JP7268448B2 - BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER - Google Patents

BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER Download PDF

Info

Publication number
JP7268448B2
JP7268448B2 JP2019068250A JP2019068250A JP7268448B2 JP 7268448 B2 JP7268448 B2 JP 7268448B2 JP 2019068250 A JP2019068250 A JP 2019068250A JP 2019068250 A JP2019068250 A JP 2019068250A JP 7268448 B2 JP7268448 B2 JP 7268448B2
Authority
JP
Japan
Prior art keywords
biological treatment
organic
organic wastewater
power generation
microbial power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019068250A
Other languages
Japanese (ja)
Other versions
JP2020163328A (en
Inventor
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019068250A priority Critical patent/JP7268448B2/en
Publication of JP2020163328A publication Critical patent/JP2020163328A/en
Application granted granted Critical
Publication of JP7268448B2 publication Critical patent/JP7268448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機性排水の生物処理システム及び生物処理方法に関する。 TECHNICAL FIELD The present invention relates to a biological treatment system and a biological treatment method for organic wastewater.

固定床式の嫌気性生物処理装置は、後段での固液分離および汚泥返送なしで槽内に菌体を保持し、安定した処理を行うことができる。しかし、生物処理槽が微生物発電装置のような、生物処理槽内で曝気を行わず、かつ、メタン発酵のように処理に伴うガス発生がない生物処理槽では、槽内はプラグフローに近い形になる。その場合、生物処理に伴い生成するCOやNHなどにより槽内で局所的にpHが変化して、生物処理に適したpH条件を外れ、処理性能が低下してしまう。そのため、生物処理装置の処理水の一部を循環することで、槽内を完全混合に近づけ、pHを均一化させることが行われている。 A fixed-bed anaerobic biological treatment apparatus can retain bacteria in the tank without solid-liquid separation and sludge return in the latter stage, and can perform stable treatment. However, in a biological treatment tank such as a microbial power generator that does not aerate in the biological treatment tank and does not generate gas accompanying treatment such as methane fermentation, the inside of the tank is close to plug flow. become. In that case, the pH locally changes in the tank due to CO 2 and NH 3 generated along with the biological treatment, deviating from the pH condition suitable for biological treatment, and the treatment performance deteriorates. Therefore, by circulating part of the treated water of the biological treatment apparatus, the inside of the tank is nearly completely mixed and the pH is made uniform.

一方、分解速度の異なる易分解性有機物と遅分解性有機物とを含有する有機性排水を生物膜を用いた生物処理槽で処理する場合、易分解性有機物を分解する微生物が担体表面に優占的に付着増殖して、遅分解性有機物を分解するような微生物は保持されないため、遅分解性有機物の処理が一向に進まないことがある。そこで、生物処理槽を直列に複数設け、易分解性有機物が除去された被処理水が流入する後段の生物処理槽で遅分解性有機物の除去を行うようにすることがある(例えば、特許文献1)。 On the other hand, when organic wastewater containing easily degradable organic matter and slowly degradable organic matter with different decomposition rates is treated in a biological treatment tank using a biofilm, microorganisms that decompose easily degradable organic matter dominate the carrier surface. Microorganisms that adhere to and proliferate on the surface and decompose the slow-degrading organic matter are not retained, so treatment of the slow-degrading organic matter may not progress at all. Therefore, in some cases, a plurality of biological treatment tanks are provided in series, and the slowly degradable organic matter is removed in the subsequent biological treatment tank into which the water to be treated from which the readily degradable organic matter has been removed flows (see, for example, Patent Document 1).

しかし、微生物発電装置のような、生物処理槽内で曝気を行わず、かつ、メタン発酵のように処理に伴い発生するガスもない生物処理槽で、上記理由から最後段の流出水の一部を最前段に循環して装置全体を完全混合に近づけようとすると、各槽で易分解性有機物を分解する微生物が増殖してしまい、遅分解性有機物の分解が進まなくなってしまうという問題があった。 However, in a biological treatment tank that does not aerate in the biological treatment tank, such as a microbial power generator, and does not generate gas as a result of treatment like methane fermentation, part of the effluent at the final stage is used for the above reasons. is circulated to the front stage to bring the entire apparatus close to complete mixing, there is a problem that the microorganisms that decompose easily degradable organic matter proliferate in each tank, and the decomposition of slowly degradable organic matter does not progress. rice field.

特開2012-239929号公報JP 2012-239929 A

本発明は、有機物が、易分解性有機物及び遅分解性有機物など生物による分解速度が異なる有機物を含有する場合であっても、安定して生物処理することができる有機性排水の生物処理システム及び生物処理方法を提供することを目的とする。 The present invention provides a biological treatment system for organic wastewater that can stably perform biological treatment even when the organic matter contains organic matter with different decomposition rates by organisms, such as easily degradable organic matter and slowly degradable organic matter. An object of the present invention is to provide a biological treatment method.

本発明の有機性排水の生物処理システムは、被処理水が順次に通水されるように設置された、生物膜を有する第1ないし第n(nは2以上)の生物処理装置を備えた有機性排水の生物処理システムであって、各生物処理装置は、被処理水が直列又は並列に通水される複数の室を備えおり、前記第1生物処理装置からの流出水の一部を該第1生物処理装置の流入側に返送する返送手段を設けたものである。 The organic wastewater biological treatment system of the present invention comprises first to n-th (n is 2 or more) biological treatment apparatuses having biofilms, which are installed so that the water to be treated is sequentially passed through. A biological treatment system for organic wastewater, wherein each biological treatment device has a plurality of chambers through which water to be treated is passed in series or in parallel, and part of the effluent from the first biological treatment device is A return means is provided for returning to the inflow side of the first biological treatment apparatus.

本発明の有機性排水の生物処理方法は、かかる本発明の有機性排水の生物処理システムを用いた有機性排水の生物処理方法であって、少なくとも前記第1生物処理装置からの流出水の一部を該第1生物処理装置の流入側に返送する。 The organic wastewater biological treatment method of the present invention is a method of biologically treating organic wastewater using the organic wastewater biological treatment system of the present invention, wherein at least part of the effluent from the first biological treatment apparatus A portion is returned to the inflow side of the first biological treatment device.

本発明の一態様では、第2以降の生物処理装置においても、各生物処理装置からの流出水の一部を当該生物処理装置の流入側に返送する。好ましくは第2以降の生物処理装置への流入水に含まれる遅分解性有機物の全有機物に占める比率が30wt%以上である場合、各生物処理装置の流出水の一部を当該生物処理装置の流入側に返送する。 In one aspect of the present invention, in the second and subsequent biological treatment apparatuses, part of the effluent from each biological treatment apparatus is returned to the inflow side of the biological treatment apparatus. Preferably, when the ratio of slowly degradable organic matter contained in the inflow to the second and subsequent biological treatment apparatuses to the total organic matter is 30 wt% or more, part of the effluent of each biological treatment apparatus is added to the biological treatment apparatus. Return to the inflow side.

本発明の一態様では、前記生物処理装置は、プラグフロー通水方式の嫌気性生物処理装置である。 In one aspect of the present invention, the biological treatment apparatus is a plug flow permeable anaerobic biological treatment apparatus.

本発明の一態様では、前記生物処理装置は、複数のアノード室を備えた微生物発電装置である。 In one aspect of the invention, the biological treatment device is a microbial power generation device comprising a plurality of anode chambers.

本発明の一態様では、各生物処理装置内の通水LVを10~50m/hrとする。 In one aspect of the present invention, the water flow LV in each biological treatment apparatus is set to 10 to 50 m/hr.

本発明の有機性排水の生物処理システム及び方法によると、少なくとも第1生物処理装置の流出水の一部を該第1生物処理装置の流入側に返送するので、原水が易分解性有機物を多く含んでいる場合でも、第1生物処理装置で易分解性有機物が十分に生物処理される。そのため、第2生物処理装置以降への流入水中の易分解性有機物濃度が低くなり、遅分解性有機物を分解する微生物が十分に増殖し、遅分解性有機物も十分に分解されるようになる。 According to the organic wastewater biological treatment system and method of the present invention, at least part of the effluent from the first biological treatment apparatus is returned to the inflow side of the first biological treatment apparatus, so that the raw water contains a large amount of easily decomposable organic matter. Even when it is contained, the easily decomposable organic matter is fully biologically treated in the first biological treatment device. As a result, the concentration of easily decomposable organic matter in the inflow water from the second biological treatment apparatus onwards becomes low, the microorganisms that decompose slowly decomposable organic matter proliferate sufficiently, and the slowly degradable organic matter is also sufficiently decomposed.

実施の形態に係る生物処理システムの構成図である。1 is a configuration diagram of a biological treatment system according to an embodiment; FIG. 実施の形態に係る微生物発電装置の模式的な縦断面図である。1 is a schematic longitudinal sectional view of a microbial power generation device according to an embodiment; FIG. 実施の形態に係る微生物発電装置の模式的な縦断面図である。1 is a schematic longitudinal sectional view of a microbial power generation device according to an embodiment; FIG. 実験結果を示すグラフである。It is a graph which shows an experimental result.

以下、図面を参照して本発明の有機性排水の生物処理システム及び生物処理方法の実施の形態を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a biological treatment system and a biological treatment method for organic waste water according to the present invention will be described below in detail with reference to the drawings.

本発明の生物処理システム及び生物処理方法が処理対象とする原水としては、少なくとも1種の易分解性有機物と少なくとも1種の遅分解性有機物を含有する有機性排水が好適である。 Raw water to be treated by the biological treatment system and biological treatment method of the present invention is preferably organic wastewater containing at least one readily degradable organic substance and at least one slowly degradable organic substance.

易分解性有機物としては、ギ酸、酢酸、プロピオン酸、酪酸などの炭素数4以下の低級脂肪酸のほか、メタノール、エタノール、プロパノール、イソプロパノールなどの炭素数4以下の低級アルコールが例示される。 Examples of easily decomposable organic substances include lower fatty acids having 4 or less carbon atoms such as formic acid, acetic acid, propionic acid and butyric acid, and lower alcohols having 4 or less carbon atoms such as methanol, ethanol, propanol and isopropanol.

遅分解性有機物としては、TMAH、DMSO、フェノール、テレフタル酸、ベンゼン、デンプンなどが例示される。 Examples of slow-degrading organic substances include TMAH, DMSO, phenol, terephthalic acid, benzene, and starch.

このような易分解性有機物及び遅分解性有機物を含む有機性排水としては、電子産業排水、化学工場排水、製薬排水などが例示されるが、これらに限定されない。 Examples of organic wastewater containing easily degradable organic matter and slowly degradable organic matter include, but are not limited to, electronic industry wastewater, chemical factory wastewater, and pharmaceutical wastewater.

図1は本発明の有機性排水の生物処理システムの概略的な構成を示すフロー図である。 FIG. 1 is a flow diagram showing a schematic configuration of the biological treatment system for organic waste water of the present invention.

この実施の形態では、生物処理装置として第1,第2及び第3の微生物発電装置11,12,13が設置されている。ただし、微生物発電装置の設置段数はこれに限定されるものではなく、2又は4以上(好ましくは5以下)であってもよい。また、微生物発電装置以外のプラグフロー通水方式の嫌気性生物処理装置を用いてもよい。 In this embodiment, first, second and third microbial power generation devices 11, 12 and 13 are installed as biological treatment devices. However, the number of steps of the microbial power generator is not limited to this, and may be 2 or 4 or more (preferably 5 or less). Moreover, you may use the anaerobic-biological-treatment apparatus of a plug-flow water flow system other than a microbial power generation apparatus.

図1において、原水は、中和槽30に供給される。該中和槽30内の被処理水は、配管31、ポンプ32、配管33を介して第1微生物発電装置11のアノード室に供給され、微生物発電反応に供される。微生物発電反応後のアノード室内の液は、配管34へ流出し、その一部は配管35を介して流入配管31に返送される。 In FIG. 1, raw water is supplied to neutralization tank 30 . The water to be treated in the neutralization tank 30 is supplied to the anode chamber of the first microbial power generation device 11 via a pipe 31, a pump 32 and a pipe 33, and subjected to a microbial power generation reaction. After the microbial power generation reaction, the liquid in the anode chamber flows out to the pipe 34 and part of it is returned to the inflow pipe 31 via the pipe 35 .

配管34へ流出した液の残部は、配管41、ポンプ42、配管43を介して第2微生物発電装置12のアノード室に供給され、微生物発電反応に供される。微生物発電反応後のアノード室内の液は、配管44へ流出し、その一部は配管45を介して流入配管41に返送される。 The rest of the liquid flowing out to the pipe 34 is supplied to the anode chamber of the second microbial power generation device 12 via the pipe 41, the pump 42, and the pipe 43, and is subjected to the microbial power generation reaction. After the microbial power generation reaction, the liquid in the anode chamber flows out to the pipe 44 and part of it is returned to the inflow pipe 41 via the pipe 45 .

配管44へ流出した液の残部は、配管51、ポンプ52、配管53を介して第3微生物発電装置13のアノード室に供給され、微生物発電反応に供される。微生物発電反応後のアノード室内の液は、配管54へ流出し、その一部は配管55を介して流入配管51に返送される。 The rest of the liquid flowing out to the pipe 44 is supplied to the anode chamber of the third microbial power generator 13 via the pipe 51, the pump 52, and the pipe 53, and is subjected to the microbial power generation reaction. After the microbial power generation reaction, the liquid in the anode chamber flows out to the pipe 54 and part of it is returned to the inflow pipe 51 via the pipe 55 .

配管54へ流出した液の残部が、配管61を介して処理水として取り出される。配管61へ流出した処理水の一部は、配管56を介して中和槽30へ返送されてもよい。ただし、各アノード室内の流量に対して1/10以下であることが好ましい。 The rest of the liquid that has flowed out to pipe 54 is taken out as treated water via pipe 61 . A part of the treated water that has flowed out to the pipe 61 may be returned to the neutralization tank 30 through the pipe 56 . However, it is preferably 1/10 or less of the flow rate in each anode chamber.

この実施の形態では、後述の図2,3の通り、各微生物発電装置11~13はカソード室を備えており、各カソード室に空気や純酸素、酸素富化空気などの酸素含有ガスが供給される。各微生物発電装置のカソードを連通して酸素含有ガスを直列または並列に供給してもよい。 In this embodiment, as shown in FIGS. 2 and 3 described later, each of the microbial power generators 11 to 13 has a cathode chamber, and an oxygen-containing gas such as air, pure oxygen, or oxygen-enriched air is supplied to each cathode chamber. be done. The oxygen-containing gas may be supplied in series or parallel by connecting the cathodes of each microbial power generator.

図1では、第2,第3微生物発電装置12,13においてもアノード室流出液の一部を流入配管41,51に返送しているが、流入水に含まれる遅分解性有機物の全有機物に占める比率が30wt%以上である微生物発電装置12及び/又は13においてのみ、アノード室流出液を当該微生物発電装置の流入配管41又は51へ返送するようにしてもよい。 In FIG. 1, part of the anode chamber effluent is returned to the inflow pipes 41 and 51 in the second and third microbial power generators 12 and 13 as well. The anode chamber effluent may be returned to the inflow pipe 41 or 51 of the microbial power generation device only in the microbial power generation device 12 and/or 13 having a ratio of 30 wt % or more.

次に、各微生物発電装置11,12,13の構成について図2を参照して説明する。 Next, the configuration of each of the microbial power generators 11, 12, 13 will be described with reference to FIG.

各微生物発電装置11~13においては、槽体1内に複数枚のイオン透過性非導電性膜2が平行に配置されることによってカソード室3とアノード室4とが交互に区画されている。各カソード室3内にあっては、イオン透過性非導電性膜2に接するように正極5が配置されている。 In each of the microbial power generators 11 to 13, a plurality of ion-permeable non-conductive membranes 2 are arranged in parallel within the tank body 1, thereby alternately partitioning the cathode chambers 3 and the anode chambers 4. As shown in FIG. A positive electrode 5 is arranged in each cathode chamber 3 so as to be in contact with the ion-permeable non-conductive membrane 2 .

正極(カソード)5は、導電性材料(グラファイト、チタン、ステンレスなど)で構成された立体よりなる。正極を構成する素材は、電子受容体の種類によって適宜、選択すればよい。酸素を電子受容体とする場合は白金などの酸素還元触媒を用いることが好ましく、例えばグラファイトフェルトを基材として白金を担持させるとよい。 The positive electrode (cathode) 5 is a three-dimensional body made of a conductive material (graphite, titanium, stainless steel, etc.). The material constituting the positive electrode may be appropriately selected according to the type of electron acceptor. When oxygen is used as an electron acceptor, it is preferable to use an oxygen reduction catalyst such as platinum. For example, graphite felt may be used as a base material to support platinum.

カソード室3内には酸素含有ガスの代りに、例えばヘキサシアノ鉄(III)酸カリウム(フェリシアン化カリウム)を含む液を供給してもよい。この場合、正極5として、安価なグラファイト電極をそのまま(白金を担持させずに)使用してもよい。 A liquid containing potassium hexacyanoferrate(III) (potassium ferricyanide), for example, may be supplied into the cathode chamber 3 instead of the oxygen-containing gas. In this case, as the positive electrode 5, an inexpensive graphite electrode may be used as it is (without supporting platinum).

各アノード室4内には、導電性材料(グラファイト、チタン、ステンレスなど)で構成された立体の負極6が配置されている。アノード室4内に発電微生物が保持されている。 A three-dimensional negative electrode 6 made of a conductive material (graphite, titanium, stainless steel, etc.) is arranged in each anode chamber 4 . Power-generating microorganisms are held in the anode chamber 4 .

この実施の形態では、カソード室3内は、空室であり、ガス流入管7を介して空気などの酸素含有ガスが導入され、ガス流出管8を経て排ガスが流出する。 In this embodiment, the inside of the cathode chamber 3 is empty, an oxygen-containing gas such as air is introduced through the gas inlet pipe 7, and the exhaust gas is discharged through the gas outlet pipe 8.

カソード室3とアノード室4とを仕切るイオン透過性非導電性膜2としては、非導電性、かつイオン透過性を有するものであれば殆どのものが使用できる。イオン交換膜、紙、織布、不織布、いわゆる有機膜(精密濾過膜)、ハニカム成形体、格子状成形体等が使用できる。イオンを透過させ易くするために、厚さは10μm~1mm、特に30~100μm程度の薄いものが好ましい。 As the ion-permeable non-conductive film 2 for partitioning the cathode chamber 3 and the anode chamber 4, almost any material can be used as long as it is non-conductive and ion-permeable. Ion-exchange membranes, paper, woven fabrics, non-woven fabrics, so-called organic membranes (microfiltration membranes), honeycomb molded bodies, grid-like molded bodies, and the like can be used. In order to allow ions to easily pass through, the thickness is preferably as thin as 10 μm to 1 mm, particularly 30 to 100 μm.

アノード室4には有機物含有液を前記ポンプ32,42又は52及び配管33,43又は53を介して導入し、流出配管34,44又は54から反応廃液を排出させる。なお、アノード室4内は密閉され嫌気性とされる。 The organic substance-containing liquid is introduced into the anode chamber 4 through the pump 32, 42 or 52 and the pipe 33, 43 or 53, and the reaction waste liquid is discharged from the outflow pipe 34, 44 or 54. The inside of the anode chamber 4 is sealed and made anaerobic.

最終段の微生物発電装置13から流出配管54へ流出し、さらに配管61を介して取り出される処理水の一部は、前述の通り、配管56を介して中和槽30に循環され、原水が希釈される。この中和槽30には水酸化ナトリウム水溶液などのpH調整剤が添加され、pHが7~9に調整される。各微生物発電装置のアノード室4の温度条件は常温から中高温、具体的には10~70℃程度とすることが好ましい。 A portion of the treated water that flows out from the final-stage microbial power generator 13 to the outflow pipe 54 and is further taken out through the pipe 61 is circulated to the neutralization tank 30 through the pipe 56, as described above, to dilute the raw water. be done. A pH adjuster such as an aqueous sodium hydroxide solution is added to the neutralization tank 30 to adjust the pH to 7-9. The temperature condition of the anode chamber 4 of each microbial power generation device is preferably from room temperature to middle to high temperature, specifically about 10 to 70°C.

アノード室流出水の循環比率は、アノード室4内が完全混合に近くなるように、有機物含有液流入量:循環水量(流量比)として1:10以上、特に1:50以上、原水のBOD濃度が10,000mg/Lを超えるような高濃度の場合には1:200以上とするのが好ましい。 The circulation ratio of the outflow water from the anode chamber is set to 1:10 or more, particularly 1:50 or more, in terms of organic matter-containing liquid inflow to circulating water (flow ratio), so that the inside of the anode chamber 4 is nearly completely mixed, and the BOD concentration of the raw water is 1:200 or higher is preferred for high concentrations exceeding 10,000 mg/L.

本発明では、アノード室4内の通水LVを10m/hr以上、例えば10~50m/hrとすることで、アノード室内を完全混合に近づけるとともに、負極表面の生物膜と原水中の基質との接触効率を高めることができる。 In the present invention, by setting the water flow LV in the anode chamber 4 to 10 m/hr or more, for example, 10 to 50 m/hr, the inside of the anode chamber is brought close to complete mixing, and the biofilm on the surface of the negative electrode and the substrate in the raw water are mixed. Contact efficiency can be improved.

アノード室4に窒素ガスなどの酸素を含有しないガスを連続的、または、間欠的に通気してもよい。負極表面にガスによる剪断力が与えられ、生物膜の過度な付着による閉塞を防ぐ効果が高まるのに加え、特にカソード室3で酸素を電子受容体とする場合などには、好気性スライムの増殖などにより性能低下に繋がる、カソード室3からアノード室4に浸透する酸素を除去する効果もある。 An oxygen-free gas such as nitrogen gas may be continuously or intermittently supplied to the anode chamber 4 . A shearing force is applied to the negative electrode surface by the gas, and in addition to increasing the effect of preventing clogging due to excessive adhesion of biofilm, especially when oxygen is used as an electron acceptor in the cathode chamber 3, aerobic slime grows. It also has the effect of removing oxygen permeating from the cathode chamber 3 to the anode chamber 4, which leads to deterioration in performance.

正極5と負極6との間に生じた起電力により、端子20,21を介して外部抵抗(図示略)に電流が流れる。 Due to the electromotive force generated between the positive electrode 5 and the negative electrode 6, a current flows through the terminals 20 and 21 to an external resistor (not shown).

カソード室3に酸素含有ガスを通気すると共に、アノード室4に負極溶液を流通させることにより、アノード室4内では、
(有機物)+HO→CO+H+e
なる反応が進行する。この電子eが負極6、端子21、外部抵抗、端子20を経て正極5へ流れる。
By passing the oxygen-containing gas through the cathode chamber 3 and circulating the negative electrode solution through the anode chamber 4,
(Organic matter) + H 2 O→CO 2 + H + +e
reaction proceeds. This electron e flows to the positive electrode 5 through the negative electrode 6 , terminal 2 1 , external resistor, and terminal 20 .

イオン透過性非導電性膜2がカチオン交換膜である場合、上記反応で生じたプロトンHは、カチオン交換膜を通って正極5に移動する。正極5では、
+4H+4e→2H
なる反応が進行する。この正極反応で生成したHOはカソード排ガスと共に排出される。
When the ion-permeable non-conductive membrane 2 is a cation exchange membrane, the protons H 2 + generated in the above reaction move to the positive electrode 5 through the cation exchange membrane. At the positive electrode 5,
O 2 +4H + +4e →2H 2 O
reaction proceeds. H 2 O generated by this positive electrode reaction is discharged together with the cathode exhaust gas.

イオン透過性非導電性膜2としてアニオン交換膜を用いた場合、正極5では、
+2HO+4e→4OH
なる反応が進行する。この正極反応で生成したOHがイオン透過性非導電性膜2としてのアニオン交換膜を透過する。
When an anion exchange membrane is used as the ion permeable non-conductive membrane 2, the positive electrode 5 is
O 2 +2H 2 O+4e →4OH
reaction proceeds. OH generated by this positive electrode reaction permeates the anion exchange membrane as the ion-permeable non-conductive membrane 2 .

アノード室4では、微生物による水の分解反応によりCOが生成することにより、pHが低下しようとする。そこで、pHが好ましくは7~9となるようにアルカリが中和槽30に添加される。 In the anode chamber 4, the pH tends to decrease due to the generation of CO 2 by the decomposition reaction of water by microorganisms. Therefore, alkali is added to the neutralization bath 30 so that the pH is preferably 7-9.

図3は本発明の別の実施の形態に係る微生物発電装置を示している。上記図2に示す微生物発電装置では、各アノード室4に対し負極溶液が並列に通水されている。これに対し、図3では、各アノード室4は直列に接続されており、負極溶液は直列に通水される。図3のその他の構成は図1と同一であり、同一符号は同一部分を示している。 FIG. 3 shows a microbial power generator according to another embodiment of the invention. In the microbial power generator shown in FIG. 2, the negative electrode solution is passed through each anode chamber 4 in parallel. On the other hand, in FIG. 3, each anode chamber 4 is connected in series, and the negative electrode solution is passed through in series. Other configurations in FIG. 3 are the same as in FIG. 1, and the same reference numerals denote the same parts.

本発明では、アノード室内に保持され、電気エネルギーを産生させる微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas、Proteus(Proteus vulgaris)、Shewannell及びGeobacterの各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種としてアノード室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、アノード室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1~50g/Lであることが好ましい。 In the present invention, the microorganism that is held in the anode chamber and produces electrical energy is not particularly limited as long as it functions as an electron donor. For example, Saccharomyces, Hansenula, Candida, Micrococcus, Staphylococcus, Streptococcus, Leuconostoa, Lactobacillus, Corynebacterium, Arthrobacter, Bacillus, Clostridium, Neisseria, Escherichia, Enterobacter, Serratia, Achromobacter, Alcaligenes, Flavobacterium, Acetobacter, Moraxella, Nitrosomonas, Nitorobacter , Thiobacillus, Bacteria belonging to the genera Gluconobacter, Pseudomonas, Xanthomonas, Vibrio, Comamonas, Proteus (Proteus vulgaris), Shewannell and Geobacter, filamentous fungi, yeast and the like can be mentioned. As sludge containing such microorganisms, activated sludge obtained from biological treatment tanks for treating organic matter-containing water such as sewage, microorganisms contained in effluent from primary sedimentation tanks of sewage, anaerobic digestion sludge, etc. are used as inoculum for the anode. A chamber can be supplied to retain the microorganisms on the negative electrode. In order to increase power generation efficiency, it is preferable that the amount of microorganisms retained in the anode chamber is high, for example, the concentration of microorganisms is preferably 1 to 50 g/L.

[比較例1]
7cm×25cm×0.5cm(厚さ)のアノード室(容積87.5mL)に、厚さ0.5cmのグラファイトフェルトにステンレス線を導電性ペーストで接着して電気引出し線としたものを導電性材料として充填して負極を形成した。このアノード室の厚さ方向に対して、厚さ30μmのポリオレフィン製の不織布を介してカソード室を形成した。カソード室も7cm×25cm×0.5cm(厚さ)であり、厚さ0.5cmのグラファイトフェルトにステンレス線を導電性ペーストで接着して電気引出し線としたものを導電性材料として充填して正極を形成した。3Ωの抵抗で接続して、微生物発電装置(セル)を作製した。
[Comparative Example 1]
In an anode chamber (volume: 87.5 mL) of 7 cm × 25 cm × 0.5 cm (thickness), a stainless steel wire was adhered to a 0.5 cm thick graphite felt with a conductive paste to form an electrical lead wire. Filled as material to form a negative electrode. A cathode chamber was formed through a polyolefin nonwoven fabric having a thickness of 30 μm in the thickness direction of the anode chamber. The cathode chamber also has a size of 7 cm×25 cm×0.5 cm (thickness), and is filled with a conductive material such as a stainless steel wire adhered to a 0.5 cm thick graphite felt with a conductive paste to form an electrical lead wire. A positive electrode was formed. A microbial power generator (cell) was produced by connecting with a resistance of 3Ω.

この微生物発電セルを図1のように3セル直列に接続して有機性排水の生物処理システムを作製した。3セル目のアノード室流出水(処理水)を処理水槽に受け、処理水槽にて、2NHClまたは2NNaOHでpH7.5に調整したアノード室流出水を152mL/min(9.1L/hr)の流量で中和槽に循環し、原水と混合させつつ第1微生物発電セルのアノード室に上向流で通水した。 Three of these microbial power generation cells were connected in series as shown in FIG. 1 to prepare a biological treatment system for organic waste water. The anode chamber effluent (treated water) from the third cell was received in the treated water tank, and the anode chamber effluent was adjusted to pH 7.5 with 2N HCl or 2N NaOH in the treated water tank at a flow rate of 152 mL/min (9.1 L/hr). circulated to the neutralization tank, mixed with the raw water, and passed through the anode chamber of the first microbial power generation cell in an upward flow.

中和槽から第1微生物発電セルへは、イソプロピルアルコール(IPA)1,000mgC/L、テトラメチルアンモニウムヒドロキシド(TMAH)1,000mgC/Lと50mMリン酸バッファおよび酵母エキスとを含む原水を160mL/hrの流量にて供給した。 From the neutralization tank to the first microbial power generation cell, 160 mL of raw water containing 1,000 mgC/L isopropyl alcohol (IPA), 1,000 mgC/L tetramethylammonium hydroxide (TMAH), 50 mM phosphate buffer, and yeast extract. /hr.

この生物処理システムを、35℃に制御された室内に設置した。なお、原水の通水に先立って、稼働中の微生物発電装置からの流出水を植菌として通液した。各微生物発電セルのカソード室には50mMのフェリシアン化カリウムとリン酸バッファとを含む正極溶液を70mL/minの流量で供給した。 This biological treatment system was installed in a room controlled at 35°C. In addition, prior to the passage of the raw water, the outflow water from the microbial power generator in operation was passed as inoculum. A positive electrode solution containing 50 mM potassium ferricyanide and a phosphate buffer was supplied to the cathode chamber of each microbial power generation cell at a flow rate of 70 mL/min.

第1、第2微生物発電セルのアノード室の流出水は、それぞれ全量を第2、第3微生物発電セルに送水した。第3微生物発電セルのアノード室流出水は、上記の通り、152mL/minを第1微生物発電セルに返送し、残部を処理水として取り出した。 All of the effluent water from the anode chambers of the first and second microbial power generation cells was sent to the second and third microbial power generation cells, respectively. As described above, 152 mL/min of the effluent from the anode chamber of the third microbial power generation cell was returned to the first microbial power generation cell, and the remainder was taken out as treated water.

[実施例1]
比較例1と同じ装置構成で、各微生物発電セルのアノード室流出水を152mL/min(9.1L/hr)の流量で各セルの流入配管に循環させた。つまり、第1、第2微生物発電セルのアノード室の流出液は、それぞれ分岐して152mL/min(9.1L/hr)の流量で各セルのアノード室流入液に混合させ、第3微生物発電セルのアノード室流出液は、処理水槽の上流側で分岐して152mL/min(9.1L/hr)の流量で第3微生物発電セルのアノード室流入液に混合させた。これにより各セルのアノード室流入水及びアノード室流出水の流量は312mL/minとなった。その他は比較例1と同一条件にて運転を行った。
[Example 1]
With the same device configuration as in Comparative Example 1, the effluent water from the anode chamber of each microbial power generation cell was circulated through the inflow pipe of each cell at a flow rate of 152 mL/min (9.1 L/hr). That is, the effluents of the anode chambers of the first and second microbial power generation cells are each branched and mixed with the anode chamber inflow of each cell at a flow rate of 152 mL/min (9.1 L/hr) to produce the third microbial power generation. The cell anode compartment effluent was branched upstream of the treated water tank and mixed with the anode compartment influent of the third microbial power generation cell at a flow rate of 152 mL/min (9.1 L/hr). As a result, the flow rate of the anode chamber inflow water and the anode chamber outflow water of each cell was 312 mL/min. Other conditions were the same as in Comparative Example 1.

<結果>
比較例1、実施例1の処理水TOC濃度の推移を図4に示す。比較例1では、立上げから3週間経過した頃から処理水TOC濃度は1,000~1,100mgC/Lでほぼ横這いとなり、また水質分析したところ処理水にはTMAHが残存していた。一方、実施例1では、立上げ当初は処理水TOC濃度が比較例1より高かったが、3週間経過後も低下し続け、約2ヶ月後には200mg/L前後で安定するようになり、水質分析したところTMAHも除去されていた。
<Results>
FIG. 4 shows changes in the TOC concentration in the treated water of Comparative Example 1 and Example 1. As shown in FIG. In Comparative Example 1, the TOC concentration in the treated water leveled off at 1,000 to 1,100 mgC/L after 3 weeks from the start-up, and TMAH remained in the treated water when the water quality was analyzed. On the other hand, in Example 1, the TOC concentration in the treated water was higher than in Comparative Example 1 at the beginning of the start-up, but continued to decrease even after 3 weeks had passed, and after about 2 months it became stable at around 200 mg / L, and the water quality TMAH was also removed by analysis.

この実施例及び比較例により、アノード室流出水の一部を当該セルの流入水に循環させることにより、有機物除去効果が向上することが実証された。 These examples and comparative examples demonstrate that the effect of removing organic matter is improved by circulating part of the outflow water from the anode chamber to the inflow water of the cell.

1 槽体
2 イオン透過性非導電性膜
3 カソード室
4 アノード室
5 正極
6 負極
11,12,13 微生物発電装置
10 原水槽
REFERENCE SIGNS LIST 1 tank body 2 ion-permeable non-conductive membrane 3 cathode chamber 4 anode chamber 5 positive electrode 6 negative electrode 11, 12, 13 microbial power generator 10 raw water tank

Claims (8)

少なくとも1種の易分解性有機物と少なくとも1種の遅分解性有機物を含有する有機性排水が順次に通水されるように設置された、生物膜を有する第1ないし第n(nは2以上)の生物処理装置を備えた有機性排水の生物処理システムであって、
各生物処理装置は、前記有機性排水が通水される複数のアノード室を備えた微生物発電装置であり、該微生物発電装置の負極表面に前記生物膜が付着しており、
各生物処理装置は、被処理水が直列又は並列に通水される複数の室を備えており、
前記第1生物処理装置からの流出水の一部を該第1生物処理装置の流入側に返送する返送手段を設けた有機性排水の生物処理システム。
First to n-th (n is 2 or more) having a biofilm, installed so that organic wastewater containing at least one easily degradable organic substance and at least one slow-degradable organic substance is sequentially passed through ) biological treatment system for organic wastewater, comprising
Each biological treatment device is a microbial power generation device having a plurality of anode chambers through which the organic wastewater is passed, and the biofilm is attached to the negative electrode surface of the microbial power generation device,
Each biological treatment device has a plurality of chambers through which water to be treated is passed in series or in parallel,
A biological treatment system for organic waste water provided with return means for returning part of the effluent from the first biological treatment apparatus to the inflow side of the first biological treatment apparatus.
前記第2以降の生物処理装置に、各生物処理装置からの流出水の一部を当該生物処理装置の流入側に返送する返送手段を設けた請求項1に記載の有機性排水の生物処理システム。 2. A biological treatment system for organic wastewater according to claim 1, wherein the second and subsequent biological treatment apparatuses are provided with return means for returning part of the effluent from each biological treatment apparatus to the inflow side of the biological treatment apparatus. . 前記微生物発電装置は、
槽体(1)と、
該槽体(1)内に複数枚のイオン透過性非導電性膜(2)が平行に配置されることによって交互に区画されている、カソード室(3)とアノード室(4)と、
該カソード室(3)内において、該イオン透過性非導電性膜(2)に接するように配置された正極5と、
該アノード室(4)内に配置された、導電性材料で構成された前記負極(6)と
を有する請求項1又は2に記載の有機性排水の生物処理システム。
The microbial power generation device is
a tank body (1);
a cathode chamber (3) and an anode chamber (4), which are alternately partitioned by a plurality of ion-permeable non-conductive membranes (2) arranged in parallel in the tank body (1);
a positive electrode 5 disposed in contact with the ion-permeable non-conductive membrane (2) in the cathode chamber (3);
said negative electrode (6) made of a conductive material located in said anode chamber (4);
The organic wastewater biological treatment system according to claim 1 or 2, having
前記カソード室(3)は空室であり、酸素含有ガスが通気される請求項1ないし3のいずれか1項に記載の有機性排水の生物処理システム。 4. A biological treatment system for organic waste water according to any one of claims 1 to 3, wherein the cathode chamber (3) is empty and is vented with an oxygen-containing gas . 請求項1ないし4のいずれかの有機性排水の生物処理システムを用いた、少なくとも1種の易分解性有機物と少なくとも1種の遅分解性有機物を含有する有機性排水の生物処理方法であって、
少なくとも前記第1生物処理装置からの流出水の一部を該第1生物処理装置の流入側に返送する有機性排水の生物処理方法。
A biological treatment method for organic wastewater containing at least one readily degradable organic substance and at least one slowly degradable organic substance, using the organic wastewater biological treatment system according to any one of claims 1 to 4, ,
A biological treatment method for organic wastewater, wherein at least part of the effluent from the first biological treatment apparatus is returned to the inflow side of the first biological treatment apparatus.
前記第2以降の生物処理装置への流入水に含まれる遅分解性有機物の全有機物に占める比率が30wt%以上である場合、各生物処理装置の流出水の一部を当該生物処理装置の流入側に返送する請求項5に記載の有機性排水の生物処理方法。 When the ratio of slowly degradable organic matter contained in the inflow to the second and subsequent biological treatment apparatuses to the total organic matter is 30 wt% or more, part of the outflow water from each biological treatment apparatus is The organic wastewater biological treatment method according to claim 5, wherein the organic wastewater is returned to the side. 前記易分解性有機物が炭素数4以下の低級脂肪酸及び/又は炭素数4以下の低級アルコールである請求項5又は6に記載の有機性排水の生物処理方法。 7. The method for biologically treating organic wastewater according to claim 5 or 6, wherein the easily decomposable organic substance is a lower fatty acid having 4 or less carbon atoms and/or a lower alcohol having 4 or less carbon atoms. 各生物処理装置内の通水LVを10~50m/hrとする請求項5~7のいずれか1項に記載の有機性排水の生物処理方法。 The biological treatment method for organic waste water according to any one of claims 5 to 7, wherein the water flow LV in each biological treatment device is 10 to 50 m/hr.
JP2019068250A 2019-03-29 2019-03-29 BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER Active JP7268448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019068250A JP7268448B2 (en) 2019-03-29 2019-03-29 BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068250A JP7268448B2 (en) 2019-03-29 2019-03-29 BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER

Publications (2)

Publication Number Publication Date
JP2020163328A JP2020163328A (en) 2020-10-08
JP7268448B2 true JP7268448B2 (en) 2023-05-08

Family

ID=72714728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068250A Active JP7268448B2 (en) 2019-03-29 2019-03-29 BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER

Country Status (1)

Country Link
JP (1) JP7268448B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037261A1 (en) 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
JP2012239929A (en) 2011-05-16 2012-12-10 Swing Corp Method and apparatus for anaerobic treatment of organic wastewater

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050105302A (en) * 2004-04-28 2005-11-04 주식회사 세신청정 Treatment method of petro-chemical wastewater comprising terephthalic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037261A1 (en) 2005-09-28 2007-04-05 Ebara Corporation Biological power plant, and method of treating organic solid contaminant-containing waste, method of treating organic high molecular substance-containing liquid waste and method of treating organic substance-containing liquid waste by using the biological power plant, and apparatus for conducting these methods
JP2012239929A (en) 2011-05-16 2012-12-10 Swing Corp Method and apparatus for anaerobic treatment of organic wastewater

Also Published As

Publication number Publication date
JP2020163328A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5298589B2 (en) Microbial power generator
KR101697144B1 (en) Microbial electricity-generating method and microbial electric generator
JP5407156B2 (en) Microbial power generation method and microbial power generation apparatus
JP6652150B2 (en) Microbial power generator and operation method thereof
JP6252702B1 (en) Microbial power generation method and apparatus
Liu et al. Enhancing the performance of a microbial electrochemical system with carbon-based dynamic membrane as both anode electrode and filtration media
JP5359725B2 (en) Microbial power generation method and microbial power generation apparatus
WO2010071059A1 (en) Microbial electricity-generating method and microbial electric generator
WO2019171833A1 (en) Microbial power-generation device and method
JP7268448B2 (en) BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER
JP7218648B2 (en) Microbial power generation method and apparatus
JP2009061390A (en) Direct oxidation method of ammonia nitrogen in water and its apparatus
JP7247713B2 (en) Biological treatment equipment for organic wastewater
JP5287149B2 (en) Microbial power generation method and microbial power generation apparatus
JP4616594B2 (en) Water treatment method and water treatment apparatus
KR101920428B1 (en) Method for wastewater treatment that simultaneous removal of organic matter and nitrogen in wastewater using microbial fuel cell
CN114011251A (en) Conductive film for efficiently removing nitrate in water and preparation method thereof
JP6652149B2 (en) Microbial power generator using germicide and method of operating microbial power generator
JP2009238558A (en) Microbiological power generation method and device
CN115557594A (en) Late-stage landfill leachate treatment system and method coupled with multiple bioelectrochemical systems
JP2019160459A (en) Operation method of microorganism power generation device
JP2011065820A (en) Microorganism power generation method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7268448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150