JP7271051B2 - water filter body - Google Patents

water filter body Download PDF

Info

Publication number
JP7271051B2
JP7271051B2 JP2017212195A JP2017212195A JP7271051B2 JP 7271051 B2 JP7271051 B2 JP 7271051B2 JP 2017212195 A JP2017212195 A JP 2017212195A JP 2017212195 A JP2017212195 A JP 2017212195A JP 7271051 B2 JP7271051 B2 JP 7271051B2
Authority
JP
Japan
Prior art keywords
weight
parts
filter body
activated carbon
paper strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017212195A
Other languages
Japanese (ja)
Other versions
JP2019084469A (en
Inventor
誠 横井
千春 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2017212195A priority Critical patent/JP7271051B2/en
Publication of JP2019084469A publication Critical patent/JP2019084469A/en
Application granted granted Critical
Publication of JP7271051B2 publication Critical patent/JP7271051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、基材活性炭と粉末状吸着材とフィブリル化繊維バインダとを含む浄水フィルター体に関する。 TECHNICAL FIELD The present invention relates to a water purification filter body comprising a substrate activated carbon, a powdered adsorbent and a fibrillated fiber binder.

浄水器等に装着されるフィルター体では、主な材料として、多孔質構造により吸着性能を備えた活性炭が使用される。この種のフィルター体では、例えば、繊維状活性炭と粉末状活性炭とからなる基材活性炭がフィブリル化繊維バインダによって一体化された浄水フィルター体が知られている(例えば、特許文献1参照)。上記浄水フィルター体は、フィブリル化繊維バインダが繊維状活性炭と粉末状活性炭とを絡めて一体化するため、耐久性や保形性に優れる。この種のフィルター体において、基材活性炭では、繊維状活性炭や粉末状活性炭の他に、粒状活性炭も使用することができる。 Activated carbon, which has adsorption performance due to its porous structure, is used as a main material in filter bodies attached to water purifiers and the like. For this type of filter body, for example, a water purification filter body is known in which a base material activated carbon composed of fibrous activated carbon and powdered activated carbon is integrated with a fibrillated fiber binder (see, for example, Patent Document 1). Since the fibrillated fiber binder entangles and integrates the fibrous activated carbon and the powdered activated carbon, the water purification filter body is excellent in durability and shape retention. In this type of filter body, as the substrate activated carbon, not only fibrous activated carbon and powdered activated carbon, but also granular activated carbon can be used.

近年、浄水器の高性能化が要求され、水道水等の飲料用水に含まれる残留成分や微細な不溶物等の異物等をより確実に除去するために、様々な手法により浄水フィルター体の改良が検討されている。例えば、粉末状活性炭または粒状活性炭の他に、さらに粒子が細かい粉末状吸着材を混合してフィルター体を形成することにより、簡便に吸着性能を向上させることができる。 In recent years, there has been a demand for high-performance water purifiers, and in order to more reliably remove foreign substances such as residual components and fine insolubles contained in drinking water such as tap water, various methods have been used to improve water purification filters. is being considered. For example, the adsorption performance can be easily improved by mixing a powdered adsorbent with finer particles in addition to powdered activated carbon or granular activated carbon to form a filter body.

しかしながら、上記浄水フィルター体では、粉末状吸着材が極端に微細な粒子であるため、通水初期時に吸着材由来の微粉が流出しやすくなる。そこで、吸着性能向上のための微細な吸着材を使用した場合に、通水時の微粉の流出を低減させることができる浄水フィルター体が求められている。 However, in the water-purifying filter body, since the powdery adsorbent is extremely fine particles, fine particles derived from the adsorbent tend to flow out at the initial stage of water passage. Therefore, there is a demand for a water purification filter body that can reduce the outflow of fine powder when water is passed through it when using a fine adsorbent for improving adsorption performance.

特開2016-22399号公報JP 2016-22399 A

本発明は、前記の点に鑑みなされたものであり、粉末状吸着材が含まれたフィルター体の通水時に粉末状吸着材由来の微粉の流出を低減させることができる浄水フィルター体を提供するものである。 The present invention has been made in view of the above points, and provides a water purification filter body that can reduce the outflow of fine powder derived from the powdery adsorbent when water is passed through the filter body containing the powdery adsorbent. It is.

すなわち、第1の発明は、基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含むフィルター体であって、前記基材活性炭の平均粒子径は25~160μmであり、前記粉末状吸着材は、平均粒子径が3~μmのゼオライトまたはチタン酸ナトリウムから選ばれる少なくとも1種であり、前記フィルター体に占める重量割合が、0.5~30重量部であり、カチオン系湿潤紙力増強剤を含む紙力増強剤が前記粉末状吸着材100重量部に対して1~20重量部添加されてなり、微粉低減率が85.1%以上であることを特徴とする浄水フィルター体に係る。 That is, a first invention is a filter body comprising a substrate activated carbon, a powdery adsorbent, and a fibrillated fiber binder, wherein the substrate activated carbon has an average particle size of 25 to 160 μm, and the powdery The adsorbent is at least one selected from zeolite having an average particle size of 3 to 8 μm and sodium titanate, and the weight ratio of the filter body is 0.5 to 30 parts by weight. 1 to 20 parts by weight of a paper strength enhancer containing a strength enhancer is added to 100 parts by weight of the powdery adsorbent , and the fine powder reduction rate is 85.1% or more. related to the body.

第1の発明に係る浄水フィルター体によると、基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含むフィルター体であって、前記基材活性炭の平均粒子径は25~160μmであり、前記粉末状吸着材は、平均粒子径が3~μmのゼオライトまたはチタン酸ナトリウムから選ばれる少なくとも1種であり、前記フィルター体に占める重量割合が、0.5~30重量部であり、カチオン系湿潤紙力増強剤を含む紙力増強剤が前記粉末状吸着材100重量部に対して1~20重量部添加されてなり、微粉低減率が85.1%以上であるため、紙力増強剤が粉末状吸着材と結合しやすく通水時に粉末状吸着材由来の微粉の流出を大幅に低減させることができるとともに、成形性を確保することができ、優れた吸着性能が得られて液中の金属イオンを適切に除去することが可能となる。 According to the water purification filter body according to the first invention, the filter body includes a substrate activated carbon, a powdery adsorbent, and a fibrillated fiber binder, and the average particle diameter of the substrate activated carbon is 25 to 160 μm. , the powdery adsorbent is at least one selected from zeolite and sodium titanate having an average particle size of 3 to 8 μm, and the weight ratio of the filter body is 0.5 to 30 parts by weight; 1 to 20 parts by weight of a paper strength enhancer containing a cationic wet paper strength enhancer is added to 100 parts by weight of the powdery adsorbent , and the fine powder reduction rate is 85.1% or more . The force-enhancing agent easily bonds with the powdered adsorbent, which can greatly reduce the outflow of fine powder derived from the powdered adsorbent when water is passed through it, and at the same time, it is possible to ensure moldability and obtain excellent adsorption performance. It becomes possible to appropriately remove the metal ions in the liquid.

本発明の一実施形態に係る浄水フィルター体の斜視図である。It is a perspective view of the water-purifying filter body which concerns on one Embodiment of this invention. 浄水フィルター体の製造工程を示す概略工程図である。It is a schematic process drawing which shows the manufacturing process of a water-purifying filter body.

本発明の浄水フィルター体は、水道水等の液体を浄化するためのフィルターであって、基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含み、紙力増強剤が添加されてなる。 The water-purifying filter body of the present invention is a filter for purifying liquid such as tap water, which contains a substrate activated carbon, a powdery adsorbent, and a fibrillated fiber binder, and is added with a paper strength agent. Become.

基材活性炭は、石油ピッチ、樹脂粒、樹木、椰子殻、古タイヤ等を原料とし、800~1000℃で加熱焼成し適宜賦活して細孔を発達させ、粉砕して得た活性炭である。基材活性炭は、浄水のために必要となる一般的な活性炭の吸着性能を備える。具体的には、JIS K 1474(2014)に準拠する測定において、ヨウ素吸着性能1000ないし2000mg/gを満たす。 The base material activated carbon is activated carbon obtained by heating and sintering petroleum pitch, resin particles, trees, coconut shells, old tires, etc. at 800 to 1000° C., appropriately activating them to develop pores, and pulverizing them. The base activated carbon has the adsorption performance of general activated carbon required for water purification. Specifically, it satisfies iodine adsorption performance of 1000 to 2000 mg/g in the measurement based on JIS K 1474 (2014).

基材活性炭は、フィルター体を構成する主原料であり、粉末状活性炭または粒状活性炭が用いられる。基材活性炭を粉末状活性炭または粒状活性炭とすることにより、単位重量当たりの表面積を多くして濾集能力を高めることができる。粉末状活性炭または粒状活性炭である基材活性炭は、吸着性能や成形性等の観点から、分級や篩別により平均粒子径が25~160μmとされる。基材活性炭の平均粒子径が25μm未満の場合、フィルター体の成形が困難となるとともに、通水時の動水圧が上昇し目詰まりしやすくなる等の問題も生じる。また、基材活性炭の平均粒子径が160μmより大きい場合、粒子径が大きくなることに伴って微粒子捕集率が低下するとともに、活性炭の表面積が減少して吸着性能が低下する。なお、平均粒子径の計測は、レーザー回折粒子径分布測定装置(株式会社島津製作所製 SALD-3000S)を用いるレーザー回折・散乱法によって求められた粒度分布における積算値50%での粒子径を採用した。 The base activated carbon is the main raw material that constitutes the filter body, and powdery activated carbon or granular activated carbon is used. By using powdered activated carbon or granular activated carbon as the base material activated carbon, the surface area per unit weight can be increased, and the filtration ability can be enhanced. The base activated carbon, which is powdery activated carbon or granular activated carbon, has an average particle size of 25 to 160 μm by classification or sieving from the viewpoint of adsorption performance and moldability. If the average particle size of the base material activated carbon is less than 25 μm, it becomes difficult to mold the filter body, and problems such as clogging due to an increase in dynamic water pressure during water flow occur. Further, when the average particle size of the substrate activated carbon is larger than 160 μm, as the particle size increases, the fine particle collection efficiency decreases, and the surface area of the activated carbon decreases, resulting in a decrease in adsorption performance. For the measurement of the average particle size, the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction/scattering method using a laser diffraction particle size distribution analyzer (SALD-3000S manufactured by Shimadzu Corporation) is adopted. bottom.

粉末状吸着材は、吸着性能を有する粉末状の材料であり、基材活性炭より微細な粒子で構成することにより、フィルター体の吸着性能を向上させる。粉末状吸着材の平均粒子径は3~20μmである。粉末状吸着材の平均粒子径が3μm未満の場合、粒子径が細かくなりすぎて浄水フィルター体から流出しやすくなる。また、粉末状吸着材の平均粒子径が20μmより大きい場合、基材活性炭より微細な粒子の利点がなくなって吸着性能を十分に向上させることが困難となる。 The powdery adsorbent is a powdery material having adsorption performance, and is composed of finer particles than the base material activated carbon, thereby improving the adsorption performance of the filter body. The powdery adsorbent has an average particle size of 3 to 20 μm. When the average particle size of the powdery adsorbent is less than 3 μm, the particle size becomes too small and tends to flow out from the water purification filter body. Further, when the average particle diameter of the powdery adsorbent is larger than 20 μm, the advantages of finer particles than the base activated carbon are lost, making it difficult to sufficiently improve the adsorption performance.

粉末状吸着材で使用される材料は、活性炭、ゼオライト、ケイ酸チタニウムまたはチタン酸ナトリウムから選ばれる少なくとも1種である。活性炭は物理的な吸着性能に優れているため、フィルター体の主原料である基材活性炭より微細な粒子径に形成して添加することにより、簡易に微粒子等の吸着性能を向上させることができる。また、ゼオライト、ケイ酸チタニウム、チタン酸ナトリウムは、化学的な吸着性能にも優れているため、液中の金属イオンの吸着を可能とする。そのため、溶解性鉛等の金属イオンを適切に除去することが可能である。 The material used in the powdery adsorbent is at least one selected from activated carbon, zeolite, titanium silicate or sodium titanate. Since activated carbon has excellent physical adsorption performance, it is possible to easily improve the adsorption performance of fine particles, etc. by forming it into a finer particle size than the base material activated carbon, which is the main raw material of the filter body, and adding it. . In addition, zeolite, titanium silicate, and sodium titanate are excellent in chemical adsorption performance, so they can adsorb metal ions in liquid. Therefore, it is possible to appropriately remove metal ions such as soluble lead.

粉末状吸着材は、吸着性能や成形性等の観点から、フィルター体に占める重量割合が0.5~30重量部とされる。粉末状吸着材の重量割合が0.5重量部未満である場合、粉末状吸着材による十分な吸着性能を発揮することが困難となる。粉末状吸着材の重量割合が30重量部より多い場合、成形性が悪くなる。 The weight ratio of the powdery adsorbent to the filter body is set to 0.5 to 30 parts by weight from the viewpoint of adsorption performance and moldability. When the weight ratio of the powdery adsorbent is less than 0.5 parts by weight, it becomes difficult to exhibit sufficient adsorption performance by the powdery adsorbent. If the weight ratio of the powdery adsorbent is more than 30 parts by weight, moldability will be poor.

フィブリル化繊維バインダは、アクリル繊維、アラミド繊維、ポリエチレン繊維等の合成樹脂繊維を毛羽立ち形成(フィブリル化)した材料である。フィブリル化繊維バインダでは、繊維のフィブリル化により基材活性炭や粉末状吸着材を絡めて一体化する。バインダの樹脂は耐久性、耐薬品性に優れているため、フィルター体の耐用期間をより長くすることができる。 The fibrillated fiber binder is a material obtained by fluffing (fibrillating) synthetic resin fibers such as acrylic fibers, aramid fibers, and polyethylene fibers. In the fibrillated fiber binder, the base material activated carbon and the powdery adsorbent are entwined and integrated by fibrillating the fibers. Since the binder resin is excellent in durability and chemical resistance, it is possible to extend the service life of the filter body.

紙力増強剤は、粉末状吸着材を保持するための薬品である。紙力増強剤は、粉末状吸着材と水素結合して保持するものと考えられる。紙力増強剤では、耐水性を有するポリアミドポリアミンエピクロルヒドリン樹脂、メラミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等の湿潤紙力増強剤が好ましく用いられる。特に、ポリアミドポリアミンエピクロルヒドリン樹脂等のカチオン系湿潤紙力増強剤を含むことがより好ましい。カチオン系湿潤紙力増強剤は、正極に帯電していることにより粉末状吸着材とより結合しやすくなる。 A paper strength agent is a chemical for retaining the powdered adsorbent. It is believed that the paper strength agent is held by hydrogen bonding with the powdery adsorbent. As paper strength agents, wet paper strength agents such as polyamide polyamine epichlorohydrin resins, melamine formaldehyde resins, and urea formaldehyde resins having water resistance are preferably used. In particular, it is more preferable to contain a cationic wet paper strength enhancer such as polyamide polyamine epichlorohydrin resin. The positively charged cationic wet paper strength agent is more likely to bond with the powdery adsorbent.

紙力増強剤は、成形性や微粉の発生しにくさ等の観点から、粉末状吸着材100重量部に対して1~20重量部添加される。紙力増強剤の添加量が粉末状吸着材100重量部に対して1重量部未満である場合、粉末状吸着材を十分に保持することが困難となる。紙力増強剤の添加量が粉末状吸着材100重量部に対して20重量部より多い場合、フィルター体の保形性が低下して成形しにくくなる。 The paper strength agent is added in an amount of 1 to 20 parts by weight per 100 parts by weight of the powdery adsorbent from the viewpoint of moldability and difficulty in generating fine powder. If the amount of the paper strength agent added is less than 1 part by weight with respect to 100 parts by weight of the powdery adsorbent, it becomes difficult to sufficiently retain the powdery adsorbent. If the amount of the paper strength agent to be added is more than 20 parts by weight per 100 parts by weight of the powdery adsorbent, the shape retention of the filter body deteriorates, making it difficult to mold.

このフィルター体の形状は特に限定されず、適宜である。例えば、図1(a)に示す浄水フィルター体10のように、中空筒部材11の側面部に凝集された筒状構造の濾材12として形成される。中空筒部材11は、適宜の透過孔を有した芯材であり、用途等により残存させても取り外してもよい。フィルター体10の保形性の観点から、中空筒部材11はフィルター体10内に残存されることが好ましい。 The shape of this filter body is not particularly limited and is suitable. For example, like the water purification filter body 10 shown in FIG. The hollow cylindrical member 11 is a core material having appropriate permeation holes, and may be left or removed depending on the application. From the viewpoint of shape retention of the filter body 10 , it is preferable that the hollow tubular member 11 remains inside the filter body 10 .

この筒状構造は、通水時に表面積が最も有利に利用でき、かつ均等に液体を通過させることができる形態である。浄水フィルター体10は、販売や使用に際して、図1(b)に示すように、表面が不織布等の透過性の高い布状物13により被覆、保護される。図1(b)において、符号14はフィルター体10の上下を保護するキャップである。 This tubular structure is a form that allows the surface area to be used most effectively when water is passed through and allows the liquid to pass through evenly. The surface of the water purification filter body 10 is covered and protected by a highly permeable cloth-like material 13 such as a non-woven fabric, as shown in FIG. 1(b), when sold or used. In FIG. 1(b), reference numeral 14 denotes a cap that protects the top and bottom of the filter body 10. As shown in FIG.

この浄水フィルター体は、例えば、浄水器の濾材等に好適に使用される。浄水器に濾材として装填される浄水フィルター体は、簡易に交換可能とするために、カートリッジ式とすることが好ましい。カートリッジ式の浄水フィルター体は、家庭用浄水器の他、据え置き型や濾過能力を高めて大型化した装置への適用も可能である。 This water purifying filter body is suitably used, for example, as a filtering material for a water purifier. The water purification filter body loaded as a filter medium in the water purifier is preferably of a cartridge type so as to be easily replaceable. Cartridge-type water purifying filter bodies can be applied not only to domestic water purifiers, but also to stationary types and large-sized devices with enhanced filtering capacity.

次に、図2を用いて浄水フィルター体の製造過程を説明する。この図において、符号20はフィルター体の製造装置、21は水Wが充填される水槽、22は多数の細孔が形成されたステンレス製の金型棒状部材、25は乾燥機である。 Next, the manufacturing process of the water purification filter body will be described with reference to FIG. In this figure, reference numeral 20 is a filter body manufacturing apparatus, 21 is a water tank filled with water W, 22 is a stainless steel mold rod-shaped member in which a large number of pores are formed, and 25 is a dryer.

はじめに、粉末状活性炭または粒状活性炭である基材活性炭31と、粉末状吸着材32と、フィブリル化繊維バインダ33と、紙力増強剤34とが用意される。これらは水槽21に充填された水Wに投入され、十分に混合されて混合スラリー状物30が調製される。 First, base activated carbon 31, which is powdered activated carbon or granular activated carbon, powdered adsorbent 32, fibrillated fiber binder 33, and paper strength agent 34 are prepared. These are put into the water W filled in the water tank 21 and sufficiently mixed to prepare the mixed slurry 30 .

次に、中空筒部材11の内部に金型棒状部材22が挿入され、中空筒部材11と金型棒状部材22の一体化物23が、混合スラリー状物30で満たされた水槽21内に投入される。そして、水槽21内にて金型棒状部材22を介して減圧吸引することにより、混合スラリー状物30が中空筒部材11の側面に引き寄せられる。なお、必要により、中空筒部材11の周囲に不織布等が巻き付けられる。 Next, the mold rod-shaped member 22 is inserted into the hollow cylindrical member 11, and the integrated product 23 of the hollow cylindrical member 11 and the mold rod-shaped member 22 is put into the water tank 21 filled with the mixed slurry 30. be. Then, the mixed slurry-like material 30 is drawn to the side surface of the hollow cylindrical member 11 by vacuum suction through the mold rod-shaped member 22 in the water tank 21 . A non-woven fabric or the like may be wrapped around the hollow tubular member 11 as necessary.

ここで、中空筒部材11の周囲に巻き付けた不織布等の透過孔は基材活性炭や粉末状吸着材等よりも小さいため、混合スラリー状物30の水分のみが中空筒部材11を通過して金型棒状部材22から吸い出され、基材活性炭や粉末状吸着材等が通過できずに中空筒部材11の表面に濾材12の成分36が残留される。こうして所定の厚さまで濾材12の成分36が中空筒部材11表面にスラリー被着部37として蓄積され、混合スラリー状物30の吸引は終了される。 Here, since the permeation holes of the non-woven fabric wrapped around the hollow cylindrical member 11 are smaller than those of the substrate activated carbon, the powdered adsorbent, etc., only the water content of the mixed slurry 30 passes through the hollow cylindrical member 11 and the gold is removed. The component 36 of the filter medium 12 remains on the surface of the hollow cylindrical member 11 because it is sucked out from the mold rod-shaped member 22 and the substrate activated carbon, powdered adsorbent, etc. cannot pass through. In this way, the component 36 of the filter medium 12 is accumulated on the surface of the hollow cylindrical member 11 to a predetermined thickness as the slurry-adhering portion 37, and the suction of the mixed slurry-like material 30 is terminated.

所定量のスラリー被着部37が形成された後、中空筒部材11は水槽21内から引き上げられ、金型棒状部材22が取り外される。こうして中空筒部材11の表面にスラリー被着部37を備えた吸着被着物35が得られる。その後、吸着被着物35は乾燥機25内で加熱乾燥され、浄水フィルター体が完成される。 After a predetermined amount of slurry adhered portion 37 is formed, the hollow cylindrical member 11 is lifted out of the water tank 21, and the mold bar member 22 is removed. In this way, the adsorption adherend 35 having the slurry adherence portion 37 on the surface of the hollow cylindrical member 11 is obtained. After that, the adsorbed material 35 is heated and dried in the dryer 25 to complete the water purification filter body.

次に、複数種類の基材活性炭及び粉末状吸着材を用い、紙力増強剤の配合割合等を変化させ、フィブリル化繊維バインダを混合して試作例1~19及び比較例1~12の浄水フィルター体を作製した。 Next, using multiple types of base material activated carbon and powdered adsorbent, changing the blending ratio of the paper strength agent, etc., and mixing the fibrillated fiber binder, water purification of Prototype Examples 1 to 19 and Comparative Examples 1 to 12 A filter body was produced.

[使用材料]
〈基材活性炭〉
基材活性炭は、平均粒子径20μmの活性炭1(フタムラ化学株式会社製「CN20MS」)、平均粒子径29μmの活性炭2(フタムラ化学株式会社製「CN30MS」)、平均粒子径98μmの活性炭3(フタムラ化学株式会社製「CN100MS」)、平均粒子径158μmの活性炭4(フタムラ化学株式会社製「CN8200S」)、平均粒子径220μmの活性炭5(フタムラ化学株式会社製「CN480S」)のいずれかを使用した。各基材活性炭の平均粒子径は、篩にかけて調製した。
[Materials used]
<Base activated carbon>
The base activated carbon is activated carbon 1 with an average particle size of 20 μm (“CN20MS” manufactured by Futamura Chemical Co., Ltd.), activated carbon 2 with an average particle size of 29 μm (“CN30MS” manufactured by Futamura Chemical Co., Ltd.), and activated carbon 3 with an average particle size of 98 μm (Futamura "CN100MS" manufactured by Kagaku Co., Ltd.), activated carbon 4 with an average particle size of 158 μm ("CN8200S" manufactured by Futamura Chemical Co., Ltd.), or activated carbon 5 with an average particle size of 220 μm ("CN480S" manufactured by Futamura Chemical Co., Ltd.). . The average particle size of each base activated carbon was prepared by sieving.

〈粉末状吸着材〉
粉末状吸着材は、平均粒子径20μmの活性炭(フタムラ化学株式会社製「CB」)、平均粒子径3μmの三チタン酸ナトリウム(フタムラ化学株式会社製「三チタン酸ナトリウム」)、平均粒子径8μmのゼオライト(東ソー株式会社製「ゼオラム(登録商標) F-9 粉末100」)、平均粒子径12μmのケイ酸チタニウム(BASFジャパン株式会社製「ATS」)のいずれかを使用した。各粉末状吸着材の平均粒子径は、篩にかけて調製した。
<Powder Adsorbent>
The powdery adsorbent includes activated carbon with an average particle size of 20 μm (“CB” manufactured by Futamura Chemical Co., Ltd.), sodium trititanate with an average particle size of 3 μm (“Sodium trititanate” manufactured by Futamura Chemical Co., Ltd.), and an average particle size of 8 μm. Zeolite (“Zeolam (registered trademark) F-9 powder 100” manufactured by Tosoh Corporation) or titanium silicate with an average particle size of 12 μm (“ATS” manufactured by BASF Japan Ltd.) was used. The average particle size of each powdery adsorbent was prepared by sieving.

〈フィブリル化繊維バインダ、紙力増強剤〉
フィブリル化繊維バインダは、アクリル繊維(東洋紡株式会社製「ビィパル(登録商標)」)を使用した。紙力増強剤は、カチオン系湿潤紙力増強剤であるポリアミドポリアミン系湿潤紙力増強剤(荒川化学工業株式会社製「アラフィックス255LOX」)、アニオン系乾燥紙力増強剤(荒川化学工業株式会社製「ポリストロン145」)を使用した。
<Fibrillated fiber binder, paper strength agent>
As the fibrillated fiber binder, acrylic fiber (“Vipal (registered trademark)” manufactured by Toyobo Co., Ltd.) was used. The paper strength agent is a cationic wet paper strength agent, polyamide polyamine wet paper strength agent (“Arafix 255LOX” manufactured by Arakawa Chemical Industries, Ltd.), an anionic dry paper strength agent (Arakawa Chemical Industries, Ltd. ("Polystron 145") was used.

[浄水フィルター体の作製]
基材活性炭、粉末状吸着材、フィブリル化繊維バインダ、紙力増強剤を後述の配合(単位:重量部)に従って水に分散し、均質になるまで水中で十分に混合して試作例1~19及び比較例1~12に対応した混合スラリー状物を調製した。混合スラリー状物における水は、添加した固形分の50倍重量とした。そして、内直径20mm、外直径24mm、全長50mmであり直径2mmの細孔を有するポリプロピレン製の中空筒部材を用意した。また、中空筒部材の外表面に不織布を巻き付けた。同中空筒部材内に、多孔形状のステンレス製の金型棒状部材を挿入して固定するとともに混合スラリー状物内に投入し、減圧吸引(吸引圧力は約-0.08MPa)により混合スラリー状物内から固形分を引き寄せて中空筒部材の表面に濾材部成分を約10.5mm被着させた(スラリー被着部)。中空筒部材から金型棒状部材を取り外し、スラリー被着部と中空筒部材の一体化物となる吸着被着物を得た。そして、乾燥機を用いて100℃、12時間かけて吸着被着物の加熱、乾燥を行い、試作例の浄化用フィルター体を作製した。各フィルター体の寸法は、中空筒部材を含む直径45mm、全長50mmの円筒体である。また、フィルター体の表面をポリエチレンとポリプロピレンの混抄繊維からなる不織布で覆うとともにフィルター体の上下にポリプロピレン製キャップを取り付けた。
[Preparation of water purification filter body]
The substrate activated carbon, the powdered adsorbent, the fibrillated fiber binder, and the paper strength agent are dispersed in water according to the formulation (unit: parts by weight) described below, and thoroughly mixed in water until homogeneous. and mixed slurries corresponding to Comparative Examples 1 to 12 were prepared. The amount of water in the mixed slurry was 50 times the weight of the added solids. A hollow cylindrical member made of polypropylene having an inner diameter of 20 mm, an outer diameter of 24 mm, a total length of 50 mm, and pores with a diameter of 2 mm was prepared. A non-woven fabric was wrapped around the outer surface of the hollow cylindrical member. A porous stainless steel mold rod-shaped member is inserted and fixed in the hollow cylindrical member, and it is put into the mixed slurry, and the mixed slurry is sucked under reduced pressure (suction pressure is about -0.08 MPa). The solid content was drawn from the inside, and about 10.5 mm of the filter medium component was applied to the surface of the hollow cylindrical member (slurry-applied portion). The mold rod-shaped member was removed from the hollow cylindrical member to obtain an adsorbed adherent as an integrated product of the slurry adhered portion and the hollow cylindrical member. Then, using a dryer, the adsorbed adherent was heated and dried at 100° C. for 12 hours to prepare a purification filter body of a prototype example. The size of each filter body is a cylindrical body with a diameter of 45 mm and a total length of 50 mm, including a hollow cylindrical member. The surface of the filter body was covered with a non-woven fabric made of mixed fibers of polyethylene and polypropylene, and caps made of polypropylene were attached to the top and bottom of the filter body.

[評価項目]
試作例1~19の浄水フィルター体について、次のとおり紙力増強剤含有量の比較と、紙力増強剤の種類の比較と、基材活性炭の粒子径の比較と、粉末状吸着材の種類の比較と、粉末状吸着材の含有量の比較とに関してそれぞれ微粉低減性能試験、遊離残留塩除去性能試験、溶解性鉛除去性能試験に従い評価を行い、良否を調べた。
[Evaluation item]
Regarding the water purification filter bodies of Prototype Examples 1 to 19, the comparison of the content of the paper strength enhancer, the comparison of the types of the strength enhancer, the comparison of the particle size of the base activated carbon, and the type of powdered adsorbent are as follows. and the content of the powdery adsorbent were evaluated according to the fine powder reduction performance test, the free residual salt removal performance test, and the soluble lead removal performance test, respectively, and the quality was examined.

〈微粉低減性能試験〉
微粉低減性能を評価するために、紙力増強剤未添加のフィルター体(比較例1~12)を基準とし、試験を行った。本試験においては、通水流量を2.0L/minに設定し、通水初期200mLを採水し、測定を行った。測定は光電分光光度計を使用し、測定波長660nm、100mmセルで行った。各試作例1~19の微粉低減率は、紙力増強剤未添加のフィルター体(比較例1~12)の吸光値を基に算出した(微粉低減率(%)=(1-試作例の吸光値/比較例の吸光値)×100)。微粉低減率の算出において、試作例1~8は比較例1に基づき、以下試作例9は比較例2、試作例10は比較例3、試作例11は比較例4、試作例12は比較例5、試作例13は比較例6、試作例14は比較例7、試作例15は比較例8、試作例16は比較例9、試作例17は比較例10、試作例18は比較例11、試作例19は比較例12にそれぞれ基づいて求めた。微粉低減性能の評価に際しては、微粉低減率が40%未満を不良品である「×」とした。また、40%以上を及第点、さらに50%以上をより好ましい状態とした。そこで、吸光度が40%以上50%未満を「△」、50%以上を良品である「○」と評価した。
<Fine powder reduction performance test>
In order to evaluate fine powder reduction performance, tests were conducted using filter bodies (Comparative Examples 1 to 12) to which no paper strength agent was added as a reference. In this test, the water flow rate was set to 2.0 L/min, and 200 mL of water was sampled at the initial stage of water flow for measurement. Measurement was performed using a photoelectric spectrophotometer with a measurement wavelength of 660 nm and a 100 mm cell. The fine powder reduction rate of each prototype example 1 to 19 was calculated based on the absorbance value of the filter body (Comparative Examples 1 to 12) to which the paper strength agent was not added (fine powder reduction rate (%) = (1 - of the prototype example absorbance value/absorbance value of comparative example)×100). In calculating the fine powder reduction rate, Prototype Examples 1 to 8 are based on Comparative Example 1, Prototype Example 9 is Comparative Example 2, Prototype Example 10 is Comparative Example 3, Prototype Example 11 is Comparative Example 4, and Prototype Example 12 is Comparative Example. 5, Prototype Example 13 is Comparative Example 6, Prototype Example 14 is Comparative Example 7, Prototype Example 15 is Comparative Example 8, Prototype Example 16 is Comparative Example 9, Prototype Example 17 is Comparative Example 10, Prototype Example 18 is Comparative Example 11, Prototype Example 19 was obtained based on Comparative Example 12, respectively. In the evaluation of the fine powder reduction performance, the fine powder reduction rate of less than 40% was evaluated as "x", which is a defective product. In addition, 40% or more was defined as a passing point, and 50% or more was defined as a more preferable state. Therefore, an absorbance of 40% or more and less than 50% was evaluated as "Δ", and an absorbance of 50% or more was evaluated as "Good".

〈遊離残留塩素除去性能試験〉
遊離残留塩素の除去性能を評価するために、JIS S 3201(2010)の家庭用浄水器試験方法に準拠し、試験を行った。本試験においては、遊離残留塩素の濃度を2mg/L、通水流量を2.0L/minに設定し、10分間連続通水後の遊離残留塩素の除去率を測定した。評価に際しては、除去率が95%未満を不良品である「×」、95%以上を良品である「○」とした。
<Free residual chlorine removal performance test>
In order to evaluate the free residual chlorine removal performance, a test was conducted in accordance with JIS S 3201 (2010), a test method for household water purifiers. In this test, the free residual chlorine concentration was set to 2 mg/L and the water flow rate was set to 2.0 L/min, and the free residual chlorine removal rate was measured after continuous water flow for 10 minutes. In the evaluation, when the removal rate was less than 95%, it was rated as "poor", and when it was 95% or more, it was rated as "good".

〈溶解性鉛除去性能試験〉
金属イオンの除去性能を評価するために、JIS S 3201(2010)の家庭用浄水器試験方法に準拠し、試験を行った。本試験においては、溶解性鉛の濃度を50μg/L、通水流量を2.0L/minに設定し、10分間連続通水後の溶解性鉛の除去率を測定した。評価に際しては、除去率が95%未満を不良品である「×」、95%以上を良品である「○」とした。
<Soluble lead removal performance test>
In order to evaluate the metal ion removal performance, a test was conducted in accordance with JIS S 3201 (2010), a test method for household water purifiers. In this test, the concentration of soluble lead was set to 50 μg/L and the water flow rate was set to 2.0 L/min, and the removal rate of soluble lead after continuous water flow for 10 minutes was measured. In the evaluation, when the removal rate was less than 95%, it was rated as "poor", and when it was 95% or more, it was rated as "good".

〔紙力増強剤含有量の比較〕
基材活性炭として前述の活性炭3を90重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを10重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例1とした。そして、比較例1の配合に、それぞれ異なる添加量で紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を添加して試作例1~6とした。
[Comparison of paper strength agent content]
A filter body (paper strength enhancer was not added) was used as Comparative Example 1. Then, a paper strength enhancer (polyamide polyamine wet paper strength enhancer, hereinafter the same) was added to the composition of Comparative Example 1 in different amounts to obtain Prototype Examples 1 to 6.

なお、下記の表1,2では、紙力増強剤の添加量を粉末状吸着材100重量部に対する重量割合で表記した。すなわち、試作例1の紙力増強剤の添加量は粉末状吸着材100重量部に対して0.5重量部(表に示す粉末状吸着材10重量部に対しては0.05重量部)、試作例2の紙力増強剤の添加量は粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)、試作例3の紙力増強剤の添加量は粉末状吸着材100重量部に対して2.0重量部(表に示す粉末状吸着材10重量部に対しては0.2重量部)、試作例4の紙力増強剤の添加量は粉末状吸着材100重量部に対して10重量部(表に示す粉末状吸着材10重量部に対しては1重量部)、試作例5の紙力増強剤の添加量は粉末状吸着材100重量部に対して20重量部(表に示す粉末状吸着材10重量部に対しては2重量部)、試作例5の紙力増強剤の添加量は粉末状吸着材100重量部に対して30重量部(表に示す粉末状吸着材10重量部に対しては3重量部)である。 In Tables 1 and 2 below, the amount of the paper strength enhancer added is expressed as a weight ratio with respect to 100 parts by weight of the powdery adsorbent. That is, the added amount of the paper strength agent in Prototype Example 1 is 0.5 parts by weight with respect to 100 parts by weight of the powdery adsorbent (0.05 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table). , The amount of the paper strength agent added in Prototype Example 2 is 1.0 parts by weight with respect to 100 parts by weight of the powdery adsorbent (0.1 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table), The amount of the paper strength agent added in Prototype Example 3 was 2.0 parts by weight with respect to 100 parts by weight of the powdered adsorbent (0.2 parts by weight with respect to 10 parts by weight of the powdered adsorbent shown in the table). The amount of the paper strength enhancer in Example 4 is 10 parts by weight with respect to 100 parts by weight of the powdery adsorbent (1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table), and the paper strength of Prototype Example 5 The amount of the reinforcing agent added is 20 parts by weight with respect to 100 parts by weight of the powdery adsorbent (2 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table), and the amount of the paper strength enhancer of Prototype Example 5. is 30 parts by weight with respect to 100 parts by weight of the powdered adsorbent (3 parts by weight with respect to 10 parts by weight of the powdered adsorbent shown in the table).

Figure 0007271051000001
Figure 0007271051000001

Figure 0007271051000002
Figure 0007271051000002

〔紙力増強剤含有量の比較の結果と考察〕
表1,2に示すように、試作例6では、フィルター体の作製に際して、形状を適切に保持できず、成形することができなかった。他の試作例1~5では、フィルター体の成形は良好であった。試作例6は他の試作例1~5と比較して紙力増強剤が過剰(30重量部)に添加されていたことから、フィルター体の十分な成形性を得る条件として、紙力増強剤は20重量部以下が好ましいと考えられる。なお、試作例6については、フィルター体の成形ができなかったため、微粉低減性能試験、遊離残留塩素除去性能試験、溶解性鉛除去性能試験に関する測定は実施しなかった。
[Results and discussion of comparison of paper strength agent content]
As shown in Tables 1 and 2, in Prototype Example 6, the shape could not be properly maintained and could not be molded in the production of the filter body. In the other Prototype Examples 1 to 5, the molding of the filter body was good. In Prototype Example 6, the paper strength enhancer was added in excess (30 parts by weight) compared to other Prototype Examples 1 to 5. Therefore, as a condition for obtaining sufficient moldability of the filter body, the paper strength enhancer is considered to be preferably 20 parts by weight or less. In Prototype Example 6, since the filter body could not be molded, the fine powder reduction performance test, the free residual chlorine removal performance test, and the soluble lead removal performance test were not performed.

試作例1~5について、遊離残留塩素除去性能試験及び溶解性鉛除去性能試験は、いずれも良好な結果が得られた。また、微粉低減性能試験について、試作例1では微粉低減率(吸光度)が44.4%であり、試作例2~5では微粉低減率がいずれも70%以上の高い数値が得られた。微粉低減率50%以上が良品であることから、試作例2~5のとおり、良好な微粉低減性能を得る条件として、紙力増強剤は1.0重量部以上が好ましいと考えられる。従って、フィルター体の成形性の条件と微粉低減性能の条件とから、紙力増強剤の適正な含有量は1~20重量部であることがわかった。 Good results were obtained in both the free residual chlorine removal performance test and the soluble lead removal performance test for Prototype Examples 1 to 5. In the fine powder reduction performance test, the fine powder reduction rate (absorbance) was 44.4% in Prototype Example 1, and the fine powder reduction rate was 70% or higher in Prototype Examples 2 to 5. Since a fine powder reduction rate of 50% or more is a good product, as shown in Prototype Examples 2 to 5, it is considered that 1.0 parts by weight or more of the paper strength enhancer is preferable as a condition for obtaining good fine powder reduction performance. Therefore, it was found that the appropriate content of the paper strength agent is 1 to 20 parts by weight based on the conditions for moldability of the filter body and the conditions for fine powder reduction performance.

〔紙力増強剤の種類の比較〕
比較例1の配合に、アニオン系乾燥紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例7、カチオン系湿潤紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)とアニオン系乾燥紙力増強剤を粉末状吸着材100重量部に対して0.5重量部(表に示す粉末状吸着材10重量部に対しては0.05重量部)とを混合して添加したフィルター体を試作例8とした。なお、下記表3では、紙力増強剤が添加されない比較例1、カチオン系湿潤紙力増強剤であるポリアミドポリアミン系湿潤紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加した試作例2もそれぞれ列記した。
[Comparison of types of paper strength agents]
In the composition of Comparative Example 1, 1.0 parts by weight of an anionic dry paper strength agent is added to 100 parts by weight of the powdery adsorbent (0.1 parts by weight for 10 parts by weight of the powdery adsorbent shown in the table). ) was added to the filter body in Prototype Example 7, and the cationic wet paper strength agent (polyamide polyamine wet paper strength agent) was 1.0 parts by weight with respect to 100 parts by weight of the powdery adsorbent (powder adsorption shown in the table 0.1 parts by weight for 10 parts by weight of material) and 0.5 parts by weight for 100 parts by weight of powdered adsorbent (10 parts by weight of powdered adsorbent shown in the table) and an anionic dry paper strength agent 0.05 parts by weight) was mixed and added as Prototype Example 8. In Table 3 below, Comparative Example 1 in which no paper strength enhancer is added, 1.0 wt. Parts (0.1 parts by weight for 10 parts by weight of the powdery adsorbent shown in the table) were added in Prototype Example 2, respectively.

Figure 0007271051000003
Figure 0007271051000003

〔紙力増強剤の種類の比較の結果と考察〕
表3に示すように、紙力増強剤としてアニオン系乾燥紙力増強剤を単独で用いた試作例7では、微粉低減率が不十分であった。これに対し、紙力増強剤としてカチオン系湿潤紙力増強剤を単独で用いた試作例2、またはカチオン系湿潤紙力増強剤とアニオン系乾燥紙力増強剤とを混合して用いた試作例8では、微粉低減率が良好であった。このことから、紙力増強剤にカチオン系湿潤紙力増強剤を主体として使用することにより、良好な微粉低減性能が得られることがわかった。
[Results and discussion of comparison of types of paper strength agents]
As shown in Table 3, in Prototype Example 7 in which an anionic dry paper strength enhancer was used alone as a paper strength enhancer, the fine powder reduction rate was insufficient. On the other hand, Prototype Example 2 using a cationic wet strength agent alone as a paper strength agent, or a trial example using a mixture of a cationic wet strength agent and an anionic dry strength agent In No. 8, the fine powder reduction rate was good. From this, it was found that by using a cationic wet paper strength agent as the main paper strength agent, a good fine powder reduction performance can be obtained.

〔基材活性炭の粒子径の比較〕
基材活性炭として平均粒子径20μmの活性炭1を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例2とし、比較例2の配合に紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例9とした。基材活性炭として平均粒子径29μmの活性炭2を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例3とし、比較例3の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例10とした。基材活性炭として平均粒子径158μmの活性炭4を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例4とし、比較例4の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例11とした。基材活性炭として平均粒子径220μmの活性炭5を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例5とし、比較例5の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例12とした。なお、下記表4では、基材活性炭として平均粒子径98μmの活性炭3を用いた比較例1及び試作例2もそれぞれ列記した。
[Comparison of particle size of substrate activated carbon]
Comparative Example 2 is a filter body composed of 90 parts by weight of activated carbon 1 having an average particle size of 20 μm as a base activated carbon and the same formulation as in Comparative Example 1 except for this. A filter body to which 1.0 parts by weight of a wet paper strength enhancer (the same applies hereinafter) is added to 100 parts by weight of the powdery adsorbent (0.1 parts by weight for 10 parts by weight of the powdery adsorbent shown in the table) was taken as Prototype Example 9. A filter body composed of 90 parts by weight of activated carbon 2 having an average particle diameter of 29 μm as the base activated carbon and the same composition as in Comparative Example 1 was used as Comparative Example 3. Prototype Example 10 was prepared by adding 1.0 part by weight to 100 parts by weight of the material (0.1 part by weight to 10 parts by weight of the powdery adsorbent shown in the table). A filter body composed of 90 parts by weight of activated carbon 4 having an average particle size of 158 μm as a base activated carbon and the same composition as in Comparative Example 1 was used as Comparative Example 4, and a paper strength agent was added to the composition of Comparative Example 4 to adsorb powder. Prototype Example 11 was a filter body in which 1.0 part by weight was added to 100 parts by weight of the material (0.1 part by weight to 10 parts by weight of the powdery adsorbent shown in the table). 90 parts by weight of activated carbon 5 having an average particle size of 220 μm as the base material activated carbon, and the filter body having the same composition as in Comparative Example 1 except for this is designated as Comparative Example 5, and the composition of Comparative Example 5 is added with a paper strength agent for powder adsorption Prototype Example 12 was prepared by adding 1.0 part by weight to 100 parts by weight of the material (0.1 part by weight to 10 parts by weight of the powdery adsorbent shown in the table). Table 4 below also lists Comparative Example 1 and Prototype Example 2 using activated carbon 3 having an average particle size of 98 μm as the base activated carbon.

Figure 0007271051000004
Figure 0007271051000004

Figure 0007271051000005
Figure 0007271051000005

〔基材活性炭の粒子径の比較の結果と考察〕
表4,5に示すように、比較例2及び試作例9では、フィルター体の作製に際して、形状を適切に保持できず、成形することができなかった。他の比較例1,3~5及び試作例2,10~12では、フィルター体の成形は良好であった。比較例2及び試作例9は他の比較例1,3~5及び試作例2,9~12と比較して基材活性炭の平均粒子径が微細(20μm)であることから、フィルター体の十分な成形性を得る条件として、基材活性炭の平均粒子径は25μm以上が好ましいと考えられる。なお、試作例9については、フィルター体の成形ができなかったため、微粉低減性能試験、遊離残留塩素除去性能試験、溶解性鉛除去性能試験に関する測定は実施しなかった。
[Results and Discussion of Comparison of Particle Size of Base Activated Carbon]
As shown in Tables 4 and 5, in Comparative Example 2 and Prototype Example 9, the shape could not be properly maintained during the production of the filter body, and the molding could not be performed. In other Comparative Examples 1, 3 to 5 and Prototype Examples 2, 10 to 12, the molding of the filter body was good. In Comparative Example 2 and Prototype Example 9, compared with other Comparative Examples 1, 3 to 5 and Prototype Examples 2, 9 to 12, the average particle size of the base material activated carbon is finer (20 μm). As a condition for obtaining good moldability, the average particle size of the substrate activated carbon is considered to be preferably 25 μm or more. In Prototype Example 9, since the filter body could not be molded, the fine powder reduction performance test, free residual chlorine removal performance test, and soluble lead removal performance test were not performed.

試作例10~12について、遊離残留塩素除去性能試験及び溶解性鉛除去性能試験は、いずれも良好な結果が得られた。また、微粉低減性能試験について、試作例12では微粉低減率が43.2%であり、試作例10,11では微粉低減率がいずれも60%以上の高い数値が得られた。微粉低減率50%以上が良品であることから、試作例2,10,11のとおり、良好な微粉低減性能を得る条件として、基材活性炭の平均粒子径は160μm以下が好ましいと考えられる。従って、フィルター体の成形性の条件と微粉低減性能の条件とから、基材活性炭の適正な平均粒子径は25~160μmであることがわかった。 Good results were obtained in both the free residual chlorine removal performance test and the soluble lead removal performance test for Prototype Examples 10 to 12. Further, in the fine powder reduction performance test, Prototype Example 12 had a fine powder reduction rate of 43.2%, and Prototype Examples 10 and 11 both had high fine powder reduction rates of 60% or more. Since a fine powder reduction rate of 50% or more is a good product, as shown in Prototype Examples 2, 10, and 11, the average particle size of the base activated carbon is considered to be 160 μm or less as a condition for obtaining good fine powder reduction performance. Therefore, it was found that the appropriate average particle size of the base material activated carbon is 25 to 160 μm, based on the filter body moldability conditions and the fine powder reduction performance conditions.

〔粉末状吸着材の種類の比較〕
粉末状吸着材として平均粒子径20μmの活性炭を10重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例6とし、比較例6の配合に紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例13とした。粉末状吸着材として平均粒子径3μmの三チタン酸ナトリウムを10重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例7とし、比較例7の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例14とした。粉末状吸着材として平均粒子径8μmのゼオライトを10重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例8とし、比較例8の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例15とした。なお、下記表7では、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを用いた比較例1及び試作例2もそれぞれ列記した。
[Comparison of types of powdery adsorbents]
10 parts by weight of activated carbon having an average particle size of 20 μm as a powdery adsorbent, and a filter body composed of the same formulation as in Comparative Example 1 except for this was used as Comparative Example 6. A filter body to which 1.0 parts by weight of a wet paper strength enhancer (the same applies hereinafter) is added to 100 parts by weight of the powdery adsorbent (0.1 parts by weight for 10 parts by weight of the powdery adsorbent shown in the table) was taken as Prototype Example 13. Comparative Example 7 is a filter body composed of 10 parts by weight of sodium trititanate having an average particle size of 3 μm as a powdery adsorbent and the same composition as in Comparative Example 1 except for this, and a paper strength agent is added to the composition of Comparative Example 7. A filter body in which 1.0 part by weight was added to 100 parts by weight of the powdery adsorbent (0.1 part by weight to 10 parts by weight of the powdered adsorbent shown in the table) was used as Prototype Example 14. A filter body composed of 10 parts by weight of zeolite having an average particle diameter of 8 μm as a powdery adsorbent and the same composition as in Comparative Example 1 except for this was used as Comparative Example 8, and a paper strength agent was added to the composition of Comparative Example 8 for powdery adsorption. Prototype Example 15 was prepared by adding 1.0 part by weight to 100 parts by weight of the material (0.1 part by weight to 10 parts by weight of the powdery adsorbent shown in the table). Table 7 below also lists Comparative Example 1 and Prototype Example 2 using titanium silicate having an average particle size of 12 μm as the powdery adsorbent.

Figure 0007271051000006
Figure 0007271051000006

Figure 0007271051000007
Figure 0007271051000007

〔粉末状吸着材の種類の比較の結果と考察〕
表6,7に示すように、試作例13では溶解性鉛除去性能試験を行わず、微粉低減性能試験及び遊離残留塩素除去性能試験でいずれも良好な結果が得られた。試作例13は、微粉の発生が低減されて吸着性能も優れていることから、浄水フィルター体として適切に使用することが可能である。また、試作例2,14,15では、溶解性鉛除去性能試験、微粉低減性能試験、遊離残留塩素除去性能試験のいずれでも良好な結果が得られた。従って、粉末状吸着材は、活性炭、三チタン酸ナトリウム、ゼオライト、ケイ酸チタニウムのいずれも好適に使用できることがわかった。
[Results and Discussion of Comparison of Types of Powdery Adsorbents]
As shown in Tables 6 and 7, in Prototype Example 13, the soluble lead removal performance test was not performed, and good results were obtained in both the fine powder reduction performance test and the free residual chlorine removal performance test. Prototype Example 13 can be appropriately used as a water purification filter body because the generation of fine powder is reduced and the adsorption performance is excellent. Moreover, in Prototype Examples 2, 14, and 15, good results were obtained in all of the soluble lead removal performance test, the fine powder reduction performance test, and the free residual chlorine removal performance test. Therefore, it was found that any of activated carbon, sodium trititanate, zeolite, and titanium silicate can be suitably used as the powdery adsorbent.

〔粉末状吸着材の含有量の比較〕
基材活性炭として前述の活性炭3を99.9重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを0.1重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例9とした。比較例9の配合に紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材0.1重量部に対しては0.001重量部)添加したフィルター体を試作例16とした。
[Comparison of content of powdery adsorbent]
A filter body ( Comparative Example 9 was prepared without adding a paper strength agent. In the formulation of Comparative Example 9, 1.0 parts by weight of a paper strength agent (polyamide polyamine wet paper strength agent, hereinafter the same) was added to 100 parts by weight of the powdery adsorbent (0.1 part by weight of the powdery adsorbent shown in the table). 0.001 part by weight) was added as Prototype Example 16.

基材活性炭として前述の活性炭3を99.5重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを0.5重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例10とした。比較例10の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材0.5重量部に対しては0.005重量部)添加したフィルター体を試作例17とした。 A filter body ( Comparative Example 10 (no paper strength agent added). 1.0 parts by weight of a paper strength agent per 100 parts by weight of the powdery adsorbent (0.005 parts by weight with respect to 0.5 parts by weight of the powdered adsorbent shown in the table) was added to the composition of Comparative Example 10. The resulting filter body was referred to as Prototype Example 17.

基材活性炭として前述の活性炭3を70重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを30重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例11とした。比較例11の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材30重量部に対しては0.3重量部)添加したフィルター体を試作例18とした。 A filter body (paper strength enhancer was not added) was used as Comparative Example 11. A filter in which 1.0 parts by weight of a paper strength agent was added to the composition of Comparative Example 11 with respect to 100 parts by weight of the powdered adsorbent (0.3 parts by weight with respect to 30 parts by weight of the powdered adsorbent shown in the table) The body was designated as Prototype Example 18.

基材活性炭として前述の活性炭3を60重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを40重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例12とした。比較例12の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材40重量部に対しては0.4重量部)添加したフィルター体を試作例19とした。なお、下記表8では、基材活性炭を90重量部かつ粉末状吸着材を10重量部とした比較例1及び試作例2もそれぞれ列記した。 A filter body (paper strength enhancer was not added) was used as Comparative Example 12. A filter in which 1.0 parts by weight of a paper strength agent was added to the composition of Comparative Example 12 with respect to 100 parts by weight of the powdered adsorbent (0.4 parts by weight with respect to 40 parts by weight of the powdered adsorbent shown in the table) The body was designated as Prototype Example 19. Table 8 below also lists Comparative Example 1 and Prototype Example 2 in which the substrate activated carbon was 90 parts by weight and the powdery adsorbent was 10 parts by weight.

Figure 0007271051000008
Figure 0007271051000008

Figure 0007271051000009
Figure 0007271051000009

〔粉末状吸着材の含有量の比較の結果と考察〕
表8,9に示すように、比較例12及び試作例19では、フィルター体の作製に際して、形状を適切に保持できず、成形することができなかった。他の比較例1,9~11及び試作例2,16~18では、フィルター体の成形は良好であった。比較例12及び試作例19は、他の比較例1,9~11及び試作例2,16~18と比較して粉末状吸着材の含有量が過剰(40重量部)であることから、フィルター体の十分な成形性を得る条件として、粉末状吸着材の含有量は30重量部以下が好ましいと考えられる。なお、試作例19については、フィルター体の成形ができなかったため、微粉低減性能試験、遊離残留塩素除去性能試験、溶解性鉛除去性能試験に関する測定は実施しなかった。
[Results and Considerations of Comparison of Contents of Powdery Adsorbents]
As shown in Tables 8 and 9, in Comparative Example 12 and Prototype Example 19, the shape could not be properly maintained during the production of the filter body, and molding could not be performed. In other Comparative Examples 1, 9 to 11 and Prototype Examples 2, 16 to 18, the molding of the filter body was good. In Comparative Example 12 and Prototype Example 19, the content of the powdery adsorbent is excessive (40 parts by weight) compared to other Comparative Examples 1, 9 to 11 and Prototype Examples 2, 16 to 18, so the filter As a condition for obtaining sufficient formability of the body, it is considered preferable that the content of the powdery adsorbent is 30 parts by weight or less. In Prototype Example 19, since the filter body could not be molded, the fine powder reduction performance test, free residual chlorine removal performance test, and soluble lead removal performance test were not performed.

試作例2,16~18について、微粉低減性能試験及び遊離残留塩素除去性能試験は、いずれも良好な結果が得られた。また、溶解性鉛除去性能試験について、試作例16では溶解性鉛除去率が92.8%であったが、所望する性能には達しなかった。試作例2,17,18では、いずれも良好な結果が得られた。試作例16は、他の試作例2,17,18と比較して粉末状吸着材が微量(0.1重量部)であることから、良好な溶解性鉛除去性能を得る条件として、粉末状吸着材の含有量は0.5重量部以上が好ましいと考えられる。従って、フィルター体の成形性の条件と溶解性鉛除去性能の条件とから、粉末状吸着材の適正な含有量は0.5~30重量部であることがわかった。 Good results were obtained in both the fine powder reduction performance test and the free residual chlorine removal performance test for Prototype Examples 2 and 16 to 18. Regarding the soluble lead removal performance test, the soluble lead removal rate was 92.8% in Prototype Example 16, but did not reach the desired performance. In Prototype Examples 2, 17, and 18, good results were obtained. In Prototype Example 16, the amount of the powdery adsorbent is very small (0.1 parts by weight) compared to other Prototype Examples 2, 17, and 18. It is considered that the content of the adsorbent is preferably 0.5 parts by weight or more. Therefore, it was found that the appropriate content of the powdery adsorbent is 0.5 to 30 parts by weight, based on the conditions of moldability of the filter body and the conditions of soluble lead removal performance.

本発明の浄水フィルター体は、粉末状吸着材が含まれて吸着性能が向上されるとともに、紙力増強剤により末状吸着材由来の微粉の流出が低減されるため、高性能で通水時の不具合の発生が低減される。従って、従来の浄水フィルター体の代替として有望である。 The water purification filter body of the present invention contains a powdered adsorbent to improve adsorption performance, and the paper strength enhancer reduces the outflow of fine powder derived from the powdered adsorbent. The occurrence of defects is reduced. Therefore, it is promising as a substitute for conventional water purification filter bodies.

10 浄水フィルター体
11 中空筒部材
12 濾材
13 布状物
14 キャップ
20 フィルター体の製造装置
21 水槽
22 金型棒状部材
23 中空筒部材と金型棒状部材の一体化物
25 乾燥機
30 混合スラリー状物
31 基材活性炭
32 粉末状吸着材
33 フィブリル化繊維バインダ
34 紙力増強剤
35 吸着被着物
36 濾材部の成分
37 スラリー被着部
W 水
REFERENCE SIGNS LIST 10 Water purification filter body 11 Hollow cylinder member 12 Filter medium 13 Cloth material 14 Cap 20 Filter body manufacturing apparatus 21 Water tank 22 Mold rod member 23 Hollow cylinder member and mold rod member integrated 25 Dryer 30 Mixed slurry material 31 Base activated carbon 32 Powdered adsorbent 33 Fibrillated fiber binder 34 Paper strength agent 35 Adsorbed material 36 Components of filter medium part 37 Slurry adhered part W Water

Claims (1)

基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含むフィルター体であって、
前記基材活性炭の平均粒子径は25~160μmであり、
前記粉末状吸着材は、平均粒子径が3~μmのゼオライトまたはチタン酸ナトリウムから選ばれる少なくとも1種であり、前記フィルター体に占める重量割合が、0.5~30重量部であり、
カチオン系湿潤紙力増強剤を含む紙力増強剤が前記粉末状吸着材100重量部に対して1~20重量部添加されてなり、
微粉低減率が85.1%以上である
ことを特徴とする浄水フィルター体。
A filter body comprising a substrate activated carbon, a powdered adsorbent, and a fibrillated fiber binder,
The average particle size of the base material activated carbon is 25 to 160 μm,
The powdery adsorbent is at least one selected from zeolite and sodium titanate having an average particle size of 3 to 8 μm, and the weight ratio of the filter body is 0.5 to 30 parts by weight,
1 to 20 parts by weight of a paper strength enhancer containing a cationic wet paper strength enhancer is added to 100 parts by weight of the powdery adsorbent,
Fine powder reduction rate is 85.1% or more
A water purification filter body characterized by:
JP2017212195A 2017-11-01 2017-11-01 water filter body Active JP7271051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017212195A JP7271051B2 (en) 2017-11-01 2017-11-01 water filter body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017212195A JP7271051B2 (en) 2017-11-01 2017-11-01 water filter body

Publications (2)

Publication Number Publication Date
JP2019084469A JP2019084469A (en) 2019-06-06
JP7271051B2 true JP7271051B2 (en) 2023-05-11

Family

ID=66761894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017212195A Active JP7271051B2 (en) 2017-11-01 2017-11-01 water filter body

Country Status (1)

Country Link
JP (1) JP7271051B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210135816A (en) * 2020-05-06 2021-11-16 엘지전자 주식회사 filter for water purifier and water purifier using thereof
WO2022091514A1 (en) * 2020-11-02 2022-05-05 国立大学法人信州大学 Filter material, production method for filter material, water treatment material, and water purifier
JP7013067B1 (en) * 2020-11-02 2022-01-31 国立大学法人信州大学 Filtration material, manufacturing method of filtration material, water treatment material and water purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016548A1 (en) 2009-08-06 2011-02-10 クラレケミカル株式会社 Molded activated charcoal and water purifier involving same
JP7155588B2 (en) 2018-04-11 2022-10-19 富士フイルムビジネスイノベーション株式会社 Imide compound and electrophotographic photoreceptor, process cartridge and image forming apparatus using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155588A (en) * 1993-12-08 1995-06-20 Hayashi Seisakusho:Kk Compacted adsorptive body
JP3516811B2 (en) * 1996-06-24 2004-04-05 クラレケミカル株式会社 Activated carbon fiber molded adsorbent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016548A1 (en) 2009-08-06 2011-02-10 クラレケミカル株式会社 Molded activated charcoal and water purifier involving same
JP7155588B2 (en) 2018-04-11 2022-10-19 富士フイルムビジネスイノベーション株式会社 Imide compound and electrophotographic photoreceptor, process cartridge and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2019084469A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6283435B2 (en) Activated carbon molded body and water purifier using the same
JP7271051B2 (en) water filter body
CA2043495C (en) Method of filtering beverages and chemical, pharmaceutical, or similar liquids
JP4361489B2 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
JP7303118B2 (en) adsorption filter
JP2011255310A (en) Molded adsorption body and water purification material
WO2009070581A1 (en) Anti-microbial matrix and filtration systems
WO2016080240A1 (en) Adsorption filter
AU2008283876A1 (en) Liquid filtration systems
JP2012061390A (en) Filter for purification
JP6599888B2 (en) Adsorption filter
JP2016022399A (en) Water purification filter body
JP7356458B2 (en) Water purification filter and water purifier using it
US20090045133A1 (en) Low Pressure Drop Cyst Filter
CA2076745A1 (en) Method of manufacturing stabilizing and/or filtering aids for use in the processing of liquids, especially beverages
JP2019018154A (en) Filter body for water purification and water purifier
JP2005013883A (en) Active carbon molding and water purifier using the same
KR101434183B1 (en) Activated Carbon Sheet, Filter Cartridge for Water Purification Using the Same and Manufacturing Method thereof
JP7478163B2 (en) Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same
JP2003010614A (en) Filter for water cleaning device
JP2020179374A (en) Residual chlorine removing filter body
JPH06335632A (en) Molded adsorbing body
JPH06312133A (en) Shaped adsorbent
JP2023142935A (en) Molded adsorbent
JPH07155588A (en) Compacted adsorptive body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220530

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220701

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220707

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221018

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230203

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230314

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7271051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150