JP2009061390A - Direct oxidation method of ammonia nitrogen in water and its apparatus - Google Patents

Direct oxidation method of ammonia nitrogen in water and its apparatus Download PDF

Info

Publication number
JP2009061390A
JP2009061390A JP2007231146A JP2007231146A JP2009061390A JP 2009061390 A JP2009061390 A JP 2009061390A JP 2007231146 A JP2007231146 A JP 2007231146A JP 2007231146 A JP2007231146 A JP 2007231146A JP 2009061390 A JP2009061390 A JP 2009061390A
Authority
JP
Japan
Prior art keywords
negative electrode
water
positive electrode
nitrogen
ammonia nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007231146A
Other languages
Japanese (ja)
Inventor
Yutaka Sakakibara
豊 榊原
Hiroki Okamori
弘樹 岡森
Masato Komori
正人 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2007231146A priority Critical patent/JP2009061390A/en
Publication of JP2009061390A publication Critical patent/JP2009061390A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treating method and a water treatment apparatus efficiently oxidizing and removing ammonia nitrogen at cost lower than that in a conventional method, and recovering electric energy by this treatment, in treatment of water containing ammonia nitrogen. <P>SOLUTION: The water treatment apparatus comprises a negative electrode tank having a biological membrane electrode using a microorganic membrane formed on a conductive carrier as a negative electrode, and a positive electrode tank having a positive electrode therein across a diaphragm. In the water treating method, water to be treated containing ammonia nitrogen is introduced into the negative electrode tank, the ammonia nitrogen is directly oxidized to nitrogen gas by a microorganism reaction in an anaerobic condition, electrons generated at the negative electrode in the oxidization are transferred to the positive electrode, to reduce dissolved oxygen at the positive electrode. Slight DC voltage, about 0.5V, is preferably applied between the positive and negative electrodes. Movement of electrons from the negative electrode to the positive electrode allows recovery of electric energy. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水の処理方法及び水処理装置に関し、特に、水中の窒素化合物の除去のために、嫌気性条件下でアンモニア性窒素を直接窒素ガスへ酸化処理し、同時に電気エネルギーの回収も可能な水の処理方法及び水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus, and in particular, for removing nitrogen compounds in water, ammonia nitrogen is directly oxidized to nitrogen gas under anaerobic conditions, and at the same time, electric energy can be recovered. The present invention relates to a water treatment method and a water treatment apparatus.

アンモニア性窒素は本来微生物の栄養源となる物質であるが、畜産排水、生活排水及び工場排水などの種々の排水中に高濃度含まれている。これらの排水が環境中に排出されると、排水中に含まれるアンモニア性窒素の一部は、微生物の働きによって硝酸性窒素、亜硝酸性窒素等の窒素化合物となり、アンモニア性窒素を含むこれら窒素化合物が閉鎖性水域の富栄養化をもたらすという問題が生じている。このアンモニア性窒素は生物学的手法によって窒素ガスまで無害化することが可能である。種々の窒素化合物の無害化方法の中で、硝化菌及び脱窒素菌と言われる細菌によって引き起こされる硝化・脱窒反応を利用する方法が主流となっている。アンモニア性窒素は硝化プロセスにおいて、好気性条件下で硝酸性窒素もしくは亜硝酸生窒素まで酸化される。硝化プロセスにおいて生じた硝酸性窒素及び亜硝酸生窒素は、嫌気性条件下で脱窒プロセスにおいて窒素ガスまで還元されて無害化される(例えば、非特許文献1参照)。   Ammonia nitrogen is originally a substance that is a nutrient source for microorganisms, but is contained in high concentrations in various wastewaters such as livestock wastewater, domestic wastewater, and factory wastewater. When these effluents are discharged into the environment, some of the ammonia nitrogen contained in the effluent becomes nitrogen compounds such as nitrate nitrogen and nitrite nitrogen by the action of microorganisms, and these nitrogen containing ammonia nitrogen The problem arises that the compound results in eutrophication of closed waters. This ammoniacal nitrogen can be rendered harmless to nitrogen gas by biological techniques. Among various methods for detoxifying nitrogen compounds, a method using a nitrification / denitrification reaction caused by bacteria called nitrifying bacteria and denitrifying bacteria has become mainstream. Ammonia nitrogen is oxidized in the nitrification process to nitrate nitrogen or nitrous acid nitrogen under aerobic conditions. Nitrate nitrogen and nitrous nitrate produced in the nitrification process are reduced to nitrogen gas and detoxified in the denitrification process under anaerobic conditions (see, for example, Non-Patent Document 1).

このような従来の生物学的処理法では、硝化プロセスにおいて電子受容体として溶存酸素を必要とするため、反応槽にエアレーションを行う必要があり高コスト化の要因となっている。また、脱窒プロセスでは電子供与体として有機物等を供給する必要があり、電子供与体の供給方法として被処理水中に含まれる有機物を利用するAOプロセス、酢酸、メタノール等の有機物等を供給する有機物添加法等が提案されてきた。ここで、AOプロセスとは、嫌気好気活性汚泥法とも言われ、処理水の流路順に独立した嫌気槽と好気槽を持ち、好気槽でアンモニア性窒素を硝酸性窒素又は亜硝酸生窒素に酸化し、嫌気槽において電子供与体としての排水中の有機物を利用して硝酸性窒素又は亜硝酸生窒素の窒素化合物を窒素ガスにまで還元する方法である。
しかし、これらの従来の水の処理方法では、最適な有機物添加量を把握することが難しい上、過剰に加えた有機物の処理が必要となることに加えて有機物を添加することによって生ずる余剰汚泥の処理が必須となり、処理プロセスが煩雑化している。
In such a conventional biological treatment method, dissolved oxygen is required as an electron acceptor in the nitrification process. Therefore, it is necessary to aerate the reaction tank, which is a factor of high cost. In addition, in the denitrification process, it is necessary to supply an organic substance or the like as an electron donor. As an electron donor supply method, an AO process using an organic substance contained in the water to be treated, an organic substance that supplies an organic substance such as acetic acid or methanol Addition methods and the like have been proposed. Here, the AO process is also referred to as an anaerobic aerobic activated sludge method, and has an anaerobic tank and an aerobic tank that are independent in the order of the flow path of the treated water. In this method, the nitrogen compound is oxidized to nitrogen, and the nitrogenous compound of nitrate nitrogen or nitrous acid nitrous acid is reduced to nitrogen gas by using an organic substance in waste water as an electron donor in an anaerobic tank.
However, in these conventional water treatment methods, it is difficult to grasp the optimum amount of organic matter added, and it is necessary to treat excessively added organic matter, and in addition to excess sludge generated by adding organic matter. Processing is essential, and the processing process is complicated.

また、このような硝化・脱窒プロセス以外にもアンモニア性窒素処理の生物学的処理法が提案されており、その1つとしてANAMMOXプロセスが挙げられる。ANAMMOXプロセスは、嫌気性条件下でアンモニア性窒素とアンモニア性窒素の亜硝酸型硝化によって生じる亜硝酸性窒素をバランスよく存在させることによって、アンモニア酸化能のある微生物としてplanctomycetes菌を利用し、この菌が電子受容体として亜硝酸性窒素を要することで、アンモニア性窒素を直接窒素ガスへ酸化処理する水処理方法である。このようにANAMMOXプロセスは嫌気性条件下で全処理プロセスを完了することができる。しかし、亜硝酸生窒素を必要とするため、これを供給するためには水中のアンモニア性窒素の一部を硝化する必要があり、このためのエアレーションに比較的大きなコストを要することとなる。また、水中のアンモニア性窒素を効率よく亜硝酸型硝化する技術は未確立であり、ANAMMOXプロセスは処理を安定させることが硝化・脱窒処理と比べると比較的難しいという問題がある(非特許文献1参照)。   In addition to such a nitrification / denitrification process, a biological treatment method for ammonia nitrogen treatment has been proposed, and one of them is the ANAMOX process. The ANAMOX process uses planctomycetes as a microorganism capable of oxidizing ammonia by making a balanced presence of ammonia nitrogen and nitrite nitrogen produced by nitrite-type nitrification of ammonia nitrogen under anaerobic conditions. Is a water treatment method in which ammonia nitrogen is directly oxidized to nitrogen gas by requiring nitrite nitrogen as an electron acceptor. Thus, the ANAMOX process can complete the entire process under anaerobic conditions. However, since raw nitrous acid nitrogen is required, in order to supply this, it is necessary to nitrify a part of the ammonia nitrogen in the water, and this requires a relatively large cost for aeration. In addition, a technology for efficiently nitrite-type nitrification of ammonia nitrogen in water has not been established, and the ANAMMOX process has a problem that it is relatively difficult to stabilize the treatment compared to nitrification / denitrification treatment (Non-Patent Document). 1).

上述のような硝化・脱窒プロセスは、現在確立したアンモニア性窒素処理法であるが、酸素を電子受容体として用いる硝化プロセスを要するため、エアレーションのためのコストを必要とし、嫌気性処理法と比べて処理コストが高くなるという問題がある。   The nitrification / denitrification process as described above is an ammoniacal nitrogen treatment method that has been established, but requires a nitrification process that uses oxygen as an electron acceptor, which requires aeration costs, and an anaerobic treatment method. There is a problem that the processing cost is higher than that.

また、脱窒プロセスでは有機物等を電子受容体として供給する必要があるためAOプロセスや有機物添加法等が提案されているが、AOプロセスでは排水中に含まれる有機物量が相対的に少ない場合が多く、その窒素除去率が50〜60%と低いという問題がある。このAOプロセスの対応策でもある有機物添加法では余剰汚泥の処理、過剰に加えた有機物の除去が必要となるため処理工程が煩雑化するという問題がある。   In addition, since it is necessary to supply organic matter as an electron acceptor in the denitrification process, an AO process or an organic matter addition method has been proposed. However, in the AO process, the amount of organic matter contained in the wastewater may be relatively small. In many cases, the nitrogen removal rate is as low as 50 to 60%. The organic substance addition method, which is also a countermeasure for the AO process, has a problem in that the treatment process becomes complicated because it is necessary to treat excess sludge and remove excess organic substances.

また、アンモニア性窒素処理の嫌気性処理法であるANAMMOXプロセスでは、ここで使用するplanctomycetes菌による反応が酸素等に大きく阻害される上、planctomycetes菌の増殖速度が非常に遅く、硝化・脱窒プロセスと比べると処理が不安定であり処理速度が比較的遅くなるという問題がある。   In addition, in the ANAMOX process, which is an anaerobic treatment method of ammonia nitrogen, the reaction by the planctomycetes bacterium used here is greatly inhibited by oxygen etc., and the growth rate of the planctomycetes bacterium is very slow, and the nitrification / denitrification process As compared with, the processing is unstable and the processing speed is relatively slow.

さらに、近年、地球温暖化に起因すると考えられる様々な環境問題が顕在化する様になり、化石燃料への依存を可能な限り少なくするため、植物や畜産廃棄物を生物処理して得られるバイオエタノールやバイオメタンガスの利用等、エネルギー源を分散させる試みがなされている。   Furthermore, in recent years, various environmental problems that are thought to be caused by global warming have become apparent, and in order to minimize the dependence on fossil fuels, biotechnology obtained by biologically treating plants and livestock waste Attempts have been made to disperse energy sources such as the use of ethanol or biomethane gas.

特公平6−10423号公報Japanese Examined Patent Publication No. 6-10423 特開2002−346566号公報JP 2002-346666 A T.Khin, A.P. Annachhatre “Biotechnology Advances”, 22 (2004), 519-532T.Khin, A.P. Annachhatre “Biotechnology Advances”, 22 (2004), 519-532

本発明は、以上のような従来の排水処理方法の問題点に鑑み提案されたものであり、これらの従来の方法の問題点を解決して、嫌気性条件下で被処理水中のアンモニア性窒素を直接窒素ガスへ、低コストで酸化処理することを可能にし、さらにこの酸化処理を利用して電気エネルギーを回収することが可能な水の処理方法及び、水処理装置を提供することを目的とするものである。   The present invention has been proposed in view of the problems of the conventional wastewater treatment methods as described above, and solves the problems of these conventional methods, and ammonia nitrogen in the water to be treated under anaerobic conditions. An object of the present invention is to provide a water treatment method and a water treatment apparatus that can oxidize water directly into nitrogen gas at a low cost and that can recover electrical energy using this oxidation treatment. To do.

本発明者らは、微生物膜がその表面上に形成された導電性担体を負極として利用して、これを隔膜により分離された正極と結んで、この負極槽にアンモニア性窒素を含む被処理水を導入することによって一種の電池構造とし、負極槽内を嫌気性条件とし微生物反応を起こさせることによってアンモニア性窒素を直接窒素ガスに酸化させることができることを見出し、本発明を完成した。   The present inventors use a conductive carrier having a microbial membrane formed on its surface as a negative electrode, connect it to a positive electrode separated by a diaphragm, and treat the treated water containing ammonia nitrogen in the negative electrode tank. The present invention has been completed by finding that a kind of battery structure can be obtained by introducing NO, and that ammonia nitrogen can be directly oxidized to nitrogen gas by causing a microbial reaction under an anaerobic condition in the negative electrode chamber.

即ち、本発明は、以下の内容をその要旨とする発明である。
(1)水中のアンモニア性窒素を除去する水処理方法であって、導電性担体の上に形成させた微生物膜を用いた生物膜電極を負極とする負極槽と、隔膜を隔てて内部に正極を有する正極槽からなり、負極槽にアンモニア性窒素を含む被処理水を導入し、嫌気性条件下で微生物反応を行わせることによってアンモニア性窒素を直接窒素ガスに酸化し、酸化処理時に負極に発生した電子を正極に伝達し、正極槽内水中の溶存酸素又は空気中の酸素を還元することを特徴とする、水処理方法。
(2)正極と負極の間に微小な直流電圧を印加することを特徴とする、前記(1)記載の水処理方法。
(3)負極槽にアンモニア性窒素を含む被処理水を導入し、正極槽に電解質溶液を導入したのち、両電極間に微小な直流電圧を印加した状態で、嫌気性条件下で微生物反応を行わせることを特徴とする、前記(1)又は(2)に記載の水処理方法。
(4)生物膜電極が、導電性担体表面上に微生物膜を形成させ、該導電性担体を負極の電極材料と接続したものである、前記(1)ないし(3)のいずれかに記載の水処理方法。
(5)隔膜によって分離された内部に正極を有する正極槽、内部に負極を有する負極槽、及び両電極を接続する結線から構成され、負極が導電性担体の表面上に形成させた微生物膜を用いた生物膜電極であることを特徴とする水処理装置。
(6)正極と負極の間に直流電源を設け、両電極間に微小な電圧を印加することを特徴とする、前記(5)に記載の水処理装置。
That is, the present invention has the following contents.
(1) A water treatment method for removing ammonia nitrogen in water, a negative electrode tank having a biofilm electrode using a microbial film formed on a conductive carrier as a negative electrode, and a positive electrode inside with a diaphragm A positive electrode tank having ammonia gas is introduced into the negative electrode tank, and ammonia nitrogen is directly oxidized into nitrogen gas by performing a microbial reaction under anaerobic conditions. A water treatment method characterized by transmitting generated electrons to a positive electrode to reduce dissolved oxygen in the water in the positive electrode tank or oxygen in the air.
(2) The water treatment method according to (1), wherein a minute direct current voltage is applied between the positive electrode and the negative electrode.
(3) After introducing water to be treated containing ammoniacal nitrogen into the negative electrode tank and introducing the electrolyte solution into the positive electrode tank, a microbial reaction is performed under anaerobic conditions with a minute DC voltage applied between both electrodes. The water treatment method according to (1) or (2), wherein the water treatment method is performed.
(4) The biofilm electrode according to any one of the above (1) to (3), wherein a microbial membrane is formed on the surface of a conductive carrier, and the conductive carrier is connected to a negative electrode material. Water treatment method.
(5) A microbial membrane comprising a positive electrode tank having a positive electrode inside separated by a diaphragm, a negative electrode tank having a negative electrode inside, and a wire connecting the two electrodes, wherein the negative electrode is formed on the surface of the conductive carrier. A water treatment apparatus, which is a biofilm electrode used.
(6) The water treatment apparatus according to (5), wherein a direct-current power source is provided between the positive electrode and the negative electrode, and a minute voltage is applied between both electrodes.

本発明の水処理方法を用いることによって、アンモニア性窒素を含有する農業排水、工業排水、その他の様々な水から、そこに含まれているアンモニア性窒素を硝酸性窒素や亜硝酸生窒素を経ることなく直接窒素ガスまで酸化することができ、アンモニア性窒素を含む水中の窒素除去を効率的に行うことができる。さらに、この方法によれば、嫌気性の条件下でアンモニア性窒素の酸化処理を行うことができるため、従来の方法で硝化プロセスにおいて必要とした被処理水のエアレーションの必要がなくなり、このために処理コストが高くなるという問題を解消することができる。また、従来の方法では、脱窒プロセスで電子受容体として有機物等を添加する必要があったが、本発明の方法によればこのような余分な有機物の添加が必要でなくなり、その処理プロセスの簡略化やコストダウンが可能となった。   By using the water treatment method of the present invention, ammonia nitrogen contained in agricultural wastewater, industrial wastewater and other various water containing ammonia nitrogen is passed through nitrate nitrogen and nitrous acid nitrous acid. Therefore, it is possible to directly oxidize nitrogen gas without removing nitrogen in water containing ammoniacal nitrogen. Furthermore, according to this method, the oxidation treatment of ammonia nitrogen can be performed under anaerobic conditions, so that it is not necessary to aerate the water to be treated which is required in the nitrification process by the conventional method. The problem of high processing costs can be solved. Further, in the conventional method, it is necessary to add an organic substance or the like as an electron acceptor in the denitrification process. However, according to the method of the present invention, it is not necessary to add such an extra organic substance. Simplification and cost reduction became possible.

更に、本発明の装置は、電池と類似した構造をしており、負極槽での酸化処理の際に電子が放出され、これが正極での還元反応に利用される。従って、水の処理に伴い両極間に電流が流れることとなり、電気エネルギーの回収が可能な水処理方法と水処理装置となる。   Furthermore, the apparatus of the present invention has a structure similar to that of a battery, and electrons are released during the oxidation treatment in the negative electrode tank, and this is used for the reduction reaction at the positive electrode. Therefore, a current flows between the two electrodes as the water is treated, and the water treatment method and the water treatment apparatus are capable of recovering electrical energy.

本発明は、イオン交換膜等の隔膜によって隔てられた正極槽及び負極槽の2槽構造で、各槽に正極及び負極の役割を果たす電極を装備した創エネルギー型のアンモニア性窒素酸化処理装置及び、嫌気性条件下でアンモニア性窒素を直接窒素ガスへ酸化処理しつつ、酸化処理時に生じる電子を回収することによって電気エネルギーの回収を可能とする水処理方法である。   The present invention has a two-cell structure of a positive electrode tank and a negative electrode tank separated by a diaphragm such as an ion exchange membrane, and an energy-generating ammoniacal nitrogen oxidation apparatus equipped with electrodes serving as a positive electrode and a negative electrode in each tank, and This is a water treatment method that enables recovery of electrical energy by oxidizing electrons generated during oxidation treatment while oxidizing ammonia nitrogen directly to nitrogen gas under anaerobic conditions.

以下に本発明について図面を用いて説明する。
図1は、本発明の水処理装置の全体概略構成図である。
The present invention will be described below with reference to the drawings.
FIG. 1 is an overall schematic configuration diagram of a water treatment apparatus of the present invention.

図1において、負極槽16では、その内部に負極材料8に接した導電性担体18が充填され、その表面上に微生物膜を形成させることによって、生物膜電極が構成される。アンモニア酸化のための微生物膜の確実な形成とその形成速度の促進を図るために活性汚泥19を用いることが望ましい。負極槽には負極溶液流入口17及び負極溶液流出口15が設けられている。アンモニア性窒素を含む被処理水である負極溶液は、負極溶液流入口17から導入される。また、正極槽10と負極槽16は、陽イオン交換膜などの隔膜6によって完全に分離されている。   In FIG. 1, in the negative electrode tank 16, the inside is filled with a conductive carrier 18 in contact with the negative electrode material 8, and a biofilm electrode is formed by forming a microbial film on the surface thereof. It is desirable to use the activated sludge 19 in order to ensure the formation of a microbial membrane for ammonia oxidation and to promote its formation rate. A negative electrode solution inlet 17 and a negative electrode solution outlet 15 are provided in the negative electrode tank. A negative electrode solution which is water to be treated containing ammoniacal nitrogen is introduced from the negative electrode solution inlet 17. The positive electrode tank 10 and the negative electrode tank 16 are completely separated by a diaphragm 6 such as a cation exchange membrane.

電気エネルギーの回収及び負極槽での処理速度を促進させるために、両電極間には直流電源1等によって微小の電圧が印加されることが好ましい。電圧印加の目的は、両電極の間に、水の電気分解を引き起こすような大きな電位差ではなく、微小な電位差をあらかじめ強制的に生じさせておくことによって、目的とする微生物反応を誘起し、更に促進させるためのものである。従って、両電極間に印加する電圧は、この目的に適する限度で微小な電位差であることが必要であり、具体的には、2.0ボルト以下で使用することができ、好ましくは0.1〜1.0ボルト程度でよく、更に好ましくは0.3〜0.8ボルト程度である。両電極間に2.0ボルトを超える電圧を印加すると水の電気分解が進行し始めるため、本発明の目的には好ましくない。   In order to accelerate the collection of electric energy and the processing speed in the negative electrode tank, it is preferable that a minute voltage is applied between the electrodes by a DC power source 1 or the like. The purpose of voltage application is not to generate a large potential difference between both electrodes, which causes electrolysis of water, but to induce a minute potential difference in advance, thereby inducing the desired microbial reaction. It is for promoting. Therefore, the voltage applied between both electrodes needs to be a very small potential difference as long as it is suitable for this purpose. Specifically, it can be used at 2.0 volts or less, preferably 0.1. It may be about -1.0 volts, more preferably about 0.3-0.8 volts. When a voltage exceeding 2.0 volts is applied between both electrodes, water electrolysis begins to proceed, which is not preferable for the purpose of the present invention.

負極槽16では、生物膜電極によりアンモニア性窒素を直接窒素ガスへ酸化処理しつつ、このときに生じる電子の流れを利用することによって、電気エネルギーの回収が行われる。処理後の負極溶液は処理水として負極溶液流出口15から装置外へ流出する。アンモニア性窒素を直接窒素ガスへ酸化処理するときに生じた電子は正極7へと移動し、正極槽10において正極溶液中の溶存酸素又は空気中の酸素を水へ還元する。正極溶液は正極溶液流入口11から導入され、正極溶液流出口9から装置外へ流出する。   In the negative electrode tank 16, the ammonia energy is directly oxidized into nitrogen gas by the biofilm electrode, and electric energy is recovered by utilizing the flow of electrons generated at this time. The treated negative electrode solution flows out of the apparatus from the negative electrode solution outlet 15 as treated water. Electrons generated when the ammonia nitrogen is directly oxidized into nitrogen gas move to the positive electrode 7, and in the positive electrode tank 10, dissolved oxygen in the positive electrode solution or oxygen in the air is reduced to water. The positive electrode solution is introduced from the positive electrode solution inlet 11 and flows out of the apparatus from the positive electrode solution outlet 9.

負極槽16では、下記の反応式(1)に従って被処理水中のアンモニア性窒素が嫌気性条件下で窒素ガスへ直接酸化処理される。
2NH → N+8H+6e (1)
また、正極槽10では、下記の反応式(2)に従って正極溶液中の溶存酸素が水へ還元される。
+4H+4e → 2HO (2)
上記の反応式(1)、(2)から、総括反応式は下記の反応式(3)となる。
4NH +3O → 2N+4H+6HO (3)
反応式(3)のギブス自由エネルギー変化はΔG =−1106(kJ/mol)の反応となり、反応は左から右に進行する。
In the negative electrode tank 16, ammonia nitrogen in the water to be treated is directly oxidized into nitrogen gas under anaerobic conditions according to the following reaction formula (1).
2NH 4 + → N 2 + 8H + + 6e (1)
Moreover, in the positive electrode tank 10, the dissolved oxygen in the positive electrode solution is reduced to water according to the following reaction formula (2).
O 2 + 4H + + 4e → 2H 2 O (2)
From the above reaction formulas (1) and (2), the overall reaction formula is the following reaction formula (3).
4NH 4 + + 3O 2 → 2N 2 + 4H + + 6H 2 O (3)
The Gibbs free energy change in the reaction formula (3) becomes a reaction of ΔG r 0 = −1106 (kJ / mol), and the reaction proceeds from left to right.

微生物膜を形成させる導電性担体18としては、活性炭、導電性プラスチック、炭素材ペレット、多孔質金属材などが使用することができ、これらのうちで活性炭がもっとも好ましい。   As the conductive carrier 18 for forming the microbial membrane, activated carbon, conductive plastic, carbon material pellets, porous metal material and the like can be used, and among these, activated carbon is most preferable.

また、本発明の生物膜電極に使用することができる微生物は、活性汚泥中に多く存在するもので、常温で増殖するとともに、嫌気性条件下で水中のアンモニア性窒素を酸化する能力を有するものが使用することができる。具体的には、生活排水処理系のAOプロセス等の嫌気槽や好気槽中に存在する汚泥から得られるものが適している。   In addition, microorganisms that can be used in the biofilm electrode of the present invention are abundant in activated sludge and have the ability to oxidize ammoniacal nitrogen in water under anaerobic conditions while growing at room temperature. Can be used. Specifically, those obtained from sludge present in an anaerobic tank or an aerobic tank such as an AO process of a domestic wastewater treatment system are suitable.

本発明の水処理装置は、隔膜で正極槽と負極槽とに分けられた2槽式である。この隔膜の役割としては、電気的導電性を維持しつつ、両極に存在、発生する物質が、拡散、対流により相互に混合することを防止することであり、その性質としては、電気化学的又は生物学的に耐食性を有し、電位差が小さく、機械的強度が大きく加工性に優れ、装着や管理が容易であることが望ましい。実際には、本発明の隔膜としては、極微細孔を持つ薄濾布や素焼き板、陶磁器、不織布、親水性高分子膜、イオン交換膜等を用いることが可能であるが、特に、効率のよい反応のためには、陽イオン交換膜が隔膜として最適である。   The water treatment apparatus of the present invention is a two tank type divided into a positive electrode tank and a negative electrode tank by a diaphragm. The role of this diaphragm is to prevent substances that are present and generated at both poles from mixing with each other by diffusion and convection while maintaining electrical conductivity. It is desirable to have biological corrosion resistance, a small potential difference, a large mechanical strength, excellent workability, and easy mounting and management. Actually, as the diaphragm of the present invention, it is possible to use a thin filter cloth having a very fine pore, an unglazed plate, a ceramic, a nonwoven fabric, a hydrophilic polymer membrane, an ion exchange membrane, etc. For good reaction, a cation exchange membrane is optimal as a diaphragm.

本発明の水処理装置は、回分式と連続式のいずれの方式でも使用可能である。回分式の場合には、例えば図1において、まず負極槽に活性炭などの導電性担体18を負極材料8に接触させた状態で充填し、活性汚泥19を投入することによって生物膜電極を形成させる。次いで、ここに負極液流入口17からアンモニア性窒素を含む被処理水を導入する。一方、正極槽にはリン酸緩衝液等の電解質溶液を正極液として導入する。次に、正極7と負極8の間に直流電源1から、可変抵抗2を調節して0.5ボルト程度の電圧を印加する。この状態で放置することによって、負極槽の中で微生物反応が進行し、負極液中のアンモニア性窒素が酸化されて、窒素ガスとなって排出口14から装置外へ排出される。負極でのアンモニア性窒素の酸化に伴って電子が発生し、その電子が結線を通って正極へ移動する。正極では移動してきた電子が正極液中の溶存酸素又は空気中の酸素を還元して水となる。微生物反応の進行に伴って負極液中のアンモニア性窒素が減少してゆくので、目標値まで減少した時点で反応を終了し、被処理液を抜き出す。   The water treatment apparatus of the present invention can be used in either a batch type or a continuous type. In the case of the batch type, for example, in FIG. 1, first, a negative electrode tank is filled with a conductive carrier 18 such as activated carbon in contact with the negative electrode material 8, and activated sludge 19 is introduced to form a biofilm electrode. . Next, water to be treated containing ammoniacal nitrogen is introduced through the negative electrode liquid inlet 17. On the other hand, an electrolyte solution such as a phosphate buffer is introduced into the positive electrode tank as a positive electrode solution. Next, a voltage of about 0.5 volts is applied between the positive electrode 7 and the negative electrode 8 from the DC power source 1 by adjusting the variable resistor 2. By leaving it in this state, a microbial reaction proceeds in the negative electrode tank, and ammonia nitrogen in the negative electrode solution is oxidized and discharged from the discharge port 14 to the outside as nitrogen gas. Electrons are generated along with the oxidation of ammoniacal nitrogen at the negative electrode, and the electrons move to the positive electrode through the connection. At the positive electrode, the moved electrons reduce dissolved oxygen in the positive electrode solution or oxygen in the air to become water. Since ammonia nitrogen in the negative electrode solution decreases with the progress of the microbial reaction, the reaction is terminated when the amount reaches the target value, and the liquid to be treated is extracted.

連続式の場合には、回分式の場合と同様に、生物膜電極を形成させ、負極に被処理水を、正極に正極液を導入して、両電極間に電圧を印加して負極で微生物反応を進行させる。被処理水を連続的に負極槽へ注入し、処理済の水を連続的に排出するが、この際、微生物反応の進行に応じて処理済の水の中のアンモニア性窒素の濃度が目標値以下となるようにその注入量をコントロールする。   In the case of the continuous type, as in the case of the batch type, a biofilm electrode is formed, water to be treated is introduced into the negative electrode, a positive electrode solution is introduced into the positive electrode, and a voltage is applied between the two electrodes. Allow the reaction to proceed. The water to be treated is continuously injected into the negative electrode tank and the treated water is continuously discharged. At this time, the concentration of ammoniacal nitrogen in the treated water is the target value according to the progress of the microbial reaction. The injection volume is controlled to be as follows.

なお、水中の硝酸性窒素又は亜硝酸性窒素を除去するために、負極に生体触媒電極又は生物膜電極を用いて水の電気分解を行い、この電気分解によって生ずる水素を用いて生物膜電極によって水中の硝酸性窒素又は亜硝酸性窒素を生化学的或いは生物学的に除去する方法が提案されている(例えば、特許文献1、特許文献2参照)。しかし、これらの方法は、脱窒反応に必要な電子受容体である水素の供給源として水の電気分解によって発生する水素を利用するものである。
これに対して、本発明の方法は、このような水の電気分解を行うのではなく、生物膜電極の微生物反応そのものによって水中のアンモニア性窒素を窒素ガスにまで酸化させるものであり、この微生物反応をより促進させるために、電気分解が起こらない程度のごく微小な電位差を両電極間に印加するもので、全く異なった反応メカニズムによるものである。即ち、印加する電圧は0.5ボルト程度のごく微小なもので、これは生物膜電極の微生物反応を誘引し、促進させるためのものであって、水の電気分解が発生するほどの電力を消費するものではない。
In addition, in order to remove nitrate nitrogen or nitrite nitrogen in water, water is electrolyzed using a biocatalyst electrode or a biofilm electrode as a negative electrode, and hydrogen generated by this electrolysis is used by a biofilm electrode. A method of removing biochemically or biologically nitrate nitrogen or nitrite nitrogen in water has been proposed (see, for example, Patent Document 1 and Patent Document 2). However, these methods utilize hydrogen generated by electrolysis of water as a supply source of hydrogen which is an electron acceptor necessary for the denitrification reaction.
On the other hand, the method of the present invention does not perform such electrolysis of water but oxidizes ammoniacal nitrogen in water to nitrogen gas by the microbial reaction itself of the biofilm electrode. In order to further accelerate the reaction, a very small potential difference that does not cause electrolysis is applied between the two electrodes, which is based on a completely different reaction mechanism. In other words, the applied voltage is very small, such as about 0.5 volts, and this is for inducing and promoting the microbial reaction of the biofilm electrode. It does not consume.

次に、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited at all by these Examples.

溶存酸素を除去し、アンモニア性窒素を90ppm含むアンモニア含有模擬排水を人工的に作成し、図1に示す水処理装置を用いて、模擬排水中に含まれるアンモニア性窒素を直接窒素ガスへ酸化する処理を行った。この水処理装置の正極槽10は0.6リットル、負極槽16は0.6リットルであり、隔膜7としてデュポン社製の陽イオン交換樹脂膜(商品名:Nafion)を備えている。模擬排水の酸化処理は回分操作で行った。   By removing dissolved oxygen, artificially creating ammonia-containing simulated wastewater containing 90 ppm of ammonia nitrogen, and oxidizing the ammonia nitrogen contained in the simulated wastewater directly into nitrogen gas using the water treatment device shown in FIG. Processed. The positive electrode tank 10 of this water treatment apparatus is 0.6 liters, the negative electrode tank 16 is 0.6 liters, and a cation exchange resin membrane (trade name: Nafion) manufactured by DuPont is provided as the diaphragm 7. The simulated waste water was oxidized by batch operation.

まず、アルゴンガス流入口13からアルゴンガスを装置内部へ流入させ、装置内部の気体を気体排出口14から排出することで、装置内部の気体をアルゴンガスで置換した。この水処理装置の負極槽16の中に、硝化汚泥100mlと活性汚泥100mlの混合汚泥19を活性炭180gと混合したものを装入した。ここに少量の模擬排水を入れて室温で放置して汚泥中の微生物を増殖させ、導電性担体である活性炭18の表面上へ微生物膜を形成させた。この表面に微生物膜を形成された活性炭を負極8に接触するように設置して、生物膜電極とした。   First, argon gas was introduced into the apparatus from the argon gas inlet 13, and the gas inside the apparatus was discharged from the gas discharge port 14, whereby the gas inside the apparatus was replaced with argon gas. A mixture of sludge 19 of 100 ml of nitrified sludge and 100 ml of activated sludge mixed with 180 g of activated carbon was charged into the negative electrode tank 16 of this water treatment apparatus. A small amount of simulated waste water was put here and allowed to stand at room temperature to grow microorganisms in the sludge, and a microbial film was formed on the surface of activated carbon 18 which is a conductive carrier. Activated carbon having a microbial film formed on the surface was placed in contact with the negative electrode 8 to obtain a biofilm electrode.

このようにして負極槽に生物膜電極を備えた水処理装置に、1週間に1度の回分操作で、溶存酸素を除去しアンモニア性窒素を90ppm含むアンモニア含有模擬排水を、被処理水として負極溶液流入口17から負極槽16に供給し、負極槽16をそのまま嫌気性条件下に保った。また、正極槽も同様に溶存酸素を5〜8ppm程度含むリン酸緩衝液を正極溶液として1週間に1度の回分操作で正極溶液流入口11から正極槽10に供給した。
生物膜による酸化反応及び処理時に生じる電子の回収を促進するため、処理中は正極7及び負極8の間に直流電源1を用いて、ごく少量の0.5Vの電圧を印加し続けた。回分処理実験中に発生した気体は、気体排出口14を閉鎖して窒素採取口12に連結したテドラーバッグの中に回収した。
In this way, in a water treatment apparatus equipped with a biofilm electrode in the negative electrode tank, an ammonia-containing simulated waste water containing 90 ppm of ammonia nitrogen by removing dissolved oxygen by batch operation once a week is treated as negative electrode. The solution was supplied from the solution inlet 17 to the negative electrode tank 16, and the negative electrode tank 16 was kept under anaerobic conditions. Similarly, the positive electrode tank was supplied from the positive electrode solution inlet 11 to the positive electrode tank 10 by a batch operation once a week as a positive electrode solution containing a phosphate buffer containing about 5 to 8 ppm of dissolved oxygen.
In order to promote the oxidation reaction by the biofilm and the recovery of electrons generated during the treatment, a very small voltage of 0.5 V was continuously applied between the positive electrode 7 and the negative electrode 8 using the DC power source 1. The gas generated during the batch processing experiment was collected in a Tedlar bag connected to the nitrogen collection port 12 with the gas discharge port 14 closed.

この状態で1週間放置して、生物膜電極による反応を進行させ、本発明の水処理装置による水処理を行った。
1回の回分処理毎に、負極溶液を負極溶液流出口15から回収し、この負極溶液中のアンモニア性窒素濃度、硝酸性窒素濃度及び亜硝酸性窒素濃度を測定し、テドラーバッグ内の窒素ガス量を測定した。また、処理中は1日1回電極間に生じる電流値を測定した。
The reaction with the biofilm electrode was allowed to stand for 1 week in this state, and water treatment was performed with the water treatment apparatus of the present invention.
At each batch treatment, the negative electrode solution is recovered from the negative electrode solution outlet 15, and the ammonia nitrogen concentration, nitrate nitrogen concentration and nitrite nitrogen concentration in the negative electrode solution are measured, and the amount of nitrogen gas in the Tedlar bag Was measured. During the treatment, the current value generated between the electrodes was measured once a day.

この水処理装置による模擬排水の処理において、正極槽10と負極槽16は隔膜である陽イオン交換膜6によって分離されているため、アンモニア性窒素が負極槽16から正極槽10へ流出することも考えられたが、正極溶液中のアンモニア性窒素は極めて少量しか検出できなかったため、アンモニア性窒素の陽イオン交換膜6を介して正極槽10への流出量はほとんどなかったと考えられる。   In the treatment of the simulated waste water by the water treatment device, the positive electrode tank 10 and the negative electrode tank 16 are separated by the cation exchange membrane 6 which is a diaphragm, so that ammonia nitrogen may flow out from the negative electrode tank 16 to the positive electrode tank 10. Although only a very small amount of ammonia nitrogen in the positive electrode solution could be detected, it is considered that there was almost no outflow amount of ammonia nitrogen through the cation exchange membrane 6 to the positive electrode chamber 10.

比較対照として、図1の水処理装置において、直流電源1、可変抵抗2及び負極槽16に混合汚泥19を用いず活性炭のみとした水処理装置を用いて同様の排水処理操作を行った。毎回の回分処理実験ごとに活性炭に吸着するアンモニア性窒素量及び、回分処理実験の当初よりテドラーバッグに残留していた窒素ガス量を測定した。これは毎回の操作において、活性炭に吸着されるアンモニア性窒素の量と、テドラーバッグ内に実験開始前から残留する窒素ガスの量を把握して補正するために行った。これにより、本発明の排水処理装置での排水処理操作による流出アンモニア性窒素処理量、流出硝酸性窒素処理量、流出亜硝酸性窒素処理量、及び回分処理実験中に発生した窒素ガス量を補正計算した。   As a comparative control, in the water treatment apparatus of FIG. 1, the same waste water treatment operation was performed using a water treatment apparatus in which only the activated carbon was used in the DC power source 1, the variable resistance 2, and the negative electrode tank 16 without using the mixed sludge 19. For each batch treatment experiment, the amount of ammonia nitrogen adsorbed on the activated carbon and the amount of nitrogen gas remaining in the Tedlar bag from the beginning of the batch treatment experiment were measured. This was performed in order to grasp and correct the amount of ammonia nitrogen adsorbed on the activated carbon and the amount of nitrogen gas remaining in the Tedlar bag before the start of the experiment in each operation. This corrects the effluent ammonia nitrogen treatment amount, the effluent nitrate nitrogen treatment amount, the effluent nitrite nitrogen treatment amount, and the nitrogen gas amount generated during the batch treatment experiment in the wastewater treatment operation of the present invention. Calculated.

これらの模擬排水の処理実験の結果を図2及び図3に示す。図2中のaは処理前の模擬排水中のアンモニア性窒素量(10.5mg程度)、bは処理後の模擬排水中のアンモニア性窒素量(9.5mg程度)、cは処理後の模擬排水中の硝酸性窒素量及び亜硝酸性窒素量(0.0mg)、dは1回の回分処理実験中に発生した窒素ガス量(1.0mg程度)、eは処理後の処理水中のアンモニア性窒素量、硝酸性窒素量、亜硝酸背窒素量、及び回分処理実験中に発生した窒素ガス量の合計値(10.5mg程度)をそれぞれ示す。また、図3中のfは電極間に発生した電流値(50.0μA程度)、gは直流電源1を用いて電極間に印加した0.5Vの電圧によって電極間に流れる電流値(22.0μA程度)を示す。   The results of these simulated wastewater treatment experiments are shown in FIGS. In FIG. 2, a is the amount of ammoniacal nitrogen in the simulated wastewater before treatment (about 10.5 mg), b is the amount of ammoniacal nitrogen in the treated wastewater after treatment (about 9.5 mg), and c is the simulated amount after treatment. The amount of nitrate nitrogen and nitrite nitrogen (0.0 mg) in the wastewater, d is the amount of nitrogen gas generated during one batch treatment experiment (about 1.0 mg), and e is the ammonia in the treated water after treatment The total value (about 10.5 mg) of the amount of nitrogen, the amount of nitrate nitrogen, the amount of nitrous acid back nitrogen, and the amount of nitrogen gas generated during the batch treatment experiment is shown. Further, f in FIG. 3 is a current value generated between the electrodes (about 50.0 μA), and g is a current value flowing between the electrodes by a voltage of 0.5 V applied between the electrodes using the DC power supply 1 (22. About 0 μA).

この図2からわかるように、処理後のアンモニア性窒素量(b)は処理前のアンモニア性窒素量(a)に比べて減少しており、処理後の負極溶液中で硝酸性窒素量と亜硝酸窒素量(c)はほとんど測定されていないことから、アンモニア性窒素が処理されて減少し、かつ硝酸性窒素量と亜硝酸窒素は生成していないことがわかる。また、処理後の窒素の合計量(e)が、一部処理前のアンモニア性窒素量(a)より大きくなっているところが見られるが、これは窒素ガス量(d)の測定誤差による変動に起因するものであり、全体的には平均すればこれは処理前のアンモニア性窒素量(a)と大略等しい値となっている。そして、この処理によるアンモニア性窒素の減少量は概ね処理中に発生した窒素ガス量(d)と同程度であり、さらにこれらの値と電流値は式(1)の関係をほぼ満足していることから、嫌気性条件下でアンモニア性窒素が直接窒素ガスへ酸化処理され、電子が回収されたことがわかった。
さらに、図3に示されるように、処理期間中において、電極間に0.5Vの電圧を印加することによって流れる電流値(g)よりも大きな電流値(f)が発生していることがわかる。以上のことから、嫌気性条件下でアンモニア性窒素を直接窒素へ酸化処理しつつ、電極間に電圧を印加することにより電気エネルギーを回収することができ、負極槽での生物膜電極による反応処理速度を促進することができることがわかった。
As can be seen from FIG. 2, the amount of ammonia nitrogen (b) after the treatment is smaller than the amount of ammonia nitrogen (a) before the treatment, and the amount of nitrate nitrogen and the amount of nitrogen in the negative electrode solution after the treatment are reduced. Since the amount of nitrogen nitrate (c) is hardly measured, it can be seen that ammonia nitrogen is treated and reduced, and the amount of nitrate nitrogen and nitrogen nitrite are not generated. In addition, it can be seen that the total amount of nitrogen (e) after treatment is larger than the amount of ammoniacal nitrogen (a) before partial treatment, but this is due to fluctuations due to measurement errors in the nitrogen gas amount (d) This is due to the fact that, on average, this is a value approximately equal to the ammoniacal nitrogen amount (a) before treatment. The amount of ammonia nitrogen reduced by this treatment is approximately the same as the amount of nitrogen gas (d) generated during the treatment, and these values and current values substantially satisfy the relationship of equation (1). Thus, it was found that ammonia nitrogen was directly oxidized into nitrogen gas under anaerobic conditions, and electrons were recovered.
Further, as shown in FIG. 3, it can be seen that a current value (f) larger than the flowing current value (g) is generated by applying a voltage of 0.5 V between the electrodes during the processing period. . From the above, it is possible to recover electrical energy by applying a voltage between the electrodes while oxidizing ammonia nitrogen directly to nitrogen under anaerobic conditions, and reaction treatment with a biofilm electrode in the negative electrode tank It has been found that speed can be promoted.

本発明の方法及び装置によれば、嫌気性条件下でアンモニア性窒素を直接窒素ガスへ処理しつつ電気エネルギーの回収を行うことが可能なため、従来の方法に比べて低コスト、低環境負荷でかつ省エネルギーで水中のアンモニア性窒素を処理することが可能であり、地下水等の環境水の浄化処理、工業用水、農業用水等の用水処理、及び下水や産業廃水、農業排水等の排水処理等の分野に有用である。   According to the method and apparatus of the present invention, it is possible to recover electric energy while processing ammonia nitrogen directly into nitrogen gas under anaerobic conditions, so that the cost and environmental load are low compared to conventional methods. It is possible to process ammonia nitrogen in water with energy saving, purification treatment of environmental water such as groundwater, treatment of industrial water, agricultural water, etc., and wastewater treatment of sewage, industrial wastewater, agricultural wastewater, etc. Useful in the field of

本発明の水処理装置の全体概略構成図である。It is a whole schematic block diagram of the water treatment apparatus of this invention. 実施例におけるアンモニア性窒素の処理結果を示すグラフである。It is a graph which shows the process result of ammonia nitrogen in an Example. 実施例における電子回収を示すグラフである。It is a graph which shows the electron collection | recovery in an Example.

符号の説明Explanation of symbols

1:直流電源、2:可変抵抗、3:可変抵抗、4:電圧計、5:電流計、6:隔膜(Nafion膜)、7:正極、8:負極、9:正極溶液流出口、10:正極槽、11:正極溶液流入口、12:窒素採取口、13:アルゴンガス流入口、14:気体排出口、15:負極溶液流出口、16:負極槽、17:負極溶液流入口、18:活性炭、19:混合汚泥(消化汚泥及び活性汚泥)
a:処理前のアンモニア性窒素量、
b:処理後のアンモニア性窒素量、
c:処理後の硝酸性窒素量及び亜硝酸性窒素量、
d:回分処理実験中に発生した窒素ガス量、
e:処理後のアンモニア性窒素量、硝酸性窒素量、亜硝酸背窒素量及び回分処理実験中に発生した窒素ガス量の合計量、
f:電極間に発生した電流値、
g:電極間に印加した0.5Vの電圧によって電極間に流れる電流値、
1: DC power supply, 2: variable resistance, 3: variable resistance, 4: voltmeter, 5: ammeter, 6: diaphragm (Nafion film), 7: positive electrode, 8: negative electrode, 9: positive electrode solution outlet, 10: Positive electrode tank, 11: Positive electrode solution inlet, 12: Nitrogen sampling port, 13: Argon gas inlet, 14: Gas outlet, 15: Negative electrode solution outlet, 16: Negative electrode tank, 17: Negative electrode solution inlet, 18: Activated carbon, 19: Mixed sludge (digested sludge and activated sludge)
a: Ammonia nitrogen amount before treatment,
b: amount of ammoniacal nitrogen after treatment,
c: amount of nitrate nitrogen and nitrite nitrogen after treatment,
d: the amount of nitrogen gas generated during the batch processing experiment,
e: Total amount of ammonia nitrogen after treatment, nitrate nitrogen, nitrous acid back nitrogen and nitrogen gas generated during batch treatment experiment,
f: current value generated between the electrodes,
g: Value of current flowing between the electrodes due to a voltage of 0.5 V applied between the electrodes,

Claims (6)

水中のアンモニア性窒素を除去する水処理方法であって、導電性担体の上に形成させた微生物膜を用いた生物膜電極を負極とする負極槽と、隔膜を隔てて内部に正極を有する正極槽からなり、負極槽にアンモニア性窒素を含む被処理水を導入し、嫌気性条件下で微生物反応を行わせることによってアンモニア性窒素を直接窒素ガスに酸化し、酸化処理時に負極に発生した電子を正極に伝達し、正極槽内水中の溶存酸素又は空気中の酸素を還元することを特徴とする、水処理方法。   A water treatment method for removing ammonia nitrogen in water, a negative electrode tank having a biofilm electrode using a microbial membrane formed on a conductive carrier as a negative electrode, and a positive electrode having a positive electrode inside with a diaphragm Electrons generated in the negative electrode during oxidation treatment by introducing water to be treated containing ammonia nitrogen into the negative electrode tank and oxidizing the ammonia nitrogen directly to nitrogen gas by conducting a microbial reaction under anaerobic conditions. Is transmitted to the positive electrode, and dissolved oxygen in the water in the positive electrode tank or oxygen in the air is reduced. 正極と負極の間に微小な直流電圧を印加することを特徴とする、請求項1記載の水処理方法。   The water treatment method according to claim 1, wherein a minute DC voltage is applied between the positive electrode and the negative electrode. 負極槽にアンモニア性窒素を含む被処理水を導入し、正極槽に電解質溶液を導入したのち、両電極間に微小な電圧を印加した状態で、嫌気性条件下で微生物反応を行わせることを特徴とする、請求項1又は2に記載の水処理方法。   After introducing water to be treated containing ammonia nitrogen into the negative electrode tank and introducing the electrolyte solution into the positive electrode tank, a microbial reaction is performed under anaerobic conditions with a minute voltage applied between both electrodes. The water treatment method according to claim 1, wherein the water treatment method is characterized. 生物膜電極が、導電性担体表面上に微生物膜を形成させ、該導電性担体を負極の電極材料と接続したものである、請求項1ないし3のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein the biofilm electrode is formed by forming a microbial membrane on the surface of the conductive carrier and connecting the conductive carrier to a negative electrode material. 隔膜によって分離された内部に正極を有する正極槽、内部に負極を有する負極槽、及び両電極を接続する結線から構成され、負極が導電性担体の表面上に形成させた微生物膜を用いた生物膜電極であることを特徴とする水処理装置。   A living body using a microbial membrane, which is composed of a positive electrode tank having a positive electrode inside separated by a diaphragm, a negative electrode tank having a negative electrode inside, and a connection connecting both electrodes, the negative electrode formed on the surface of the conductive carrier A water treatment apparatus, which is a membrane electrode. 正極と負極の間に直流電源を設け、両電極間に微小な電圧を印加することを特徴とする、請求項5に記載の水処理装置。   The water treatment apparatus according to claim 5, wherein a direct current power source is provided between the positive electrode and the negative electrode, and a minute voltage is applied between the two electrodes.
JP2007231146A 2007-09-06 2007-09-06 Direct oxidation method of ammonia nitrogen in water and its apparatus Withdrawn JP2009061390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231146A JP2009061390A (en) 2007-09-06 2007-09-06 Direct oxidation method of ammonia nitrogen in water and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231146A JP2009061390A (en) 2007-09-06 2007-09-06 Direct oxidation method of ammonia nitrogen in water and its apparatus

Publications (1)

Publication Number Publication Date
JP2009061390A true JP2009061390A (en) 2009-03-26

Family

ID=40556491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231146A Withdrawn JP2009061390A (en) 2007-09-06 2007-09-06 Direct oxidation method of ammonia nitrogen in water and its apparatus

Country Status (1)

Country Link
JP (1) JP2009061390A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062195A (en) * 2009-03-31 2011-03-31 Central Res Inst Of Electric Power Ind Method for preparing microorganism group-carrying carrier, method for treating substance and method for producing substance by utilizing microorganism
JP2011212513A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Microbial treatment system
CN105236686A (en) * 2015-10-30 2016-01-13 东南大学 Sewage treatment method for purifying refractory organic pollutants
CN105330094A (en) * 2015-09-06 2016-02-17 东南大学 System for removing antibiotics in surface water through using root secretion reinforced wetland coupling system, and method thereof
CN110776097A (en) * 2019-11-28 2020-02-11 天津工业大学 Denitrifying biocathode-electrocatalytic membrane reactor for denitrification and decarbonization of wastewater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062195A (en) * 2009-03-31 2011-03-31 Central Res Inst Of Electric Power Ind Method for preparing microorganism group-carrying carrier, method for treating substance and method for producing substance by utilizing microorganism
JP2011212513A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Microbial treatment system
CN105330094A (en) * 2015-09-06 2016-02-17 东南大学 System for removing antibiotics in surface water through using root secretion reinforced wetland coupling system, and method thereof
CN105236686A (en) * 2015-10-30 2016-01-13 东南大学 Sewage treatment method for purifying refractory organic pollutants
CN110776097A (en) * 2019-11-28 2020-02-11 天津工业大学 Denitrifying biocathode-electrocatalytic membrane reactor for denitrification and decarbonization of wastewater

Similar Documents

Publication Publication Date Title
Puig et al. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs)
KR101176437B1 (en) Bio-electrochemical wastewater treating apparatus for a simultaneous removal of ammonia and organics and wastewater treatment method using the apparatus
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
CN103827046B (en) The treatment system of nitrogenous organic waste water and treatment process
Kuroda et al. Simultaneous COD removal and denitrification of wastewater by bio-electro reactors
JP2006159112A (en) Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
CN207958053U (en) A kind of heterotrophism short distance nitration system of matching Anammox
JP4872171B2 (en) Biological denitrification equipment
JP2008114191A (en) Apparatus for treating waste water containing ammoniacal nitrogen
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
KR101325209B1 (en) Method for wastewater treatment that simultaneous removal of organic matter and nitrogen in wastewater using a bio-electrochemical method
CN112607864A (en) Electrochemical performance-enhanced bacteria-algae membrane aeration biomembrane reactor system and application thereof
Li et al. Optimizing the performance of a membrane bio-electrochemical reactor using an anion exchange membrane for wastewater treatment
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP2009061390A (en) Direct oxidation method of ammonia nitrogen in water and its apparatus
Rogińska et al. Challenges and applications of nitrate-reducing microbial biocathodes
JP2009158426A (en) Microorganism power generation method and microorganism power generation device
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
Sorgato et al. A comprehensive review of nitrogen removal in an electro-membrane bioreactor (EMBR) for sustainable wastewater treatment
CN103857632A (en) Processing system and processing method for nitrogen-containing organic waste water
CN111018101B (en) Membrane biofilm culture domestication process and membrane biofilm reaction device for treating high-salinity wastewater
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
KR101267541B1 (en) Bio-electrochemical wastewater treating apparatus for a simultaneous removal of organic nitrogen and organic matter and wastewater treatment method using the apparatus
CN106186302A (en) A kind of device repairing subsoil water based on electrode biomembrane and microbiological fuel cell
KR101852536B1 (en) Bioelectrochemical system for removing organic materials and nitrogen in waste water using nitrite accumulation process

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101207