr to activated carbon were 3.5% by mass and 5.0% by mass, respectively. The BET specific surface areas of these impregnated activated carbons were all 1100 m 2 /g, and the bulk specific gravity was 480 kg/m 3 . These were formed into pellets to obtain granular impregnated activated carbon having a particle size of 4 mm.

このようにして得られた粒状の添着活性炭の水銀(Hg)の除去率を、実施例1と同様にして測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)における添着活性炭の充填高さと、カラムクロマト管への供給ガスにおける水銀濃度を、表5に示すとおりに変更して行った。結果は表5に示すとおりであった。 The mercury (Hg 0 ) removal rate of the granular impregnated activated carbon thus obtained was measured in the same manner as in Example 1. However, the measurements were performed by changing the filling height of the impregnated activated carbon in the column chromatography tube (inner diameter: 30 mm, length: 30 cm) and the mercury concentration in the gas supplied to the column chromatography tube as shown in Table 5. The results were as shown in Table 5.

Figure 2023140485000006
Figure 2023140485000006

ペレット状に成形した添着活性炭も、粉末状の添着活性炭と同様に水銀を十分に吸着できることが確認された。次に、添着する化合物の種類による影響を調査した。 It was confirmed that impregnated activated carbon formed into pellets can also adsorb mercury as well as powdered impregnated activated carbon. Next, we investigated the influence of the type of compound attached.

(実施例9)
<添着活性炭の製造>
塩化ナトリウム(NaCl)を水に溶解させて水溶液を得た。水溶液中のNaCl濃度は25.3質量%とした。ポリ容器に、約20gの活性炭を入れた後、この活性炭に対して上記水溶液を噴霧器で噴霧した。活性炭に対するNaClの添着割合が4.4質量%となるように、活性炭に対する水溶液の噴霧量を設定した。活性炭に水溶液を噴霧した後、ポリ容器をよく振ってNaClを活性炭に十分に添着させた。このようにして、活性炭に塩化ナトリウムが添着された添着活性炭を得た。
(Example 9)
<Production of impregnated activated carbon>
Sodium chloride (NaCl) was dissolved in water to obtain an aqueous solution. The NaCl concentration in the aqueous solution was 25.3% by mass. After about 20 g of activated carbon was placed in a plastic container, the above aqueous solution was sprayed onto the activated carbon using a sprayer. The amount of aqueous solution sprayed onto the activated carbon was set so that the impregnation ratio of NaCl to the activated carbon was 4.4% by mass. After spraying the aqueous solution onto the activated carbon, the plastic container was shaken well to sufficiently adhere NaCl to the activated carbon. In this way, impregnated activated carbon in which sodium chloride was impregnated on activated carbon was obtained.

<添着活性炭の評価>
添着活性炭を十分に乾燥させた後、実施例1と同様の方法で水銀(Hg)の除去率(%)を測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)への供給ガスにおける水銀濃度を、表6に示すとおりに変更して行った。結果は表6に示すとおりであった。実施例1の添着活性炭も、実施例9の添着活性炭と同じ条件で水銀(Hg)の除去率(%)を測定した。結果は表6に示すとおりであった。
<Evaluation of impregnated activated carbon>
After sufficiently drying the impregnated activated carbon, the removal rate (%) of mercury (Hg 0 ) was measured in the same manner as in Example 1. However, the measurements were performed by changing the mercury concentration in the gas supplied to the column chromatography tube (inner diameter: 30 mm, length: 30 cm) as shown in Table 6. The results were as shown in Table 6. The removal rate (%) of mercury (Hg 0 ) for the impregnated activated carbon of Example 1 was also measured under the same conditions as for the impregnated activated carbon of Example 9. The results were as shown in Table 6.

Figure 2023140485000007
Figure 2023140485000007

表6に示すとおり、添着物がNaClでも水銀の吸着に十分に優れることが確認された。供給ガス中の水銀濃度が高くなると、NaClよりもNaBrの方がより優位となることが確認された。 As shown in Table 6, it was confirmed that even if the impregnant was NaCl, it was sufficiently excellent in adsorbing mercury. It was confirmed that as the mercury concentration in the feed gas increases, NaBr becomes more dominant than NaCl.

次に、NaBrの添着をリボンブレンダとノズルを備える製造設備を用いて行い、量産化の検討を行った。 Next, NaBr was impregnated using manufacturing equipment equipped with a ribbon blender and a nozzle, and mass production was studied.

(実施例10)
<添着活性炭の製造>
図6(A)及び図6(B)に示すような製造設備の攪拌装置50(リボンブレンダ)に実施例1と同じ手順で作製した活性炭を500kg入れた。この活性炭を攪拌しながらノズル60Aから、実施例1と同じNaBrの水溶液を活性炭に20分間かけて噴霧した。液滴径は、300~600μmであった。4つのノズル60Aから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。
(Example 10)
<Production of impregnated activated carbon>
500 kg of activated carbon produced in the same manner as in Example 1 was placed in a stirring device 50 (ribbon blender) of a manufacturing facility as shown in FIGS. 6(A) and 6(B). While stirring the activated carbon, the same NaBr aqueous solution as in Example 1 was sprayed onto the activated carbon for 20 minutes from the nozzle 60A. The droplet diameter was 300-600 μm. The total amount of the NaBr aqueous solution sprayed from the four nozzles 60A was such that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass.

図6(B)は、図6(A)のVIb-VIb線で切断して、攪拌装置50の内部を上方から見たときの図である。この図6(B)には、攪拌装置50内の添着活性炭の堆積層11を平面視したときの、堆積層11の表面のうち各ノズル60Aからの噴霧液が直接落下するエリア64を示している。4つのエリア64の合計面積(噴霧面積)と、堆積層11の表面の面積全体に対する、エリア64の合計面積の比率(面積比率)を算出した。これらの結果は表7に示すとおりであった。このように、堆積層11の表面の一部に、ノズル60Aからの水溶液が直接落下するように水溶液を噴霧しながら攪拌羽根72で活性炭を攪拌した。このようにして、添着活性炭を製造した。 FIG. 6(B) is a diagram of the interior of the stirring device 50 viewed from above, taken along line VIb-VIb in FIG. 6(A). FIG. 6(B) shows an area 64 on the surface of the deposited layer 11 where the spray liquid from each nozzle 60A falls directly when the deposited layer 11 of impregnated activated carbon in the stirring device 50 is viewed from above. There is. The total area of the four areas 64 (spray area) and the ratio of the total area of the areas 64 to the entire surface area of the deposited layer 11 (area ratio) were calculated. These results were as shown in Table 7. In this way, the activated carbon was stirred by the stirring blade 72 while spraying the aqueous solution so that the aqueous solution from the nozzle 60A fell directly onto a part of the surface of the deposited layer 11. In this way, impregnated activated carbon was produced.

<添着活性炭の評価>
添着活性炭を十分に乾燥させた後、実施例1と同様の方法で水銀(Hg)の除去率(%)を測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)への供給ガスにおける水銀濃度を、表8に示すとおりに変更して行った。結果は表8に示すとおりであった。なお、実施例1の添着活性炭も、実施例10の添着活性炭と同じ条件で水銀(Hg)の除去率(%)を測定した。結果は表8に示すとおりであった。
<Evaluation of impregnated activated carbon>
After sufficiently drying the impregnated activated carbon, the removal rate (%) of mercury (Hg 0 ) was measured in the same manner as in Example 1. However, the measurements were performed by changing the mercury concentration in the gas supplied to the column chromatography tube (inner diameter: 30 mm, length: 30 cm) as shown in Table 8. The results were as shown in Table 8. The removal rate (%) of mercury (Hg 0 ) for the impregnated activated carbon of Example 1 was also measured under the same conditions as for the impregnated activated carbon of Example 10. The results were as shown in Table 8.

(実施例11)
図7(A)及び図7(B)に示すような攪拌装置50(リボンブレンダ)及びノズル60Bを備える製造設備を用いたこと以外は、実施例10と同様にして添着活性炭を製造し、評価を行った。この製造設備のノズル60Bは、ノズル60Aよりも広角に噴霧する形式のものであったため、ノズルの本数は2本とした。液滴径は、100~300μmであった。
(Example 11)
Impregnated activated carbon was produced and evaluated in the same manner as in Example 10, except that production equipment equipped with a stirring device 50 (ribbon blender) and a nozzle 60B as shown in FIGS. 7(A) and 7(B) was used. I did it. Since the nozzle 60B of this manufacturing equipment was of a type that sprayed at a wider angle than the nozzle 60A, the number of nozzles was set to two. The droplet diameter was 100-300 μm.

図7(B)は、図7(A)のVIIb-VIIb線で切断して、攪拌装置50の内部を上方から見たときの図である。この図7(B)には、攪拌装置50内の添着活性炭の堆積層11を平面視したときの、堆積層11の表面と、当該表面のうち各ノズル60Bからの噴霧液が直接落下するエリア64を示している。2つのエリア64の合計面積(噴霧面積)と、堆積層11の表面の面積全体に対する、エリア64の合計面積の比率(面積比率)を算出した。これらの結果は表7に示すとおりであった。2つのノズル60Bから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。水銀(Hg)の除去率(%)を測定結果は表8に示すとおりであった。 FIG. 7(B) is a diagram of the inside of the stirring device 50 viewed from above, taken along line VIIb-VIIb in FIG. 7(A). FIG. 7(B) shows the surface of the deposited layer 11 when the deposited layer 11 of the impregnated activated carbon in the stirring device 50 is viewed from above, and the area on the surface where the spray liquid from each nozzle 60B directly falls. 64 is shown. The total area of the two areas 64 (spray area) and the ratio of the total area of the areas 64 to the entire surface area of the deposited layer 11 (area ratio) were calculated. These results were as shown in Table 7. The total amount of the NaBr aqueous solution sprayed from the two nozzles 60B was such that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass. The results of measuring the removal rate (%) of mercury (Hg 0 ) are as shown in Table 8.

(実施例12)
図8(A)及び図8(B)に示すような攪拌装置50(リボンブレンダ)及びノズル60Bを備える製造設備を用いたこと以外は、実施例11と同様にして添着活性炭を製造し、評価を行った。この攪拌装置50の上面には、実施例11で用いたノズル60Bを4本設置した。したがって、液滴径は、100~300μmであった。
(Example 12)
Impregnated activated carbon was produced and evaluated in the same manner as in Example 11, except that production equipment equipped with a stirring device 50 (ribbon blender) and a nozzle 60B as shown in FIGS. 8(A) and 8(B) was used. I did it. On the top surface of this stirring device 50, four nozzles 60B used in Example 11 were installed. Therefore, the droplet diameter was 100-300 μm.

図8(B)は、図8(A)のVIIIb-VIIIb線で切断して、攪拌装置50の内部を上方から見たときの図である。この図8(B)には、攪拌装置50内の添着活性炭の堆積層11を平面視したときの、堆積層11の表面と、当該表面のうち各ノズル60Bからの噴霧液が直接落下するエリア64とを示している。4つのエリア64の合計面積(噴霧面積)と、堆積層11の表面の面積全体に対する、エリア64の合計面積の比率(面積比率)を算出した。なお、エリア64同士が一部重なっているが、重なり部分の補正は特に行わず、各エリア64の面積を4倍して、合計面積(噴霧面積)を算出した。これらの結果は表7に示すとおりであった。4つのノズル60Bから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。水銀(Hg)の除去率(%)を測定結果は表8に示すとおりであった。 FIG. 8(B) is a diagram of the inside of the stirring device 50 viewed from above, taken along line VIIIb-VIIIb in FIG. 8(A). FIG. 8(B) shows the surface of the deposited layer 11 when the deposited layer 11 of the impregnated activated carbon in the stirring device 50 is viewed from above, and the areas on the surface where the spray liquid from each nozzle 60B directly falls. 64. The total area of the four areas 64 (spray area) and the ratio of the total area of the areas 64 to the entire surface area of the deposited layer 11 (area ratio) were calculated. Note that although the areas 64 partially overlapped, no particular correction was made for the overlapping portion, and the area of each area 64 was multiplied by 4 to calculate the total area (spray area). These results were as shown in Table 7. The total amount of the NaBr aqueous solution sprayed from the four nozzles 60B was such that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass. The results of measuring the removal rate (%) of mercury (Hg 0 ) are as shown in Table 8.

Figure 2023140485000008
Figure 2023140485000008

Figure 2023140485000009
Figure 2023140485000009

表7及び表8に示すとおり、噴霧面積を大きくすることによって、水銀吸着性能に優れる添着活性炭が得られることが確認された。これは、吸着に寄与するハロゲン元素の分布の均一性が向上するためと考えられる。 As shown in Tables 7 and 8, it was confirmed that impregnated activated carbon with excellent mercury adsorption performance could be obtained by increasing the spray area. This is considered to be because the uniformity of the distribution of halogen elements that contribute to adsorption is improved.

水銀(Hg)以外の有害物質の吸着性能を維持しつつ、水銀(Hg)の吸着性能に十分に優れる添着活性炭及びその製造方法が提供される。水銀(Hg)の吸着性能に十分に優れる添着活性炭の製造設備が提供される。 Provided is impregnated activated carbon that has sufficiently excellent adsorption performance for mercury (Hg 0 ) while maintaining adsorption performance for harmful substances other than mercury (Hg 0 ), and a method for producing the same. Provided is a production facility for impregnated activated carbon that has sufficiently excellent adsorption performance for mercury (Hg 0 ).

10,110,111…活性炭、11…堆積層、12…添着活性炭、20…ハロゲン化合物、22…領域、40…細孔、40A,40B…ミクロ孔、50…攪拌装置、52…導入部、54…導出部、60,60A,60B…ノズル、62…ポンプ、64…エリア、70…モータ、72…攪拌羽根、120…ハロゲン化合物、122…領域、140…細孔。 10, 110, 111... activated carbon, 11... deposited layer, 12... impregnated activated carbon, 20... halogen compound, 22... region, 40... pore, 40A, 40B... micropore, 50... stirring device, 52... introduction part, 54 ...Derivation part, 60, 60A, 60B... Nozzle, 62... Pump, 64... Area, 70... Motor, 72... Stirring blade, 120... Halogen compound, 122... Area, 140... Pore.

一方、原子数が3個以上の分子であるハロゲン化合物の場合、図9()に示されるように、ハロゲン化合物120のサイズが大きいため、活性炭110の細孔140内に侵入することができず、活性炭110の表面に添着する。この場合、活性炭110の内部においてロンドン分散力が及ぶ領域122が小さくなってしまう。このため、水銀(Hg)30を吸着できる細孔140の割合が小さくなる。したがって、図9()のような添着活性炭では、水銀(Hg)130を十分に吸着できない。 On the other hand, in the case of a halogen compound that is a molecule with three or more atoms, the halogen compound 120 is large in size and cannot enter the pores 140 of the activated carbon 110, as shown in FIG . First, it is attached to the surface of activated carbon 110. In this case, the region 122 within the activated carbon 110 that is affected by the London dispersion force becomes small. Therefore, the proportion of pores 140 that can adsorb mercury (Hg 0 ) 30 becomes small. Therefore, impregnated activated carbon as shown in FIG. 9( B ) cannot sufficiently adsorb mercury (Hg 0 ) 130.

また、十分に小さいミクロ孔が少ない活性炭の場合、図9()に示されるように、ハロゲン化合物121は、大きいミクロ孔から活性炭111の内部に侵入し、ロンドン分散力を比較的広い領域122に及ぼす。しかしながら、領域122に含まれる、十分に小さいミクロ孔が少ないため、水銀(Hg)130を十分に吸着することができない。 In addition, in the case of activated carbon with few sufficiently small micropores, as shown in FIG . effect on However, since there are few sufficiently small micropores included in the region 122, mercury (Hg 0 ) 130 cannot be sufficiently adsorbed.

実施例、参考例、及び比較例を参照して本発明の内容をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The contents of the present invention will be explained in more detail with reference to Examples , Reference Examples, and Comparative Examples, but the present invention is not limited to the following Examples.

次に、添着活性炭の粒径の影響を調べるため、実施例7~8、及び参考例9を行った。 Next, Examples 7 to 8 and Reference Example 9 were conducted in order to investigate the influence of the particle size of the impregnated activated carbon.

参考例9)
<添着活性炭の製造>
塩化ナトリウム(NaCl)を水に溶解させて水溶液を得た。水溶液中のNaCl濃度は25.3質量%とした。ポリ容器に、約20gの活性炭を入れた後、この活性炭に対して上記水溶液を噴霧器で噴霧した。活性炭に対するNaClの添着割合が4.4質量%となるように、活性炭に対する水溶液の噴霧量を設定した。活性炭に水溶液を噴霧した後、ポリ容器をよく振ってNaClを活性炭に十分に添着させた。このようにして、活性炭に塩化ナトリウムが添着された添着活性炭を得た。
( Reference example 9)
<Production of impregnated activated carbon>
Sodium chloride (NaCl) was dissolved in water to obtain an aqueous solution. The NaCl concentration in the aqueous solution was 25.3% by mass. After about 20 g of activated carbon was placed in a plastic container, the above aqueous solution was sprayed onto the activated carbon using a sprayer. The amount of aqueous solution sprayed onto the activated carbon was set so that the impregnation ratio of NaCl to the activated carbon was 4.4% by mass. After spraying the aqueous solution onto the activated carbon, the plastic container was shaken well to sufficiently adhere NaCl to the activated carbon. In this way, impregnated activated carbon in which sodium chloride was impregnated on activated carbon was obtained.

<添着活性炭の評価>
添着活性炭を十分に乾燥させた後、実施例1と同様の方法で水銀(Hg)の除去率(%)を測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)への供給ガスにおける水銀濃度を、表6に示すとおりに変更して行った。結果は表6に示すとおりであった。実施例1の添着活性炭も、参考例9の添着活性炭と同じ条件で水銀(Hg)の除去率(%)を測定した。結果は表6に示すとおりであった。
<Evaluation of impregnated activated carbon>
After sufficiently drying the impregnated activated carbon, the removal rate (%) of mercury (Hg 0 ) was measured in the same manner as in Example 1. However, the measurements were performed by changing the mercury concentration in the gas supplied to the column chromatography tube (inner diameter: 30 mm, length: 30 cm) as shown in Table 6. The results were as shown in Table 6. The removal rate (%) of mercury (Hg 0 ) for the impregnated activated carbon of Example 1 was also measured under the same conditions as for the impregnated activated carbon of Reference Example 9. The results were as shown in Table 6.

Figure 2023140485000019
Figure 2023140485000019

参考例10)
<添着活性炭の製造>
図6(A)及び図6(B)に示すような製造設備の攪拌装置50(リボンブレンダ)に実施例1と同じ手順で作製した活性炭を500kg入れた。この活性炭を攪拌しながらノズル60Aから、実施例1と同じNaBrの水溶液を活性炭に20分間かけて噴霧した。液滴径は、300~600μmであった。4つのノズル60Aから噴霧されるNaBr水溶液の総量は、活性炭に対するNaBrの添着割合が3.5質量%となる量とした。
( Reference example 10)
<Production of impregnated activated carbon>
500 kg of activated carbon produced in the same manner as in Example 1 was placed in a stirring device 50 (ribbon blender) of a manufacturing facility as shown in FIGS. 6(A) and 6(B). While stirring the activated carbon, the same NaBr aqueous solution as in Example 1 was sprayed onto the activated carbon for 20 minutes from the nozzle 60A. The droplet diameter was 300-600 μm. The total amount of the NaBr aqueous solution sprayed from the four nozzles 60A was such that the impregnation ratio of NaBr to the activated carbon was 3.5% by mass.

<添着活性炭の評価>
添着活性炭を十分に乾燥させた後、実施例1と同様の方法で水銀(Hg)の除去率(%)を測定した。ただし、測定は、カラムクロマト管(内径:30mm,長さ:30cm)への供給ガスにおける水銀濃度を、表8に示すとおりに変更して行った。結果は表8に示すとおりであった。なお、実施例1の添着活性炭も、参考例10の添着活性炭と同じ条件で水銀(Hg)の除去率(%)を測定した。結果は表8に示すとおりであった。
<Evaluation of impregnated activated carbon>
After sufficiently drying the impregnated activated carbon, the removal rate (%) of mercury (Hg 0 ) was measured in the same manner as in Example 1. However, the measurements were performed by changing the mercury concentration in the gas supplied to the column chromatography tube (inner diameter: 30 mm, length: 30 cm) as shown in Table 8. The results were as shown in Table 8. The removal rate (%) of mercury (Hg 0 ) for the impregnated activated carbon of Example 1 was also measured under the same conditions as for the impregnated activated carbon of Reference Example 10. The results were as shown in Table 8.

(実施例11)
図7(A)及び図7(B)に示すような攪拌装置50(リボンブレンダ)及びノズル60Bを備える製造設備を用いたこと以外は、参考例10と同様にして添着活性炭を製造し、評価を行った。この製造設備のノズル60Bは、ノズル60Aよりも広角に噴霧する形式のものであったため、ノズルの本数は2本とした。液滴径は、100~300μmであった。
(Example 11)
Impregnated activated carbon was produced and evaluated in the same manner as in Reference Example 10, except that production equipment equipped with a stirring device 50 (ribbon blender) and a nozzle 60B as shown in FIGS. 7(A) and 7(B) was used. I did it. Since the nozzle 60B of this manufacturing equipment was of a type that sprayed at a wider angle than the nozzle 60A, the number of nozzles was set to two. The droplet diameter was 100-300 μm.

Figure 2023140485000020
Figure 2023140485000020

Figure 2023140485000021
Figure 2023140485000021

Claims (12)

炭材を賦活処理して得られた活性炭に、二原子分子のハロゲン化合物の水溶液を噴霧して、前記活性炭に前記ハロゲン化合物を添着させる工程を有し、
前記炭材は石炭を含んでおり、前記活性炭の炭素含有量が70質量%以上である、添着活性炭の製造方法。
Spraying an aqueous solution of a diatomic halogen compound onto activated carbon obtained by activating a carbon material to impregnate the halogen compound onto the activated carbon,
The method for producing impregnated activated carbon, wherein the carbonaceous material contains coal, and the activated carbon has a carbon content of 70% by mass or more.
前記炭材の炭素含有量が70質量%以上である、請求項1に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to claim 1, wherein the carbon content of the carbon material is 70% by mass or more. 前記炭材は、瀝青炭及び無煙炭からなる群より選ばれる少なくとも一つを含む、請求項1又は2に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to claim 1 or 2, wherein the carbon material includes at least one selected from the group consisting of bituminous coal and anthracite coal. 前記活性炭に対する前記ハロゲン化合物の添着割合が1.5~5質量%である、請求項1~3のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 3, wherein the impregnated ratio of the halogen compound to the activated carbon is 1.5 to 5% by mass. 前記添着活性炭の比表面積が600~1100m/gである、請求項1~4のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 4, wherein the impregnated activated carbon has a specific surface area of 600 to 1100 m 2 /g. 前記活性炭における細孔径が1nm以下である微分細孔容積[dVp/d(dp)]の積算値をA、細孔径が1nm超且つ2nm以下である微分細孔容積[dVp/d(dp)]の積算値をBとしたとき、下記式(1)及び(2)を満たす、請求項1~5のいずれか一項に記載の添着活性炭の製造方法。
A≧3cm/g/nm (1)
B/A≧0.2 (2)
A is the integrated value of the differential pore volume [dVp/d (dp)] where the pore diameter is 1 nm or less in the activated carbon, and the differential pore volume [dVp/d (dp)] where the pore diameter is more than 1 nm and 2 nm or less. The method for producing impregnated activated carbon according to any one of claims 1 to 5, which satisfies the following formulas (1) and (2), where B is the integrated value of .
A≧ 3cm3 /g/nm (1)
B/A≧0.2 (2)
前記水溶液における前記ハロゲン化合物の濃度が、40~120g/100mLである、請求項1~6のいずれか一項に記載の添着活性炭の製造方法。 The method for producing impregnated activated carbon according to any one of claims 1 to 6, wherein the concentration of the halogen compound in the aqueous solution is 40 to 120 g/100 mL. 前記ハロゲン化合物が臭化ナトリウムを含有し、
前記水溶液における前記臭化ナトリウムの濃度が30~42質量%である、請求項1~7のいずれか一項に記載の添着活性炭の製造方法。
the halogen compound contains sodium bromide,
The method for producing impregnated activated carbon according to any one of claims 1 to 7, wherein the concentration of the sodium bromide in the aqueous solution is 30 to 42% by mass.
前記活性炭を攪拌する攪拌装置と前記水溶液を噴霧するノズルとを用い、前記攪拌装置で前記活性炭を攪拌しながら、前記ノズルから前記水溶液を前記活性炭に噴霧して、前記添着活性炭を得る、請求項1~8のいずれか一項に記載の添着活性炭の製造方法。 The impregnated activated carbon is obtained by using a stirring device that stirs the activated carbon and a nozzle that sprays the aqueous solution, and spraying the aqueous solution onto the activated carbon from the nozzle while stirring the activated carbon with the stirring device. 9. The method for producing impregnated activated carbon according to any one of 1 to 8. 活性炭と前記活性炭に添着された臭化ナトリウムとを含み、
前記活性炭は、石炭の賦活処理物であって炭素含有量が70質量%以上であり、
前記活性炭に対する、前記臭化ナトリウムの比率が1.5~5質量%である、添着活性炭。
comprising activated carbon and sodium bromide impregnated with the activated carbon,
The activated carbon is an activated product of coal and has a carbon content of 70% by mass or more,
Impregnated activated carbon, wherein the ratio of the sodium bromide to the activated carbon is 1.5 to 5% by mass.
石炭由来の活性炭の堆積層を攪拌する攪拌装置と、
炭素含有量が70質量%以上である前記活性炭を前記攪拌装置に導入する導入部と、
前記堆積層の上方から前記堆積層に向けて二原子分子のハロゲン化合物の水溶液を噴霧するノズルと、
前記ハロゲン化合物が添着された添着活性炭を前記攪拌装置から導出する導出部と、を備える、添着活性炭の製造設備。
a stirring device that stirs a deposited layer of activated carbon derived from coal;
an introduction part for introducing the activated carbon having a carbon content of 70% by mass or more into the stirring device;
a nozzle that sprays an aqueous solution of a diatomic halogen compound toward the deposited layer from above the deposited layer;
A production facility for impregnated activated carbon, comprising: a derivation section for deriving the impregnated activated carbon impregnated with the halogen compound from the stirring device.
前記攪拌装置内の前記堆積層を平面視したときに、前記堆積層の表面の面積全体に対する、前記ノズルからの前記水溶液の噴霧面積の比率が40~120%となるように、前記ノズルから前記水溶液を噴霧する、請求項11に記載の添着活性炭の製造設備。 The aqueous solution is sprayed from the nozzle so that the ratio of the spray area of the aqueous solution from the nozzle to the entire surface area of the deposited layer is 40 to 120% when the deposited layer in the stirring device is viewed from above. The impregnated activated carbon production equipment according to claim 11, which sprays an aqueous solution.
JP2022046345A 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon Active JP7275343B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022046345A JP7275343B1 (en) 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022046345A JP7275343B1 (en) 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon

Publications (2)

Publication Number Publication Date
JP7275343B1 JP7275343B1 (en) 2023-05-17
JP2023140485A true JP2023140485A (en) 2023-10-05

Family

ID=86332444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022046345A Active JP7275343B1 (en) 2022-03-23 2022-03-23 Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon

Country Status (1)

Country Link
JP (1) JP7275343B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910343A (en) * 1982-07-08 1984-01-19 Takeda Chem Ind Ltd Adsorbent for mercury vapor
JP2002102639A (en) * 2000-09-28 2002-04-09 Nikko Plant:Kk Treatment method and apparatus for lower aldehyde
JP2005349364A (en) * 2004-06-14 2005-12-22 Japan Enviro Chemicals Ltd Activated carbon for removing mercury or mercury compound
JP2008238163A (en) * 2007-03-01 2008-10-09 Japan Enviro Chemicals Ltd Removal method of mercury vapor in gas
JP2012213549A (en) * 2011-04-01 2012-11-08 Kao Corp Manufacturing method of active carbon impregnated with deodorant
WO2013011898A1 (en) * 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting adsorbent particles, cigarette filter, filtered cigarette, and method for manufacturing fragrance-supporting adsorbent particles
WO2021055423A1 (en) * 2019-09-16 2021-03-25 Albemarle Corporation Processes for reducing environmental availability of environmental pollutants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910343A (en) * 1982-07-08 1984-01-19 Takeda Chem Ind Ltd Adsorbent for mercury vapor
JP2002102639A (en) * 2000-09-28 2002-04-09 Nikko Plant:Kk Treatment method and apparatus for lower aldehyde
JP2005349364A (en) * 2004-06-14 2005-12-22 Japan Enviro Chemicals Ltd Activated carbon for removing mercury or mercury compound
JP2008238163A (en) * 2007-03-01 2008-10-09 Japan Enviro Chemicals Ltd Removal method of mercury vapor in gas
JP2012213549A (en) * 2011-04-01 2012-11-08 Kao Corp Manufacturing method of active carbon impregnated with deodorant
WO2013011898A1 (en) * 2011-07-15 2013-01-24 日本たばこ産業株式会社 Fragrance-supporting adsorbent particles, cigarette filter, filtered cigarette, and method for manufacturing fragrance-supporting adsorbent particles
WO2021055423A1 (en) * 2019-09-16 2021-03-25 Albemarle Corporation Processes for reducing environmental availability of environmental pollutants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
独立行政法人 石油天然ガス・金属鉱物資源機構 石炭開発部, 石炭の分類, JPN6022024108, March 2020 (2020-03-01), ISSN: 0004943692 *

Also Published As

Publication number Publication date
JP7275343B1 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
Giannakoudakis et al. Smart textiles of MOF/gC 3 N 4 nanospheres for the rapid detection/detoxification of chemical warfare agents
US9566575B2 (en) Activated carbon with a special finishing, production and use thereof
PT1478248E (en) Flavored carbon useful as filtering material of smoking article
KR101938059B1 (en) Surface modified metal organic franeworks for removal of toxic gases
WO1998023370A1 (en) Carbon dioxide absorbent in anaesthesiology
US2232728A (en) Method and composition for dispelling vapors
US20090139407A1 (en) Activated Carbon and Canister Using the Same
JP6511557B1 (en) Wet mixed sheet for air cleaning
JP3766771B2 (en) Adsorbent
JP7275343B1 (en) Impregnated activated carbon, manufacturing method thereof, and manufacturing equipment for impregnated activated carbon
JP2002102653A (en) Method for cleaning harmful gas and cleaning agent
JP2011132903A (en) Adsorbent for canister
US6767860B2 (en) Sublimation of solid organic compounds onto substrate surfaces in the presence of a fluid impregnant
JP7428347B2 (en) activated carbon
Belapurkar et al. PTFE Dispersed hydrophobic catalysts for hydrogen—water isotopic exchange: I. Preparation and characterization
AU2002244169A1 (en) Sublimation of solid organic compounds onto substrate surfaces in the presence of a fluid impregnant
CN104355309A (en) Activated carbon and canister and intake air filter utilizing the same
JP4627615B2 (en) Filter material and filtration method for filtering contaminants from air or other gases
JP3252866B2 (en) Oxygen absorber
JP2000107274A (en) Deodorant and its production
JP2003190783A (en) Adsorbent for solvent vapor and method for preparing the same
JP2000233916A (en) Spherical-granular active carbon and its production
JP3029764B2 (en) Deodorant
JP4562838B2 (en) Gel deodorant
JPS642915B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230502

R150 Certificate of patent or registration of utility model

Ref document number: 7275343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150