JP2019084469A - Water purification filter body - Google Patents

Water purification filter body Download PDF

Info

Publication number
JP2019084469A
JP2019084469A JP2017212195A JP2017212195A JP2019084469A JP 2019084469 A JP2019084469 A JP 2019084469A JP 2017212195 A JP2017212195 A JP 2017212195A JP 2017212195 A JP2017212195 A JP 2017212195A JP 2019084469 A JP2019084469 A JP 2019084469A
Authority
JP
Japan
Prior art keywords
weight
filter body
parts
activated carbon
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017212195A
Other languages
Japanese (ja)
Other versions
JP7271051B2 (en
Inventor
誠 横井
Makoto Yokoi
誠 横井
千春 堀
Chiharu Hori
千春 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2017212195A priority Critical patent/JP7271051B2/en
Publication of JP2019084469A publication Critical patent/JP2019084469A/en
Application granted granted Critical
Publication of JP7271051B2 publication Critical patent/JP7271051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a water purification filter body that can reduce an outflow of impalpable powder derived from a powdery adsorbent during water conduction with a filter body containing the powdery adsorbent.SOLUTION: A filter body has base activated carbon, a powdery adsorbent, and a fibrillated fiber binder, the base activated carbon having an average particle size of 25-160 μm, the powdery adsorbent having an average particle size of 3-20 μm, and a paper durability enhancer being added thereto. The amount of the added paper durability enhancer is 1-20 pts.wt. relative to 100 pts.wt. of the powdery adsorbent.SELECTED DRAWING: Figure 1

Description

本発明は、基材活性炭と粉末状吸着材とフィブリル化繊維バインダとを含む浄水フィルター体に関する。   The present invention relates to a water purification filter body comprising a base activated carbon, a powdered adsorbent and a fibrillated fiber binder.

浄水器等に装着されるフィルター体では、主な材料として、多孔質構造により吸着性能を備えた活性炭が使用される。この種のフィルター体では、例えば、繊維状活性炭と粉末状活性炭とからなる基材活性炭がフィブリル化繊維バインダによって一体化された浄水フィルター体が知られている(例えば、特許文献1参照)。上記浄水フィルター体は、フィブリル化繊維バインダが繊維状活性炭と粉末状活性炭とを絡めて一体化するため、耐久性や保形性に優れる。この種のフィルター体において、基材活性炭では、繊維状活性炭や粉末状活性炭の他に、粒状活性炭も使用することができる。   In a filter body attached to a water purifier or the like, activated carbon having an adsorption performance by a porous structure is used as a main material. In this type of filter body, for example, a water purification filter body is known in which a base activated carbon comprising fibrous activated carbon and powdered activated carbon is integrated by a fibrillated fiber binder (see, for example, Patent Document 1). The water purification filter body is excellent in durability and shape retention since the fibrillated fiber binder entangles and integrates the fibrous activated carbon and the powdered activated carbon. In the filter body of this type, as the base activated carbon, granular activated carbon can be used in addition to fibrous activated carbon and powdered activated carbon.

近年、浄水器の高性能化が要求され、水道水等の飲料用水に含まれる残留成分や微細な不溶物等の異物等をより確実に除去するために、様々な手法により浄水フィルター体の改良が検討されている。例えば、粉末状活性炭または粒状活性炭の他に、さらに粒子が細かい粉末状吸着材を混合してフィルター体を形成することにより、簡便に吸着性能を向上させることができる。   In recent years, there is a demand for higher performance of water purifiers, and in order to more reliably remove foreign substances such as residual components and fine insolubles contained in drinking water such as tap water, improvement of the water purification filter body by various methods Is being considered. For example, the adsorption performance can be easily improved by forming a filter body by mixing a powdery adsorbent with finer particles in addition to the powdered activated carbon or the granular activated carbon.

しかしながら、上記浄水フィルター体では、粉末状吸着材が極端に微細な粒子であるため、通水初期時に吸着材由来の微粉が流出しやすくなる。そこで、吸着性能向上のための微細な吸着材を使用した場合に、通水時の微粉の流出を低減させることができる浄水フィルター体が求められている。   However, in the above-mentioned water purification filter body, since the powdery adsorbent is extremely fine particles, fine powder derived from the adsorbent tends to flow out at the initial stage of water flow. Therefore, there is a demand for a water purification filter body that can reduce the outflow of fine powder when water flows when a fine adsorbent for improving adsorption performance is used.

特開2016−22399号公報Unexamined-Japanese-Patent No. 2016-22399

本発明は、前記の点に鑑みなされたものであり、粉末状吸着材が含まれたフィルター体の通水時に粉末状吸着材由来の微粉の流出を低減させることができる浄水フィルター体を提供するものである。   The present invention is made in view of the above-mentioned point, and provides a purified water filter body capable of reducing the outflow of fine powder derived from the powdery adsorbent at the time of water passing through the filter body containing the powdery adsorbent. It is a thing.

すなわち、第1の発明は、基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含むフィルター体であって、前記基材活性炭の平均粒子径は25〜160μmであり、前記粉末状吸着材の平均粒子径は3〜20μmであり、紙力増強剤が添加されてなることを特徴とする浄水フィルター体に係る。   That is, the first invention is a filter body comprising a base activated carbon, a powdered adsorbent and a fibrillated fiber binder, wherein the base activated carbon has an average particle diameter of 25 to 160 μm, and the powdery form The average particle diameter of the adsorbent is 3 to 20 μm, and a paper strengthening agent is added to the water purification filter body.

第2の発明は、前記粉末状吸着材が活性炭である第1の発明に記載の浄水フィルター体に係る。   A second invention relates to the purified water filter body according to the first invention, wherein the powdered adsorbent is activated carbon.

第3の発明は、前記粉末状吸着材が、ゼオライト、ケイ酸チタニウムまたはチタン酸ナトリウムから選ばれる少なくとも1種である第1の発明に記載の浄水フィルター体に係る。   A third invention relates to the purified water filter body according to the first invention, wherein the powdery adsorbent is at least one selected from zeolite, titanium silicate or sodium titanate.

第4の発明は、前記紙力増強剤が、前記粉末状吸着材100重量部に対して1〜20重量部添加されている第1ないし3の発明のいずれか1項に記載の浄水フィルター体に係る。   In a fourth invention, the water purification filter body according to any one of the first to third inventions, wherein the paper strengthening agent is added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the powdery adsorbent. Pertain to.

第5の発明は、前記フィルター体に占める前記粉末状吸着材の重量割合が、0.5〜30重量部である第1ないし4の発明のいずれか1項に記載の浄水フィルター体に係る。   A fifth invention relates to the purified water filter body according to any one of the first to fourth inventions, wherein a weight ratio of the powdery adsorbent occupied in the filter body is 0.5 to 30 parts by weight.

第6の発明は、前記紙力増強剤がカチオン系湿潤紙力増強剤を含む第1ないし5の発明のいずれか1項に記載の浄水フィルター体に係る。   A sixth invention relates to the water purification filter body according to any one of the first to fifth inventions, wherein the paper strength agent contains a cationic wet paper strength agent.

第1の発明に係る浄水フィルター体によると、基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含むフィルター体であって、前記基材活性炭の平均粒子径は25〜160μmであり、前記粉末状吸着材の平均粒子径は3〜20μmであり、紙力増強剤が添加されてなるため、通水時に粉末状吸着材由来の微粉の流出を大幅に低減させることができる。   According to the water purification filter body of the first aspect of the invention, there is provided a filter body comprising a base activated carbon, a powdered adsorbent and a fibrillated fiber binder, wherein the base activated carbon has an average particle diameter of 25 to 160 μm. The average particle diameter of the powdery adsorbent is 3 to 20 μm, and a paper-strengthening agent is added, so that it is possible to significantly reduce the outflow of fine powder derived from the powdery adsorbent during water passage.

第2の発明に係る浄水フィルター体によると、第1の発明において、前記粉末状吸着材が活性炭であるため、簡易にフィルター体の吸着性能を向上させることができる。   According to the water purification filter body of the second aspect of the invention, in the first aspect of the invention, since the powdered adsorbent is activated carbon, the adsorption performance of the filter body can be easily improved.

第3の発明に係る浄水フィルター体によると、第1の発明において、前記粉末状吸着材が、ゼオライト、ケイ酸チタニウムまたはチタン酸ナトリウムから選ばれる少なくとも1種であるため、液中の金属イオンを適切に除去することが可能となる。   According to the water purification filter body of the third invention, in the first invention, since the powdery adsorbent is at least one selected from zeolite, titanium silicate or sodium titanate, metal ions in the liquid are It becomes possible to remove appropriately.

第4の発明に係る浄水フィルター体によると、第1ないし3の発明において、前記紙力増強剤が、前記粉末状吸着材100重量部に対して1〜20重量部添加されているため、成形性が確保されるとともに、微粉の流出を適切に低減させることができる。   According to the water purification filter body of the fourth aspect of the invention, in the first to third aspects of the invention, since the paper strengthening agent is added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the powdery adsorbent, As well as ensuring the properties, it is possible to appropriately reduce the outflow of fine powder.

第5の発明に係る浄水フィルター体によると、第1ないし4の発明において、前記フィルター体に占める前記粉末状吸着材の重量割合が0.5〜30重量部であるため、優れた吸着性能が得られるとともに、成形性を確保することができる。   According to the water purification filter body of the fifth invention, in the first to fourth inventions, the weight ratio of the powdery adsorbent occupied in the filter body is 0.5 to 30 parts by weight, so that excellent adsorption performance can be obtained. While being obtained, moldability can be secured.

第6の発明に係る浄水フィルター体によると、第1ないし5の発明において、前記紙力増強剤がカチオン系湿潤紙力増強剤を含むため、粉末状吸着材と結合しやすく微粉の流出をより低減させることができる。   According to the water purification filter body of the sixth invention, in the first to fifth inventions, the paper strengthening agent contains a cationic wet paper strengthening agent, so it is easy to be combined with the powdery adsorbent, and the outflow of fine powder is further enhanced. It can be reduced.

本発明の一実施形態に係る浄水フィルター体の斜視図である。It is a perspective view of a purified water filter object concerning one embodiment of the present invention. 浄水フィルター体の製造工程を示す概略工程図である。It is a schematic process drawing which shows the manufacturing process of a purified water filter body.

本発明の浄水フィルター体は、水道水等の液体を浄化するためのフィルターであって、基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含み、紙力増強剤が添加されてなる。   The water purification filter body of the present invention is a filter for purifying a liquid such as tap water, and comprises a base activated carbon, a powdered adsorbent and a fibrillated fiber binder, and a paper strength agent is added Become.

基材活性炭は、石油ピッチ、樹脂粒、樹木、椰子殻、古タイヤ等を原料とし、800〜1000℃で加熱焼成し適宜賦活して細孔を発達させ、粉砕して得た活性炭である。基材活性炭は、浄水のために必要となる一般的な活性炭の吸着性能を備える。具体的には、JIS K 1474(2014)に準拠する測定において、ヨウ素吸着性能1000ないし2000mg/gを満たす。   The base activated carbon is an activated carbon obtained by using petroleum pitch, resin particles, trees, coconut shells, old tires and the like as a raw material, heating and firing at 800 to 1000 ° C. to activate appropriately to develop pores and pulverize. The base activated carbon is provided with the adsorption performance of general activated carbon required for water purification. Specifically, in the measurement according to JIS K 1474 (2014), the iodine adsorption performance of 1000 to 2000 mg / g is satisfied.

基材活性炭は、フィルター体を構成する主原料であり、粉末状活性炭または粒状活性炭が用いられる。基材活性炭を粉末状活性炭または粒状活性炭とすることにより、単位重量当たりの表面積を多くして濾集能力を高めることができる。粉末状活性炭または粒状活性炭である基材活性炭は、吸着性能や成形性等の観点から、分級や篩別により平均粒子径が25〜160μmとされる。基材活性炭の平均粒子径が25μm未満の場合、フィルター体の成形が困難となるとともに、通水時の動水圧が上昇し目詰まりしやすくなる等の問題も生じる。また、基材活性炭の平均粒子径が160μmより大きい場合、粒子径が大きくなることに伴って微粒子捕集率が低下するとともに、活性炭の表面積が減少して吸着性能が低下する。なお、平均粒子径の計測は、レーザー回折粒子径分布測定装置(株式会社島津製作所製 SALD−3000S)を用いるレーザー回折・散乱法によって求められた粒度分布における積算値50%での粒子径を採用した。   The base activated carbon is a main raw material constituting the filter body, and powdered activated carbon or granular activated carbon is used. By using powdered activated carbon or granular activated carbon as the base activated carbon, the surface area per unit weight can be increased to enhance the filtration ability. The base activated carbon which is powdered activated carbon or granular activated carbon has an average particle diameter of 25 to 160 μm by classification or sieving from the viewpoint of adsorption performance, formability, and the like. When the average particle diameter of the base activated carbon is less than 25 μm, the formation of the filter body becomes difficult, and problems such as increase in hydrodynamic pressure when flowing water and clogging tend to occur. In addition, when the average particle diameter of the base activated carbon is larger than 160 μm, the particle collection rate decreases as the particle diameter increases, and the surface area of the activated carbon decreases to lower the adsorption performance. In addition, the measurement of the average particle diameter adopts the particle diameter at an integrated value of 50% in the particle size distribution determined by the laser diffraction / scattering method using a laser diffraction particle size distribution measuring device (SALD-3000S manufactured by Shimadzu Corporation) did.

粉末状吸着材は、吸着性能を有する粉末状の材料であり、基材活性炭より微細な粒子で構成することにより、フィルター体の吸着性能を向上させる。粉末状吸着材の平均粒子径は3〜20μmである。粉末状吸着材の平均粒子径が3μm未満の場合、粒子径が細かくなりすぎて浄水フィルター体から流出しやすくなる。また、粉末状吸着材の平均粒子径が20μmより大きい場合、基材活性炭より微細な粒子の利点がなくなって吸着性能を十分に向上させることが困難となる。   The powdery adsorbent is a powdery material having adsorption performance, and the adsorption performance of the filter body is improved by forming the fine particles from the base activated carbon. The average particle size of the powdered adsorbent is 3 to 20 μm. When the average particle size of the powdery adsorbent is less than 3 μm, the particle size becomes too fine and it is easy for the water purification filter body to flow out. In addition, when the average particle diameter of the powdery adsorbent is larger than 20 μm, it is difficult to sufficiently improve the adsorption performance since the advantage of particles finer than the base activated carbon is lost.

粉末状吸着材で使用される材料は、活性炭、ゼオライト、ケイ酸チタニウムまたはチタン酸ナトリウムから選ばれる少なくとも1種である。活性炭は物理的な吸着性能に優れているため、フィルター体の主原料である基材活性炭より微細な粒子径に形成して添加することにより、簡易に微粒子等の吸着性能を向上させることができる。また、ゼオライト、ケイ酸チタニウム、チタン酸ナトリウムは、化学的な吸着性能にも優れているため、液中の金属イオンの吸着を可能とする。そのため、溶解性鉛等の金属イオンを適切に除去することが可能である。   The material used in the powdered adsorbent is at least one selected from activated carbon, zeolite, titanium silicate or sodium titanate. Since activated carbon is excellent in physical adsorption performance, the adsorption performance of fine particles and the like can be easily improved by forming it into a finer particle size than the base activated carbon which is the main raw material of the filter body and adding it. . In addition, zeolite, titanium silicate and sodium titanate are also excellent in chemical adsorption performance, so that they can adsorb metal ions in liquid. Therefore, it is possible to appropriately remove metal ions such as soluble lead.

粉末状吸着材は、吸着性能や成形性等の観点から、フィルター体に占める重量割合が0.5〜30重量部とされる。粉末状吸着材の重量割合が0.5重量部未満である場合、粉末状吸着材による十分な吸着性能を発揮することが困難となる。粉末状吸着材の重量割合が30重量部より多い場合、成形性が悪くなる。   The powdery adsorptive material has a weight ratio of 0.5 to 30 parts by weight in the filter body from the viewpoint of adsorption performance, moldability and the like. When the weight proportion of the powdery adsorbent is less than 0.5 parts by weight, it becomes difficult to exhibit sufficient adsorption performance by the powdery adsorbent. If the proportion by weight of the powdery adsorbent is more than 30 parts by weight, the formability deteriorates.

フィブリル化繊維バインダは、アクリル繊維、アラミド繊維、ポリエチレン繊維等の合成樹脂繊維を毛羽立ち形成(フィブリル化)した材料である。フィブリル化繊維バインダでは、繊維のフィブリル化により基材活性炭や粉末状吸着材を絡めて一体化する。バインダの樹脂は耐久性、耐薬品性に優れているため、フィルター体の耐用期間をより長くすることができる。   The fibrillated fiber binder is a material in which synthetic resin fibers such as acrylic fibers, aramid fibers and polyethylene fibers are fluffed (fibrillated). In the fibrillated fiber binder, the base activated carbon and the powdered adsorbent are entangled and integrated by fibrillation of the fibers. Since the resin of the binder is excellent in durability and chemical resistance, the service life of the filter body can be further extended.

紙力増強剤は、粉末状吸着材を保持するための薬品である。紙力増強剤は、粉末状吸着材と水素結合して保持するものと考えられる。紙力増強剤では、耐水性を有するポリアミドポリアミンエピクロルヒドリン樹脂、メラミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等の湿潤紙力増強剤が好ましく用いられる。特に、ポリアミドポリアミンエピクロルヒドリン樹脂等のカチオン系湿潤紙力増強剤を含むことがより好ましい。カチオン系湿潤紙力増強剤は、正極に帯電していることにより粉末状吸着材とより結合しやすくなる。   Paper strength agents are agents for holding powdered adsorbents. The paper strengthening agent is considered to hold hydrogen bonding with the powdery adsorbent. As the paper strengthening agent, a wet paper strengthening agent such as polyamide polyamine epichlorohydrin resin, melamine formaldehyde resin, urea formaldehyde resin, etc. having water resistance is preferably used. In particular, it is more preferable to include a cationic wet strength agent such as polyamide polyamine epichlorohydrin resin. The cationic wet strength agent is more easily bound to the powdered adsorbent by being charged on the positive electrode.

紙力増強剤は、成形性や微粉の発生しにくさ等の観点から、粉末状吸着材100重量部に対して1〜20重量部添加される。紙力増強剤の添加量が粉末状吸着材100重量部に対して1重量部未満である場合、粉末状吸着材を十分に保持することが困難となる。紙力増強剤の添加量が粉末状吸着材100重量部に対して20重量部より多い場合、フィルター体の保形性が低下して成形しにくくなる。   The paper strengthening agent is added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the powdery adsorbent from the viewpoints of moldability and difficulty in generating fine powder. When the addition amount of the paper strengthening agent is less than 1 part by weight with respect to 100 parts by weight of the powdery adsorbent, it becomes difficult to sufficiently hold the powdery adsorbent. When the addition amount of the paper strengthening agent is more than 20 parts by weight with respect to 100 parts by weight of the powdery adsorbent, the shape retention property of the filter body is reduced and it becomes difficult to form.

このフィルター体の形状は特に限定されず、適宜である。例えば、図1(a)に示す浄水フィルター体10のように、中空筒部材11の側面部に凝集された筒状構造の濾材12として形成される。中空筒部材11は、適宜の透過孔を有した芯材であり、用途等により残存させても取り外してもよい。フィルター体10の保形性の観点から、中空筒部材11はフィルター体10内に残存されることが好ましい。   The shape of the filter body is not particularly limited and is appropriate. For example, as the water purification filter body 10 shown to Fig.1 (a), it is formed as the filter material 12 of the cylindrical structure aggregated on the side part of the hollow cylinder member 11. As shown in FIG. The hollow cylindrical member 11 is a core material having an appropriate transmission hole, and may be left or removed depending on the application or the like. From the viewpoint of shape retention of the filter body 10, the hollow cylindrical member 11 is preferably left in the filter body 10.

この筒状構造は、通水時に表面積が最も有利に利用でき、かつ均等に液体を通過させることができる形態である。浄水フィルター体10は、販売や使用に際して、図1(b)に示すように、表面が不織布等の透過性の高い布状物13により被覆、保護される。図1(b)において、符号14はフィルター体10の上下を保護するキャップである。   This cylindrical structure is a form that the surface area can be most advantageously used when water flows, and the liquid can pass evenly. As shown in FIG. 1 (b), the surface of the water purification filter body 10 is covered and protected by a highly permeable cloth-like material 13 such as a non-woven fabric at the time of sale or use. In FIG. 1 (b), reference numeral 14 is a cap for protecting the upper and lower sides of the filter body 10.

この浄水フィルター体は、例えば、浄水器の濾材等に好適に使用される。浄水器に濾材として装填される浄水フィルター体は、簡易に交換可能とするために、カートリッジ式とすることが好ましい。カートリッジ式の浄水フィルター体は、家庭用浄水器の他、据え置き型や濾過能力を高めて大型化した装置への適用も可能である。   This water purification filter body is suitably used, for example, as a filter material for a water purifier. It is preferable to use a cartridge type water purification filter body, which is loaded as a filter material in the water purifier, in order to be easily replaceable. The cartridge type water purification filter body can be applied not only to household water purifiers, but also to stationary type and large sized equipment with enhanced filtration capacity.

次に、図2を用いて浄水フィルター体の製造過程を説明する。この図において、符号20はフィルター体の製造装置、21は水Wが充填される水槽、22は多数の細孔が形成されたステンレス製の金型棒状部材、25は乾燥機である。   Next, the manufacturing process of the purified water filter body will be described with reference to FIG. In this figure, the reference numeral 20 denotes a filter body manufacturing apparatus, 21 denotes a water tank filled with water W, 22 denotes a stainless steel mold rod member having a large number of pores formed therein, and 25 denotes a dryer.

はじめに、粉末状活性炭または粒状活性炭である基材活性炭31と、粉末状吸着材32と、フィブリル化繊維バインダ33と、紙力増強剤34とが用意される。これらは水槽21に充填された水Wに投入され、十分に混合されて混合スラリー状物30が調製される。   First, a base activated carbon 31 which is powdered activated carbon or granular activated carbon, a powdered adsorbent 32, a fibrillated fiber binder 33, and a paper strength enhancer 34 are prepared. These are introduced into the water W filled in the water tank 21 and thoroughly mixed to prepare a mixed slurry 30.

次に、中空筒部材11の内部に金型棒状部材22が挿入され、中空筒部材11と金型棒状部材22の一体化物23が、混合スラリー状物30で満たされた水槽21内に投入される。そして、水槽21内にて金型棒状部材22を介して減圧吸引することにより、混合スラリー状物30が中空筒部材11の側面に引き寄せられる。なお、必要により、中空筒部材11の周囲に不織布等が巻き付けられる。   Next, the mold rod 22 is inserted into the hollow cylindrical member 11, and the integral 23 of the hollow cylindrical member 11 and the mold rod 22 is introduced into the water tank 21 filled with the mixed slurry 30. Ru. Then, the mixed slurry 30 is drawn to the side surface of the hollow cylindrical member 11 by reducing pressure suction through the mold rod member 22 in the water tank 21. In addition, a nonwoven fabric etc. are wound around the hollow cylindrical member 11 as needed.

ここで、中空筒部材11の周囲に巻き付けた不織布等の透過孔は基材活性炭や粉末状吸着材等よりも小さいため、混合スラリー状物30の水分のみが中空筒部材11を通過して金型棒状部材22から吸い出され、基材活性炭や粉末状吸着材等が通過できずに中空筒部材11の表面に濾材12の成分36が残留される。こうして所定の厚さまで濾材12の成分36が中空筒部材11表面にスラリー被着部37として蓄積され、混合スラリー状物30の吸引は終了される。   Here, since the transmission holes such as non-woven fabric wound around the hollow cylindrical member 11 are smaller than the base activated carbon, the powdery adsorptive material, etc., only the moisture of the mixed slurry 30 passes through the hollow cylindrical member 11 to be gold The component 36 of the filter medium 12 is left on the surface of the hollow cylindrical member 11 by being sucked out from the mold rod 22 and the base activated carbon, the powdery adsorbent and the like can not pass through. Thus, the component 36 of the filter medium 12 is accumulated on the surface of the hollow cylindrical member 11 as the slurry adhering portion 37 to a predetermined thickness, and the suction of the mixed slurry 30 is ended.

所定量のスラリー被着部37が形成された後、中空筒部材11は水槽21内から引き上げられ、金型棒状部材22が取り外される。こうして中空筒部材11の表面にスラリー被着部37を備えた吸着被着物35が得られる。その後、吸着被着物35は乾燥機25内で加熱乾燥され、浄水フィルター体が完成される。   After the predetermined amount of the slurry-adhered portion 37 is formed, the hollow cylindrical member 11 is pulled up from the inside of the water tank 21, and the mold rod member 22 is removed. In this way, the adsorption deposition object 35 provided with the slurry deposition part 37 on the surface of the hollow cylindrical member 11 is obtained. Thereafter, the adsorption deposited matter 35 is heated and dried in the dryer 25 to complete the purified water filter body.

次に、複数種類の基材活性炭及び粉末状吸着材を用い、紙力増強剤の配合割合等を変化させ、フィブリル化繊維バインダを混合して試作例1〜19及び比較例1〜12の浄水フィルター体を作製した。   Next, using a plurality of types of base activated carbon and powdered adsorbent, the blending ratio of the paper strength agent is changed, the fibrillated fiber binder is mixed, and the purified water of trial examples 1 to 19 and comparative examples 1 to 12 is mixed. A filter body was produced.

[使用材料]
〈基材活性炭〉
基材活性炭は、平均粒子径20μmの活性炭1(フタムラ化学株式会社製「CN20MS」)、平均粒子径29μmの活性炭2(フタムラ化学株式会社製「CN30MS」)、平均粒子径98μmの活性炭3(フタムラ化学株式会社製「CN100MS」)、平均粒子径158μmの活性炭4(フタムラ化学株式会社製「CN8200S」)、平均粒子径220μmの活性炭5(フタムラ化学株式会社製「CN480S」)のいずれかを使用した。各基材活性炭の平均粒子径は、篩にかけて調製した。
[Material used]
<Base activated carbon>
As the base activated carbon, activated carbon 1 having an average particle diameter of 20 μm (“CN20MS” manufactured by Futamura Chemical Co., Ltd.), activated carbon 2 having an average particle diameter of 29 μm (“CN30MS” manufactured by Futamura Chemical Co., Ltd.), activated carbon 3 having an average particle diameter of 98 μm (Futamura "CN 100 MS" manufactured by CHEMICAL CO., LTD., Activated carbon 4 with an average particle diameter of 158 μm ("CN 8200 S" manufactured by Futamura Chemical Co., Ltd.), or activated carbon 5 with an average particle diameter of 220 μm ("CN 480 S" manufactured by Futamura Chemical Co., Ltd.) . The average particle size of each base activated carbon was sieved and prepared.

〈粉末状吸着材〉
粉末状吸着材は、平均粒子径20μmの活性炭(フタムラ化学株式会社製「CB」)、平均粒子径3μmの三チタン酸ナトリウム(フタムラ化学株式会社製「三チタン酸ナトリウム」)、平均粒子径8μmのゼオライト(東ソー株式会社製「ゼオラム(登録商標) F−9 粉末100」)、平均粒子径12μmのケイ酸チタニウム(BASFジャパン株式会社製「ATS」)のいずれかを使用した。各粉末状吸着材の平均粒子径は、篩にかけて調製した。
<Powder like adsorbent>
The powdery adsorbent is activated carbon with an average particle diameter of 20 μm ("CB" manufactured by Futamura Chemical Co., Ltd.), sodium trititanate with an average particle diameter of 3 μm ("Na trititanate" manufactured by Futamura Chemical Co., Ltd.), an average particle diameter of 8 μm Of Zeolite ("Zeolam (registered trademark) F-9 powder 100" manufactured by Tosoh Corp.) or titanium silicate having an average particle diameter of 12 .mu.m ("ATS" manufactured by BASF Japan Ltd.). The average particle size of each powdery adsorbent was prepared by sieving.

〈フィブリル化繊維バインダ、紙力増強剤〉
フィブリル化繊維バインダは、アクリル繊維(東洋紡株式会社製「ビィパル(登録商標)」)を使用した。紙力増強剤は、カチオン系湿潤紙力増強剤であるポリアミドポリアミン系湿潤紙力増強剤(荒川化学工業株式会社製「アラフィックス255LOX」)、アニオン系乾燥紙力増強剤(荒川化学工業株式会社製「ポリストロン145」)を使用した。
<Fibrillated fiber binder, paper strength agent>
As a fibrillated fiber binder, an acrylic fiber ("BIPAL (registered trademark)" manufactured by Toyobo Co., Ltd.) was used. Paper strength agents are cationic wet paper strength agents such as polyamidepolyamine-based wet paper strength agents (Arakawa Chemical Industry Co., Ltd., “Arafix 255 LOX”), and anionic dry paper strength agents (Arakawa Chemical Co., Ltd.) Product "Polystron 145" was used.

[浄水フィルター体の作製]
基材活性炭、粉末状吸着材、フィブリル化繊維バインダ、紙力増強剤を後述の配合(単位:重量部)に従って水に分散し、均質になるまで水中で十分に混合して試作例1〜19及び比較例1〜12に対応した混合スラリー状物を調製した。混合スラリー状物における水は、添加した固形分の50倍重量とした。そして、内直径20mm、外直径24mm、全長50mmであり直径2mmの細孔を有するポリプロピレン製の中空筒部材を用意した。また、中空筒部材の外表面に不織布を巻き付けた。同中空筒部材内に、多孔形状のステンレス製の金型棒状部材を挿入して固定するとともに混合スラリー状物内に投入し、減圧吸引(吸引圧力は約−0.08MPa)により混合スラリー状物内から固形分を引き寄せて中空筒部材の表面に濾材部成分を約10.5mm被着させた(スラリー被着部)。中空筒部材から金型棒状部材を取り外し、スラリー被着部と中空筒部材の一体化物となる吸着被着物を得た。そして、乾燥機を用いて100℃、12時間かけて吸着被着物の加熱、乾燥を行い、試作例の浄化用フィルター体を作製した。各フィルター体の寸法は、中空筒部材を含む直径45mm、全長50mmの円筒体である。また、フィルター体の表面をポリエチレンとポリプロピレンの混抄繊維からなる不織布で覆うとともにフィルター体の上下にポリプロピレン製キャップを取り付けた。
[Production of purified water filter body]
Base activated carbon, powdery adsorbent, fibrillated fiber binder, paper strengthening agent are dispersed in water according to the below-mentioned composition (unit: weight part), sufficiently mixed in water until homogeneous, and trial examples 1 to 19 And the mixed slurry-like thing corresponding to Comparative Examples 1-12 was prepared. Water in the mixed slurry was 50 times the weight of the added solid content. Then, a hollow tubular member made of polypropylene having pores with an inner diameter of 20 mm, an outer diameter of 24 mm, a total length of 50 mm and a diameter of 2 mm was prepared. Moreover, the nonwoven fabric was wound around the outer surface of the hollow cylinder member. In the same hollow cylindrical member, a porous stainless steel mold-like rod member is inserted and fixed, and it is introduced into the mixed slurry, and the mixed slurry is drawn by reduced pressure suction (the suction pressure is about -0.08 MPa) The solid content was drawn from the inside, and the filter medium component was adhered to about 10.5 mm on the surface of the hollow cylindrical member (slurry adhered part). The mold rod-like member was removed from the hollow cylindrical member to obtain an adsorption-deposited material which was an integrated product of the slurry-coated portion and the hollow cylindrical member. Then, the adsorptive material was heated and dried at 100 ° C. for 12 hours using a drier to prepare a filter body for purification of a prototype example. The dimensions of each filter body are a cylindrical body having a diameter of 45 mm and a total length of 50 mm including a hollow cylindrical member. Further, the surface of the filter body was covered with a non-woven fabric made of mixed fibers of polyethylene and polypropylene, and polypropylene caps were attached to the upper and lower sides of the filter body.

[評価項目]
試作例1〜19の浄水フィルター体について、次のとおり紙力増強剤含有量の比較と、紙力増強剤の種類の比較と、基材活性炭の粒子径の比較と、粉末状吸着材の種類の比較と、粉末状吸着材の含有量の比較とに関してそれぞれ微粉低減性能試験、遊離残留塩除去性能試験、溶解性鉛除去性能試験に従い評価を行い、良否を調べた。
[Evaluation item]
With respect to the purified water filter bodies of Trial Examples 1 to 19, the comparison of the content of the paper strength agent, the comparison of the type of the paper strength agent, the comparison of the particle diameter of the base activated carbon and the type of the powdered adsorbent The evaluations were carried out according to the fine powder reduction performance test, the free residual salt removal performance test, and the soluble lead removal performance test with respect to the comparison of the above and the comparison of the content of the powdery adsorbent, and the quality was examined.

〈微粉低減性能試験〉
微粉低減性能を評価するために、紙力増強剤未添加のフィルター体(比較例1〜12)を基準とし、試験を行った。本試験においては、通水流量を2.0L/minに設定し、通水初期200mLを採水し、測定を行った。測定は光電分光光度計を使用し、測定波長660nm、100mmセルで行った。各試作例1〜19の微粉低減率は、紙力増強剤未添加のフィルター体(比較例1〜12)の吸光値を基に算出した(微粉低減率(%)=(1−試作例の吸光値/比較例の吸光値)×100)。微粉低減率の算出において、試作例1〜8は比較例1に基づき、以下試作例9は比較例2、試作例10は比較例3、試作例11は比較例4、試作例12は比較例5、試作例13は比較例6、試作例14は比較例7、試作例15は比較例8、試作例16は比較例9、試作例17は比較例10、試作例18は比較例11、試作例19は比較例12にそれぞれ基づいて求めた。微粉低減性能の評価に際しては、微粉低減率が40%未満を不良品である「×」とした。また、40%以上を及第点、さらに50%以上をより好ましい状態とした。そこで、吸光度が40%以上50%未満を「△」、50%以上を良品である「○」と評価した。
Fine powder reduction performance test
In order to evaluate the fine powder reduction performance, a test was conducted based on a filter body (Comparative Examples 1 to 12) to which no paper strength agent was added. In this test, the water flow rate was set to 2.0 L / min, and 200 mL of the water initial stage was collected and measured. The measurement was carried out using a photoelectric spectrophotometer and at a measurement wavelength of 660 nm in a 100 mm cell. The fine powder reduction rate of each of trial production examples 1 to 19 was calculated based on the absorbance value of the filter body (comparative examples 1 to 12) to which the paper strength additive was not added (fine powder reduction rate (%) = (1-prototype example) Absorbance value / Absorbance value of Comparative Example) x 100). In the calculation of the fine powder reduction rate, prototype examples 1 to 8 are based on comparative example 1, and prototype example 9 below is comparative example 2, prototype example 10 is comparative example 3, prototype example 11 is comparative example 4, and prototype example 12 is comparative example 5, trial production example 13 is comparative example 6, trial production example 14 is comparative example 7, trial production example 15 is comparative example 8, trial production example 16 is comparative example 9, trial production example 17 is comparative example 10, trial production example 18 is comparative example 11, The trial production example 19 was obtained based on each of the comparative example 12. In the evaluation of the fine powder reduction performance, the fine powder reduction rate is less than 40% as "x" which is a defective product. Further, 40% or more and the point, and 50% or more are more preferable. Therefore, the absorbance was evaluated as “Δ” for 40% or more and less than 50% as “good” for 50% or more.

〈遊離残留塩素除去性能試験〉
遊離残留塩素の除去性能を評価するために、JIS S 3201(2010)の家庭用浄水器試験方法に準拠し、試験を行った。本試験においては、遊離残留塩素の濃度を2mg/L、通水流量を2.0L/minに設定し、10分間連続通水後の遊離残留塩素の除去率を測定した。評価に際しては、除去率が95%未満を不良品である「×」、95%以上を良品である「○」とした。
<Free residual chlorine removal performance test>
In order to evaluate the removal performance of the free residual chlorine, it tested based on the household water purifier test method of JISS3201 (2010). In this test, the concentration of free residual chlorine was set to 2 mg / L, the flow rate of water was set to 2.0 L / min, and the removal rate of free residual chlorine after continuous water flow for 10 minutes was measured. At the time of evaluation, the removal rate of less than 95% was regarded as "x" which is a defective product, and 95% or more as "good product".

〈溶解性鉛除去性能試験〉
金属イオンの除去性能を評価するために、JIS S 3201(2010)の家庭用浄水器試験方法に準拠し、試験を行った。本試験においては、溶解性鉛の濃度を50μg/L、通水流量を2.0L/minに設定し、10分間連続通水後の溶解性鉛の除去率を測定した。評価に際しては、除去率が95%未満を不良品である「×」、95%以上を良品である「○」とした。
<Dissolvable lead removal performance test>
In order to evaluate the metal ion removal performance, the test was conducted according to the domestic water purifier test method of JIS S 3201 (2010). In this test, the concentration of soluble lead was set to 50 μg / L, the flow rate of water was set to 2.0 L / min, and the removal rate of soluble lead after continuous water flow for 10 minutes was measured. At the time of evaluation, the removal rate of less than 95% was regarded as "x" which is a defective product, and 95% or more as "good product".

〔紙力増強剤含有量の比較〕
基材活性炭として前述の活性炭3を90重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを10重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例1とした。そして、比較例1の配合に、それぞれ異なる添加量で紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を添加して試作例1〜6とした。
[Comparison of Paper Strength Enhancer Content]
A filter body comprising 90 parts by weight of the above-mentioned activated carbon 3 as the base activated carbon, 10 parts by weight of titanium silicate having an average particle diameter of 12 μm as the powdery adsorbent, and 6 parts by weight of a fibrillated fiber binder (paper strength agent Was added as Comparative Example 1). Then, paper strength enhancers (polyamide-polyamine based wet paper strength enhancers, the same shall apply hereinafter) were added to the composition of Comparative Example 1 in different addition amounts, to make Prototype Examples 1 to 6.

なお、下記の表1,2では、紙力増強剤の添加量を粉末状吸着材100重量部に対する重量割合で表記した。すなわち、試作例1の紙力増強剤の添加量は粉末状吸着材100重量部に対して0.5重量部(表に示す粉末状吸着材10重量部に対しては0.05重量部)、試作例2の紙力増強剤の添加量は粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)、試作例3の紙力増強剤の添加量は粉末状吸着材100重量部に対して2.0重量部(表に示す粉末状吸着材10重量部に対しては0.2重量部)、試作例4の紙力増強剤の添加量は粉末状吸着材100重量部に対して10重量部(表に示す粉末状吸着材10重量部に対しては1重量部)、試作例5の紙力増強剤の添加量は粉末状吸着材100重量部に対して20重量部(表に示す粉末状吸着材10重量部に対しては2重量部)、試作例5の紙力増強剤の添加量は粉末状吸着材100重量部に対して30重量部(表に示す粉末状吸着材10重量部に対しては3重量部)である。   In Tables 1 and 2 below, the amount of addition of the paper-strengthening agent is represented by a weight ratio to 100 parts by weight of the powdery adsorbent. That is, the addition amount of the paper-strengthening agent of Prototype Example 1 is 0.5 parts by weight with respect to 100 parts by weight of the powdery adsorbent (0.05 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) The addition amount of the paper-strengthening agent according to trial example 2 is 1.0 parts by weight with respect to 100 parts by weight of the powdery adsorbent (0.1 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) The addition amount of the paper strength agent of trial example 3 is 2.0 parts by weight with respect to 100 parts by weight of the powdery adsorbent (0.2 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table), trial The addition amount of the paper strengthening agent of Example 4 was 10 parts by weight with respect to 100 parts by weight of the powdery adsorbent (1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table). The addition amount of the enhancer is 20 parts by weight per 100 parts by weight of the powdery adsorbent (2 parts by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table), a trial example The addition amount of the paper strength agent is 30 parts by weight with respect to powdery adsorbent 100 parts by weight (3 parts by weight with respect to powdery adsorbent 10 parts by weight shown in Table).

Figure 2019084469
Figure 2019084469

Figure 2019084469
Figure 2019084469

〔紙力増強剤含有量の比較の結果と考察〕
表1,2に示すように、試作例6では、フィルター体の作製に際して、形状を適切に保持できず、成形することができなかった。他の試作例1〜5では、フィルター体の成形は良好であった。試作例6は他の試作例1〜5と比較して紙力増強剤が過剰(30重量部)に添加されていたことから、フィルター体の十分な成形性を得る条件として、紙力増強剤は20重量部以下が好ましいと考えられる。なお、試作例6については、フィルター体の成形ができなかったため、微粉低減性能試験、遊離残留塩素除去性能試験、溶解性鉛除去性能試験に関する測定は実施しなかった。
[Result and Consideration of Comparison of Paper Strength Enhancer Content]
As shown in Tables 1 and 2, in the trial production example 6, the shape could not be properly maintained and could not be molded when producing the filter body. In the other prototype examples 1 to 5, the formation of the filter body was good. Since the paper strengthening agent was added in excess (30 parts by weight) as compared to the other prototypes 1 to 5 in trial production example 6, the paper strength enhancing agent was used as a condition for obtaining sufficient formability of the filter body. It is considered that 20 parts by weight or less is preferable. In addition, about the trial production example 6, since the shaping | molding of a filter body was not completed, the measurement regarding a fine powder reduction performance test, a free residual chlorine removal performance test, and a soluble lead removal performance test was not implemented.

試作例1〜5について、遊離残留塩素除去性能試験及び溶解性鉛除去性能試験は、いずれも良好な結果が得られた。また、微粉低減性能試験について、試作例1では微粉低減率(吸光度)が44.4%であり、試作例2〜5では微粉低減率がいずれも70%以上の高い数値が得られた。微粉低減率50%以上が良品であることから、試作例2〜5のとおり、良好な微粉低減性能を得る条件として、紙力増強剤は1.0重量部以上が好ましいと考えられる。従って、フィルター体の成形性の条件と微粉低減性能の条件とから、紙力増強剤の適正な含有量は1〜20重量部であることがわかった。   Good results were obtained for the free residual chlorine removal performance test and the soluble lead removal performance test for each of Prototype Examples 1 to 5. In the fine powder reduction performance test, the fine powder reduction rate (absorbance) was 44.4% in trial production example 1, and high values of 70% or more were obtained in all of the fine powder reduction rates in trial production examples 2 to 5. Since the fine powder reduction rate of 50% or more is a non-defective product, it is considered that 1.0 weight part or more of the paper strength agent is preferable as a condition for obtaining a good fine powder reduction performance as in Prototype Examples 2 to 5. Therefore, from the conditions of the formability of the filter body and the conditions of the fine powder reduction performance, it has been found that the appropriate content of the paper strengthening agent is 1 to 20 parts by weight.

〔紙力増強剤の種類の比較〕
比較例1の配合に、アニオン系乾燥紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例7、カチオン系湿潤紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)とアニオン系乾燥紙力増強剤を粉末状吸着材100重量部に対して0.5重量部(表に示す粉末状吸着材10重量部に対しては0.05重量部)とを混合して添加したフィルター体を試作例8とした。なお、下記表3では、紙力増強剤が添加されない比較例1、カチオン系湿潤紙力増強剤であるポリアミドポリアミン系湿潤紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加した試作例2もそれぞれ列記した。
[Comparison of types of paper strength agents]
In the composition of Comparative Example 1, 1.0 part by weight of an anionic dry paper strengthening agent with respect to 100 parts by weight of the powdery adsorbent (0.1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) 2. The trial production of Example 7 for the filter body added, and 1.0 part by weight of the cationic wet paper strengthening agent (polyamide polyamine based wet paper strengthening agent) with respect to 100 parts by weight of the powdered adsorbent (powdery adsorption shown in the table) 0.1 parts by weight per 10 parts by weight of the material and 0.5 parts by weight per 100 parts by weight of the powdery adsorptive material (10 parts by weight of the powdery adsorptive material shown in the table) On the other hand, a filter body prepared by mixing and adding 0.05 parts by weight) was designated as Prototype Example 8. In Table 3 below, Comparative Example 1 in which no paper-strengthening agent is added, 1.0 weight to 100 weight parts of the powdery adsorptive material of polyamide polyamine-based wet paper-strengthening agent which is a cationic wet paper-strengthening agent. The trial example 2 which added 1 part (0.1 weight part with respect to 10 weight parts of powdery adsorbents shown to a table | surface) was also listed, respectively.

Figure 2019084469
Figure 2019084469

〔紙力増強剤の種類の比較の結果と考察〕
表3に示すように、紙力増強剤としてアニオン系乾燥紙力増強剤を単独で用いた試作例7では、微粉低減率が不十分であった。これに対し、紙力増強剤としてカチオン系湿潤紙力増強剤を単独で用いた試作例2、またはカチオン系湿潤紙力増強剤とアニオン系乾燥紙力増強剤とを混合して用いた試作例8では、微粉低減率が良好であった。このことから、紙力増強剤にカチオン系湿潤紙力増強剤を主体として使用することにより、良好な微粉低減性能が得られることがわかった。
[Results and Consideration of Comparison of Types of Paper Strength Agents]
As shown in Table 3, in the case of Prototype Example 7 in which the anionic dry paper strengthening agent was used alone as the paper strengthening agent, the reduction rate of fine powder was insufficient. On the other hand, trial production example 2 using the cationic wet paper strengthening agent alone as the paper strengthening agent, or trial production using the cationic wet paper strengthening agent and the anionic dry paper strengthening agent in combination In No. 8, the fine powder reduction rate was good. From this, it was found that good powder reduction performance can be obtained by using a cationic wet paper strengthening agent as a main component for the paper strengthening agent.

〔基材活性炭の粒子径の比較〕
基材活性炭として平均粒子径20μmの活性炭1を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例2とし、比較例2の配合に紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例9とした。基材活性炭として平均粒子径29μmの活性炭2を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例3とし、比較例3の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例10とした。基材活性炭として平均粒子径158μmの活性炭4を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例4とし、比較例4の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例11とした。基材活性炭として平均粒子径220μmの活性炭5を90重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例5とし、比較例5の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例12とした。なお、下記表4では、基材活性炭として平均粒子径98μmの活性炭3を用いた比較例1及び試作例2もそれぞれ列記した。
[Comparison of particle size of base activated carbon]
A filter body comprising 90 parts by weight of activated carbon 1 having an average particle diameter of 20 μm as a base activated carbon and containing the same composition as in Comparative Example 1 except for that is referred to as Comparative Example 2; A filter body to which 1.0 part by weight (0.1 parts by weight with respect to 10 parts by weight of the powdery adsorptive material shown in the table) is added based on 100 parts by weight of the powdery adsorptive material Is a prototype example 9. A filter body composed of 90 parts by weight of activated carbon 2 having an average particle diameter of 29 μm as the base activated carbon and containing the same composition as in Comparative Example 1 except that is referred to as Comparative Example 3; A filter body in which 1.0 part by weight (0.1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) was added with respect to 100 parts by weight of the material was used as Prototype Example 10. A filter body consisting of 90 parts by weight of activated carbon 4 with an average particle diameter of 158 μm as the base activated carbon and containing the same composition as in Comparative Example 1 except for that is referred to as Comparative Example 4; A filter body in which 1.0 part by weight (0.1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) was added with respect to 100 parts by weight of the material was set as a prototype example 11. A filter body composed of 90 parts by weight of activated carbon 5 having an average particle diameter of 220 μm as the base activated carbon and containing the same composition as in Comparative Example 1 except that is referred to as Comparative Example 5; A filter body in which 1.0 part by weight (0.1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) was added to 100 parts by weight of the material was prepared as a trial example 12. In Table 4 below, Comparative Example 1 and Trial Example 2 in which activated carbon 3 having an average particle diameter of 98 μm was used as the base activated carbon are also listed.

Figure 2019084469
Figure 2019084469

Figure 2019084469
Figure 2019084469

〔基材活性炭の粒子径の比較の結果と考察〕
表4,5に示すように、比較例2及び試作例9では、フィルター体の作製に際して、形状を適切に保持できず、成形することができなかった。他の比較例1,3〜5及び試作例2,10〜12では、フィルター体の成形は良好であった。比較例2及び試作例9は他の比較例1,3〜5及び試作例2,9〜12と比較して基材活性炭の平均粒子径が微細(20μm)であることから、フィルター体の十分な成形性を得る条件として、基材活性炭の平均粒子径は25μm以上が好ましいと考えられる。なお、試作例9については、フィルター体の成形ができなかったため、微粉低減性能試験、遊離残留塩素除去性能試験、溶解性鉛除去性能試験に関する測定は実施しなかった。
[Results and discussion of comparison of particle size of base activated carbon]
As shown in Tables 4 and 5, in Comparative Example 2 and Prototype Example 9, the shape could not be properly maintained and could not be formed when producing the filter body. In the other comparative examples 1 and 3 to 5 and trial examples 2 and 10 to 12, the formation of the filter body was good. Since the average particle diameter of the base activated carbon is fine (20 μm) in comparison with Comparative Examples 1 to 3 and 2 and 9 to 12 according to Comparative Example 2 and Trial Example 9, the sufficient amount of the filter body is sufficient. As conditions for obtaining such formability, the average particle diameter of the base activated carbon is considered to be preferably 25 μm or more. In addition, about the trial production example 9, since the shaping | molding of a filter body was not completed, the measurement regarding a fine powder reduction performance test, a free residual chlorine removal performance test, and a soluble lead removal performance test was not implemented.

試作例10〜12について、遊離残留塩素除去性能試験及び溶解性鉛除去性能試験は、いずれも良好な結果が得られた。また、微粉低減性能試験について、試作例12では微粉低減率が43.2%であり、試作例10,11では微粉低減率がいずれも60%以上の高い数値が得られた。微粉低減率50%以上が良品であることから、試作例2,10,11のとおり、良好な微粉低減性能を得る条件として、基材活性炭の平均粒子径は160μm以下が好ましいと考えられる。従って、フィルター体の成形性の条件と微粉低減性能の条件とから、基材活性炭の適正な平均粒子径は25〜160μmであることがわかった。   About the trial example 10-12, the free residual chlorine removal performance test and the soluble lead removal performance test all obtained a favorable result. Further, in the fine powder reduction performance test, the fine powder reduction rate was 43.2% in trial production example 12, and high values of 60% or more were obtained in all of the fine powder reduction rates in trial production examples 10 and 11. Since the fine powder reduction rate of 50% or more is a non-defective product, the average particle diameter of the base activated carbon is considered to be preferably 160 μm or less as a condition for obtaining a good fine powder reduction performance as in Prototype Examples 2, 10 and 11. Therefore, from the conditions of the formability of the filter body and the conditions of the fine powder reduction performance, it was found that the appropriate average particle diameter of the base activated carbon is 25 to 160 μm.

〔粉末状吸着材の種類の比較〕
粉末状吸着材として平均粒子径20μmの活性炭を10重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例6とし、比較例6の配合に紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例13とした。粉末状吸着材として平均粒子径3μmの三チタン酸ナトリウムを10重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例7とし、比較例7の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例14とした。粉末状吸着材として平均粒子径8μmのゼオライトを10重量部、それ以外は比較例1と同様の配合からなるフィルター体を比較例8とし、比較例8の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材10重量部に対しては0.1重量部)添加したフィルター体を試作例15とした。なお、下記表7では、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを用いた比較例1及び試作例2もそれぞれ列記した。
[Comparison of types of powdered adsorbents]
A filter body composed of 10 parts by weight of activated carbon having an average particle diameter of 20 μm as a powdery adsorbent and having the same composition as in Comparative Example 1 except that is referred to as Comparative Example 6; A filter body to which 1.0 part by weight (0.1 parts by weight with respect to 10 parts by weight of the powdery adsorptive material shown in the table) is added based on 100 parts by weight of the powdery adsorptive material Is a prototype example 13. A filter body composed of 10 parts by weight of sodium trititanate having an average particle diameter of 3 μm as a powdery adsorbent and having the same composition as Comparative Example 1 except that is referred to as Comparative Example 7; A filter body in which 1.0 part by weight (0.1 part by weight with respect to 10 parts by weight of the powdery adsorptive material shown in the table) was added to 100 parts by weight of the powdery adsorptive material was prepared as a prototype example 14. A filter body consisting of 10 parts by weight of zeolite having an average particle diameter of 8 μm as a powdery adsorbent and having the same composition as in Comparative Example 1 except for that is designated as Comparative Example 8; A filter body in which 1.0 part by weight (0.1 part by weight with respect to 10 parts by weight of the powdery adsorbent shown in the table) was added to 100 parts by weight of the material was prepared as a prototype example 15. In addition, in following Table 7, the comparative example 1 and the trial example 2 which also used the titanium silicate of 12 micrometers of average particle diameters as a powdery adsorbent were listed, respectively.

Figure 2019084469
Figure 2019084469

Figure 2019084469
Figure 2019084469

〔粉末状吸着材の種類の比較の結果と考察〕
表6,7に示すように、試作例13では溶解性鉛除去性能試験を行わず、微粉低減性能試験及び遊離残留塩素除去性能試験でいずれも良好な結果が得られた。試作例13は、微粉の発生が低減されて吸着性能も優れていることから、浄水フィルター体として適切に使用することが可能である。また、試作例2,14,15では、溶解性鉛除去性能試験、微粉低減性能試験、遊離残留塩素除去性能試験のいずれでも良好な結果が得られた。従って、粉末状吸着材は、活性炭、三チタン酸ナトリウム、ゼオライト、ケイ酸チタニウムのいずれも好適に使用できることがわかった。
[Results and Consideration of Comparison of Types of Powdered Adsorbent]
As shown in Tables 6 and 7, the solubility lead removal performance test was not performed in Prototype Example 13, and good results were obtained in the fine powder reduction performance test and the free residual chlorine removal performance test. The trial production example 13 can be appropriately used as a water purification filter body because generation of fine powder is reduced and the adsorption performance is also excellent. Further, in the prototype examples 2, 14 and 15, good results were obtained in any of the soluble lead removal performance test, the fine powder reduction performance test, and the free residual chlorine removal performance test. Therefore, it has been found that any of activated carbon, sodium trititanate, zeolite and titanium silicate can be suitably used as the powdery adsorbent.

〔粉末状吸着材の含有量の比較〕
基材活性炭として前述の活性炭3を99.9重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを0.1重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例9とした。比較例9の配合に紙力増強剤(ポリアミドポリアミン系湿潤紙力増強剤、以下同じ)を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材0.1重量部に対しては0.001重量部)添加したフィルター体を試作例16とした。
[Comparison of the content of powdered adsorbent]
A filter body comprising 99.9 parts by weight of the above-mentioned activated carbon 3 as the base activated carbon, 0.1 parts by weight of titanium silicate having an average particle diameter of 12 μm as the powdery adsorbent, and 6 parts by weight of a fibrillated fiber binder A paper strengthening agent was not added, and this was taken as Comparative Example 9. In the composition of Comparative Example 9, 1.0 part by weight of a paper strengthening agent (polyamide polyamine based wet paper strengthening agent, hereinafter the same) with respect to 100 parts by weight of a powdery adsorbent (powdery adsorbent 0.1 shown in the table) A filter body to which 0.001 parts by weight was added with respect to parts by weight was set as Prototype Example 16.

基材活性炭として前述の活性炭3を99.5重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを0.5重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例10とした。比較例10の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材0.5重量部に対しては0.005重量部)添加したフィルター体を試作例17とした。   A filter body comprising 99.5 parts by weight of the above-mentioned activated carbon 3 as a base activated carbon, 0.5 parts by weight of titanium silicate having an average particle diameter of 12 μm as a powdery adsorbent, and 6 parts by weight of a fibrillated fiber binder A paper strengthening agent was not added, and this was taken as Comparative Example 10. In the composition of Comparative Example 10, 1.0 part by weight of a paper strengthening agent with respect to 100 parts by weight of the powdery adsorbent (0.005 parts by weight with respect to 0.5 parts by weight of the powdery adsorbent shown in the table) The resulting filter body is referred to as a prototype example 17.

基材活性炭として前述の活性炭3を70重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを30重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例11とした。比較例11の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材30重量部に対しては0.3重量部)添加したフィルター体を試作例18とした。   A filter body comprising 70 parts by weight of the above-mentioned activated carbon 3 as the base activated carbon, 30 parts by weight of titanium silicate having an average particle diameter of 12 μm as the powdery adsorbent and 6 parts by weight of a fibrillated fiber binder (paper strength agent No comparison was made with Comparative Example 11. A filter obtained by adding 1.0 part by weight of a paper strengthening agent to 100 parts by weight of the powdery adsorbent (0.3 parts by weight to 30 parts by weight of the powdery adsorbent shown in the table) in the composition of Comparative Example 11 The body was made as a trial production example 18.

基材活性炭として前述の活性炭3を60重量部、粉末状吸着材として平均粒子径12μmのケイ酸チタニウムを40重量部、フィブリル化繊維バインダを6重量部の配合からなるフィルター体(紙力増強剤は添加せず)を比較例12とした。比較例12の配合に紙力増強剤を粉末状吸着材100重量部に対して1.0重量部(表に示す粉末状吸着材40重量部に対しては0.4重量部)添加したフィルター体を試作例19とした。なお、下記表8では、基材活性炭を90重量部かつ粉末状吸着材を10重量部とした比較例1及び試作例2もそれぞれ列記した。   A filter body comprising 60 parts by weight of the above-mentioned activated carbon 3 as the base activated carbon, 40 parts by weight of titanium silicate having an average particle diameter of 12 μm as the powdery adsorbent and 6 parts by weight of a fibrillated fiber binder (paper strength agent No comparison was made with Comparative Example 12. A filter obtained by adding 1.0 part by weight of a paper reinforcing agent to 100 parts by weight of a powdery adsorbent (0.4 parts by weight to 40 parts by weight of a powdery adsorbent shown in the table) in the composition of Comparative Example 12 The body was made as a trial production example 19. In Table 8 below, Comparative Example 1 and Prototype Example 2 in which 90 parts by weight of the base activated carbon and 10 parts by weight of the powdery adsorbent were also listed.

Figure 2019084469
Figure 2019084469

Figure 2019084469
Figure 2019084469

〔粉末状吸着材の含有量の比較の結果と考察〕
表8,9に示すように、比較例12及び試作例19では、フィルター体の作製に際して、形状を適切に保持できず、成形することができなかった。他の比較例1,9〜11及び試作例2,16〜18では、フィルター体の成形は良好であった。比較例12及び試作例19は、他の比較例1,9〜11及び試作例2,16〜18と比較して粉末状吸着材の含有量が過剰(40重量部)であることから、フィルター体の十分な成形性を得る条件として、粉末状吸着材の含有量は30重量部以下が好ましいと考えられる。なお、試作例19については、フィルター体の成形ができなかったため、微粉低減性能試験、遊離残留塩素除去性能試験、溶解性鉛除去性能試験に関する測定は実施しなかった。
[Result and Consideration of Comparison of Powdered Adsorbent Content]
As shown in Tables 8 and 9, in Comparative Example 12 and Prototype Example 19, the shape could not be maintained properly and could not be formed when producing the filter body. The formation of the filter body was good in the other comparative examples 1, 9 to 11 and trial examples 2 and 16 to 18. Comparative Example 12 and Trial Example 19 have an excess of the powdery adsorbent (40 parts by weight) as compared with the other Comparative Examples 1, 9 to 11 and Trial Examples 2 and 16 to 18, and thus the filter As conditions for obtaining sufficient formability of the body, the content of the powdery adsorbent is considered to be preferably 30 parts by weight or less. In addition, in the case of prototype example 19, since the filter body could not be formed, measurements regarding the fine powder reduction performance test, the free residual chlorine removal performance test, and the soluble lead removal performance test were not performed.

試作例2,16〜18について、微粉低減性能試験及び遊離残留塩素除去性能試験は、いずれも良好な結果が得られた。また、溶解性鉛除去性能試験について、試作例16では溶解性鉛除去率が92.8%であったが、所望する性能には達しなかった。試作例2,17,18では、いずれも良好な結果が得られた。試作例16は、他の試作例2,17,18と比較して粉末状吸着材が微量(0.1重量部)であることから、良好な溶解性鉛除去性能を得る条件として、粉末状吸着材の含有量は0.5重量部以上が好ましいと考えられる。従って、フィルター体の成形性の条件と溶解性鉛除去性能の条件とから、粉末状吸着材の適正な含有量は0.5〜30重量部であることがわかった。   With respect to trial production examples 2, 16 to 18, good results were obtained for the fine powder reduction performance test and the free residual chlorine removal performance test. In addition, regarding the soluble lead removal performance test, although the soluble lead removal rate was 92.8% in Prototype Example 16, the desired performance was not reached. Good results were obtained in each of the prototype examples 2, 17 and 18. Trial Example 16 has a powdery adsorbing material in a small amount (0.1 parts by weight) as compared to the other trial examples 2, 17 and 18, and therefore, it is a powdery condition as a condition for obtaining a good solubility lead removal performance. The content of the adsorbent is considered to be preferably 0.5 parts by weight or more. Therefore, from the conditions of the formability of the filter body and the conditions of the soluble lead removal performance, it was found that the appropriate content of the powdered adsorbent was 0.5 to 30 parts by weight.

本発明の浄水フィルター体は、粉末状吸着材が含まれて吸着性能が向上されるとともに、紙力増強剤により末状吸着材由来の微粉の流出が低減されるため、高性能で通水時の不具合の発生が低減される。従って、従来の浄水フィルター体の代替として有望である。   The water purification filter body of the present invention contains a powdery adsorbent to improve the adsorption performance, and the paper strength agent reduces the outflow of fine powder derived from the powdery adsorbent, so that it is high-performance water-permeable Occurrence of problems of Therefore, it is promising as an alternative to conventional water purification filter bodies.

10 浄水フィルター体
11 中空筒部材
12 濾材
13 布状物
14 キャップ
20 フィルター体の製造装置
21 水槽
22 金型棒状部材
23 中空筒部材と金型棒状部材の一体化物
25 乾燥機
30 混合スラリー状物
31 基材活性炭
32 粉末状吸着材
33 フィブリル化繊維バインダ
34 紙力増強剤
35 吸着被着物
36 濾材部の成分
37 スラリー被着部
W 水
DESCRIPTION OF SYMBOLS 10 Water purification filter body 11 Hollow cylinder member 12 Filter medium 13 Cloth-like article 14 Cap 20 Filter body manufacturing apparatus 21 Water tank 22 Mold rod member 23 Integrated hollow cylinder member and mold rod member 25 Dryer 30 Mixed slurry material 31 Base activated carbon 32 Powdery adsorbent 33 Fibrillated fiber binder 34 Paper strength agent 35 Adsorbed material 36 Component of filter medium part 37 Slurry adhered part W Water

Claims (6)

基材活性炭と、粉末状吸着材と、フィブリル化繊維バインダとを含むフィルター体であって、
前記基材活性炭の平均粒子径は25〜160μmであり、
前記粉末状吸着材の平均粒子径は3〜20μmであり、
紙力増強剤が添加されてなる
ことを特徴とする浄水フィルター体。
A filter body comprising a base activated carbon, a powdered adsorbent and a fibrillated fiber binder,
The average particle diameter of the base activated carbon is 25 to 160 μm,
The average particle diameter of the powdery adsorbent is 3 to 20 μm,
A water purification filter body characterized by being added with a paper strengthening agent.
前記粉末状吸着材が活性炭である請求項1に記載の浄水フィルター体。   The purified water filter body according to claim 1, wherein the powdered adsorbent is activated carbon. 前記粉末状吸着材が、ゼオライト、ケイ酸チタニウムまたはチタン酸ナトリウムから選ばれる少なくとも1種である請求項1に記載の浄水フィルター体。   The purified water filter body according to claim 1, wherein the powdery adsorbent is at least one selected from zeolite, titanium silicate or sodium titanate. 前記紙力増強剤が、前記粉末状吸着材100重量部に対して1〜20重量部添加されている請求項1ないし3のいずれか1項に記載の浄水フィルター体。   The water purification filter body according to any one of claims 1 to 3, wherein the paper strength agent is added in an amount of 1 to 20 parts by weight with respect to 100 parts by weight of the powdery adsorbent. 前記フィルター体に占める前記粉末状吸着材の重量割合が、0.5〜30重量部である請求項1ないし4のいずれか1項に記載の浄水フィルター体。   The water purification filter body according to any one of claims 1 to 4, wherein a weight ratio of the powdery adsorbent occupied in the filter body is 0.5 to 30 parts by weight. 前記紙力増強剤がカチオン系湿潤紙力増強剤を含む請求項1ないし5のいずれか1項に記載の浄水フィルター体。   The water purification filter body according to any one of claims 1 to 5, wherein the paper strengthening agent comprises a cationic wet paper strengthening agent.
JP2017212195A 2017-11-01 2017-11-01 water filter body Active JP7271051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017212195A JP7271051B2 (en) 2017-11-01 2017-11-01 water filter body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017212195A JP7271051B2 (en) 2017-11-01 2017-11-01 water filter body

Publications (2)

Publication Number Publication Date
JP2019084469A true JP2019084469A (en) 2019-06-06
JP7271051B2 JP7271051B2 (en) 2023-05-11

Family

ID=66761894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017212195A Active JP7271051B2 (en) 2017-11-01 2017-11-01 water filter body

Country Status (1)

Country Link
JP (1) JP7271051B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620455A (en) * 2020-05-06 2021-11-09 Lg电子株式会社 Filter for water purification device and water purification device comprising same
JP7013067B1 (en) * 2020-11-02 2022-01-31 国立大学法人信州大学 Filtration material, manufacturing method of filtration material, water treatment material and water purifier
WO2022091514A1 (en) * 2020-11-02 2022-05-05 国立大学法人信州大学 Filter material, production method for filter material, water treatment material, and water purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155588A (en) * 1993-12-08 1995-06-20 Hayashi Seisakusho:Kk Compacted adsorptive body
JPH105580A (en) * 1996-06-24 1998-01-13 Kuraray Chem Corp Activated carbon fiber molded adsorbent
WO2011016548A1 (en) * 2009-08-06 2011-02-10 クラレケミカル株式会社 Molded activated charcoal and water purifier involving same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155588B2 (en) 2018-04-11 2022-10-19 富士フイルムビジネスイノベーション株式会社 Imide compound and electrophotographic photoreceptor, process cartridge and image forming apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07155588A (en) * 1993-12-08 1995-06-20 Hayashi Seisakusho:Kk Compacted adsorptive body
JPH105580A (en) * 1996-06-24 1998-01-13 Kuraray Chem Corp Activated carbon fiber molded adsorbent
WO2011016548A1 (en) * 2009-08-06 2011-02-10 クラレケミカル株式会社 Molded activated charcoal and water purifier involving same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620455A (en) * 2020-05-06 2021-11-09 Lg电子株式会社 Filter for water purification device and water purification device comprising same
EP3907191A1 (en) * 2020-05-06 2021-11-10 LG Electronics Inc. Filter for water-purification device and water-purification device including the same
US11780748B2 (en) 2020-05-06 2023-10-10 Lg Electronics Inc. Filter for water-purification device and water-purification device including the same
JP7013067B1 (en) * 2020-11-02 2022-01-31 国立大学法人信州大学 Filtration material, manufacturing method of filtration material, water treatment material and water purifier
WO2022091514A1 (en) * 2020-11-02 2022-05-05 国立大学法人信州大学 Filter material, production method for filter material, water treatment material, and water purifier

Also Published As

Publication number Publication date
JP7271051B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP6283435B2 (en) Activated carbon molded body and water purifier using the same
US7828969B2 (en) Liquid filtration systems
AU2008283876B2 (en) Liquid filtration systems
JP6328373B2 (en) Molded lyocell articles for selectively binding monovalent heavy metal ions, especially thallium and cesium ions, and their radioisotopes
JP2019084469A (en) Water purification filter body
JP7303118B2 (en) adsorption filter
JP4361489B2 (en) Composite adsorbent, method for producing the same, water purifier, and water purifier
JP2012061390A (en) Filter for purification
JP2016022399A (en) Water purification filter body
JP6599888B2 (en) Adsorption filter
JP7356458B2 (en) Water purification filter and water purifier using it
JP2019018154A (en) Filter body for water purification and water purifier
TWI789802B (en) Carbonaceous material, method for producing same, filter for water purification, and water purifier
MX2015005590A (en) Filter medium containing fibres.
JP2014095556A (en) Cesium adsorbent and cesium adsorption filter body
US9302210B2 (en) Composite blocks with void spaces
JP7301591B2 (en) Manufacturing method for residual chlorine removal filter body
JP7478163B2 (en) Adsorption filter for refining plating solution, and plating solution refining device and plating solution refining method using the same
JP2003010614A (en) Filter for water cleaning device
JP2003190941A (en) Adsorbent for water cleaner, method for manufacturing the same and water cleaner using the adsorbent
TWI753390B (en) Composite aggregate particles, and adsorbents, shaped bodies, and water purifiers using the same
JP2023142935A (en) Molded adsorbent
JP2023147952A (en) Residual chlorine removing filter body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220530

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220701

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220707

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221018

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230203

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230314

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230424

R150 Certificate of patent or registration of utility model

Ref document number: 7271051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150