JP7263826B2 - Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material - Google Patents

Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material Download PDF

Info

Publication number
JP7263826B2
JP7263826B2 JP2019029300A JP2019029300A JP7263826B2 JP 7263826 B2 JP7263826 B2 JP 7263826B2 JP 2019029300 A JP2019029300 A JP 2019029300A JP 2019029300 A JP2019029300 A JP 2019029300A JP 7263826 B2 JP7263826 B2 JP 7263826B2
Authority
JP
Japan
Prior art keywords
integer
group
bis
sulfur
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019029300A
Other languages
Japanese (ja)
Other versions
JP2020132772A (en
Inventor
英輝 金
康佑 並木
美幸 宮本
裕 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2019029300A priority Critical patent/JP7263826B2/en
Publication of JP2020132772A publication Critical patent/JP2020132772A/en
Application granted granted Critical
Publication of JP7263826B2 publication Critical patent/JP7263826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光学樹脂レンズや光導波路、導光板等の光学部品を作製する際に必要な硫黄系有機材料、該硫黄系有機材料により表面修飾を施した無機材料、該無機材料と硬化性樹脂組成物とを接触もしくは混合させた有機無機複合材料、及び該有機無機複合材料の硬化物に関する。 The present invention provides a sulfur-based organic material necessary for producing optical parts such as optical resin lenses, optical waveguides, and light guide plates, an inorganic material surface-modified with the sulfur-based organic material, and the inorganic material and a curable resin. The present invention relates to an organic-inorganic composite material in contact with or mixed with a composition, and a cured product of the organic-inorganic composite material.

近年、無機ガラスに代わる透明性材料として、透明性有機材料が使用されている。こうした材料を光学素子に用いる場合、一般に、たとえば透明性、熱的特性、機械的特性などが求められる。 In recent years, transparent organic materials have been used as transparent materials in place of inorganic glass. When such materials are used for optical elements, transparency, thermal properties, mechanical properties, etc. are generally required.

さらに、一般的に求められる特性を有しつつ、高屈折率化することで、薄肉軽量な光学レンズ(メガネレンズ、フレネルレンズ、CD、DVDなどの情報記録機器におけるピックアップレンズ、デジタルカメラなどの撮影機器用レンズ等)、光学プリズム、光導波路、光ファイバー、薄膜成形物、光学用接着剤、光半導体用封止材料、回折格子、導光板、液晶基板、光反射板、反射防止材等の高屈折光学部材の材料等への展開が期待されている。 Furthermore, by increasing the refractive index while having the characteristics generally required, thin and lightweight optical lenses (eyeglass lenses, Fresnel lenses, pickup lenses for information recording equipment such as CDs and DVDs, and photography such as digital cameras) equipment lenses, etc.), optical prisms, optical waveguides, optical fibers, thin film moldings, optical adhesives, sealing materials for optical semiconductors, diffraction gratings, light guide plates, liquid crystal substrates, light reflectors, anti-reflection materials, etc. It is expected to be used as a material for optical members.

高屈折率な透明性有機材料として、樹脂材料が挙げられる。例えば、アクリル系樹脂、スチレン系樹脂、ポリカーボネート樹脂、ポリエステル系樹脂、オレフィン系樹脂、脂環式アクリル系樹脂、脂環式オレフィン系樹脂、ポリウレタン樹脂、ポリエーテル樹脂、ポリアミド樹脂、ポリイミド樹脂に代表される非晶性熱可塑性樹脂、あるいはエポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等の硬化性樹脂は、可視領域波長における良好な透明性を有し、しかも無機ガラス材料に比べて成形性、量産性、あるいは可撓性、強靱性、耐衝撃性等の優れた特徴を有している。 As a transparent organic material having a high refractive index, a resin material can be used. Examples include acrylic resins, styrene resins, polycarbonate resins, polyester resins, olefin resins, alicyclic acrylic resins, alicyclic olefin resins, polyurethane resins, polyether resins, polyamide resins, and polyimide resins. Amorphous thermoplastic resins, or curable resins such as epoxy resins, unsaturated polyester resins, and silicone resins have excellent transparency in the visible region, and are more moldable and mass-producible than inorganic glass materials. Alternatively, it has excellent characteristics such as flexibility, toughness, and impact resistance.

さらに最近では、硫黄元素を含有するモノマーを用いることによる透明性有機材料の高屈折率化が積極的に研究されている。例えばチオール化合物と、アリル化合物やイソシアネート化合物を重合して得られる樹脂(nd=1.60~1.67程度)、エピスルフィド、エピチオスルフィド化合物を重合硬化してなる樹脂(nd=1.7程度)などがある。なお、ヘリウムの与えるd線に対する屈折率をndとする。 More recently, research has been actively conducted to increase the refractive index of transparent organic materials by using monomers containing elemental sulfur. For example, a resin obtained by polymerizing a thiol compound and an allyl compound or an isocyanate compound (nd = about 1.60 to 1.67), a resin obtained by polymerizing and curing an episulfide or an epithiosulfide compound (nd = about 1.7 )and so on. Let nd be the refractive index of helium for the d-line.

このような高屈折率化が強く求められるのは、光学設計の自由度が広がるためである。例えば、ポリマー光ファイバーについては、コア部(光ファイバー断面における中心部)はクラッド部(同外周部)よりも高屈折率とすることで、この屈折率差が大きいほど光が伝播可能な最大角度に対応する開口数を大きくすることができる。 The reason why there is a strong demand for such a high refractive index is that the degree of freedom in optical design is increased. For example, in the case of polymer optical fibers, the core (the central part in the cross section of the optical fiber) has a higher refractive index than the cladding (the outer peripheral part). It is possible to increase the numerical aperture to be used.

また例えば、発光ダイオードでは発光素子部をエポキシ樹脂などで封止している。一般に半導体素子部を構成している半導体の屈折率は非常に高く、接している物質の屈折率が低ければ臨界角も小さく全反射が起こりやすい。そのため、より屈折率の高い物質で発光素子をつつむことで全反射の起こる角度を大きくでき、その分外部での光束取り出し効率が向上する。 Further, for example, in a light-emitting diode, the light-emitting element portion is sealed with epoxy resin or the like. In general, the refractive index of the semiconductor constituting the semiconductor element portion is very high, and if the refractive index of the substance in contact with the semiconductor is low, the critical angle is small and total reflection is likely to occur. Therefore, by wrapping the light-emitting element with a substance having a higher refractive index, the angle at which total reflection occurs can be increased, and the light extraction efficiency to the outside can be improved accordingly.

ただ、高屈折率化が実現できても、高屈折率化は使用される元素、分子構造により決まるため、組成によっては、他の無機材料との濡れ性と密着性が課題になることがあった。特に硫黄元素を含む透明性有機材料は無機材料に対する濡れ性や密着性が悪く、無機材料と組み合わせて光学素子を作製する際に不都合が生じる場合が多かった。 However, even if a high refractive index can be achieved, the high refractive index is determined by the elements and molecular structure used, so depending on the composition, wettability and adhesion with other inorganic materials may become an issue. rice field. In particular, transparent organic materials containing elemental sulfur have poor wettability and adhesiveness to inorganic materials, and often cause problems when used in combination with inorganic materials to produce optical elements.

一般的に、透明性有機材料とガラスなどの無機材料を接着時、その濡れ性、密着性を向上させるため、表面修飾剤として、シランカップリング剤などの反応性ケイ素化合物が使用されている。修飾剤分子の一部が加水分解して水酸基を生じ、これがガラス表面のシラノール基と反応してシロキサン結合をつくる(親水性構造)。一方、表面修飾剤におけるガラス表面と反対側は、鎖式炭化水素の末端に反応性のビニル基、エポキシ基等を有する親油性構造であり、アクリル樹脂やエポキシ樹脂との親和性が高い。これは有機材料をコートする際、濡れ性を向上させる効果がある。また、先述のビニル基やエポキシ基は、熱や活性エネルギー線などの外部刺激により樹脂モノマーと反応して化学結合するため、密着性が向上する。 In general, a reactive silicon compound such as a silane coupling agent is used as a surface modifier in order to improve wettability and adhesion when bonding a transparent organic material and an inorganic material such as glass. A portion of the modifier molecule hydrolyzes to produce hydroxyl groups, which react with the silanol groups on the glass surface to form siloxane bonds (hydrophilic structures). On the other hand, the side of the surface modifier opposite to the glass surface has a lipophilic structure having a reactive vinyl group, epoxy group, or the like at the end of the chain hydrocarbon, and has a high affinity with acrylic resins and epoxy resins. This has the effect of improving wettability when coating an organic material. In addition, the above-mentioned vinyl group and epoxy group react with the resin monomer by an external stimulus such as heat and active energy rays to form a chemical bond, thereby improving adhesion.

しかしながら、市販のシランカップリング剤の親油性構造は、前述の硫黄元素を含む硫黄系有機材料との親和性は低く、無機材料との濡れ性を大きく向上させることはできない。このため、無機材料の表面を一様に濡らし難い。光学部材に利用するには、より濡れ性を高め、さらに、外部刺激により硫黄系樹脂モノマーと反応し、高い密着性が得られる表面修飾剤が望まれていた。 However, the lipophilic structure of commercially available silane coupling agents has low affinity with the aforementioned sulfur-based organic materials containing elemental sulfur, and cannot significantly improve wettability with inorganic materials. Therefore, it is difficult to uniformly wet the surface of the inorganic material. For use in optical members, there has been a demand for a surface modifier that enhances wettability and reacts with sulfur-based resin monomers upon external stimulation to provide high adhesion.

特開2018―9102号公報Japanese Unexamined Patent Application Publication No. 2018-9102 特開2008―308592号公報Japanese Patent Application Laid-Open No. 2008-308592 特開2004―35857号公報JP-A-2004-35857

特許文献1に開示のインプリント成型用光硬化性樹脂組成物は、無機材料と高い密着性を得られるが、(メタ)アクリル系樹脂を用いている。 The photocurable resin composition for imprint molding disclosed in Patent Document 1 can obtain high adhesion to inorganic materials, but uses a (meth)acrylic resin.

特許文献2に開示の感圧式接着剤組成物は、基材との密着性の高いシランカップリング剤を添加したチオール成分を含むポリエステルを開示しているが、基材に有機材料のポリエステルフィルムを用いており、無機材料の表面に対する濡れや密着性は示されていない。 The pressure-sensitive adhesive composition disclosed in Patent Document 2 discloses a polyester containing a thiol component to which a silane coupling agent having high adhesion to a substrate is added. No wettability or adhesion to the surface of the inorganic material is shown.

特許文献3に開示の光硬化型光学用接着剤組成物は、エポキシ基、又はチオール基(メルカプト基)を有するシランカップリング剤に硫黄系化合物を混合し、ガラス基材との高い接着性を得ている。高屈折率化のために硫黄系化合物を添加しているが、無機材料の表面に対する濡れ性は示されていない。 The photocurable optical adhesive composition disclosed in Patent Document 3 is obtained by mixing a sulfur-based compound with a silane coupling agent having an epoxy group or a thiol group (mercapto group) to achieve high adhesion to a glass substrate. It has gained. A sulfur-based compound is added to increase the refractive index, but wettability with respect to the surface of the inorganic material is not shown.

本発明はこのような課題を解決するためになされたものであって、光学樹脂レンズや光導波路、導光板等の光学部品を作製する際に必要な硫黄系有機材料、該硫黄系有機材料により表面修飾を施した無機材料、該無機材料と硬化性樹脂組成物とを接触もしくは混合させた有機無機複合材料、及び該有機無機複合材料の硬化物を提供することを目的とする。 The present invention has been made in order to solve such problems. An object of the present invention is to provide a surface-modified inorganic material, an organic-inorganic composite material obtained by contacting or mixing the inorganic material with a curable resin composition, and a cured product of the organic-inorganic composite material.

そこで本発明者らは、かかる状況下、上記の課題を解決すべく鋭意検討した結果、硬化性樹脂組成物の一部と同構造な硫黄元素を含むある種の化学構造を含んだ硫黄系有機材料を表面修飾剤として用いた際、無機材料との濡れ性が良く密着性が維持され、高透明、且つ高屈折率な硬化物が得られることを見出すに至った。
本明細書における「屈折率」とは、光線屈折率を指し、ヘリウムの輝線波長587.56nmによる測定値を用いる。
Therefore, under such circumstances, the present inventors have made intensive studies to solve the above problems, and found that a sulfur-based organic It has been found that when the material is used as a surface modifier, the wettability with the inorganic material is good, the adhesion is maintained, and a cured product with high transparency and high refractive index can be obtained.
The term "refractive index" as used herein refers to the refractive index of light, and the value measured by the helium emission line wavelength of 587.56 nm is used.

すなわち本発明は、下記に記載する通りである。
<1> 下記一般式(1)で表される硫黄系有機材料である。
K-N-M 式(1)
(式中、Kは、アミン、カルボン酸、リン酸、亜リン酸、アミン塩、カルボン酸塩、リン酸塩、亜リン酸塩、下記一般式(k1)で表される基、及び下記一般式(k2)で表される基からなる群より選択される親水性の部分構造を1以上含み、Mは、下記一般式(m1)~(m7)で表される硫黄原子を含む基からなる群より選択される親油性の部分構造を1以上含み、Nは、炭素原子、窒素原子、酸素原子及び硫黄原子からなる群より選択される1以上を含む二価の連結基を表す。)

Figure 0007263826000001
(式中、各Rは、それぞれ独立して、水素原子、メチル基、又はエチル基を表す。)
Figure 0007263826000002
(式中、各Rは、それぞれ独立して、水素原子、メチル基、又はエチル基を表す。)
Figure 0007263826000003
(式中、pは2~4の整数を表し、Xp及びZpは、それぞれ独立して、水素原子又はメチルチオール基を表す。)
Figure 0007263826000004
Figure 0007263826000005
Figure 0007263826000006
Figure 0007263826000007
Figure 0007263826000008
(式中、nは1又は2の整数を表す。)
Figure 0007263826000009
(式中、nは1~8の整数を表す。)
<2> Nで表される二価の連結基が、下記構造式(n1)~(n4)で表される基からなる群より選択される1以上を含む、上記<1>に記載の硫黄系有機材料である。
Figure 0007263826000010
(式中、Xは、炭素原子、酸素原子、硫黄原子、又は窒素原子を表し、mは0~7の整数を表し、nは0~7の整数を表す。)
Figure 0007263826000011
(式中、Rは水素原子、又はメチル基を表し、nは1~3の整数を表す。)
Figure 0007263826000012
(式中、nは1~3の整数を表す。)
Figure 0007263826000013
(式中、nは1~3の整数を表す。)
<3> 上記<1>又は<2>に記載の硫黄系有機材料により表面修飾を施した無機材料である。
<4> 前記無機材料が板状ガラスである、上記<3>に記載の無機材料である。
<5> 上記<4>に記載の無機材料と硬化性樹脂組成物とを接触もしくは混合させた有機無機複合材料である。
<6> 前記硫黄系有機材料における親水性の部分構造が前記無機材料と接触し、前記硫黄系有機材料における親油性の部分構造が前記硬化性樹脂組成物と接触してなる、上記<5>に記載の有機無機複合材料である。
<7> 前記硬化性樹脂組成物が、下記一般式(2)~(9)で表される化合物からなる群より選択される少なくとも1種類を20質量%以上含む、上記<5>又は<6>に記載の有機無機複合材料である。
Figure 0007263826000014
(式中、mは0~4の整数を表し、nは0~2の整数を表す。)
Figure 0007263826000015
(式中、pは2~4の整数を表し、Xp及びZpは、それぞれ独立して水素原子又はメチルチオール基を表す。)
Figure 0007263826000016
(式中、nは1又は2の整数を表す。)
Figure 0007263826000017
Figure 0007263826000018
(式中、Rは水素原子、又はメチル基を表し、pは1~2の整数を表す。)
Figure 0007263826000019
(式中、Rは水素原子、又はメチル基を表し、pは1~2の整数を表す。)
Figure 0007263826000020
Figure 0007263826000021
(式中、p及びqは、それぞれ独立して1~3の整数を表す。)
<8> 前記硬化性樹脂組成物の硬化後のd線屈折率が1.6以上であり、厚さ0.25mmの可視光領域の光透過率が80%以上であり、ヘーズ値が1.0%以下である、上記<5>から<7>のいずれかに記載の有機無機複合材料である。
<9> 前記硬化性樹脂組成物が、光重合開始剤、光増感剤、又は熱硬化剤をさらに含む、上記<5>から<8>のいずれかに記載の有機無機複合材料である。
<10> 前記硬化性樹脂組成物と前記無機材料との静的接触角が30度以下である、上記<5>から<9>のいずれかに記載の有機無機複合材料である。
<11> 上記<5>から<10>のいずれかに記載の有機無機複合材料を熱または活性エネルギー線により硬化させた、有機無機複合材料の硬化物である。 That is, the present invention is as described below.
<1> A sulfur-based organic material represented by the following general formula (1).
KNM Formula (1)
(Wherein, K is an amine, carboxylic acid, phosphoric acid, phosphorous acid, amine salt, carboxylate, phosphate, phosphite, a group represented by the following general formula (k1), and the following general Contains one or more hydrophilic partial structures selected from the group consisting of groups represented by formula (k2), and M is a group containing a sulfur atom represented by general formulas (m1) to (m7) below. It contains one or more lipophilic partial structures selected from the group, and N represents a divalent linking group containing one or more selected from the group consisting of carbon atoms, nitrogen atoms, oxygen atoms and sulfur atoms.)
Figure 0007263826000001
(In the formula, each R independently represents a hydrogen atom, a methyl group, or an ethyl group.)
Figure 0007263826000002
(In the formula, each R independently represents a hydrogen atom, a methyl group, or an ethyl group.)
Figure 0007263826000003
(Wherein, p represents an integer of 2 to 4, and Xp and Zp each independently represent a hydrogen atom or a methylthiol group.)
Figure 0007263826000004
Figure 0007263826000005
Figure 0007263826000006
Figure 0007263826000007
Figure 0007263826000008
(In the formula, n represents an integer of 1 or 2.)
Figure 0007263826000009
(In the formula, n represents an integer of 1 to 8.)
<2> The sulfur according to <1> above, wherein the divalent linking group represented by N includes one or more selected from the group consisting of groups represented by the following structural formulas (n1) to (n4): It is a system organic material.
Figure 0007263826000010
(Wherein, X represents a carbon atom, an oxygen atom, a sulfur atom, or a nitrogen atom, m represents an integer of 0 to 7, and n represents an integer of 0 to 7.)
Figure 0007263826000011
(Wherein, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 3.)
Figure 0007263826000012
(In the formula, n represents an integer of 1 to 3.)
Figure 0007263826000013
(In the formula, n represents an integer of 1 to 3.)
<3> An inorganic material surface-modified with the sulfur-based organic material according to <1> or <2> above.
<4> The inorganic material according to <3> above, wherein the inorganic material is sheet glass.
<5> An organic-inorganic composite material obtained by contacting or mixing the inorganic material and the curable resin composition according to <4> above.
<6> The above <5>, wherein the hydrophilic partial structure in the sulfur-based organic material is in contact with the inorganic material, and the lipophilic partial structure in the sulfur-based organic material is in contact with the curable resin composition. It is an organic-inorganic composite material according to.
<7> The above <5> or <6, wherein the curable resin composition contains 20% by mass or more of at least one selected from the group consisting of compounds represented by the following general formulas (2) to (9) > is an organic-inorganic composite material described in .
Figure 0007263826000014
(Wherein, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
Figure 0007263826000015
(Wherein, p represents an integer of 2 to 4, and Xp and Zp each independently represent a hydrogen atom or a methylthiol group.)
Figure 0007263826000016
(In the formula, n represents an integer of 1 or 2.)
Figure 0007263826000017
Figure 0007263826000018
(Wherein, R represents a hydrogen atom or a methyl group, and p represents an integer of 1 to 2.)
Figure 0007263826000019
(Wherein, R represents a hydrogen atom or a methyl group, and p represents an integer of 1 to 2.)
Figure 0007263826000020
Figure 0007263826000021
(Wherein, p and q each independently represents an integer of 1 to 3.)
<8> The curable resin composition after curing has a d-line refractive index of 1.6 or more, a light transmittance of 80% or more in a visible light region with a thickness of 0.25 mm, and a haze value of 1.6. The organic-inorganic composite material according to any one of <5> to <7>, wherein the content is 0% or less.
<9> The organic-inorganic composite material according to any one of <5> to <8> above, wherein the curable resin composition further contains a photopolymerization initiator, a photosensitizer, or a thermosetting agent.
<10> The organic-inorganic composite material according to any one of <5> to <9> above, wherein a static contact angle between the curable resin composition and the inorganic material is 30 degrees or less.
<11> A cured product of an organic-inorganic composite material obtained by curing the organic-inorganic composite material according to any one of <5> to <10> above with heat or active energy rays.

本発明の硫黄系有機材料は、硫黄系硬化性樹脂組成物との濡れ性に優れ、容易に無機材料の表面全体に付着し、硬化後にもその密着性が維持されることから、無機材料上に高透明、且つ高屈折率な硬化物が得られる。光学素子、特に回折格子等の作製に利用されるインプリント材料への展開が可能である。 The sulfur-based organic material of the present invention has excellent wettability with the sulfur-based curable resin composition, easily adheres to the entire surface of the inorganic material, and maintains its adhesion even after curing. A cured product with high transparency and a high refractive index can be obtained. It can be developed into imprint materials used for manufacturing optical elements, especially diffraction gratings.

以下に本発明について説明する。なお、以下は本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。 The present invention will be described below. In addition, the following are examples for explaining the present invention, and the present invention is not limited only to the embodiments.

(硫黄系有機材料)
本発明の硫黄系有機材料は、下記一般式(1)で表される化合物より選択される。
K-N-M 式(1)
式(1)中、Kは、アミン、カルボン酸、リン酸、亜リン酸、アミン塩、カルボン酸塩、リン酸塩、亜リン酸塩、下記一般式(k1)で表される基、及び下記一般式(k2)で表される基からなる群より選択される親水性の部分構造を1以上含む。Kは、無機材料表面との相互作用の観点から好ましくは下記一般式(k2)で表される基を含む。

Figure 0007263826000022
式(k1)中、各Rは、それぞれ独立して、水素原子、メチル基、又はエチル基を表し、好ましくは、メチル基又はエチル基を表す。
Figure 0007263826000023
式(k2)中、各Rは、それぞれ独立して、水素原子、メチル基、又はエチル基を表し、好ましくは、メチル基又はエチル基を表す。 (Sulfur-based organic material)
The sulfur-based organic material of the present invention is selected from compounds represented by the following general formula (1).
KNM Formula (1)
In formula (1), K is an amine, carboxylic acid, phosphoric acid, phosphorous acid, amine salt, carboxylate, phosphate, phosphite, a group represented by the following general formula (k1), and It contains one or more hydrophilic partial structures selected from the group consisting of groups represented by the following general formula (k2). K preferably includes a group represented by the following general formula (k2) from the viewpoint of interaction with the inorganic material surface.
Figure 0007263826000022
In formula (k1), each R independently represents a hydrogen atom, a methyl group, or an ethyl group, preferably a methyl group or an ethyl group.
Figure 0007263826000023
In formula (k2), each R independently represents a hydrogen atom, a methyl group, or an ethyl group, preferably a methyl group or an ethyl group.

式(1)中、Mは、下記一般式(m1)~(m7)で表される硫黄原子を含む基からなる群より選択される親油性の部分構造を1以上含む。Mは、硫黄系硬化性樹脂組成物との相溶性の観点から好ましくは、下記一般式(m1)、下記一般式(m6)、又は下記一般式(m7)で表される基を含む。

Figure 0007263826000024
式(m1)中、pは2~4の整数を表し、Xp及びZpは、それぞれ独立して、水素原子又はメチルチオール基を表す。
Figure 0007263826000025
Figure 0007263826000026
Figure 0007263826000027
Figure 0007263826000028
Figure 0007263826000029
式(m6)中、nは1又は2の整数を表す。
Figure 0007263826000030
式(m7)中、nは1~8の整数を表し、好ましくは1を表す。 In formula (1), M includes one or more lipophilic partial structures selected from the group consisting of sulfur atom-containing groups represented by general formulas (m1) to (m7) below. From the viewpoint of compatibility with the sulfur-based curable resin composition, M preferably includes a group represented by the following general formula (m1), general formula (m6), or general formula (m7) below.
Figure 0007263826000024
In formula (m1), p represents an integer of 2 to 4, and Xp and Zp each independently represent a hydrogen atom or a methylthiol group.
Figure 0007263826000025
Figure 0007263826000026
Figure 0007263826000027
Figure 0007263826000028
Figure 0007263826000029
In formula (m6), n represents an integer of 1 or 2.
Figure 0007263826000030
In formula (m7), n represents an integer of 1 to 8, preferably 1.

式(1)中、Nは、炭素原子、窒素原子、酸素原子及び硫黄原子からなる群より選択される1以上を含む二価の連結基を表す。好ましくは、Nで表される二価の連結基は、下記構造式(n1)~(n4)で表される基からなる群より選択される1以上を含む。

Figure 0007263826000031
式中(n1)、Xは、炭素原子、酸素原子、硫黄原子、又は窒素原子を表し、mは0~7の整数を表し、nは0~7の整数を表す。好ましくは、mは0~3の整数を表し、nは0~3の整数を表す。
Figure 0007263826000032
式(n2)中、Rは水素原子、又はメチル基を表し、nは1~3の整数を表す。
Figure 0007263826000033
式(n3)中、nは1~3の整数を表す。
Figure 0007263826000034
式(n4)中、nは1~3の整数を表す。 In formula (1), N represents a divalent linking group containing one or more selected from the group consisting of carbon atoms, nitrogen atoms, oxygen atoms and sulfur atoms. Preferably, the divalent linking group represented by N includes one or more selected from the group consisting of groups represented by the following structural formulas (n1) to (n4).
Figure 0007263826000031
In the formula (n1), X represents a carbon atom, an oxygen atom, a sulfur atom, or a nitrogen atom, m represents an integer of 0-7, and n represents an integer of 0-7. Preferably, m represents an integer of 0-3 and n represents an integer of 0-3.
Figure 0007263826000032
In formula (n2), R represents a hydrogen atom or a methyl group, and n represents an integer of 1-3.
Figure 0007263826000033
In formula (n3), n represents an integer of 1-3.
Figure 0007263826000034
In formula (n4), n represents an integer of 1-3.

本発明の硫黄系有機材料は、1種単独で使用してもよいし、2種以上組み合わせて使用してもよい。さらに、他のシランカップリング剤と組み合わせて使用してもよい。本発明の硫黄系有機材料は、表面修飾剤として好ましく使用することができる。 The sulfur-based organic material of the present invention may be used singly or in combination of two or more. Furthermore, it may be used in combination with other silane coupling agents. The sulfur-based organic material of the present invention can be preferably used as a surface modifier.

(シランカップリング剤)
本発明の硫黄系有機材料と組み合わせて使用するシランカップリング剤は特に限定されず、ラジカル重合反応性の官能基を有するシランカップリング剤及びその他のシランカップリング剤が挙げられる。
(Silane coupling agent)
The silane coupling agent used in combination with the sulfur-based organic material of the present invention is not particularly limited, and examples thereof include silane coupling agents having radically polymerizable functional groups and other silane coupling agents.

ラジカル重合反応性シランカップリング剤は、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル基含有シラン;3-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリロイル基含有シラン等が挙げられ、(メタ)アクリロイル基含有シランが好ましい。 Radical polymerization reactive silane coupling agents include vinyl group-containing silanes such as vinyltris(β-methoxyethoxy)silane, vinyltriethoxysilane and vinyltrimethoxysilane; (meth)acryloyl groups such as 3-methacryloxypropyltrimethoxysilane; containing silanes, etc., and (meth)acryloyl group-containing silanes are preferred.

その他のシランカップリング剤は、ラジカル重合反応性の官能基を有さないシラン化合物である。その他のシランカップリング剤としては、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン;N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;γ-メルカプトプロピルトリメトキシシラン等のメルカプトシラン;γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン等のハロアルキル基含有シランが挙げられる。 Other silane coupling agents are silane compounds that do not have radically polymerizable functional groups. Other silane coupling agents include epoxysilanes such as β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane; -β-(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane aminosilanes such as methoxysilane; mercaptosilanes such as γ-mercaptopropyltrimethoxysilane; and haloalkyl group-containing silanes such as γ-chloropropylmethyldimethoxysilane and γ-chloropropylmethyldiethoxysilane.

(無機材料)
本発明の硫黄系有機材料にて修飾する無機材料は、石英、ガラス、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Fe等の金属基材、TFTアレイ基材、PDPの電極板、ITOや金属などの導電性基材、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーン等の半導体作製基材等が挙げられる。基材の形状は、板状でもよいし、ロール状でもよい。これらの中でも、面内の一様な修飾量の観点から板状ガラスが特に好ましい。
(inorganic material)
Inorganic materials to be modified with the sulfur-based organic material of the present invention include quartz, glass, ceramic materials, evaporated films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, TFT array substrates, and PDPs. electrode plates, conductive substrates such as ITO and metals, and semiconductor fabrication substrates such as silicone, silicon nitride, polysilicone, silicon oxide, and amorphous silicone. The shape of the substrate may be plate-like or roll-like. Among these, sheet glass is particularly preferable from the viewpoint of uniform in-plane modification amount.

(表面修飾方法)
前記無機材料を、本発明の硫黄系有機材料で表面修飾する方法は特に限定されず、例えば、浸漬、塗布(スピンコート、スプレーコートなど)又は蒸着によって修飾できる。
(Surface modification method)
The method of surface-modifying the inorganic material with the sulfur-based organic material of the present invention is not particularly limited, and for example, it can be modified by dipping, coating (spin coating, spray coating, etc.), or vapor deposition.

具体的には、本発明の硫黄系有機材料を無機材料上に塗布しベークする工程、その後、極性溶媒で前記無機材料を洗浄する工程、及び前記無機材料を乾燥させる工程を経て硫黄系有機材料を固定化させることができる。あるいは、無機材料を前記硫黄系有機材料中に浸漬する工程、その後、極性溶媒で前記無機材料を洗浄する工程、及び前記無機材料を乾燥させる工程を経て硫黄系有機材料を固定化させることができる。洗浄工程に使用する極性溶媒としては、例えば、前記硫黄系有機材料に含まれる水又は極性有機溶媒を使用することができる。 Specifically, the sulfur-based organic material is obtained through a step of applying the sulfur-based organic material of the present invention onto an inorganic material and baking, followed by a step of washing the inorganic material with a polar solvent, and a step of drying the inorganic material. can be immobilized. Alternatively, the sulfur-based organic material can be immobilized through a step of immersing an inorganic material in the sulfur-based organic material, a step of washing the inorganic material with a polar solvent, and a step of drying the inorganic material. . As the polar solvent used in the washing step, for example, water or a polar organic solvent contained in the sulfur-based organic material can be used.

(硬化性樹脂組成物)
本発明で使用される硬化性樹脂組成物としては、分子内に硫黄原子を含有する化合物が挙げられる。例えば、エピチオ化合物やチオール化合物が好ましく挙げられる。さらに、分子内に硫黄原子を含有する化合物とアリル化合物やイソシアネート化合物とを組み合わせて用いてもよい。
(Curable resin composition)
The curable resin composition used in the present invention includes compounds containing sulfur atoms in the molecule. For example, epithio compounds and thiol compounds are preferred. Furthermore, a compound containing a sulfur atom in the molecule may be used in combination with an allyl compound or an isocyanate compound.

(エピチオ化合物)
エピチオ化合物としては、例えば、ビス(2,3-エピチオプロピル)スルフィド、ビス(2,3-エピチオプロピル)ジスルフィド、ビス(2,3-エピチオプロピルチオ)メタン、1,2-ビス(2,3-エピチオプロピルチオ)エタン、1,2-ビス(2,3-エピチオプロピルチオ)プロパン、1,3-ビス(2,3-エピチオプロピルチオ)プロパン、1,3-ビス(2,3-エピチオプロピルチオ)-2-メチルプロパン、1,4-ビス(2,3-エピチオプロピルチオ)ブタン、1,4-ビス(2,3-エピチオプロピルチオ)-2-メチルブタン、1,3-ビス(2,3-エピチオプロピルチオ)ブタン、1,5-ビス(2,3-エピチオプロピルチオ)ペンタン、1,5-ビス(2,3-エピチオプロピルチオ)-2-メチルペンタン、1,5-ビス(2,3-エピチオプロピルチオ)-3-チアペンタン、1,6-ビス(2,3-エピチオプロピルチオ)ヘキサン、1,6-ビス(2,3-エピチオプロピルチオ)-2-メチルヘキサン、3,8-ビス(2,3-エピチオプロピルチオ)-3,6-ジチアオクタン、1,2,3-トリス(2,3-エピチオプロピルチオ)プロパン、2,2-ビス(2,3-エピチオプロピルチオ)-1,3-ビス(2,3-エピチオプロピルチオメチル)プロパン、2,2-ビス(2,3-エピチオプロピルチオメチル)-1-(2,3-エピチオプロピルチオ)ブタン、1,5-ビス(2,3-エピチオプロピルチオ)-2-(2,3-エピチオプロピルチオメチル)-3-チアペンタン、1,5-ビス(2,3-エピチオプロピルチオ)-2,4-ビス(2,3-エピチオプロピルチオメチル)-3-チアペンタン、1-(2,3-エピチオプロピルチオ)-2,2-ビス(2,3-エピチオプロピルチオメチル)-4-チアヘキサン、1,5,6-トリス(2,3-エピチオプロピルチオ)-4-(2,3-エピチオプロピルチオメチル)-3-チアヘキサン、1,8-ビス(2,3-エピチオプロピルチオ)-4-(2,3-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(2,3-エピチオプロピルチオ)-4,5-ビス(2,3-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(2,3-エピチオプロピルチオ)-4,4-ビス(2,3-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(2,3-エピチオプロピルチオ)-2,5-ビス(2,3-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(2,3-エピチオプロピルチオ)-2,4,5-トリス(2,3-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,1,1-トリス[{2-(2,3-エピチオプロピルチオ)エチル}チオメチル]-2-(2,3-エピチオプロピルチオ)エタン、1,1,2,2-テトラキス[{2-(2,3-エピチオプロピルチオ)エチル}チオメチル]エタン、1,11-ビス(2,3-エピチオプロピルチオ)-4,8-ビス(2,3-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(2,3-エピチオプロピルチオ)-4,7-ビス(2,3-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(2,3-エピチオプロピルチオ)-5,7-ビス(2,3-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン等の鎖状脂肪族の2,3-エピチオプロピルチオ化合物;及び、1,3-ビス(2,3-エピチオプロピルチオ)シクロヘキサン、1,4-ビス(2,3-エピチオプロピルチオ)シクロヘキサン、1,3-ビス(2,3-エピチオプロピルチオメチル)シクロヘキサン、1,4-ビス(2,3-エピチオプロピルチオメチル)シクロヘキサン、2,5-ビス(2,3-エピチオプロピルチオメチル)-1,4-ジチアン、2,5-ビス[{2-(2,3-エピチオプロピルチオ)エチル}チオメチル]-1,4-ジチアン、2,5-ビス(2,3-エピチオプロピルチオメチル)-2,5-ジメチル-1,4-ジチアン等の環状脂肪族の2,3-エピチオプロピルチオ化合物;及び、1,2-ビス(2,3-エピチオプロピルチオ)ベンゼン、1,3-ビス(2,3-エピチオプロピルチオ)ベンゼン、1,4-ビス(2,3-エピチオプロピルチオ)ベンゼン、1,2-ビス(2,3-エピチオプロピルチオメチル)ベンゼン、1,3-ビス(2,3-エピチオプロピルチオメチル)ベンゼン、1,4-ビス(2,3-エピチオプロピルチオメチル)ベンゼン、ビス{4-(2,3-エピチオプロピルチオ)フェニル}メタン、2,2-ビス{4-(2,3-エピチオプロピルチオ)フェニル}プロパン、ビス{4-(2,3-エピチオプロピルチオ)フェニル}スルフィド、ビス{4-(2,3-エピチオプロピルチオ)フェニル}スルフォン、4,4’-ビス(2,3-エピチオプロピルチオ)ビフェニル等の芳香族2,3-エピチオプロピルチオ化合物等;更に、3-メルカプトプロピレンスルフィド、4-メルカプトブテンスルフィド等のメルカプト基含有エピチオ化合物等が挙げられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。例示化合物のみに限定されるものではない。
(Epithio compound)
Examples of epithio compounds include bis(2,3-epithiopropyl) sulfide, bis(2,3-epithiopropyl) disulfide, bis(2,3-epithiopropylthio)methane, 1,2-bis( 2,3-epithiopropylthio)ethane, 1,2-bis(2,3-epithiopropylthio)propane, 1,3-bis(2,3-epithiopropylthio)propane, 1,3-bis (2,3-epithiopropylthio)-2-methylpropane, 1,4-bis(2,3-epithiopropylthio)butane, 1,4-bis(2,3-epithiopropylthio)-2 -methylbutane, 1,3-bis(2,3-epithiopropylthio)butane, 1,5-bis(2,3-epithiopropylthio)pentane, 1,5-bis(2,3-epithiopropyl) thio)-2-methylpentane, 1,5-bis(2,3-epithiopropylthio)-3-thiapentane, 1,6-bis(2,3-epithiopropylthio)hexane, 1,6-bis (2,3-epithiopropylthio)-2-methylhexane, 3,8-bis(2,3-epithiopropylthio)-3,6-dithiaoctane, 1,2,3-tris(2,3- epithiopropylthio)propane, 2,2-bis(2,3-epithiopropylthio)-1,3-bis(2,3-epithiopropylthiomethyl)propane, 2,2-bis(2,3 -epithiopropylthiomethyl)-1-(2,3-epithiopropylthio)butane, 1,5-bis(2,3-epithiopropylthio)-2-(2,3-epithiopropylthiomethyl) )-3-thiapentane, 1,5-bis(2,3-epithiopropylthio)-2,4-bis(2,3-epithiopropylthiomethyl)-3-thiapentane, 1-(2,3- epithiopropylthio)-2,2-bis(2,3-epithiopropylthiomethyl)-4-thiahexane, 1,5,6-tris(2,3-epithiopropylthio)-4-(2, 3-epithiopropylthiomethyl)-3-thiahexane, 1,8-bis(2,3-epithiopropylthio)-4-(2,3-epithiopropylthiomethyl)-3,6-dithiaoctane, 1 ,8-bis(2,3-epithiopropylthio)-4,5-bis(2,3-epithiopropylthiomethyl)-3,6-dithiaoctane, 1,8-bis(2,3-epithio propylthio)-4,4-bis(2,3-epithiopropylthiomethyl)-3,6-dithiaoctane, 1,8-bis(2,3-epithiopropylthio)-2,5-bis(2 ,3-epithiopropylthiomethyl)-3,6-dithiaoctane, 1,8-bis(2,3-epithiopropylthio)-2,4,5-tris(2,3-epithiopropylthiomethyl) -3,6-dithiaoctane, 1,1,1-tris[{2-(2,3-epithiopropylthio)ethyl}thiomethyl]-2-(2,3-epithiopropylthio)ethane, 1,1 , 2,2-tetrakis[{2-(2,3-epithiopropylthio)ethyl}thiomethyl]ethane, 1,11-bis(2,3-epithiopropylthio)-4,8-bis(2, 3-epithiopropylthiomethyl)-3,6,9-trithiaundecane, 1,11-bis(2,3-epithiopropylthio)-4,7-bis(2,3-epithiopropylthiomethyl) )-3,6,9-trithiaundecane, 1,11-bis(2,3-epithiopropylthio)-5,7-bis(2,3-epithiopropylthiomethyl)-3,6,9 - linear aliphatic 2,3-epithiopropylthio compounds such as trithiundecane; and 1,3-bis(2,3-epithiopropylthio)cyclohexane, 1,4-bis(2,3- epithiopropylthio)cyclohexane, 1,3-bis(2,3-epithiopropylthiomethyl)cyclohexane, 1,4-bis(2,3-epithiopropylthiomethyl)cyclohexane, 2,5-bis(2 ,3-epithiopropylthiomethyl)-1,4-dithiane, 2,5-bis[{2-(2,3-epithiopropylthio)ethyl}thiomethyl]-1,4-dithiane, 2,5- Cycloaliphatic 2,3-epithiopropylthio compounds such as bis(2,3-epithiopropylthiomethyl)-2,5-dimethyl-1,4-dithiane; and 1,2-bis(2, 3-epithiopropylthio)benzene, 1,3-bis(2,3-epithiopropylthio)benzene, 1,4-bis(2,3-epithiopropylthio)benzene, 1,2-bis(2 ,3-epithiopropylthiomethyl)benzene, 1,3-bis(2,3-epithiopropylthiomethyl)benzene, 1,4-bis(2,3-epithiopropylthiomethyl)benzene, bis{4 -(2,3-epithiopropylthio)phenyl}methane, 2,2-bis{4-(2,3-epithiopropylthio)phenyl}propane, bis{4-(2,3-epithiopropylthio) ) phenyl}sulfide, bis{4-(2,3-epithiopropylthio)phenyl}sulfone, 4,4'-bis(2,3-epithiopropylthio)biphenyl and other aromatic 2,3-epithio propylthio compounds; and mercapto group-containing epithio compounds such as 3-mercaptopropylene sulfide and 4-mercaptobutene sulfide. These may be used individually by 1 type, and may use 2 or more types together. It is not limited to only the exemplified compounds.

(チオール化合物)
チオール化合物としては、例えば、脂肪族チオール化合物、脂環族チオール化合物、芳香族チオール化合物、複素環含有チオール化合物等が挙げられる。より具体的には、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、(2-メルカプトエチル)スルフィド、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス(メルカプトメチルチオ)メタン、1,2-ビス[(2-メルカプトエチル)チオ]3-メルカプトプロパン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物等が挙げられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。例示化合物のみに限定されるものではない。
(thiol compound)
Examples of thiol compounds include aliphatic thiol compounds, alicyclic thiol compounds, aromatic thiol compounds, heterocyclic ring-containing thiol compounds, and the like. More specifically, methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis(2-mercaptoethyl)ether, tetrakis(mercaptomethyl)methane, ( 2-mercaptoethyl) sulfide, diethylene glycol bis(2-mercaptoacetate), diethylene glycol bis(3-mercaptopropionate), ethylene glycol bis(2-mercaptoacetate), ethylene glycol bis(3-mercaptopropionate), tri methylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate), trimethylolethane tris (2-mercaptoacetate), trimethylolethane tris (3-mercaptopropionate), pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis(3-mercaptopropionate), bis(mercaptomethyl)sulfide, bis(mercaptomethyl)disulfide, bis(mercaptoethyl)sulfide, bis(mercaptoethyl)disulfide, bis(mercapto) propyl) sulfide, bis(mercaptomethylthio)methane, bis(2-mercaptoethylthio)methane, bis(3-mercaptopropylthio)methane, 1,2-bis(mercaptomethylthio)ethane, 1,2-bis(2- mercaptoethylthio)ethane, 1,2-bis(3-mercaptopropylthio)ethane, 1,2,3-tris(mercaptomethylthio)propane, 1,2,3-tris(2-mercaptoethylthio)propane, 1 , 2,3-tris(3-mercaptopropylthio)propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6, 9-trithiundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9- trithiundecane, tetrakis(mercaptomethylthiomethyl)methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, bis(2,3-dimercaptopropyl)sulfide, 2,5- Dimercaptomethyl-1,4-dithiane, 2,5-dimercapto-1,4-dithiane, 2,5-dimercaptomethyl-2,5-dimethyl-1,4-dithiane, and their thioglycolic acid and mercapto Esters of propionic acid, hydroxymethylsulfide bis (2-mercaptoacetate), hydroxymethyl sulfide bis (3-mercaptopropionate), hydroxyethyl sulfide bis (2-mercaptoacetate), hydroxyethyl sulfide bis (3-mercaptopropionate) hydroxymethyl disulfide bis (2-mercaptoacetate), hydroxymethyl disulfide bis (3-mercaptopropionate), hydroxyethyl disulfide bis (2-mercaptoacetate), hydroxyethyl disulfide bis (3-mercaptopropionate), 2-mercaptoethyl ether bis (2-mercaptoacetate), 2-mercaptoethyl ether bis (3-mercaptopropionate), bis thiodiglycolate (2-mercaptoethyl ester), bis thiodipropionate (2-mercapto ethyl ester), bis(2-mercaptoethyl ester) dithiodiglycolate, bis(2-mercaptoethyl ester) dithiodipropionate, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,1,2 , 2-tetrakis(mercaptomethylthio)ethane, 4,6-bis(mercaptomethylthio)-1,3-dithiane, tris(mercaptomethylthio)methane, 1,2-bis[(2-mercaptoethyl)thio]3-mercapto Aliphatic polythiol compounds such as propane and tris(mercaptoethylthio)methane; 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-bis(mercaptomethyl)benzene , 1,3-bis(mercaptomethyl)benzene, 1,4-bis(mercaptomethyl)benzene, 1,2-bis(mercaptoethyl)benzene, 1,3-bis(mercaptoethyl)benzene, 1,4-bis (mercaptoethyl)benzene, 1,3,5-trimercaptobenzene, 1,3,5-tris(mercaptomethyl)benzene, 1,3,5-tris(mercaptomethyleneoxy)benzene, 1,3,5-tris aromatic polythiol compounds such as (mercaptoethyleneoxy)benzene, 2,5-toluenedithiol, 3,4-toluenedithiol, 1,5-naphthalenedithiol, 2,6-naphthalenedithiol; 2-methylamino-4,6- Dithiol-sym-triazine, 3,4-thiophenedithiol, bismuthiol, 4,6-bis(mercaptomethylthio)-1,3-dithiane, 2-(2,2-bis(mercaptomethylthio)ethyl)-1,3- Examples include heterocyclic polythiol compounds such as dithiethane. These may be used individually by 1 type, and may use 2 or more types together. It is not limited to only the exemplified compounds.

(有機無機複合材料)
本発明の有機無機複合材料は、前記硫黄系有機材料により表面修飾を施した無機材料と前記硬化性樹脂組成物とを接触もしくは混合させたものである。
本発明の有機無機複合材料は、前記硫黄系有機材料における親水性の部分構造が前記無機材料と接触し、前記硫黄系有機材料における親油性の部分構造が前記硬化性樹脂組成物と接触してなる態様が好ましい。
また、本発明の有機無機複合材料は、前記硬化性樹脂組成物が、下記一般式(2)~(9)で表される化合物からなる群より選択される少なくとも1種類を20質量%以上含む態様が好ましく、40質量%以上含む態様がより好ましい。
(Organic-inorganic composite materials)
The organic-inorganic composite material of the present invention is obtained by contacting or mixing the inorganic material surface-modified with the sulfur-based organic material and the curable resin composition.
In the organic-inorganic composite material of the present invention, the hydrophilic partial structure in the sulfur-based organic material is in contact with the inorganic material, and the lipophilic partial structure in the sulfur-based organic material is in contact with the curable resin composition. is preferred.
Further, in the organic-inorganic composite material of the present invention, the curable resin composition contains 20% by mass or more of at least one selected from the group consisting of compounds represented by the following general formulas (2) to (9). A mode is preferred, and a mode containing 40% by mass or more is more preferred.

Figure 0007263826000035
式(2)中、mは0~4の整数を表し、nは0~2の整数を表す。好ましくは、n=0、あるいは、m=0及びn=1を表す。
Figure 0007263826000036
式(3)中、pは2~4の整数を表し、Xp及びZpは、それぞれ独立して水素原子又はメチルチオール基を表す。
Figure 0007263826000037
式(4)中、nは1又は2の整数を表す。
Figure 0007263826000038
Figure 0007263826000039
式(6)中、Rは水素原子、又はメチル基を表し、pは1~2の整数を表す。
Figure 0007263826000040
式(7)中、Rは水素原子、又はメチル基を表し、pは1~2の整数を表す。好ましくは、pは1を表す。
Figure 0007263826000041
Figure 0007263826000042
式(9)中、p及びqは、それぞれ独立して1~3の整数を表し、好ましくはp=1及びq=1である。より好ましい化合物は、1,3-ビス(メルカプトメチル)ベンゼン、又は1,4-ビス(メルカプトメチル)ベンゼンである。
Figure 0007263826000035
In formula (2), m represents an integer of 0-4, and n represents an integer of 0-2. Preferably, n=0, or alternatively m=0 and n=1.
Figure 0007263826000036
In formula (3), p represents an integer of 2 to 4, and Xp and Zp each independently represent a hydrogen atom or a methylthiol group.
Figure 0007263826000037
In formula (4), n represents an integer of 1 or 2.
Figure 0007263826000038
Figure 0007263826000039
In formula (6), R represents a hydrogen atom or a methyl group, and p represents an integer of 1-2.
Figure 0007263826000040
In formula (7), R represents a hydrogen atom or a methyl group, and p represents an integer of 1-2. Preferably, p represents 1.
Figure 0007263826000041
Figure 0007263826000042
In formula (9), p and q each independently represent an integer of 1 to 3, preferably p=1 and q=1. More preferred compounds are 1,3-bis(mercaptomethyl)benzene or 1,4-bis(mercaptomethyl)benzene.

本発明の有機無機複合材料は、前記硬化性樹脂組成物の硬化後のd線屈折率が1.6以上であり、厚さ0.25mmの可視光領域の光透過率が80%以上であり、ヘーズ値が1.0%以下である態様が好ましい。
また、本発明の有機無機複合材料は、前記硬化性樹脂組成物が、光重合開始剤、光増感剤、又は熱硬化剤をさらに含む態様が好ましい。
更に、本発明の有機無機複合材料は、前記硬化性樹脂組成物と前記無機材料との静的接触角が30度以下であることが好ましく、10度以下であることがより好ましい。
The organic-inorganic composite material of the present invention has a d-line refractive index of 1.6 or more after curing of the curable resin composition, and a light transmittance of 80% or more in the visible light region with a thickness of 0.25 mm. , the haze value is preferably 1.0% or less.
In the organic-inorganic composite material of the present invention, the curable resin composition preferably further contains a photopolymerization initiator, a photosensitizer, or a thermosetting agent.
Furthermore, in the organic-inorganic composite material of the present invention, the static contact angle between the curable resin composition and the inorganic material is preferably 30 degrees or less, more preferably 10 degrees or less.

(硬化性樹脂組成物の塗布方法)
硬化性樹脂組成物を、本発明の硫黄系有機材料により表面修飾を施した無機材料に塗布する方法としては、一般によく知られた塗布方法、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法等が挙げられる。板状の無機材料に対しては、スピンコート法が好適である。
(Method for applying curable resin composition)
Methods for applying the curable resin composition to the inorganic material surface-modified with the sulfur-based organic material of the present invention include generally well-known coating methods such as dip coating, air knife coating, and curtain coating. method, wire bar coating method, gravure coating method, extrusion coating method, spin coating method, slit scan method and the like. A spin coating method is suitable for plate-like inorganic materials.

(膜厚)
硬化性樹脂組成物からなる層の膜厚は、使用する用途によって異なるが、0.05μm~30μmであるのが好ましい。
(film thickness)
Although the film thickness of the layer made of the curable resin composition varies depending on the intended use, it is preferably 0.05 μm to 30 μm.

(重合開始剤)
本発明で使用することができる重合開始剤としては、イオンを発生するアニオン重合開始剤やカチオン重合開始剤、加熱により重合開始ラジカルを発生する熱重合開始剤、紫外線の照射により重合開始ラジカルを発生する光重合開始剤などが挙げられる。これらの重合開始剤は、単独で用いても2種以上を併用してもよい。また、熱重合促進剤、光増感剤、光重合促進剤などをさらに添加することも好ましい。
(Polymerization initiator)
Polymerization initiators that can be used in the present invention include anionic polymerization initiators and cationic polymerization initiators that generate ions, thermal polymerization initiators that generate polymerization initiation radicals by heating, and polymerization initiation radicals that generate polymerization initiation radicals when irradiated with ultraviolet rays. and photopolymerization initiators. These polymerization initiators may be used alone or in combination of two or more. Moreover, it is also preferable to further add a thermal polymerization accelerator, a photosensitizer, a photopolymerization accelerator, and the like.

(有機無機複合材料の硬化物)
本発明の有機無機複合材料の硬化物は、上記の有機無機複合材料を熱または活性エネルギーにより硬化させて得られる。本発明では、特に、硬化性樹脂組成物中の上記一般式(2)~(9)で示される硬化性成分を架橋して、硬化させたものが好ましい。
(Hardened product of organic-inorganic composite material)
A cured product of the organic-inorganic composite material of the present invention is obtained by curing the above-described organic-inorganic composite material with heat or activation energy. In the present invention, it is particularly preferred that the curable components represented by the general formulas (2) to (9) in the curable resin composition are crosslinked and cured.

(インプリント成型硬化体の製造方法)
本発明は、光学素子、特に回折格子等の作製に利用されるインプリント材料への展開が可能である。インプリント成型硬化体の製造方法は、特に限定されないが、特開2012-214716号公報に記載された方法が挙げられる。具体的には、インプリント成型硬化体の製造方法は、下記工程(1)~(4):
(1)前記硬化性樹脂組成物を、硫黄系有機材料により表面修飾を施した無機材料に塗布する工程、
(2)前記無機材料上に塗布された硬化性樹脂組成物に、微細凹凸パターンを有するスタンパを圧接する工程、
(3)工程(2)の後、前記硬化性樹脂組成物を硬化させてインプリント成型硬化体を得る工程、及び、
(4)前記インプリント成型硬化体を前記スタンパから剥離する工程を含む。
(Manufacturing method of imprint-molded hardened body)
INDUSTRIAL APPLICABILITY The present invention can be applied to imprint materials used for manufacturing optical elements, particularly diffraction gratings and the like. The method for producing the imprint-molded cured body is not particularly limited, but examples thereof include the method described in JP-A-2012-214716. Specifically, the method for producing an imprint-molded cured body includes the following steps (1) to (4):
(1) applying the curable resin composition to an inorganic material surface-modified with a sulfur-based organic material;
(2) a step of pressing a stamper having a fine uneven pattern against the curable resin composition applied on the inorganic material;
(3) after step (2), a step of curing the curable resin composition to obtain an imprint-molded cured body;
(4) A step of peeling off the imprint-molded cured body from the stamper.

(金型)
金型は、転写されるべきパターンを有する金型が使われる。金型は、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じてパターンが形成されている。
(Mold)
A mold having a pattern to be transferred is used. A pattern is formed on the mold according to a desired processing accuracy by, for example, photolithography, electron beam lithography, or the like.

金型としては、光透過性金型及び非光透過性金型が好ましく挙げられる。光透過性金型は、ガラス、石英、PMMA(ポリメチルメタクリレート)、PET(ポリエチレンテレフタラート)、ポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が挙げられる。非光透過性金型は、例えば、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Fe、真鍮等の金属金型、SiC、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーン等の金型等が例示される。 Preferred examples of molds include light-transmitting molds and non-light-transmitting molds. Light-transmitting molds include glass, quartz, PMMA (polymethyl methacrylate), PET (polyethylene terephthalate), light-transparent resins such as polycarbonate resin, transparent metal deposition films, flexible films such as polydimethylsiloxane, and light-curing films. , a metal film, and the like. Non-light-transmitting molds include, for example, ceramic materials, vapor deposition films, magnetic films, reflective films, Ni, Cu, Cr, Fe, metal molds such as brass, SiC, silicone, silicone nitride, polysilicone, silicone oxide, A mold made of amorphous silicone or the like is exemplified.

金型の形状は板状金型、ロール状金型等のいずれでもよい。ロール状金型は、特に転写の連続生産性が必要な場合に適用される。 The shape of the mold may be either a plate-shaped mold, a roll-shaped mold, or the like. Roll-shaped molds are especially applied when continuous transfer productivity is required.

金型は、材料と金型との剥離性をより向上するために離型処理を行ったものを用いてもよい。このような離型処理を行うための離型剤は、シリコーン系やフッソ系などのシランカップリング剤、例えば、ダイキン工業製、オプツールDSX等の市販品が挙げられる。 The mold may be subjected to a release treatment in order to further improve the releasability between the material and the mold. Release agents for performing such a release treatment include silicone-based and fluorine-based silane coupling agents, for example, commercially available products such as OPTOOL DSX manufactured by Daikin Industries, Ltd.

以下、本発明を実施例に基づいて具体的に説明する。但し、本発明はこれらの実施例に限定されるものではない。なお、以下の記載における「部」は、特に断らない限り質量基準である。 EXAMPLES The present invention will be specifically described below based on examples. However, the present invention is not limited to these examples. In addition, "parts" in the following description are based on mass unless otherwise specified.

(硫黄系有機材料の合成)
(合成例1)
100mlバイアル瓶にチオール化合物である4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(GST)を97.3g仕込み、触媒としてトリフェニルホスフィンを0.12g添加した。室温で30分攪拌した後、アクリレート系シランカップリング剤(信越化学、型番KBM-5103)を25.0g添加した。更に、100℃で5日間攪拌した。反応終点は赤外吸収スペクトル(IR)分析により行い、KBM-5103の化学構造内にある1640cm-1付近のアルケンに起因する吸収の消失により確認した。反応後、生成物を含む混合液を中圧分取精製装置にて未反応のGSTを除去し、親水性構造と親油性構造を有する下記式(10)で表される化合物を得た。

Figure 0007263826000043
(Synthesis of sulfur-based organic material)
(Synthesis example 1)
A 100 ml vial was charged with 97.3 g of 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol (GST), which is a thiol compound, and 0.12 g of triphenylphosphine was added as a catalyst. After stirring for 30 minutes at room temperature, 25.0 g of an acrylate-based silane coupling agent (Shin-Etsu Chemical Co., model number KBM-5103) was added. Further, the mixture was stirred at 100°C for 5 days. The end point of the reaction was determined by infrared absorption spectroscopy (IR) analysis and confirmed by the disappearance of absorption due to the alkene near 1640 cm −1 in the chemical structure of KBM-5103. After the reaction, unreacted GST was removed from the mixture containing the product in a medium-pressure preparative purification apparatus to obtain a compound represented by the following formula (10) having a hydrophilic structure and a lipophilic structure.
Figure 0007263826000043

(合成例2)
100mlバイアル瓶にチオール化合物である2,2’-チオジエタンチオール(DMDS)を57.6g仕込み、触媒としてトリフェニルホスフィンを0.8g添加した。室温で30分攪拌した後、アクリレート系シランカップリング剤(信越化学、型番KBM-5103)を25.0g添加した。更に、100℃で5日間攪拌した。反応終点は赤外吸収スペクトル(IR)分析により行い、KBM-5103の化学構造内にある1640cm-1付近のアルケンに起因する吸収の消失により確認した。反応後、生成物を含む混合液を中圧分取精製装置にて未反応のDMDSを除去し、親水性構造と親油性構造を有する下記式(11)で表される化合物を得た。

Figure 0007263826000044
(Synthesis example 2)
A 100 ml vial bottle was charged with 57.6 g of 2,2'-thiodiethanethiol (DMDS), which is a thiol compound, and 0.8 g of triphenylphosphine was added as a catalyst. After stirring for 30 minutes at room temperature, 25.0 g of an acrylate-based silane coupling agent (Shin-Etsu Chemical Co., model number KBM-5103) was added. Further, the mixture was stirred at 100°C for 5 days. The end point of the reaction was determined by infrared absorption spectroscopy (IR) analysis and confirmed by the disappearance of absorption due to the alkene near 1640 cm −1 in the chemical structure of KBM-5103. After the reaction, unreacted DMDS was removed from the mixed liquid containing the product in a medium-pressure preparative purification apparatus to obtain a compound represented by the following formula (11) having a hydrophilic structure and a lipophilic structure.
Figure 0007263826000044

(合成例3)
100mlバイアル瓶にチオール化合物である4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(GST)を73.7g仕込み、触媒としてペンタメチルピペリジルメタクリレ-トを0.02g添加した。室温で30分攪拌した後、イソシアネート系シランカップリング剤(信越化学、型番KBE-9007N)を20.0g添加した。更に、100℃で3日間攪拌した。反応終点は赤外吸収スペクトル(IR)分析により行い、KBE-9007Nの化学構造内にある2260cm-1付近のイソシアネート基に起因する吸収の消失により確認した。反応後、生成物を含む混合液を中圧分取精製装置にて未反応のGSTを除去し、親水性構造と親油性構造を有する下記式(12)で表される化合物を得た。

Figure 0007263826000045
(Synthesis Example 3)
A 100 ml vial was charged with 73.7 g of 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol (GST), which is a thiol compound, and 0.02 g of pentamethylpiperidyl methacrylate was added as a catalyst. After stirring at room temperature for 30 minutes, 20.0 g of an isocyanate-based silane coupling agent (Shin-Etsu Chemical Co., model number KBE-9007N) was added. Further, the mixture was stirred at 100° C. for 3 days. The end point of the reaction was determined by infrared absorption spectroscopy (IR) analysis and confirmed by disappearance of absorption caused by the isocyanate group near 2260 cm −1 in the chemical structure of KBE-9007N. After the reaction, unreacted GST was removed from the mixture containing the product in a medium-pressure preparative purification apparatus to obtain a compound represented by the following formula (12) having a hydrophilic structure and a lipophilic structure.
Figure 0007263826000045

(合成例4)
100mlバイアル瓶にチオール化合物である2,2’-チオジエタンチオール(DMDS)を43.7g仕込み、触媒としてペンタメチルピペリジルメタクリレ-トを0.01g添加した。室温で30分攪拌した後、イソシアネート系シランカップリング剤(信越化学、型番KBE-9007N)を20.0g添加した。更に、100℃で3日間攪拌した。反応終点は赤外吸収スペクトル(IR)分析により行い、KBE-9007Nの化学構造内にある2260cm-1付近のイソシアネート基に起因する吸収の消失により確認した。反応後、生成物を含む混合液を中圧分取精製装置にて未反応のDMDSを除去し、親水性構造と親油性構造を有する下記式(13)で表される化合物を得た。

Figure 0007263826000046
(Synthesis Example 4)
43.7 g of 2,2′-thiodiethanethiol (DMDS), which is a thiol compound, was placed in a 100 ml vial, and 0.01 g of pentamethylpiperidyl methacrylate was added as a catalyst. After stirring at room temperature for 30 minutes, 20.0 g of an isocyanate-based silane coupling agent (Shin-Etsu Chemical Co., model number KBE-9007N) was added. Further, the mixture was stirred at 100° C. for 3 days. The end point of the reaction was determined by infrared absorption spectroscopy (IR) analysis and confirmed by disappearance of absorption caused by the isocyanate group near 2260 cm −1 in the chemical structure of KBE-9007N. After the reaction, unreacted DMDS was removed from the mixed liquid containing the product in a medium-pressure preparative purification apparatus to obtain a compound represented by the following formula (13) having a hydrophilic structure and a lipophilic structure.
Figure 0007263826000046

(合成例5)
100ml丸底フラスコにチオ尿素3.04gを仕込み、エタノール30mlを加えた。3-グリシドキシプロピルエトキシシラン5.56gを30mlのアセトンで希釈し、無水酢酸1.32gを加え、丸底フラスコ内に滴下し、6時間室温で攪拌した。反応終点は赤外吸収スペクトル(IR)分析により行い、3-グリシドキシプロピルエトキシシランの化学構造内にある850cm-1付近のエポキシ基に起因する吸収の消失により確認し、617cm-1付近のエピスルフィド環に起因する吸収の出現を確認した。得られた白色固体沈殿物について、エバポレータにより溶媒を留去した。その後、白色固体と液体の混合物を濾過し、親水性構造と親油性構造を有する透明液体の下記式(14)で表される化合物を得た。

Figure 0007263826000047
(Synthesis Example 5)
A 100 ml round bottom flask was charged with 3.04 g of thiourea and 30 ml of ethanol was added. 5.56 g of 3-glycidoxypropylethoxysilane was diluted with 30 ml of acetone, 1.32 g of acetic anhydride was added, dropped into a round bottom flask, and stirred at room temperature for 6 hours. The end point of the reaction was determined by infrared absorption spectrum (IR) analysis, confirmed by the disappearance of absorption caused by the epoxy group in the chemical structure of 3-glycidoxypropylethoxysilane near 850 cm −1 , and confirmed by disappearance of absorption around 617 cm −1 The appearance of absorption due to the episulfide ring was confirmed. The solvent was removed from the obtained white solid precipitate by an evaporator. Thereafter, a mixture of white solid and liquid was filtered to obtain a compound represented by the following formula (14) as a transparent liquid having a hydrophilic structure and a lipophilic structure.
Figure 0007263826000047

(表面修飾液の調製と表面処理方法)
イソプロピルアルコールと純水を質量比90:10の割合で混合した混合液100.0部に対し、1.0部の表面修飾剤(それぞれ合成例1~5で合成した硫黄系有機材料)を添加した。さらに混合液100.0部に対し1.0質量部の酢酸を添加した。室温下で30分間十分に攪拌し、表面修飾剤の加水分解を進行させ表面修飾液を用意した。無機材料に表面修飾を施すには、例えば板状のガラス基板の場合、表面修飾液に10分間浸漬させ、イソプロピルアルコールで洗浄した後、風乾した。
(Preparation of surface modification liquid and surface treatment method)
To 100.0 parts of a mixture of isopropyl alcohol and pure water at a mass ratio of 90:10, 1.0 part of a surface modifier (each of the sulfur-based organic materials synthesized in Synthesis Examples 1 to 5) is added. bottom. Furthermore, 1.0 part by mass of acetic acid was added to 100.0 parts of the mixture. The mixture was sufficiently stirred at room temperature for 30 minutes to allow hydrolysis of the surface modifier to proceed, thereby preparing a surface modification liquid. For surface modification of an inorganic material, for example, in the case of a plate-like glass substrate, the substrate was immersed in a surface modification liquid for 10 minutes, washed with isopropyl alcohol, and then air-dried.

(チオール-エン構造を有する硬化性樹脂組成物の調製と該硬化物の光学物性)
300mlフラスコに、2,4-ビス(メルカプトメチル)-1,5-ジメルカプト-3-チアペンタン53.0部、シアヌル酸トリアリル47.0部、および光重合開始剤として1-ヒドロキシ-シクロヘキシルフェニルケトン3.0部を混合し、均一になるまで撹拌し、チオール-エン構造を有する硬化性樹脂組成物(以下、「チオール-エン組成物」と呼ぶ)を調製した。
光学物性の測定用試料として、前記調製した硬化性樹脂組成物を離型処理した板状ガラス(松浪硝子工業、型番S9213)で厚み0.25mmスペーサと共に挟み、UV照射装置(Iwasaki, 型番LHPUV365/2501-00)にて30cm離れた距離から3分間照射し、硬化した膜(硬化物)をガラス板から剥がし用意した。屈折率測定には、多波長アッベ屈折率計(アタゴ、DR-M4)を用いた。硬化物の屈折率は1.62であった。透過率測定には、紫外可視分光光度計(日本分光、V-630)を用いた。可視光領域の透過率は80%以上であった。ヘーズ値の測定には、分光測色計(コニカミノルタ、CM-5)を用いた。ヘーズ値は1.0%以下であった。
なお、離形処理した板状ガラスは、板状ガラスをフッ素系離形処理剤(ダイキン、型番オプツールDSX)と希釈液(3M、型番NOVEC7100)を処理剤:希釈液=1:200で調製した混合液に24時間浸漬させた後、希釈液で洗浄し風乾させ用意した。
(Preparation of a curable resin composition having a thiol-ene structure and optical properties of the cured product)
Into a 300 ml flask are added 53.0 parts of 2,4-bis(mercaptomethyl)-1,5-dimercapto-3-thiapentane, 47.0 parts of triallyl cyanurate, and 1-hydroxy-cyclohexylphenyl ketone 3 as a photoinitiator. 0 parts were mixed and stirred until uniform to prepare a curable resin composition having a thiol-ene structure (hereinafter referred to as "thiol-ene composition").
As a sample for measuring optical properties, the prepared curable resin composition was sandwiched between release-treated plate glass (Matsunami Glass Industry, model number S9213) together with a spacer with a thickness of 0.25 mm, and a UV irradiation device (Iwasaki, model number LHPUV365/ 2501-00) from a distance of 30 cm for 3 minutes, and the cured film (cured product) was peeled off from the glass plate and prepared. A multi-wavelength Abbe refractometer (Atago, DR-M4) was used for refractive index measurement. The refractive index of the cured product was 1.62. A UV-visible spectrophotometer (JASCO Corporation, V-630) was used for transmittance measurement. The transmittance in the visible light region was 80% or more. A spectrophotometer (Konica Minolta, CM-5) was used to measure the haze value. The haze value was 1.0% or less.
The release-treated plate glass was prepared by adding a fluorine-based release agent (Daikin, model number OPTOOL DSX) and a diluent (3M, model number NOVEC7100) at a ratio of 1:200 to the diluent. After being immersed in the mixed liquid for 24 hours, it was washed with a diluent and air-dried to prepare.

(エピスルフィド構造を有する硬化性樹脂組成物の調製と該硬化物の光学物性)
下記式(15)で示されるエピスルフィド化合物(EPS)を用いた。

Figure 0007263826000048
EPS100.0部に対して、熱硬化剤としてテトラn-ブチルホスホニウムブロマイド0.1部を添加し、均一になるまで撹拌し、エピスルフィド構造を有する硬化性樹脂組成物(以下、「エピスルフィド組成物」と呼ぶ)を調製した。
光学物性の測定用試料として、前記調製した硬化性樹脂組成物を離型処理した板状ガラス(松浪硝子工業、型番S9213)で厚み0.25mmスペーサと共に挟み、その後乾燥機で100℃30分加熱硬化させた。硬化した膜(硬化物)をガラス板から剥がし用意した。屈折率測定には、多波長アッベ屈折率計(アタゴ、DR-M4)を用いた。硬化物の屈折率は1.71であった。透過率測定には、紫外可視分光光度計(日本分光、V-630)を用いた。可視光領域の透過率は80%以上であった。ヘーズ値の測定には、分光測色計(コニカミノルタ、CM-5)を用いた。ヘーズ値は1.0%以下であった。
なお、離形処理した板状ガラスは、前記処理方法にて同様に用意した。 (Preparation of a curable resin composition having an episulfide structure and optical properties of the cured product)
An episulfide compound (EPS) represented by the following formula (15) was used.
Figure 0007263826000048
To 100.0 parts of EPS, 0.1 part of tetra-n-butylphosphonium bromide was added as a thermosetting agent and stirred until uniform to obtain a curable resin composition having an episulfide structure (hereinafter, “episulfide composition” ) was prepared.
As a sample for measuring optical properties, the curable resin composition prepared above was sandwiched between release-treated plate glass (Matsunami Glass Industry, model number S9213) together with a spacer with a thickness of 0.25 mm, and then heated at 100 ° C. for 30 minutes in a dryer. Hardened. A cured film (cured product) was peeled off from the glass plate and prepared. A multi-wavelength Abbe refractometer (Atago, DR-M4) was used for refractive index measurement. The refractive index of the cured product was 1.71. A UV-visible spectrophotometer (JASCO Corporation, V-630) was used for transmittance measurement. The transmittance in the visible light region was 80% or more. A spectrophotometer (Konica Minolta, CM-5) was used to measure the haze value. The haze value was 1.0% or less.
In addition, the sheet glass subjected to the release treatment was prepared in the same manner as described above.

(濡れ性評価の方法)
無機材料の基材として板状ガラス(松浪硝子工業、型番S9112)を用意し、前記表面処理方法にて表面を修飾した。濡れ性を評価するために、修飾した板状ガラスに硬化性樹脂組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。静的接触角が30度以下のものを「○」、30度を超えるものを「×」とした。
次に、同板状ガラスをスピンコータ―(MIKASA, 型番MS-A150)に設置し、硬化性樹脂組成物をガラス表面に1.5ml滴下後、回転数1500rpmで30秒間コートした。濡れ性を評価するために、コート後、成膜ができたか否かを目視にて判断した。成膜できたものを「○」、成膜できなかったものを「×」とした。
(Wettability evaluation method)
A sheet glass (Matsunami Glass Industry, Model No. S9112) was prepared as a base material for the inorganic material, and the surface was modified by the surface treatment method. In order to evaluate the wettability, the curable resin composition was dropped onto the modified sheet glass, and the static contact angle was measured (Kyowa Interface Science, Model No. Drop Master 500). A static contact angle of 30 degrees or less was evaluated as "○", and a static contact angle of more than 30 degrees was evaluated as "X".
Next, the sheet glass was placed on a spin coater (MIKASA, Model No. MS-A150), and after dropping 1.5 ml of a curable resin composition onto the surface of the glass, the surface was coated at a rotation speed of 1500 rpm for 30 seconds. In order to evaluate wettability, it was visually judged whether or not a film was formed after coating. A case where a film was formed was indicated as "○", and a case where a film could not be formed was indicated as "x".

(有機無機複合材料の剥がれ評価の方法)
成膜できたものに、表面未処理な同板状ガラスをコート面に被せ、更に、光硬化、又は熱硬化により硬化させた。複合材料としての密着性を評価するため、硬化後に、ガラス同士を剥がし、表面修飾剤にて修飾したガラスから硬化物が剥がれなかったものを「○」、剥がれたものを「×」とした。
(Method for evaluating peeling of organic-inorganic composite material)
The coated surface of the film-formed film was covered with the same plate-like glass having an untreated surface, and was further cured by photo-curing or heat-curing. In order to evaluate the adhesion as a composite material, after curing, the glass was peeled off, and the cured product was not peeled off from the glass modified with the surface modifier, and the cured product was peeled off.

(実施例1~5)
合成例1~5で合成した硫黄系有機材料をそれぞれ含む表面修飾液に板状ガラス(松浪硝子工業、型番S9112)を室温で10分間浸漬させた。板状ガラスを各表面修飾液からそれぞれ取り出した後、イソプロピルアルコールで洗浄し、風乾した。修飾した各板状ガラスに前記チオール-エン組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。接触角はいずれも30度以下であった。
次に、表面修飾した各板状ガラスをスピンコーター(MIKASA, 型番MS-A150)の台座に設置し、前記チオール-エン組成物をガラス表面に2.0ml滴下後、回転数1500rpmで30秒間コートした。コート後、いずれの表面修飾した板状ガラスもチオール-エン組成物に覆われ成膜できたことを目視で確認した。
さらに、前記チオール-エン組成物が成膜された各板状ガラスに、表面未処理な板状ガラス(松浪硝子工業、型番S9112)をコート面に被せ、3分間光硬化させた(Iwasaki, 型番LHPUV365/2501-00)。硬化後に、ガラス同士を剥がすと、表面修飾剤にて修飾したガラスからは、いずれも硬化物は剥がれなかった。結果を表1に示す。
(Examples 1 to 5)
A plate glass (Matsunami Glass Industry, model number S9112) was immersed at room temperature for 10 minutes in the surface modification liquid containing each of the sulfur-based organic materials synthesized in Synthesis Examples 1 to 5. The sheet glass was taken out from each surface modification liquid, washed with isopropyl alcohol, and air-dried. The thiol-ene composition was dropped onto each modified sheet glass, and the static contact angle was measured (Kyowa Interface Science, Model No. Drop Master 500). All contact angles were 30 degrees or less.
Next, each surface-modified sheet glass was placed on the pedestal of a spin coater (MIKASA, model number MS-A150), and after dropping 2.0 ml of the thiol-ene composition onto the glass surface, coating was performed at a rotation speed of 1500 rpm for 30 seconds. bottom. After coating, it was visually confirmed that all the surface-modified glass sheets were covered with the thiol-ene composition and that the film had been formed.
Furthermore, each plate glass on which the thiol-ene composition was formed was covered with a surface-untreated plate glass (Matsunami Glass Industry, model number S9112), and the coated surface was light-cured for 3 minutes (Iwasaki, model number LHPUV365/2501-00). When the glasses were separated from each other after curing, the cured product was not separated from any of the glasses modified with the surface modifier. Table 1 shows the results.

(実施例6~10)
合成例1~5で合成した硫黄系有機材料をそれぞれ含む表面修飾液に板状ガラス(松浪硝子工業、型番S9112)を室温で10分間浸漬させた。板状ガラスを各表面修飾液からそれぞれ取り出した後、イソプロピルアルコールで洗浄し、風乾した。修飾した各板状ガラスに前記エピスルフィド組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。接触角はいずれも30度以下であった。
次に、表面修飾した各板状ガラスをスピンコーター(MIKASA, 型番MS-A150)の台座に設置し、前記エピスルフィド組成物をガラス表面に2.0ml滴下後、回転数1500rpmで30秒間コートした。コート後、いずれの表面修飾した板状ガラスもエピスルフィド組成物に覆われ成膜できたことを目視で確認した。
さらに、前記エピスルフィド組成物が成膜された各板状ガラスに、表面未処理な板状ガラス(松浪硝子工業、型番S9112)をコート面に被せ、乾燥機で100℃30分加熱硬化させた。硬化後に、ガラス同士を剥がすと、表面修飾剤にて修飾したガラスからは、いずれも硬化物は剥がれなかった。結果を表1に示す。
(Examples 6 to 10)
A plate glass (Matsunami Glass Industry, model number S9112) was immersed at room temperature for 10 minutes in the surface modification liquid containing each of the sulfur-based organic materials synthesized in Synthesis Examples 1 to 5. The sheet glass was taken out from each surface modification liquid, washed with isopropyl alcohol, and air-dried. The episulfide composition was dropped onto each modified sheet glass, and the static contact angle was measured (Kyowa Interface Science, Model No. Drop Master 500). All contact angles were 30 degrees or less.
Next, each surface-modified sheet glass was placed on a pedestal of a spin coater (MIKASA, Model No. MS-A150), and after dropping 2.0 ml of the episulfide composition onto the glass surface, the surface was coated at a rotation speed of 1500 rpm for 30 seconds. After the coating, it was visually confirmed that all the surface-modified sheet glasses were covered with the episulfide composition and that a film had been formed.
Further, each plate glass on which the episulfide composition was formed was covered with a surface-untreated plate glass (Matsunami Glass Industry, Model No. S9112) and cured by heating at 100° C. for 30 minutes in a dryer. When the glasses were separated from each other after curing, the cured product was not separated from any of the glasses modified with the surface modifier. Table 1 shows the results.

(比較例1)
表面未処理な板状ガラス(松浪硝子工業、型番S9112)に前記チオール-エン組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。接触角は30度以下であった。
次に、同板状ガラスをスピンコーター(MIKASA, 型番MS-A150)の台座に設置し、前記チオール-エン組成物をガラス表面に2.0ml滴下後、回転数1500rpmで30秒間コートした。コート後、表面未処理な板状ガラスはチオール-エン組成物に覆われ成膜できたことを目視で確認した。
さらに、前記チオール-エン組成物が成膜された板状ガラスに、表面未処理な板状ガラス(松浪硝子工業、型番S9112)をコート面に被せ、3分間光硬化させた(Iwasaki, 型番LHPUV365/2501-00)。硬化後に、ガラス同士を剥がすと、ガラスからは、硬化物が一部剥がれていた。結果を表1に示す。
(Comparative example 1)
The thiol-ene composition was dropped on a surface-untreated sheet glass (Matsunami Glass Industry, model number S9112), and the static contact angle was measured (Kyowa Interface Science, model number Drop Master 500). The contact angle was 30 degrees or less.
Next, the plate glass was placed on the pedestal of a spin coater (MIKASA, model number MS-A150), and after dropping 2.0 ml of the thiol-ene composition onto the glass surface, the glass surface was coated at a rotation speed of 1500 rpm for 30 seconds. After coating, it was visually confirmed that the surface-untreated sheet glass was covered with the thiol-ene composition and that the film had been formed.
Furthermore, the plate glass on which the thiol-ene composition was formed was covered with a surface-untreated plate glass (Matsunami Glass Industry, model number S9112), and the coated surface was light-cured for 3 minutes (Iwasaki, model number LHPUV365). /2501-00). When the glasses were separated after curing, a part of the cured product was peeled off from the glass. Table 1 shows the results.

(比較例2)
シランカップリング剤(信越化学、型番KBM-5103)を含む表面修飾液に板状ガラス(松浪硝子工業、型番S9112)を室温で10分間浸漬させた。板状ガラスを該表面修飾液から取り出した後、イソプロピルアルコールで洗浄し、風乾した。表面修飾した板状ガラスに前記チオール-エン組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。接触角は30度以下であった。
次に、同板状ガラスをスピンコーター(MIKASA, 型番MS-A150)の台座に設置し、前記チオール-エン組成物をガラス表面に2.0ml滴下後、回転数1500rpmで30秒間コートした。コート後、表面修飾した板状ガラスはチオール-エン組成物に覆われ成膜できたことを目視で確認した。
さらに、前記チオール-エン組成物が成膜された板状ガラスに、表面未処理な板状ガラス(松浪硝子工業、型番S9112)をコート面に被せ、3分間光硬化させた(Iwasaki, 型番LHPUV365/2501-00)。硬化後に、ガラス同士を剥がすと、ガラスからは、硬化物が一部剥がれていた。結果を表1に示す。
(Comparative example 2)
A sheet glass (Matsunami Glass Industry, model number S9112) was immersed in a surface modification liquid containing a silane coupling agent (Shin-Etsu Chemical, model number KBM-5103) at room temperature for 10 minutes. After the sheet glass was removed from the surface modification liquid, it was washed with isopropyl alcohol and air-dried. The thiol-ene composition was dropped onto the surface-modified sheet glass, and the static contact angle was measured (Kyowa Interface Science, Model No. Drop Master 500). The contact angle was 30 degrees or less.
Next, the plate glass was placed on the pedestal of a spin coater (MIKASA, model number MS-A150), and after dropping 2.0 ml of the thiol-ene composition onto the glass surface, the glass surface was coated at a rotation speed of 1500 rpm for 30 seconds. After coating, it was visually confirmed that the surface-modified sheet glass was covered with the thiol-ene composition and that the film had been formed.
Furthermore, the plate glass on which the thiol-ene composition was formed was covered with a surface-untreated plate glass (Matsunami Glass Industry, model number S9112), and the coated surface was light-cured for 3 minutes (Iwasaki, model number LHPUV365). /2501-00). When the glasses were separated after curing, a part of the cured product was peeled off from the glass. Table 1 shows the results.

(比較例3)
表面未処理な板状ガラス(松浪硝子工業、型番S9112)に前記エピスルフィド組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。接触角は30度を超えていた。
次に、同板状ガラスをスピンコーター(MIKASA, 型番MS-A150)の台座に設置し、前記エピスルフィド組成物をガラス表面に2.0ml滴下後、回転数1500rpmで30秒間コートした。コート後、エピスルフィド組成物は板状ガラス表面からはじかれ、成膜できなかった。結果を表1に示す。
(Comparative Example 3)
The episulfide composition was dropped onto a surface-untreated plate glass (Matsunami Glass Industry, model number S9112), and the static contact angle was measured (Kyowa Interface Science, model number Drop Master 500). The contact angle exceeded 30 degrees.
Next, the plate glass was placed on the pedestal of a spin coater (MIKASA, Model No. MS-A150), and after dropping 2.0 ml of the episulfide composition onto the glass surface, the glass surface was coated at a rotation speed of 1500 rpm for 30 seconds. After coating, the episulfide composition was repelled from the sheet glass surface and could not form a film. Table 1 shows the results.

(比較例4)
シランカップリング剤(信越化学、型番KBM-5103)を含む表面修飾液に板状ガラス(松浪硝子工業、型番S9112)を室温で10分間浸漬させた。板状ガラスを該表面修飾液から取り出した後、イソプロピルアルコールで洗浄し、風乾した。表面修飾した板状ガラスに前記エピスルフィド組成物を滴下し、静的接触角を測定した(協和界面科学、型番Drop Master 500)。接触角は30度を超えていた。
次に、同板状ガラスをスピンコーター(MIKASA, 型番MS-A150)の台座に設置し、前記エピスルフィド組成物をガラス表面に2.0ml滴下後、回転数1500rpmで30秒間コートした。コート後、エピスルフィド組成物は板状ガラス表面からはじかれ、成膜できなかった。結果を表1に示す。
(Comparative Example 4)
A sheet glass (Matsunami Glass Industry, model number S9112) was immersed in a surface modification liquid containing a silane coupling agent (Shin-Etsu Chemical, model number KBM-5103) at room temperature for 10 minutes. After the sheet glass was removed from the surface modification liquid, it was washed with isopropyl alcohol and air-dried. The episulfide composition was dropped onto the surface-modified sheet glass, and the static contact angle was measured (Kyowa Interface Science, Model No. Drop Master 500). The contact angle exceeded 30 degrees.
Next, the plate glass was placed on the pedestal of a spin coater (MIKASA, Model No. MS-A150), and after dropping 2.0 ml of the episulfide composition onto the glass surface, the glass surface was coated at a rotation speed of 1500 rpm for 30 seconds. After coating, the episulfide composition was repelled from the sheet glass surface and could not form a film. Table 1 shows the results.

表1より、硫黄系有機材料、該硫黄系有機材料により表面修飾を施した無機材料、該無機材料と硬化性樹脂組成物とを接触もしくは混合させた有機無機複合材料、及び該有機無機複合材料の硬化物は、光学材料として優れ、回折格子、光導波路、光ファイバー、レンズ等の光学素子に有用である。 From Table 1, a sulfur-based organic material, an inorganic material surface-modified with the sulfur-based organic material, an organic-inorganic composite material obtained by contacting or mixing the inorganic material with a curable resin composition, and the organic-inorganic composite material The cured product of is excellent as an optical material and is useful for optical elements such as diffraction gratings, optical waveguides, optical fibers and lenses.

Figure 0007263826000049
Figure 0007263826000049

Claims (8)

下記一般式(1)で表される硫黄系有機材料により表面修飾を施した板状ガラス
K-N-M 式(1)
(式中、Kは、下記一般式(k2)で表される基からなる群より選択される親水性の部分構造を1以上含み、Mは、下記一般式(m1)、(m6)、及び(m7)で表される硫黄原子を含む基からなる群より選択される親油性の部分構造を1以上含み、Nで表される二価の連結基は、下記構造式(n1)~(n3)で表される基からなる群より選択される1以上を含む。)
Figure 0007263826000050
(式中、各Rは、それぞれ独立して、水素原子、メチル基、又はエチル基を表す。)
Figure 0007263826000051
(式中、pは2~4の整数を表し、Xp及びZpは、それぞれ独立して、水素原子又はメチルチオール基を表す。)
Figure 0007263826000052
(式中、nは1又は2の整数を表す。)
Figure 0007263826000053
(式中、nは1~8の整数を表す。)
Figure 0007263826000054
(式中、Xは、酸素原子を表し、mは0~7の整数を表し、nは0~7の整数を表す。)
Figure 0007263826000055
(式中、Rは水素原子、又はメチル基を表し、nは1~3の整数を表す。)
Figure 0007263826000056
(式中、nは1~3の整数を表す。)
Sheet glass surface-modified with a sulfur-based organic material represented by the following general formula (1).
KNM Formula (1)
(Wherein, K contains one or more hydrophilic partial structures selected from the group consisting of groups represented by the following general formula (k2), and M is the following general formulas (m1) , (m6), and (m7) containing one or more lipophilic partial structures selected from the group consisting of sulfur atom-containing groups, and the divalent linking group represented by N has the following structural formulas (n1) to ( Including one or more selected from the group consisting of groups represented by n3) .)
Figure 0007263826000050
(In the formula, each R independently represents a hydrogen atom, a methyl group, or an ethyl group.)
Figure 0007263826000051
(Wherein, p represents an integer of 2 to 4, and Xp and Zp each independently represent a hydrogen atom or a methylthiol group.)
Figure 0007263826000052
(In the formula, n represents an integer of 1 or 2.)
Figure 0007263826000053
(In the formula, n represents an integer of 1 to 8.)
Figure 0007263826000054
(Wherein, X represents an oxygen atom, m represents an integer of 0 to 7, and n represents an integer of 0 to 7.)
Figure 0007263826000055
(Wherein, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 3.)
Figure 0007263826000056
(In the formula, n represents an integer of 1 to 3.)
請求項に記載の板状ガラスと硬化性樹脂組成物とを接触もしくは混合させた有機無機複合材料。 An organic-inorganic composite material obtained by contacting or mixing the sheet glass according to claim 1 with a curable resin composition. 前記硫黄系有機材料における親水性の部分構造が前記板状ガラスと接触し、前記硫黄系有機材料における親油性の部分構造が前記硬化性樹脂組成物と接触してなる、請求項に記載の有機無機複合材料。 3. The method according to claim 2 , wherein a hydrophilic partial structure in said sulfur-based organic material is in contact with said sheet glass , and a lipophilic partial structure in said sulfur-based organic material is in contact with said curable resin composition. Organic-inorganic composites. 前記硬化性樹脂組成物が、下記一般式(2)~(9)で表される化合物からなる群より選択される少なくとも1種類を20質量%以上含む、請求項又はに記載の有機無機複合材料。
Figure 0007263826000057
(式中、mは0~4の整数を表し、nは0~2の整数を表す。)
Figure 0007263826000058
(式中、pは2~4の整数を表し、Xp及びZpは、それぞれ独立して水素原子又はメチルチオール基を表す。)
Figure 0007263826000059
(式中、nは1又は2の整数を表す。)
Figure 0007263826000060
Figure 0007263826000061
(式中、Rは水素原子、又はメチル基を表し、pは1~2の整数を表す。)
Figure 0007263826000062
(式中、Rは水素原子、又はメチル基を表し、pは1~2の整数を表す。)
Figure 0007263826000063
Figure 0007263826000064
(式中、p及びqは、それぞれ独立して1~3の整数を表す。)
The organic and inorganic according to claim 2 or 3, wherein the curable resin composition contains 20% by mass or more of at least one selected from the group consisting of compounds represented by the following general formulas (2) to ( 9 ) Composite material.
Figure 0007263826000057
(Wherein, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
Figure 0007263826000058
(Wherein, p represents an integer of 2 to 4, and Xp and Zp each independently represent a hydrogen atom or a methylthiol group.)
Figure 0007263826000059
(In the formula, n represents an integer of 1 or 2.)
Figure 0007263826000060
Figure 0007263826000061
(Wherein, R represents a hydrogen atom or a methyl group, and p represents an integer of 1 to 2.)
Figure 0007263826000062
(Wherein, R represents a hydrogen atom or a methyl group, and p represents an integer of 1 to 2.)
Figure 0007263826000063
Figure 0007263826000064
(Wherein, p and q each independently represents an integer of 1 to 3.)
前記硬化性樹脂組成物の硬化後のd線屈折率が1.6以上であり、厚さ0.25mmの可視光領域の光透過率が80%以上であり、ヘーズ値が1.0%以下である、請求項からのいずれかに記載の有機無機複合材料。 The curable resin composition after curing has a d-line refractive index of 1.6 or more, a light transmittance of 80% or more in the visible light region with a thickness of 0.25 mm, and a haze value of 1.0% or less. The organic-inorganic composite material according to any one of claims 2 to 4 , wherein 前記硬化性樹脂組成物が、光重合開始剤、光増感剤、又は熱硬化剤をさらに含む、請求項からのいずれかに記載の有機無機複合材料。 The organic-inorganic composite material according to any one of claims 2 to 5 , wherein the curable resin composition further contains a photopolymerization initiator, a photosensitizer, or a thermosetting agent. 前記硬化性樹脂組成物と前記板状ガラスとの静的接触角が30度以下である、請求項からのいずれかに記載の有機無機複合材料。 The organic-inorganic composite material according to any one of claims 2 to 6 , wherein a static contact angle between said curable resin composition and said sheet glass is 30 degrees or less. 請求項からのいずれかに記載の有機無機複合材料を熱または活性エネルギー線により硬化させた、有機無機複合材料の硬化物。 A cured product of an organic-inorganic composite material obtained by curing the organic-inorganic composite material according to any one of claims 2 to 7 with heat or active energy rays.
JP2019029300A 2019-02-21 2019-02-21 Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material Active JP7263826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029300A JP7263826B2 (en) 2019-02-21 2019-02-21 Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029300A JP7263826B2 (en) 2019-02-21 2019-02-21 Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material

Publications (2)

Publication Number Publication Date
JP2020132772A JP2020132772A (en) 2020-08-31
JP7263826B2 true JP7263826B2 (en) 2023-04-25

Family

ID=72277701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029300A Active JP7263826B2 (en) 2019-02-21 2019-02-21 Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material

Country Status (1)

Country Link
JP (1) JP7263826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112300098B (en) * 2020-10-29 2023-01-31 杭州光粒科技有限公司 Photopolymer composition, episulfide/epoxy writing monomer and grating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098991A1 (en) 2001-06-01 2002-12-12 The Lubrizol Corporation Substrates with modified carbon surfaces
WO2006068516A1 (en) 2004-12-20 2006-06-29 Protemix Corporation Limited Implantable medical devices coated with or containing copper chelating compounds
WO2009109457A2 (en) 2008-02-29 2009-09-11 L'oreal Composition for dyeing keratin fibres comprising at least one direct dye comprising a disulphide/protected-thiol function and at least one siliceous compound comprising a thiol function and method using the composition
JP2010111747A (en) 2008-11-05 2010-05-20 Shin-Etsu Chemical Co Ltd Underfill agent composition
JP2016060836A (en) 2014-09-18 2016-04-25 東洋ゴム工業株式会社 Silane compound and rubber composition prepared therewith
WO2016098789A1 (en) 2014-12-17 2016-06-23 株式会社Jcu Cyanogen-free gold electroplating liquid and gold electroplating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140830A (en) * 1977-06-28 1979-02-20 Union Carbide Corporation Polymer composite articles containing episulfide substituted organosilicon coupling agents
IT1157929B (en) * 1982-02-12 1987-02-18 Farmatis Srl PROPIONYLGLYCIN DERIVATIVES, PROCESSES FOR ITS PREPARATION AND THERAPEUTIC COMPOSITIONS THAT CONTAIN IT AS AN ACTIVE PRINCIPLE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098991A1 (en) 2001-06-01 2002-12-12 The Lubrizol Corporation Substrates with modified carbon surfaces
WO2006068516A1 (en) 2004-12-20 2006-06-29 Protemix Corporation Limited Implantable medical devices coated with or containing copper chelating compounds
WO2009109457A2 (en) 2008-02-29 2009-09-11 L'oreal Composition for dyeing keratin fibres comprising at least one direct dye comprising a disulphide/protected-thiol function and at least one siliceous compound comprising a thiol function and method using the composition
JP2010111747A (en) 2008-11-05 2010-05-20 Shin-Etsu Chemical Co Ltd Underfill agent composition
JP2016060836A (en) 2014-09-18 2016-04-25 東洋ゴム工業株式会社 Silane compound and rubber composition prepared therewith
WO2016098789A1 (en) 2014-12-17 2016-06-23 株式会社Jcu Cyanogen-free gold electroplating liquid and gold electroplating method

Also Published As

Publication number Publication date
JP2020132772A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
KR102522740B1 (en) Composition for optical material and optical material using the same
TWI761449B (en) Composition for Optical Materials
JP5961262B2 (en) Polymerizable composition, optical member obtained using the same, and method for producing the optical member
JP6325168B2 (en) Plastic glasses lens manufacturing method, film positioning method
JP5743713B2 (en) Laminated body, photochromic lens, and manufacturing method thereof
KR101455645B1 (en) Preparation method of polythiol compound and polymerizable composition for optical material comprising it
JP2007264008A (en) Method of manufacturing plastic polarizing lens, and plastic polarizing lens
JP7263826B2 (en) Sulfur-based organic material and inorganic material surface-modified with the sulfur-based organic material
JP5956726B2 (en) Photochromic lens and manufacturing method thereof
KR102657702B1 (en) Composition for episulfide based optical material having high refractive index and method of preparing the optical material
US10669367B2 (en) Polythiol composition for plastic lens
JP7284590B2 (en) CURABLE COMPOSITE MATERIAL AND IMPRINT METHOD USING THE SAME
KR101464943B1 (en) Method of Producing Polythiol Compound for Thioepoxy based Optical Material, and Copolymerizable Composition for Thioepoxy based Optical Material Comprising the Polythiol Compound
JP2016168829A (en) Production method of plastic lens, positioning method of film, and composite
JP4504669B2 (en) Polymerizable composition and use thereof
JP4977309B2 (en) Photopolymerizable composition for optical parts and use thereof
JP5986446B2 (en) (Meth) acrylate compound, polymerizable composition and resin using the same
JP2024035465A (en) A method for producing a fine particle dispersed polymerizable composition and a fine particle dispersed polymerizable composition produced by the production method
WO2023127880A1 (en) Polymerizable composition for optical components, cured object, and spectacle lens
TW202317708A (en) Photocurable composition, cured product, laminated body, method for producing cured product, and method for producing lens
JP2005154614A (en) Polymerizable composition and its application
JP2021167405A (en) Method for producing microparticle dispersion type polymerizable composition and microparticle dispersion type polymerizable composition prepared by the production method
JP2022530686A (en) Diffraction light guide plate and manufacturing method of diffraction light guide plate
KR20210143572A (en) Tape for manufacturing optical lens and apparatus for manufacturing optical lens using the same
JP3617850B2 (en) Resin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R151 Written notification of patent or utility model registration

Ref document number: 7263826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151