JP2009158426A - Microorganism power generation method and microorganism power generation device - Google Patents

Microorganism power generation method and microorganism power generation device Download PDF

Info

Publication number
JP2009158426A
JP2009158426A JP2007338484A JP2007338484A JP2009158426A JP 2009158426 A JP2009158426 A JP 2009158426A JP 2007338484 A JP2007338484 A JP 2007338484A JP 2007338484 A JP2007338484 A JP 2007338484A JP 2009158426 A JP2009158426 A JP 2009158426A
Authority
JP
Japan
Prior art keywords
positive electrode
power generation
cathode chamber
cathode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007338484A
Other languages
Japanese (ja)
Inventor
Tetsuro Fukase
哲朗 深瀬
Nobuhiro Oda
信博 織田
Kazuya Komatsu
和也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007338484A priority Critical patent/JP2009158426A/en
Publication of JP2009158426A publication Critical patent/JP2009158426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To supply liquid including nitrate in a cathode chamber; and to raise electric power generation efficiency of microorganism electric power generation which performs reduction reaction by making use of denitrifying bacilli. <P>SOLUTION: A negative electrode 21 is arranged in an anode chamber 11 wherein microorganisms are retained and a liquid including an electron donor is supplied. A positive electrode 22 is arranged in the cathode chamber 12 wherein denitrifying bacilli are retained. A positive electrode solution including nitric acid or nitrous acid is supplied to the cathode chamber 12. The positive electrode solution is supplied to the cathode chamber 12 by applying deoxidation treatment so as not to practically include dissolved oxygen. For example, a cathode circulation passage 42 for circulating the positive electrode solution to the cathode chamber 12 is arranged, and dissolved oxygen density of the liquid sent to the cathode chamber 12 practically becomes zero by arranging a deoxidation device 44 for removing oxygen in the middle of the cathode circulation passage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微生物の代謝反応を利用する発電方法および装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電方法およびその装置に関する。   The present invention relates to a power generation method and apparatus using a metabolic reaction of microorganisms. In particular, the present invention relates to a microbial power generation method and apparatus for taking out the reducing power obtained when an organic substance is oxidatively decomposed into microorganisms as electric energy.

近年、地球環境に配慮した発電方法へのニーズが高まり、微生物発電の技術開発も進められている。微生物発電は、微生物が有機物を資化する際に得られる電気エネルギーを取り出すことにより発電する方法である。   In recent years, the need for a power generation method in consideration of the global environment has increased, and technological development of microbial power generation has been promoted. Microbial power generation is a method of generating electricity by taking out electrical energy obtained when microorganisms assimilate organic matter.

一般的に、微生物発電では負極が配置されたアノード室内に、微生物、微生物に資化される有機物、および電子伝達媒体(電子メディエータ)を共存させる。電子メディエータは微生物体内に入り、微生物が有機物を酸化して発生する電子を受け取って負極に渡す。負極は正極と電気的に導通されており、負極に渡された電子は正極に移動して、正極と接する電子受容体に渡される。このような電子の移動により正極と負極との間に電流が生じ、電気エネルギーが得られる。   In general, in microbial power generation, microorganisms, organic substances assimilated by microorganisms, and electron transfer media (electron mediators) coexist in an anode chamber in which a negative electrode is arranged. The electron mediator enters the microorganism, receives the electrons generated by the microorganisms oxidizing the organic matter, and passes them to the negative electrode. The negative electrode is electrically connected to the positive electrode, and the electrons transferred to the negative electrode move to the positive electrode and are transferred to the electron acceptor in contact with the positive electrode. By such movement of electrons, a current is generated between the positive electrode and the negative electrode, and electric energy is obtained.

電子受容体としては、従来は、酸素やヘキサシアノ酸鉄(II)カリウム(フェリシアン化カリウム)等が用いられている(例えば特許文献1、特許文献2)。これに対し、近年、カソード室に脱窒菌を保持し、正極溶液として硝酸塩(亜硝酸または硝酸)を含む液を供給する微生物発電方法が検討されている。カソード室で脱窒菌による還元反応を行わせれば、窒素を含む排水を正極溶液として利用できるといったメリットがある。   Conventionally, oxygen, iron (II) potassium hexacyanoate (potassium ferricyanide), or the like is used as the electron acceptor (for example, Patent Document 1 and Patent Document 2). On the other hand, in recent years, a microbial power generation method in which denitrifying bacteria are held in a cathode chamber and a liquid containing nitrate (nitrous acid or nitric acid) is supplied as a positive electrode solution has been studied. If a reduction reaction by denitrifying bacteria is performed in the cathode chamber, there is an advantage that waste water containing nitrogen can be used as a positive electrode solution.

特開2000−133327号公報JP 2000-133327 A 特開2004−342412号公報Japanese Patent Application Laid-Open No. 2004-342412

微生物発電では、電子メディエータが微生物体から直接、電子を取り出すため、エネルギー変換効率は理論上、高いが、実際のエネルギー変換効率は低い。特に脱窒菌にカソード室で硝酸または亜硝酸を還元させる場合、その発電効率は極めて低く、現状では実用に堪えない。   In microbial power generation, since the electron mediator directly takes out electrons from the microorganism, the energy conversion efficiency is theoretically high, but the actual energy conversion efficiency is low. In particular, when denitrifying bacteria reduce nitric acid or nitrous acid in the cathode chamber, the power generation efficiency is extremely low, which is not practical at present.

本発明者らは、カソード室に供給する正極溶液の溶存酸素を除去しておけば、発電効率が向上することを見出し、本発明を完成させた。具体的には、本発明は以下を提供する。   The present inventors have found that the power generation efficiency is improved if the dissolved oxygen in the positive electrode solution supplied to the cathode chamber is removed, and the present invention has been completed. Specifically, the present invention provides the following.

(1) 微生物および電子供与体を含む液を保持し負極が配置されたアノード室において前記微生物の生物反応により前記電子供与体から電子を取り出し、前記負極と電気的に接続された正極が配置されたカソード室に正極溶液を供給して前記負極から前記正極に前記電子を送って発電する微生物発電方法であって、
前記正極溶液は、電子受容体として亜硝酸性窒素または硝酸性窒素を含み、溶存酸素が除去されている微生物発電方法。
(2) 微生物を保持し電子供与体を含む原液が供給されるアノード室と、
電子受容体として亜硝酸性窒素または硝酸性窒素を含み溶存酸素が除去された正極溶液が供給されるカソード室と、
前記アノード室に配置された負極と、
前記カソード室に配置された正極と、
前記負極と前記正極とを電気的に接続する導通線と、を含む微生物発電装置。
(3) 前記カソード室に前記正極溶液を循環させるカソード循環路と、
前記カソード循環路の途中に設けられ、循環される前記正極溶液の溶存酸素濃度を実質的にゼロにする脱酸素装置と、をさらに含む(2)に記載の微生物発電装置。
(1) A positive electrode electrically connected to the negative electrode is disposed by taking out electrons from the electron donor by a biological reaction of the microorganism in an anode chamber in which a liquid containing a microorganism and an electron donor is held and a negative electrode is disposed. A microbial power generation method for generating power by supplying a positive electrode solution to the cathode chamber and sending the electrons from the negative electrode to the positive electrode,
The microbial power generation method, wherein the positive electrode solution contains nitrite nitrogen or nitrate nitrogen as an electron acceptor, and dissolved oxygen is removed.
(2) an anode chamber for holding a microorganism and supplying a stock solution containing an electron donor;
A cathode chamber to which a positive electrode solution containing nitrite nitrogen or nitrate nitrogen as an electron acceptor and from which dissolved oxygen is removed;
A negative electrode disposed in the anode chamber;
A positive electrode disposed in the cathode chamber;
A microbial power generation device comprising: a conductive wire that electrically connects the negative electrode and the positive electrode.
(3) a cathode circulation path for circulating the positive electrode solution in the cathode chamber;
The microbial power generation device according to (2), further comprising: a deoxygenation device that is provided in the middle of the cathode circulation path and makes the dissolved oxygen concentration of the circulated positive electrode solution substantially zero.

本発明によれば、電子受容体として、亜硝酸または硝酸を含む排水等を利用する微生物発電において、発電効率を向上させることができる。   According to the present invention, power generation efficiency can be improved in microbial power generation using nitrous acid or waste water containing nitric acid as an electron acceptor.

以下、図面を参照して本発明について詳細に説明する。以下の図において、同一部材には同一符号を付し、説明を省略または簡略化する。図面は発明の構成を模式的に示すものであり、構成の一部を省略または簡略化しており、寸法も実際の装置とは必ずしも同一ではない。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the following drawings, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified. The drawings schematically show the configuration of the invention, a part of the configuration is omitted or simplified, and the dimensions are not necessarily the same as the actual apparatus.

図1は、本発明の一実施形態に係る微生物発電装置1の断面模式図である。図1では、非導電膜15を介して1つのアノード室11と1つのカソード室12とを隣接配置して構成した1つのセル構造を示しているが、微生物発電装置1は複数のアノード室とカソード室とを非導電膜を介して交互に配置した構成としてもよい。   FIG. 1 is a schematic cross-sectional view of a microbial power generation apparatus 1 according to an embodiment of the present invention. Although FIG. 1 shows one cell structure in which one anode chamber 11 and one cathode chamber 12 are arranged adjacent to each other with a non-conductive film 15 interposed therebetween, the microbial power generation apparatus 1 includes a plurality of anode chambers. The cathode chambers may be alternately arranged with non-conductive films interposed therebetween.

アノード室11には負極21が設けられ、カソード室12には正極22が設けられている。負極21と正極22とは、金属線等の導電性部材で互いに電気的に接続されている。   The anode chamber 11 is provided with a negative electrode 21, and the cathode chamber 12 is provided with a positive electrode 22. The negative electrode 21 and the positive electrode 22 are electrically connected to each other by a conductive member such as a metal wire.

アノード室11は略直方体状であり、負極21がアノード室11の内部空間全体に充填されている。負極21は、導電性材料(グラファイト、チタン、およびステンレス等)で構成されている。負極21は、表面および内部に微生物を保持し、アノード室11に供給される液が通液可能なように、例えば直径10μm〜1mm程度の空隙が形成された多孔性の立体であることが好ましい。   The anode chamber 11 has a substantially rectangular parallelepiped shape, and the negative electrode 21 is filled in the entire internal space of the anode chamber 11. The negative electrode 21 is made of a conductive material (such as graphite, titanium, and stainless steel). The negative electrode 21 is preferably a porous solid having, for example, a void having a diameter of about 10 μm to 1 mm so that the liquid supplied to the anode chamber 11 can be passed through while retaining microorganisms on the surface and inside. .

負極21を構成する導電性多孔体の例としては、導電性材料で構成された多孔性シート(例えばグラファイトフェルト、発泡チタンや発泡ステンレスのシート)、導電性材料で構成され略同一形状の多角形(例えば四角形、六角形、八角形等)を並べて板状にした部材(例えば格子やハニカムシート)、および導電性材料を粒状にした充填材等が挙げられる。多孔性シートは、複数枚を導電性接着剤等で接着して負極21としてもよい。負極21は、厚みが3mm以上40mm以下であることが好ましく、5mm以上20mm以下であることがより好ましい。負極21の厚みが3mm未満であると微生物の保持量が少なくなり、40mmを超えると微生物反応で生じたプロトン(H)の移動が律速になる。この結果、プロトンを還元する硫酸還元菌やメタン発酵菌がアノード室11に優占しやすくなるため好ましくない。 Examples of the conductive porous body constituting the negative electrode 21 include a porous sheet made of a conductive material (for example, a sheet of graphite felt, foamed titanium or foamed stainless steel), a polygon made of a conductive material and having substantially the same shape. Examples thereof include a member (for example, a lattice or a honeycomb sheet) in which (for example, a quadrangle, a hexagon, an octagon, etc.) are arranged in a plate shape, and a filler in which a conductive material is granular. A plurality of porous sheets may be bonded to each other with a conductive adhesive or the like to form the negative electrode 21. The negative electrode 21 preferably has a thickness of 3 mm to 40 mm, and more preferably 5 mm to 20 mm. When the thickness of the negative electrode 21 is less than 3 mm, the amount of microorganisms retained decreases, and when it exceeds 40 mm, the movement of protons (H + ) generated by the microbial reaction becomes rate-limiting. As a result, sulfate-reducing bacteria and methane-fermenting bacteria that reduce protons tend to dominate the anode chamber 11, which is not preferable.

発電装置1では、4枚のグラファイトフェルト21A〜21Dを導電性接着剤で接着し、全体として40mm程度の厚さの厚板を負極21としている。接着剤はグラファイトフェルトの面全体には塗布せず(つまりベタ塗りせず)、グラファイトフェルト同士の積層方向およびこれと直交する方向を含む任意の方向に液体の移動が可能とされている。各グラファイトフェルトには微生物31が付着し、それぞれのグラファイトフェルトには、アノード引き出し線23が接続されている。アノード引き出し線23は、1本の導通線17を介して後述するカソード引き出し線24と接続されている。   In the power generation device 1, four graphite felts 21 </ b> A to 21 </ b> D are bonded with a conductive adhesive, and a thick plate having a thickness of about 40 mm as a whole is used as the negative electrode 21. The adhesive is not applied to the entire surface of the graphite felt (that is, not solid-coated), and the liquid can be moved in any direction including the lamination direction of the graphite felts and the direction orthogonal thereto. Microorganisms 31 adhere to each graphite felt, and an anode lead wire 23 is connected to each graphite felt. The anode lead line 23 is connected to a cathode lead line 24 to be described later via one conductive line 17.

微生物31は負極21の表面および内部で増殖し、大部分が負極21に付着した状態でアノード室11内に保持される。アノード室内に保持される微生物種は、呼吸基質としての電子供与体を酸化してプロトンと電子とを生成する微生物であれば特に限定されない。アノード室には種汚泥として、下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈殿池からの流出水に含まれる微生物、および嫌気性消化汚泥等を添加してよい。アノード室では、好ましくは嫌気的条件で微生物反応を行わせ、電子供与体を生物分解させる。発電効率を高くするためには、アノード室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1g/L以上であることが好ましい。なお、メタン生成菌、硫酸還元菌、および硝酸還元菌は、Hを消費するため、アノード室内でのこれらの微生物の優占を防ぐように、負極の厚みを調整するとよい。 The microorganisms 31 grow on the surface and inside of the negative electrode 21, and are mostly retained in the anode chamber 11 in a state where they adhere to the negative electrode 21. The microorganism species retained in the anode chamber is not particularly limited as long as it is a microorganism that oxidizes an electron donor as a respiratory substrate to generate protons and electrons. In the anode chamber, activated sludge obtained from a biological treatment tank that treats organic matter-containing water such as sewage, microorganisms contained in the effluent from the first sedimentation basin, and anaerobic digested sludge are added as seed sludge. Good. In the anode chamber, the microbial reaction is preferably performed under anaerobic conditions to biodegrade the electron donor. In order to increase the power generation efficiency, the amount of microorganisms retained in the anode chamber is preferably high, and for example, the microorganism concentration is preferably 1 g / L or more. Note that since the methanogenic bacteria, sulfate-reducing bacteria, and nitrate-reducing bacteria consume H + , the thickness of the negative electrode may be adjusted so as to prevent the predominance of these microorganisms in the anode chamber.

アノード室11には、電子供与体を含む液(原液)を供給する。電子供与体としては、糖類や有機酸のような有機性炭素化合物、または有機性窒素化合物のような窒素化合物が挙げられる。電子供与体の濃度はある程度、高い方が発電効率を高くできるため、原液の電子供与体濃度は100〜10,000mg/L程度が好ましい。原液は、電子供与体以外に微生物の栄養源となる窒素およびリンを含み、さらに、微量の銅、鉄、亜鉛、カルシウム、マグネシウム、硫黄、ナトリウム、およびカリウムを含むことが好ましい。原液としては、有機性排水や窒素含有排水を利用できる。   A liquid (stock solution) containing an electron donor is supplied to the anode chamber 11. Examples of the electron donor include organic carbon compounds such as saccharides and organic acids, and nitrogen compounds such as organic nitrogen compounds. Since the higher the concentration of the electron donor, the higher the power generation efficiency, the concentration of the electron donor in the stock solution is preferably about 100 to 10,000 mg / L. In addition to the electron donor, the stock solution contains nitrogen and phosphorus, which are nutrients for microorganisms, and preferably contains trace amounts of copper, iron, zinc, calcium, magnesium, sulfur, sodium, and potassium. As the stock solution, organic waste water and nitrogen-containing waste water can be used.

なお、従来、原液には微生物から負極への電子の受け渡しを促進するため、電子メディエータが添加される。本発明者らの知見によれば、負極と微生物とを密着させ、かつ、アノード室で生成されたプロトンのカソード室への移動を促進することで電子メディエータを不要にできる。電子メディエータを省略できる理由の一つは、負極と微生物とが密着していれば、微生物は電子を直接、負極に渡すためであると推定される。   Conventionally, an electron mediator is added to the stock solution in order to promote the transfer of electrons from the microorganism to the negative electrode. According to the knowledge of the present inventors, the electron mediator can be eliminated by bringing the negative electrode and microorganisms into close contact with each other and promoting the movement of protons generated in the anode chamber to the cathode chamber. One reason that the electron mediator can be omitted is presumed to be that if the negative electrode and the microorganism are in close contact, the microorganism passes electrons directly to the negative electrode.

そこで、微生物が負極に密着した状態で原液から電子供与体を受け取って生物分解を行うようにアノード室を構成すれば、原液への電子メディエータの添加を省略できる。具体的には、上述したように通水性を有する導電性多孔体で負極を構成し、この導電性多孔体にアノード室全体をほぼ占有させるとよい。このように、アノード室全体に負極を存在させアノード室内の空洞化した部分(空きスペース)をなくすことで、微生物が空きスペースに浮遊状態で存在すること、および原液が空きスペースを通るショートパスが生じることを防止できる。よって、微生物を負極に密着させ、原液が微生物に利用されずにショートパスして流出することを防止できる。   Therefore, if the anode chamber is configured to receive an electron donor from the stock solution and perform biodegradation while the microorganism is in close contact with the negative electrode, the addition of the electron mediator to the stock solution can be omitted. Specifically, as described above, it is preferable that the negative electrode is constituted by a conductive porous body having water permeability, and the entire anode chamber is substantially occupied by the conductive porous body. In this way, the negative electrode is present in the entire anode chamber and the hollow portion (empty space) in the anode chamber is eliminated, so that microorganisms exist in a floating state in the empty space, and a short path through which the stock solution passes through the empty space. It can be prevented from occurring. Therefore, microorganisms can be brought into close contact with the negative electrode, and the stock solution can be prevented from flowing out through a short path without being used by the microorganisms.

また、アノード室内で生成されたプロトンのカソード室への移動を促進するため、負極と非導電膜とを密着させることが好ましい。例えば、負極を湾曲のない真っ直ぐな平面を有するシートで構成し、平面全面を非導電膜と密着させるとよい。また、負極と導電膜とを密着させるため、両者をネジやクリップのような締付部材で締め付けた状態としてもよい。あるいは、アノード室にスペーサを挿入することで、軽い圧力(0.01〜100g/cm程度、特に0.1〜10g/cm程度)がかかった状態で負極がアノード室の内壁に押しつけられるようにしてもよい。 Further, in order to promote the movement of protons generated in the anode chamber to the cathode chamber, it is preferable that the negative electrode and the non-conductive film are in close contact with each other. For example, the negative electrode may be formed of a sheet having a straight flat surface without curvature, and the entire flat surface may be in close contact with the non-conductive film. Further, in order to bring the negative electrode and the conductive film into close contact with each other, the both may be clamped with a tightening member such as a screw or a clip. Alternatively, by inserting a spacer in the anode chamber, the negative electrode is pressed against the inner wall of the anode chamber under a light pressure (about 0.01 to 100 g / cm 2 , particularly about 0.1 to 10 g / cm 2 ). You may do it.

非導電膜15としては、プロトン選択性の高いカチオン透過膜を好適に使用でき、例えばデュポン株式会社製ナフィオン(登録商標)等が使用できる。非導電膜15は、薄くて丈夫であることが好ましい。   As the non-conductive film 15, a cation permeable membrane with high proton selectivity can be suitably used. For example, Nafion (registered trademark) manufactured by DuPont Co., Ltd. can be used. The non-conductive film 15 is preferably thin and strong.

カソード室12は、アノード室11と同様の構成とすればよい。カソード室12に配置する正極22は、負極21と同様の構成の導電性多孔体を使用できる。正極22も、負極21と同様に、非導電膜15と全面的に密着させることが好ましく、締付部材で両者を締め付けた状態としてもよく、スペーサ等を挿入してもよい。   The cathode chamber 12 may have the same configuration as the anode chamber 11. As the positive electrode 22 disposed in the cathode chamber 12, a conductive porous body having the same configuration as that of the negative electrode 21 can be used. Similarly to the negative electrode 21, the positive electrode 22 is also preferably in close contact with the non-conductive film 15. Both the positive electrode 22 and the non-conductive film 15 may be clamped with a clamping member, or a spacer or the like may be inserted.

発電装置1では、正極22は負極21と同様に4枚のグラファイトフェルト22A〜22Dを導電性接着剤で接着し、全体として40mm程度の厚さとした厚板で構成している。カソード室12内の液は、全体として板状をなす正極22内部を任意の方向に移動可能である。各グラファイトフェルトには脱窒を行う微生物32が付着し、それぞれのグラファイトフェルトには、カソード引き出し線24が接続されている。なお、負極21と正極22とはどちらも、単一部材として取り扱われるシート状の立体であることが好ましいが、粒状の導電性材料を負極21または/および正極22としてアノード室11または/およびカソード室12に充填することは排除されない。   In the power generation apparatus 1, the positive electrode 22 is formed of a thick plate having a thickness of about 40 mm as a whole by adhering four graphite felts 22 </ b> A to 22 </ b> D with a conductive adhesive similarly to the negative electrode 21. The liquid in the cathode chamber 12 can move in an arbitrary direction within the positive electrode 22 having a plate shape as a whole. A microorganism 32 for denitrification adheres to each graphite felt, and a cathode lead wire 24 is connected to each graphite felt. Both the negative electrode 21 and the positive electrode 22 are preferably in the form of a sheet that is handled as a single member. However, the anode chamber 11 or / and the cathode are made of a granular conductive material as the negative electrode 21 or / and the positive electrode 22. Filling the chamber 12 is not excluded.

カソード室12には、硝酸または亜硝酸窒素(以下、「硝酸塩」と総称する)を電子受容体として還元し、下記化学式1に示すような脱窒反応を行う脱窒菌を保持する。
(化学式1)
2NO +10H+10e→N+2OH+4H
The cathode chamber 12 holds denitrifying bacteria that reduce nitric acid or nitrogen nitrite (hereinafter collectively referred to as “nitrate”) as an electron acceptor and perform a denitrification reaction as shown in the following chemical formula 1.
(Chemical formula 1)
2NO 3 + 10H + + 10e → N 2 + 2OH + 4H 2 O

カソード室12には、硝酸塩を含む液を正極溶液として供給する。正極溶液は、硝酸塩を10〜2,000mg/L程度含み、硝酸塩以外に脱窒菌の栄養素となるリンと、微量元素(微量の銅、鉄、亜鉛、カルシウム、マグネシウム、硫黄、ナトリウム、およびカリウム)を含むことが好ましい。一方、カソード室12に有機物が持ち込まれると電力低下につながるため、正極溶液には有機物が含まれないようにすることが好ましく、正極溶液の有機物濃度は実質ゼロとされていることが好ましい。   A liquid containing nitrate is supplied to the cathode chamber 12 as a positive electrode solution. The positive electrode solution contains about 10 to 2,000 mg / L of nitrate. In addition to nitrate, phosphorus and nutrients for denitrifying bacteria and trace elements (trace amounts of copper, iron, zinc, calcium, magnesium, sulfur, sodium, and potassium) It is preferable to contain. On the other hand, when organic substances are brought into the cathode chamber 12, power is reduced. Therefore, it is preferable that the positive electrode solution does not contain organic substances, and the organic substance concentration of the positive electrode solution is preferably substantially zero.

本発明では、正極溶液に含まれる溶存酸素を除去し、正極溶液の溶存酸素濃度を実質的にゼロにする。以下、従来、排水処理分野で利用されている脱窒反応について述べた後、本発明について推定される作用を述べる。   In the present invention, the dissolved oxygen contained in the positive electrode solution is removed, and the dissolved oxygen concentration of the positive electrode solution is made substantially zero. Hereinafter, after describing the denitrification reaction conventionally used in the wastewater treatment field, the action presumed about the present invention will be described.

排水処理分野では、脱窒菌が硝酸塩を電子受容体として還元して窒素ガスを放出する硝酸塩還元反応は、窒素含有水を処理する方法として利用されている。排水処理の際には、脱窒菌として独立栄養性のアナモックス菌を用いる場合を除けば、通常、脱窒を行う際にメタノールのような有機物等が電子供与体として供給される。脱窒菌が保持された脱窒槽では、有機物が酸化分解される際、脱窒槽に供給される液に含まれる少量の溶存酸素が消費され、脱窒菌が好気呼吸できなくなる結果、脱窒反応が生じるとされている。   In the wastewater treatment field, a nitrate reduction reaction in which denitrifying bacteria reduce nitrate as an electron acceptor to release nitrogen gas is used as a method for treating nitrogen-containing water. In the case of wastewater treatment, organic matter such as methanol is usually supplied as an electron donor during denitrification, except for the case where autotrophic anammox bacteria are used as denitrifying bacteria. In the denitrification tank in which the denitrifying bacteria are retained, when organic matter is oxidatively decomposed, a small amount of dissolved oxygen contained in the liquid supplied to the denitrifying tank is consumed, and the denitrifying bacteria cannot breathe aerobically. It is supposed to occur.

ところが本発明者らが検討した結果、微生物発電を行う場合に微生物による還元反応(脱窒反応)を行わせるカソード室内に酸素が存在すると化学式1の還元反応が生じない。これは、カソード室に酸素が存在すると、アノード室で生成されカソード室に移動させられた水素が電子とともに酸素と反応してしまい、反応により高いエネルギーを必要とする硝酸イオンとは反応しなくなってしまうためと推察された。また、カソード室に供給される正極溶液に有機物が含まれる場合、脱窒細菌と、アノード室での微生物反応に関与する細菌(以下、「発電細菌」と称する)とが有機物をめぐって競合し、脱窒菌より低いエネルギーで有機物を分解できる発電細菌による反応(アノード反応)が脱窒細菌の反応に優先して脱窒反応が進まなくなると推察される。   However, as a result of investigations by the present inventors, when oxygen is present in the cathode chamber in which a reduction reaction (denitrification reaction) by microorganisms is performed when microbial power generation is performed, the reduction reaction of Formula 1 does not occur. This is because when oxygen is present in the cathode chamber, hydrogen generated in the anode chamber and moved to the cathode chamber reacts with oxygen together with electrons, and does not react with nitrate ions that require high energy due to the reaction. It was inferred to end up. In addition, when the cathode solution supplied to the cathode chamber contains organic substances, denitrifying bacteria and bacteria involved in the microbial reaction in the anode chamber (hereinafter referred to as “power-generating bacteria”) compete for the organic substances and are removed. It is presumed that the reaction (anodic reaction) by power generation bacteria that can decompose organic matter with lower energy than that of nitrifying bacteria will not proceed with denitrifying reaction in preference to the reaction of denitrifying bacteria.

これに対し、カソード室内に酸素が実質的に存在しない状態とすれば、アノード室からカソード室に送られた水素は上記化学式1に示した脱窒反応に使用される。また、カソード室内で発電細菌による酸化反応が起こることを妨げば、同様に、アノード室からカソード室に送られた水素を用いた上記化学式1の脱窒反応が促進される。よって、カソード室内での化学式1の脱窒反応を促進し発電効率を上げることができると推察される。   On the other hand, if oxygen is not substantially present in the cathode chamber, hydrogen sent from the anode chamber to the cathode chamber is used for the denitrification reaction represented by the above chemical formula 1. Further, if the oxidation reaction by the power generation bacteria is prevented from occurring in the cathode chamber, similarly, the denitrification reaction of the above chemical formula 1 using hydrogen sent from the anode chamber to the cathode chamber is promoted. Therefore, it is speculated that the power generation efficiency can be increased by promoting the denitrification reaction of Formula 1 in the cathode chamber.

正極溶液の溶存酸素濃度を実質ゼロにする手段としては、窒素等の非酸素ガスで十分にバブリングして酸素を追い出す方法、活性炭と接触させて酸素を分解する方法、重亜硫酸ナトリウムのような酸素と反応する薬品を添加する方法、脱気膜を介して溶存ガスを除去する方法、および硝化細菌を保持したカラムに微量のアンモニアを添加して内生脱窒させる方法等が挙げられる。正極溶液は、カソード室に供給する前に酸素を除去してもよく、これに代えて、またはこれとともに、循環路を介して循環させ循環路の途中に脱酸素装置を設けて酸素を除去するようにしてもよい。   As a means to make the dissolved oxygen concentration of the positive electrode solution substantially zero, a method of sufficiently bubbling with a non-oxygen gas such as nitrogen and driving out oxygen, a method of decomposing oxygen by contacting with activated carbon, oxygen such as sodium bisulfite For example, a method for removing dissolved gas through a degassing membrane, and a method for endogenous denitrification by adding a small amount of ammonia to a column holding nitrifying bacteria. Oxygen may be removed from the positive electrode solution before being supplied to the cathode chamber, and instead of or together with this, it is circulated through the circulation path to provide oxygen removal in the middle of the circulation path. You may do it.

本発明では、カソード室に硝酸塩を含む正極溶液を供給して脱窒菌による還元反応を行う際、カソード室内に酸素が実質的に流入しないよう、正極溶液の溶存酸素濃度を実質的にゼロとしていればよい。そこで、正極溶液を循環させる循環路を設け、循環させる前の新しい正極溶液(すなわち新たにカソード室に供給される正極溶液)および循環している正極溶液(すなわち、カソード室から排出されカソード室に戻される正極溶液)両方がこの循環路を通ってカソード室に供給されるようにするとよい。なお、アノード室およびカソード室の構造、負極および正極の素材や構造は上記に限定されない。   In the present invention, when the cathode solution containing nitrate is supplied to the cathode chamber and the reduction reaction by denitrifying bacteria is performed, the dissolved oxygen concentration of the cathode solution can be made substantially zero so that oxygen does not substantially flow into the cathode chamber. That's fine. Therefore, a circulation path for circulating the positive electrode solution is provided, and a new positive electrode solution (that is, a positive electrode solution that is newly supplied to the cathode chamber) before circulation and a circulating positive electrode solution (that is, discharged from the cathode chamber to the cathode chamber). Both of the returned positive electrode solution) may be supplied to the cathode chamber through this circulation path. The structures of the anode chamber and the cathode chamber and the materials and structures of the negative electrode and the positive electrode are not limited to the above.

上述したような構成の微生物発電装置では、電子供与体として有機物(酢酸)を用いる場合であれば、アノード室11内で下記化学式2に示す反応によりプロトンと電子が生成される。
(化学式2)
CHCOOH+2HO→2CO+8H+8e
In the microbial power generation device having the above-described configuration, when an organic substance (acetic acid) is used as an electron donor, protons and electrons are generated in the anode chamber 11 by the reaction shown in the following chemical formula 2.
(Chemical formula 2)
CH 3 COOH + 2H 2 O → 2CO 2 + 8H + + 8e

生成されたHは、カチオンを透過させる非導電膜15を通ってカソード室12に移動させる。電子は負極21から取り出され、アノード引き出し線23、導通線17、およびカソード引き出し線24を介して正極22側に送られる。この過程で負極21と正極22との間に電流が流れ、発電することができる。 The generated H + is moved to the cathode chamber 12 through the non-conductive film 15 that allows cations to pass therethrough. The electrons are extracted from the negative electrode 21 and sent to the positive electrode 22 side through the anode lead wire 23, the conductive wire 17, and the cathode lead wire 24. In this process, a current flows between the negative electrode 21 and the positive electrode 22, and power can be generated.

カソード室12では、正極22に保持させた脱窒菌により上記化学式1による還元反応を行い、アノード室11で生成されたHおよび電子を消費させる。本発明では、カソード室12に供給される正極溶液は、硝酸塩を含み酸素を実質的に含まないため、カソード室から移動させた水素および電子を用いて化学式1に記載した還元反応が促進され、発電効率が向上する。 In the cathode chamber 12, the reduction reaction according to the chemical formula 1 is performed by the denitrifying bacteria held in the positive electrode 22, and H + and electrons generated in the anode chamber 11 are consumed. In the present invention, since the positive electrode solution supplied to the cathode chamber 12 contains nitrate and does not substantially contain oxygen, the reduction reaction described in Chemical Formula 1 is promoted using hydrogen and electrons transferred from the cathode chamber, Power generation efficiency is improved.

[比較例1]
試験用の発電装置として図2に示す微生物発電装置2を作成した。発電装置2は、負極21が配置されたアノード室11と、正極22が配置されたカソード室12とが非導電膜15を挟んで向かい合う単セル構造である。アノード室11の容積は700mL、カソード室12の容積は700mLとした。
[Comparative Example 1]
A microbial power generation device 2 shown in FIG. 2 was created as a power generation device for testing. The power generation device 2 has a single cell structure in which the anode chamber 11 in which the negative electrode 21 is disposed and the cathode chamber 12 in which the positive electrode 22 is disposed face each other with the non-conductive film 15 interposed therebetween. The volume of the anode chamber 11 was 700 mL, and the volume of the cathode chamber 12 was 700 mL.

負極21および正極22はどちらも、厚さ10mmのグラファイトフェルト(東洋カーボン株式会社製)4枚を導電性接着剤で張り合わせて構成した。各グラファイトフェルトは大きさが250mm×70mmの長方形状であり、両表面は粗面である。各グラファイトフェルトには、アノード引き出し線23またはカソード引き出し線24として、直径5mmのグラファイト棒を導電性接着剤で接着した。グラファイト棒には電線を接続し、1Ω〜1kΩまでの適宜選択された外部抵抗を接続した上で、アノード引き出し線23とカソード引き出し線24とを相互に接続し、負極21と正極22とが電気的に接続されるようにした。負極21と正極22との間には非導電膜15としてカチオン透過膜(デュポン株式会社製 商品名「ナフィオン」)を配置した。   Both the negative electrode 21 and the positive electrode 22 were configured by pasting together 4 sheets of graphite felt (manufactured by Toyo Carbon Co., Ltd.) having a thickness of 10 mm with a conductive adhesive. Each graphite felt has a rectangular shape with a size of 250 mm × 70 mm, and both surfaces are rough. A graphite rod having a diameter of 5 mm was bonded to each graphite felt with a conductive adhesive as the anode lead wire 23 or the cathode lead wire 24. An electric wire is connected to the graphite rod and an external resistance appropriately selected from 1 Ω to 1 kΩ is connected, and then the anode lead wire 23 and the cathode lead wire 24 are connected to each other, and the negative electrode 21 and the positive electrode 22 are electrically connected. To be connected. Between the negative electrode 21 and the positive electrode 22, a cation permeable membrane (trade name “Nafion” manufactured by DuPont) was disposed as the non-conductive film 15.

アノード室11、およびカソード室12には種菌として下水処理場の生物処理槽から採取した活性汚泥20mLを添加して培養した。これにより、アノード室11およびカソード室12内には4層のグラファイトフェルト層と5層の微生物層とが形成された。微生物濃度は、アノード11室内について1,200mg/L、カソード室12内について1,500mg/Lであった。   In the anode chamber 11 and the cathode chamber 12, 20 mL of activated sludge collected from a biological treatment tank of a sewage treatment plant was added as an inoculum and cultured. As a result, four graphite felt layers and five microbial layers were formed in the anode chamber 11 and the cathode chamber 12. The microorganism concentration was 1,200 mg / L in the anode 11 chamber and 1,500 mg / L in the cathode chamber 12.

アノード室11に供給する原液としては、酢酸ナトリウム、硫酸アンモニウムおよび50mMのリン酸カリウムバッファ(pH7.6)を水道水に溶解させた液を用いた。原液の酢酸ナトリウム濃度は1,000mg/L、硫酸アンモニウム濃度は300mg/Lとした。発電装置2には、アノード室11内の液を循環させるアノード循環路41を設け、循環路の途中に容量1Lの貯槽(図示せず)を設け、アノード室11への通液速度が70mL/分となるように通液した。   As a stock solution supplied to the anode chamber 11, a solution in which sodium acetate, ammonium sulfate, and 50 mM potassium phosphate buffer (pH 7.6) were dissolved in tap water was used. The stock solution had a sodium acetate concentration of 1,000 mg / L and an ammonium sulfate concentration of 300 mg / L. The power generation apparatus 2 is provided with an anode circulation path 41 for circulating the liquid in the anode chamber 11, a storage tank (not shown) having a capacity of 1 L is provided in the middle of the circulation path, and the liquid flow rate to the anode chamber 11 is 70 mL / The liquid was passed to make a minute.

カソード室12に供給する正極溶液としては、硝酸ナトリウム、重炭酸ナトリウム、微量のニッケル、マンガン、鉄、銅、コバルトの硫酸塩、および50mMのリン酸カリウムバッファ(pH7.6)を水道水に溶解させた液を用いた。正極溶液の硝酸ナトリウム濃度は1,000mg/L、重炭酸ナトリウム濃度は200mg/L、その他の微量元素の濃度は0.1μg/L〜10μg/L程度、溶存酸素濃度は6mg/Lであり、有機物は実質的に含んでいない。正極溶液は、密閉した容積1Lの三角フラスコ(図示せず)に入れ、カソード循環路43を介して循環させ、カソード室12への通液速度が70mL/分となるように通液した。   As a positive electrode solution supplied to the cathode chamber 12, sodium nitrate, sodium bicarbonate, a small amount of nickel, manganese, iron, copper, cobalt sulfate, and 50 mM potassium phosphate buffer (pH 7.6) are dissolved in tap water. The liquid used was used. The concentration of sodium nitrate in the positive electrode solution is 1,000 mg / L, the concentration of sodium bicarbonate is 200 mg / L, the concentration of other trace elements is about 0.1 μg / L to 10 μg / L, and the dissolved oxygen concentration is 6 mg / L. Organic substances are not substantially contained. The positive electrode solution was placed in a closed 1 L Erlenmeyer flask (not shown), circulated through the cathode circulation path 43, and passed through the cathode chamber 12 at a liquid flow rate of 70 mL / min.

比較例1では、10mL/L槽/minの曝気量で窒素ガスを正極溶液に吹き込んで窒素ガス曝気を行い、溶存酸素濃度を0.2mg/Lまで低下させた。カソード循環路43は、カソード室12から排出された正極溶液および新たにカソード室12に供給される新しい正極溶液の両方が流れるように構成した。上記条件での通水開始から1ヶ月経過した時点で、カソード循環路43を循環する正極溶液の硝酸濃度は通水開始時と比べて実質的に変化しなかった。また、1kΩの外部抵抗を接続し、電圧を測定したところ、電位差は28mVであった。さらに、2ヶ月経過後に同様に測定したところ、電圧は14mVに低下していた。   In Comparative Example 1, nitrogen gas was aerated by blowing nitrogen gas into the positive electrode solution at an aeration amount of 10 mL / L tank / min, and the dissolved oxygen concentration was reduced to 0.2 mg / L. The cathode circulation path 43 is configured such that both the positive electrode solution discharged from the cathode chamber 12 and the new positive electrode solution newly supplied to the cathode chamber 12 flow. When one month passed from the start of water passage under the above conditions, the concentration of nitric acid in the positive electrode solution circulating in the cathode circulation path 43 did not substantially change compared to that at the start of water passage. Further, when an external resistance of 1 kΩ was connected and the voltage was measured, the potential difference was 28 mV. Furthermore, when the same measurement was performed after the elapse of 2 months, the voltage was reduced to 14 mV.

[参考例1]
比較例1において、カソード循環路43を流れる液に、有機物(酵母エキス)を濃度5mg/Lとなるように添加した。その他の条件は比較例1と同じ条件で実験し、電圧を比較したところ、添加前後で電位差は28mVから14mVに低下した。このような電圧の低下は、有機物の摂取をめぐって脱窒細菌と発電細菌とが競合し、より低いエネルギーで有機物を分解できる発電細菌による反応が優先したためと推察された。有機物を添加すれば酸素を使って有機物を酸化する生物反応により溶存酸素を消費させることはできる。しかし、参考例1からは、カソード室に有機物を流入させると溶存酸素を消費させることはできても、アノード室11で生成された水素および電子を使わない反応が起こり、発電効率が低下するという可能性があることが示された。
[Reference Example 1]
In Comparative Example 1, an organic substance (yeast extract) was added to the liquid flowing through the cathode circulation path 43 so as to have a concentration of 5 mg / L. When other conditions were tested under the same conditions as in Comparative Example 1 and the voltages were compared, the potential difference before and after addition decreased from 28 mV to 14 mV. Such a decrease in voltage was presumed to be due to the reaction between denitrifying bacteria and power generation bacteria competing for the intake of organic matter, and the reaction by power generation bacteria capable of degrading organic matter with lower energy was prioritized. If organic matter is added, dissolved oxygen can be consumed by a biological reaction that oxidizes organic matter using oxygen. However, from Reference Example 1, when an organic substance is allowed to flow into the cathode chamber, dissolved oxygen can be consumed, but a reaction that does not use hydrogen and electrons generated in the anode chamber 11 occurs, resulting in a decrease in power generation efficiency. It was shown that there is a possibility.

[実施例1]
実施例1として、カソード循環路43に粒状活性炭を充填し微生物を坦持させた生物的脱酸素装置44を設置した。この生物的脱酸素装置44で内生脱窒を行うことで、カソード循環路43を流れカソード室12に流入する液の溶存酸素濃度をゼロにした。生物的脱酸素装置44は内径30mm、高さ300mmのカラムに平均粒径1.5mmの粒状活性炭を200mmの高さまで充填し、下水処理場生物処理槽から採取した活性汚泥混合液を50mL添加して構成した。その他の条件は、参考例1と同じ条件とした。実施例1では、通水開始から徐々に電圧上昇が認められ、通水開始の翌日に測定した電圧の値は56mV、1週間後の電圧の値は111mv、1ヶ月後の電圧の値は345mvとなった。
[Example 1]
As Example 1, a biological deoxygenation apparatus 44 in which granular activated carbon was filled in the cathode circulation path 43 and microorganisms were carried was installed. By performing endogenous denitrification by this biological deoxygenation device 44, the dissolved oxygen concentration of the liquid flowing through the cathode circulation path 43 and flowing into the cathode chamber 12 was made zero. Biological deoxygenation device 44 is packed with granular activated carbon with an average particle size of 1.5 mm in a column with an inner diameter of 30 mm and a height of 300 mm to a height of 200 mm, and 50 mL of an activated sludge mixed solution collected from a biological treatment tank at a sewage treatment plant is added. Configured. Other conditions were the same as those in Reference Example 1. In Example 1, a voltage increase was gradually observed from the start of water flow, the voltage value measured on the next day after the start of water flow was 56 mV, the voltage value after 1 week was 111 mV, and the voltage value after 1 month was 345 mV. It became.

[実施例2]
実施例2として、比較例1において正極溶液に吹き込む窒素ガスの曝気量を10mL/L/minから1L/L/min上げることにより、カソード循環路43を循環する液の溶存酸素濃度をゼロにした。この結果、測定された電圧の値は通水開始から1日後に98mVとなり、5日後に349mVとなった。
[Example 2]
As Example 2, the dissolved oxygen concentration of the liquid circulating through the cathode circulation path 43 was made zero by increasing the aeration amount of nitrogen gas blown into the positive electrode solution in Comparative Example 1 from 10 mL / L / min to 1 L / L / min. . As a result, the measured voltage value became 98 mV one day after the start of water flow, and 349 mV after five days.

上述した通り、本発明によれば、正極溶液として硝酸塩含有水を用いて脱窒菌による微生物反応で還元反応を行う微生物発電の発電効率を高くできることが示された。   As described above, according to the present invention, it was shown that the power generation efficiency of microbial power generation in which a reduction reaction is performed by a microbial reaction by denitrifying bacteria using nitrate-containing water as a positive electrode solution can be improved.

本発明は、微生物を利用した発電に用いることができる。   The present invention can be used for power generation using microorganisms.

本発明の一実施形態に係る微生物発電装置の全体模式図。1 is an overall schematic diagram of a microbial power generation device according to an embodiment of the present invention. 試験に用いた微生物発電装置の構成図。The block diagram of the microbial power generation device used for the test.

符号の説明Explanation of symbols

1、2 微生物発電装置
11 アノード室
12 カソード室
15 非導電膜
17 導通線
21 負極
22 正極
23 アノード引き出し線
24 カソード引き出し線
41 アノード循環路
42 カソード循環路
44 脱酸素装置
DESCRIPTION OF SYMBOLS 1, 2 Microbial power generator 11 Anode chamber 12 Cathode chamber 15 Non-conductive film 17 Conductive line 21 Negative electrode 22 Positive electrode 23 Anode lead line 24 Cathode lead line 41 Anode circulation path 42 Cathode circulation path 44 Deoxygenation apparatus

Claims (3)

微生物および電子供与体を含む液を保持し負極が配置されたアノード室において前記微生物の生物反応により前記電子供与体から電子を取り出し、前記負極と電気的に接続された正極が配置されたカソード室に正極溶液を供給して前記負極から前記正極に前記電子を送って発電する微生物発電方法であって、
前記正極溶液は、電子受容体として亜硝酸性窒素または硝酸性窒素を含み、溶存酸素が除去されている微生物発電方法。
A cathode chamber in which a positive electrode electrically connected to the negative electrode is disposed by taking out electrons from the electron donor by a biological reaction of the microorganism in an anode chamber in which a liquid containing a microorganism and an electron donor is held and the negative electrode is disposed. A microbial power generation method for generating electricity by supplying a positive electrode solution to the negative electrode and sending the electrons from the negative electrode to the positive electrode,
The microbial power generation method, wherein the positive electrode solution contains nitrite nitrogen or nitrate nitrogen as an electron acceptor, and dissolved oxygen is removed.
微生物を保持し電子供与体を含む原液が供給されるアノード室と、
電子受容体として亜硝酸性窒素または硝酸性窒素を含み溶存酸素が除去された正極溶液が供給されるカソード室と、
前記アノード室に配置された負極と、
前記カソード室に配置された正極と、
前記負極と前記正極とを電気的に接続する導通線と、を含む微生物発電装置。
An anode chamber in which a stock solution containing microorganisms and containing an electron donor is supplied;
A cathode chamber to which a positive electrode solution containing nitrite nitrogen or nitrate nitrogen as an electron acceptor and from which dissolved oxygen is removed;
A negative electrode disposed in the anode chamber;
A positive electrode disposed in the cathode chamber;
A microbial power generation device comprising: a conductive wire that electrically connects the negative electrode and the positive electrode.
前記カソード室に前記正極溶液を循環させるカソード循環路と、
前記カソード循環路の途中に設けられ、循環される前記正極溶液の溶存酸素濃度を実質的にゼロにする脱酸素装置と、をさらに含む請求項2に記載の微生物発電装置。
A cathode circulation path for circulating the positive electrode solution in the cathode chamber;
The microbial power generation device according to claim 2, further comprising a deoxygenation device that is provided in the middle of the cathode circulation path and makes the dissolved oxygen concentration of the positive electrode solution circulated substantially zero.
JP2007338484A 2007-12-28 2007-12-28 Microorganism power generation method and microorganism power generation device Pending JP2009158426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338484A JP2009158426A (en) 2007-12-28 2007-12-28 Microorganism power generation method and microorganism power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338484A JP2009158426A (en) 2007-12-28 2007-12-28 Microorganism power generation method and microorganism power generation device

Publications (1)

Publication Number Publication Date
JP2009158426A true JP2009158426A (en) 2009-07-16

Family

ID=40962188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338484A Pending JP2009158426A (en) 2007-12-28 2007-12-28 Microorganism power generation method and microorganism power generation device

Country Status (1)

Country Link
JP (1) JP2009158426A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039998A (en) * 2010-07-22 2012-03-01 Central Res Inst Of Electric Power Ind Method and apparatus for manufacturing hydrogen using microorganism
JP2016087497A (en) * 2014-10-30 2016-05-23 国立大学法人 東京大学 Method of treating nitrogen-containing compound containing water
JP2016117027A (en) * 2014-12-22 2016-06-30 国立大学法人 東京大学 Apparatus and method for treatment of nitrogen-containing compound-containing water
JP2016162665A (en) * 2015-03-04 2016-09-05 前澤化成工業株式会社 Microbial fuel battery
WO2016143352A1 (en) * 2015-03-11 2016-09-15 パナソニック株式会社 Microbial fuel cell system
JP2016175081A (en) * 2010-01-14 2016-10-06 ジエイ・クレイグ・ベンター・インステイテユート Modular energy recovering water treatment devices
CN107180987A (en) * 2017-05-13 2017-09-19 华南理工大学 Couple the negative electrode efficient denitrification type microbiological fuel cell of Anammox technology
CN111003794A (en) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 Artificial wetland system for treating rural domestic sewage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175081A (en) * 2010-01-14 2016-10-06 ジエイ・クレイグ・ベンター・インステイテユート Modular energy recovering water treatment devices
US9505636B2 (en) 2010-01-14 2016-11-29 J. Craig Venter Institute Modular energy recovering water treatment devices
JP2012039998A (en) * 2010-07-22 2012-03-01 Central Res Inst Of Electric Power Ind Method and apparatus for manufacturing hydrogen using microorganism
JP2016087497A (en) * 2014-10-30 2016-05-23 国立大学法人 東京大学 Method of treating nitrogen-containing compound containing water
JP2016117027A (en) * 2014-12-22 2016-06-30 国立大学法人 東京大学 Apparatus and method for treatment of nitrogen-containing compound-containing water
JP2016162665A (en) * 2015-03-04 2016-09-05 前澤化成工業株式会社 Microbial fuel battery
WO2016143352A1 (en) * 2015-03-11 2016-09-15 パナソニック株式会社 Microbial fuel cell system
JPWO2016143352A1 (en) * 2015-03-11 2018-01-18 パナソニック株式会社 Microbial fuel cell system
CN107180987A (en) * 2017-05-13 2017-09-19 华南理工大学 Couple the negative electrode efficient denitrification type microbiological fuel cell of Anammox technology
CN111003794A (en) * 2019-12-25 2020-04-14 广州市环境保护工程设计院有限公司 Artificial wetland system for treating rural domestic sewage

Similar Documents

Publication Publication Date Title
Tian et al. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters
Kelly et al. Nutrients removal and recovery in bioelectrochemical systems: a review
Clauwaert et al. Methanogenesis in membraneless microbial electrolysis cells
Li et al. Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)
Mook et al. A review on the effect of bio-electrodes on denitrification and organic matter removal processes in bio-electrochemical systems
Tartakovsky et al. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors
KR100848331B1 (en) Denitrification Method Using A Bio-Electro-Chemical System
JP2009158426A (en) Microorganism power generation method and microorganism power generation device
Wu et al. Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode
Al-Mamun et al. Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying bio-cathode for removing nitrogen and recovering electrical energy
Zhang et al. Simultaneous sulfide removal, nitrification, denitrification and electricity generation in three-chamber microbial fuel cells
WO2008109911A1 (en) Microbial fuel cell
Al-Mamun et al. A sandwiched denitrifying biocathode in a microbial fuel cell for electricity generation and waste minimization
US11691901B2 (en) Bioelectrochemical method and apparatus for energy reclamation from nitrogen compounds
JP5458489B2 (en) Microbial power generator
Zhong et al. Power recovery coupled with sulfide and nitrate removal in separate chambers using a microbial fuel cell
JP5101855B2 (en) Bioreactor
KR101325209B1 (en) Method for wastewater treatment that simultaneous removal of organic matter and nitrogen in wastewater using a bio-electrochemical method
CN103861463A (en) Electrochemically assisted biological denitrification method of source separated urine
CN113365952A (en) Method for converting total ammonia nitrogen
JP5332196B2 (en) Microbial power generation method and microbial power generation apparatus
CN107973403B (en) Aerobic microorganism electrochemical biological rotating disc sewage treatment method
Dinh et al. Bioelectrical methane production with an ammonium oxidative reaction under the no organic substance condition
CN108217915A (en) For the microorganism electrochemical biological rotating disk of sewage disposal
JP2009061390A (en) Direct oxidation method of ammonia nitrogen in water and its apparatus