JP7262986B2 - Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method - Google Patents

Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method Download PDF

Info

Publication number
JP7262986B2
JP7262986B2 JP2018228554A JP2018228554A JP7262986B2 JP 7262986 B2 JP7262986 B2 JP 7262986B2 JP 2018228554 A JP2018228554 A JP 2018228554A JP 2018228554 A JP2018228554 A JP 2018228554A JP 7262986 B2 JP7262986 B2 JP 7262986B2
Authority
JP
Japan
Prior art keywords
mold
resin
elastic structure
pressure
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018228554A
Other languages
Japanese (ja)
Other versions
JP2020090035A5 (en
JP2020090035A (en
Inventor
隆 新井
智康 城川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018228554A priority Critical patent/JP7262986B2/en
Publication of JP2020090035A publication Critical patent/JP2020090035A/en
Publication of JP2020090035A5 publication Critical patent/JP2020090035A5/ja
Application granted granted Critical
Publication of JP7262986B2 publication Critical patent/JP7262986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂材料を射出成形する射出成形型、射出成形型の製造方法、射出成形機、および樹脂成形品の製造方法に関する。 The present invention relates to an injection mold for injection molding a resin material, a method for manufacturing an injection mold, an injection molding machine, and a method for manufacturing a resin molded product.

従来より、樹脂製の物品の製造に、樹脂材料を射出成形機を用いて金型内へ注入し、冷却固化した後、金型内から成形品を取り出す射出成形の手法が用いられている。この樹脂材料の射出成形では、溶融した樹脂の粘度による抵抗に勝る高い圧力で溶融した樹脂材料を金型内へ注入する必要がある。また、金型内に樹脂を注入完了後、樹脂の冷却に伴い金型内で樹脂が収縮し、金型寸法からの寸法差が大きくならないよう、比較的高い一定圧力を一定時間樹脂材料に加え続ける保圧工程が必要である。 Conventionally, an injection molding method has been used to manufacture articles made of resin, in which a resin material is injected into a mold using an injection molding machine, cooled and solidified, and then the molded product is removed from the mold. In the injection molding of this resin material, it is necessary to inject the molten resin material into the mold with a high pressure that overcomes the resistance due to the viscosity of the molten resin. In addition, after the resin has been injected into the mold, the resin shrinks in the mold as it cools, and a relatively high constant pressure is applied to the resin material for a certain period of time so that the dimensional difference from the mold dimensions does not increase. A subsequent holding pressure step is required.

部品サイズが大きい、あるいは肉厚変化が大きい形状の場合は、成形機からの圧力が型内の末端まで均等に行き届かないことがあり、型内の樹脂の収縮状態にバラつきが生じ、反りやヒケなどの不良を引き起こすことがあった。 If the part size is large or the shape has a large change in thickness, the pressure from the molding machine may not reach the end of the mold evenly, causing variations in the contraction state of the resin inside the mold, resulting in warping. Defects such as sink marks were sometimes caused.

上記のような事情に鑑み、特に高精度が要求されるギアやレンズなどの物品の射出成形では、「射出圧縮成形」と呼ばれる成形方法が用いられることがある(特許文献1)。この射出圧縮成形では、樹脂材料を型内に注入後、形状を有する金型の駒部分を油圧シリンダなどで動かし、駒から金型内の樹脂に圧力を加える。この射出圧縮成形によると、成形機からの圧力に加え、駒から直接圧力を加えることにより、形状部内の圧力が均等になり、樹脂の収縮差が小さくなるため、高精度の成形品が得られる。 In view of the above circumstances, a molding method called "injection compression molding" is sometimes used in the injection molding of articles such as gears and lenses that require particularly high precision (Patent Document 1). In this injection compression molding, after injecting a resin material into a mold, a piece portion of the mold having a shape is moved by a hydraulic cylinder or the like, and pressure is applied from the piece to the resin in the mold. According to this injection compression molding, in addition to the pressure from the molding machine, direct pressure is applied from the pieces, which equalizes the pressure inside the shaped part and reduces the difference in shrinkage of the resin, making it possible to obtain high-precision molded products. .

特開平10-58502号公報JP-A-10-58502

上記の射出圧縮成形では、型内または型の外部から油圧シリンダなどによる圧力を加える必要があり、型サイズの大型化や、油圧制御機器の設備のためにコストが嵩む問題があった。また、金型には、部分駒や、スライド部に圧力を加えたり、駒の複数部で圧力を変えたりするための構造が必要になるが、例えば製品の形状によっては型や加圧機器のスペースが確保できず、実施できない場合も考えられる。 In the above-mentioned injection compression molding, it is necessary to apply pressure by a hydraulic cylinder or the like from inside or outside the mold, and there is a problem that the cost increases due to the enlargement of the mold size and the installation of hydraulic control equipment. In addition, the mold requires a structure for applying pressure to partial bridges and sliding parts, and for varying the pressure at multiple parts of the molds. can not be secured and may not be implemented.

また、樹脂の収縮挙動は、圧力(P)、体積(V)、温度(T)および材料のガラス転移温度(Tg)と密接な関係があるため、成形機および駒からの圧力をその樹脂材料に特有なP-V-T特性に沿って制御する必要がある。しかしながら、油圧などを用いる外部圧力機器による制御では、応答性よく所期の圧力制御を行うことが困難な場合が予想される。また、複数個所へ異なる圧力制御を行おうとした場合に、制御の態様や圧力機器の構成が極めて複雑になる可能性がある。このような事情より、従来では、射出圧縮成形は、ギアやレンズのような単純な形状を有する物品以外の製造ではあまり利用されていない。また、従来の油圧等により作動するシリンダ構造の駒では、シリンダ構造の駒の内部に冷却水路などを配置するのが難しく、金型の冷却効率が減少し、成形サイクルが長くなるという問題があった。 In addition, since the shrinkage behavior of resin is closely related to pressure (P), volume (V), temperature (T), and the glass transition temperature (Tg) of the material, the pressure from the molding machine and pieces is It is necessary to control along the PVT characteristic peculiar to . However, in the case of control by an external pressure device using oil pressure or the like, it may be difficult to perform desired pressure control with good responsiveness. Moreover, when different pressure controls are to be applied to a plurality of locations, there is a possibility that the control mode and the configuration of the pressure equipment will become extremely complicated. Due to these circumstances, injection compression molding has hitherto not been widely used in the manufacture of articles other than those having simple shapes such as gears and lenses. In addition, it is difficult to arrange cooling water passages and the like in the cylinder structure of the conventional bridge that is operated by hydraulic pressure, etc., and there is a problem that the cooling efficiency of the mold is reduced and the molding cycle is lengthened. .

本発明の課題は、樹脂の収縮の比較的厳密な管理が必要になる、例えば形状が複雑な高精度の機構部品、高い外観品位を求められる外装部品などの物品の製造において、簡単安価に金型の圧縮を伴う射出成形を実施できるようにすることにある。 An object of the present invention is to easily and inexpensively manufacture products that require relatively strict control of resin shrinkage, such as highly accurate mechanical parts with complex shapes and exterior parts that require high appearance quality. To enable injection molding accompanied by mold compression.

上記課題を解決するため、本発明においては、転写面を備えた形状駒と、前記形状駒を支持する基部と、を備えた射出成形型であって、前記形状駒の転写面と、前記基部と、の間の部位が型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復する弾性構造体により構成されることを特徴とする。 In order to solve the above problems, the present invention provides an injection molding die comprising a shaped piece having a transfer surface and a base for supporting the shaped piece, wherein the transfer surface of the shaped piece and the base , elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and is composed of an elastic structure that recovers its shape following the contraction of the resin accompanying cooling. and

上記構成により、油圧シリンダなどの圧力制御機器を必要とせず、形状が複雑な高精度の機構部品、高い外観品位を求められる外装部品などの物品の製造において、簡単安価に金型の圧縮を伴う射出成形を実施することができる。 With the above configuration, there is no need for a pressure control device such as a hydraulic cylinder, and in the manufacture of articles such as high-precision mechanical parts with complicated shapes and exterior parts that require high appearance quality, the mold can be easily and inexpensively compressed. Injection molding can be performed.

本発明の一実施形態に係る金型の断面構成を示した説明図である。It is an explanatory view showing the section composition of the metallic mold concerning one embodiment of the present invention. 一般的な樹脂のP-V-T特性を示した説明図である。FIG. 3 is an explanatory diagram showing PVT characteristics of general resins; 本発明の異なる一実施形態に係る金型の断面構成を示した説明図である。It is explanatory drawing which showed the cross-sectional structure of the metal mold|die which concerns on one different embodiment of this invention. 本発明の異なる一実施形態に係る金型の断面構成を示した説明図である。It is explanatory drawing which showed the cross-sectional structure of the metal mold|die which concerns on one different embodiment of this invention. 図4の金型の動作を示した説明図である。FIG. 5 is an explanatory diagram showing the operation of the mold in FIG. 4; 本発明の異なる一実施形態に係る金型の断面構成を示した説明図である。It is explanatory drawing which showed the cross-sectional structure of the metal mold|die which concerns on one different embodiment of this invention. 射出圧縮成形機構の構成を示した説明図である。It is an explanatory view showing the configuration of an injection compression molding mechanism. 本発明の異なる一実施形態に係る金型の断面構成を示した説明図である。It is explanatory drawing which showed the cross-sectional structure of the metal mold|die which concerns on one different embodiment of this invention. (a)、(b)は、本発明の一実施形態において成形される樹脂成形品を示した説明図である。1(a) and 1(b) are explanatory diagrams showing a resin molded product molded in one embodiment of the present invention. FIG. 本発明の異なる一実施形態に係る金型の断面構成を示した説明図である。It is explanatory drawing which showed the cross-sectional structure of the metal mold|die which concerns on one different embodiment of this invention. 図10の弾性部材の断面構成を示した説明図である。11 is an explanatory view showing a cross-sectional configuration of the elastic member of FIG. 10; FIG. 図10の弾性部材のモデリング手順を示した説明図である。FIG. 11 is an explanatory diagram showing a modeling procedure of the elastic member in FIG. 10; ギアを成形する金型の一般的な構成を示した説明図である。FIG. 2 is an explanatory diagram showing a general configuration of a mold for molding gears; 本発明の異なる一実施形態に係る金型の断面構成を示した説明図である。It is explanatory drawing which showed the cross-sectional structure of the metal mold|die which concerns on one different embodiment of this invention.

以下、添付図面を参照して本発明を実施するための形態につき説明する。なお、以下に示す構成はあくまでも一例であり、例えば細部の構成については本発明の趣旨を逸脱しない範囲において当業者が適宜変更することができる。また、本実施形態で取り上げる数値は、参考数値であって、本発明を限定するものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings. The configuration shown below is merely an example, and, for example, details of the configuration can be changed as appropriate by those skilled in the art without departing from the scope of the present invention. Further, the numerical values taken up in the present embodiment are reference numerical values and do not limit the present invention.

<実施形態1>
図1は、本実施形態において、例えばギアのような物品である樹脂成形品4を製造する射出成形機、特にその射出成形型の部分の断面構成を示している。また、図13は、同様の樹脂成形品52を成形する、従来の一般的な金型の構成を示したものである。
<Embodiment 1>
FIG. 1 shows a cross-sectional configuration of an injection molding machine for manufacturing a resin molded product 4, which is an article such as a gear, in this embodiment, particularly the injection mold portion thereof. Also, FIG. 13 shows the configuration of a conventional general mold for molding a similar resin molded product 52 .

図1において、1はバネ係数の高い弾性構造体、2はバネ係数の低い弾性構造体、3は部品形状が加工された形状駒としてのコア駒、4は例えばギアのような樹脂成形品、5はギア形状を加工された回転駒である。各駒は固定側金型44と可動側金型45の間に配置されている。また、可動側金型45側には、型開きの後、樹脂成形品4を離型するためのエジェクタピン6が配置されている。 In FIG. 1, 1 is an elastic structure with a high spring coefficient, 2 is an elastic structure with a low spring coefficient, 3 is a core piece as a shape piece whose part shape is processed, 4 is a resin molded product such as a gear, 5 is a rotating piece machined into a gear shape. Each piece is arranged between a fixed side mold 44 and a movable side mold 45 . Further, an ejector pin 6 for releasing the resin molded product 4 after mold opening is arranged on the side of the movable mold 45 .

一方、図13において、樹脂成形品52は同様のギアであり、そのギアの歯面は形状駒53により、また、ギアのコア部は形状駒54によって転写される。図13でも、各駒は固定側金型44と可動側金型45の間に配置され、固定側金型44側には樹脂射出用のゲート441が、可動側金型45側にはエジェクタピン55が配置されている。 On the other hand, in FIG. 13, the resin molded product 52 is a similar gear, and the tooth surface of the gear is transferred by the shaped pieces 53 and the core portion of the gear is transferred by the shaped pieces 54 . 13, each piece is arranged between the fixed mold 44 and the movable mold 45. The fixed mold 44 has a resin injection gate 441, and the movable mold 45 has an ejector pin. 55 are placed.

図13の構成と大きく異なるのは、図1の金型では、コア駒3と、金型の基部の1つを構成する可動側金型45の間に弾性構造体1および2が配置され、コア駒3が弾性構造体1および2によって支持されている点である。 13, the elastic structures 1 and 2 are arranged between the core piece 3 and the movable side mold 45 that constitutes one of the bases of the mold. The difference is that the core piece 3 is supported by the elastic structures 1 and 2 .

なお、図1を含め、本発明の実施形態に係る各添付図面では、弾性構造体1、2は、弓型の形状や、棒状の形状として図示している。しかしながら、弾性構造体1、2の形状は任意であり、本発明を限定するものではない。また、図1を含め、本発明の実施形態に係る各添付図面では、形状駒であるコア駒とそれを支持する弾性構造体は別体であるかの如く図示している。しかしながら、これらコア駒と弾性構造体は、機能的には弾性構造駒を構成するものであり、必ずしも別体である必要はなく、両者は一体に形成されていても構わない。 In addition, in each attached drawing according to the embodiment of the present invention, including FIG. 1, the elastic structures 1 and 2 are illustrated as having a bow-shaped shape or a rod-shaped shape. However, the shape of the elastic structures 1, 2 is arbitrary and does not limit the invention. In addition, in each of the accompanying drawings, including FIG. 1, according to the embodiment of the present invention, the core piece, which is a shaped piece, and the elastic structure supporting it are illustrated as if they were separate bodies. However, the core piece and the elastic structure functionally constitute an elastic structure piece, and do not necessarily need to be separate bodies, and they may be integrally formed.

図1の金型では、例えば固定側金型44側に配置されたゲート441からキャビティに樹脂が注入されると、樹脂の注入圧力により図中下方にコア駒3が押圧され、弾性構造体1および2が弾性変形する。これにより弾性構造体1および2は変形量に応じた付勢力をコア駒3に印加する。 In the mold shown in FIG. 1, when resin is injected into the cavity from the gate 441 arranged on the side of the fixed mold 44, for example, the injection pressure of the resin pushes the core piece 3 downward in the figure, and the elastic structure 1 and 2 elastically deform. As a result, the elastic structures 1 and 2 apply an urging force to the core piece 3 according to the amount of deformation.

この時の弾性構造体1および2の弾性変形量(ないしそれを決定づけるバネ係数)は、予めシミュレーションによって推定された樹脂流動解析により型内での圧力分布に応じて決定しておく。そして、例えば、樹脂圧力の高い部分はバネ係数の高い弾性構造体1を配置し、樹脂圧力の低い流動末端付近にはバネ係数の低い弾性構造体2を配置する。 The amount of elastic deformation of the elastic structures 1 and 2 at this time (or the spring coefficient that determines it) is determined in advance according to the pressure distribution in the mold by resin flow analysis presumed by simulation. Then, for example, an elastic structure 1 with a high spring coefficient is arranged in a portion where the resin pressure is high, and an elastic structure 2 with a low spring coefficient is arranged near the end of the flow where the resin pressure is low.

各弾性構造体のバネ係数は、樹脂注入圧力および型内圧力分布のシミュレーション値と、樹脂材料の圧力(P)-比容積(V)-温度(T)のPVT特性と呼ばれる樹脂固有の特性値から算出した収縮量に校正係数をかけた値を用いる。この校正係数は予め実験を行って求める。 The spring coefficient of each elastic structure is a simulation value of the resin injection pressure and pressure distribution in the mold, and a resin-specific characteristic value called PVT characteristics of pressure (P) - specific volume (V) - temperature (T) of the resin material. Use the value obtained by multiplying the amount of shrinkage calculated from by the calibration factor. This calibration coefficient is obtained by conducting an experiment in advance.

実験より求めた校正係数を使用するのは、PVT特性による比容積変化が、樹脂のスキン層とコア層双方を含んだ全体の値であり、スキン層とコア層が時々刻々変化する冷却中の弾性率変化をシミュレーションするのが困難なためである。 The reason why the calibration coefficient obtained by experiment is used is that the specific volume change due to PVT characteristics is the overall value including both the skin layer and the core layer of the resin, and the skin layer and the core layer change from time to time during cooling. This is because it is difficult to simulate changes in elastic modulus.

校正係数qとPVT特性は、例えば下式(1)のように関係づけられる。 The calibration coefficient q and the PVT characteristic are related, for example, by the following formula (1).

q=ΔV/Δt …(1)
上式(1)において、ΔVはPVT特性の比容積変化、Δtは実験で求めた樹脂成形品の板圧方向収縮率である。また、バネ係数kは例えば下式(2)により算出することができる。
q=ΔV/Δt (1)
In the above formula (1), ΔV is the change in specific volume of the PVT characteristics, and Δt is the contraction rate in the plate pressure direction of the resin molded product obtained by experiment. Moreover, the spring coefficient k can be calculated by the following formula (2), for example.

k=q-1×ΔV/P …(2)
上式(2)において、Pは流動解析による型内の内圧に相当する。
k=q -1 ×ΔV/P (2)
In the above equation (2), P corresponds to the internal pressure inside the mold according to flow analysis.

下表1に、図13のような弾性構造体1、2を用いない射出金型による樹脂成形品の作成例1および2と、図1に示した本実施形態の弾性構造体1、2を用いた射出金型による樹脂成形品の作成例3および4を示す。作成例1~4では、樹脂材料はポリアセタール樹脂(ポリプラスチックス製ジュラコンM90)を用い、成形時の樹脂温度は220℃、金型温度は80℃、充填時間は1.5秒で成形を行った。射出後の保圧は保圧1、保圧2の2段階の保圧圧力に制御しているが、各々の作成例1~4の圧力値は表示のように異なる。なお、保圧1は、例えば樹脂がガラス転移温度に達するまでの保圧圧力、保圧2はガラス転移温度から室温に達するまでの保圧圧力のように切り換える。 Table 1 below shows Examples 1 and 2 of making resin molded products by injection molding without using elastic structures 1 and 2 as shown in FIG. 13, and elastic structures 1 and 2 of the present embodiment shown in FIG. Production examples 3 and 4 of resin molded products by the injection mold used are shown. In Examples 1 to 4, polyacetal resin (Polyplastics Duracon M90) was used as the resin material, and molding was performed at a resin temperature of 220°C, a mold temperature of 80°C, and a filling time of 1.5 seconds. rice field. The holding pressure after injection is controlled to two stages of holding pressure 1 and holding pressure 2, but the pressure values of each of Preparation Examples 1 to 4 are different as shown. For example, the holding pressure 1 is the holding pressure until the resin reaches the glass transition temperature, and the holding pressure 2 is the holding pressure from the glass transition temperature to the room temperature.

Figure 0007262986000001
Figure 0007262986000001

バネ係数kを算出するのに用いた樹脂材料のPVT特性は、例えば「Computer Aided Innovation of New Materials II」誌の掲載データを用いた。 For the PVT characteristics of the resin material used to calculate the spring coefficient k, data published in, for example, "Computer Aided Innovation of New Materials II" was used.

上表1において、作成例3では従来の金型による作成例1に対して、約半分の圧力で同等の精度の成形品を得ることができている。また、作成例3では、作成例2に対しては、同じ圧力においては高精度の成形品を得るに至った。また、実施例4では、作成例2に対して、約半分の圧力で同等の精度の成形品を得ることができている。 In Table 1 above, in Production Example 3, a molded product with an accuracy equivalent to that in Production Example 1 using a conventional mold can be obtained with approximately half the pressure. Moreover, in Example 3, a molded product with high precision was obtained at the same pressure as in Example 2. In addition, in Example 4, a molded product with the same precision can be obtained with approximately half the pressure of Example 2.

図2は、「Computer Aided Innovation of New Materials II」誌の掲載データに基づく樹脂のP-V-T特性を示している。図2では、縦軸方向の3本の矢印によって、それぞれ80Mpa、40Mpa、20Mpaのそれぞれの圧力において、樹脂溶融状態から冷却固化までの比容積変化量を追記してある。図示のように、80Mpaの場合の比容積変化は約0.112cm^3/g、40Mpaの場合の比容積変化は約0.122cm^3/g、20Mpaの場合の比容積変化は約0.124cm^3/gとなっている。図2から明らかなように、樹脂に加える圧力により比容積が変化することが解る。特に、図2に示されるように低い圧力での成形ほど体積変化が大きく、冷却時の収縮が大きい。 FIG. 2 shows the PVT characteristics of the resin based on data published in "Computer Aided Innovation of New Materials II". In FIG. 2, the three arrows along the vertical axis indicate the amount of change in specific volume from the resin melt state to cooling and solidification at pressures of 80 MPa, 40 MPa, and 20 MPa, respectively. As shown in the figure, the specific volume change is about 0.112 cm^3/g at 80 Mpa, the specific volume change is about 0.122 cm^3/g at 40 Mpa, and the specific volume change is about 0.2 cm at 20 Mpa. It is 124cm^3/g. As can be seen from FIG. 2, the specific volume varies depending on the pressure applied to the resin. In particular, as shown in FIG. 2, the lower the molding pressure, the greater the volume change and the greater the shrinkage during cooling.

この点を考慮し、本実施形態では、型内の樹脂に作用する圧力に応じて異なるバネ係数を用いる。例えば、作成例3と作成例4のように、圧力の高い収縮量の小さい部分の弾性構造体はバネ係数を大きく設定し、圧力の低い収縮量の大きい部分の弾性構造体はバネ係数を小さく設定する。これにより、圧力が作用した時の樹脂の体積変化に追従して型の容積を変化させることができる。前述のように、従来の油圧シリンダ等による一律の圧力を加えた場合には、高圧部の体積変化に追従する制御を行うと、低圧部のより体積変化が大きい部分には十分な圧縮ストロークをかけることができない。そのため、型内の低圧部では精度を十分に得られない場合があった。これに対して、本実施形態では、上記のようなバネ係数の設定により、高圧部、低圧部のいずれにおいても弾性構造体によって、圧力が作用した時の樹脂の体積変化に追従して型の容積を変化させることができる。そのため、従来の圧力装置を用いた能動的な射出圧縮成形における上記のような問題を生じない。 Considering this point, in this embodiment, different spring coefficients are used according to the pressure acting on the resin in the mold. For example, as shown in Example 3 and Example 4, the spring coefficient is set large for the elastic structure in the portion where the amount of contraction is small under high pressure, and the spring coefficient is set small for the elastic structure in the portion where the amount of contraction is large under low pressure. set. This makes it possible to change the volume of the mold by following the volume change of the resin when the pressure is applied. As mentioned above, when a uniform pressure is applied by a conventional hydraulic cylinder, etc., if control is performed to follow the volume change of the high pressure part, a sufficient compression stroke can be applied to the low pressure part where the volume change is larger. can't call Therefore, in some cases, sufficient accuracy cannot be obtained in the low-pressure part of the mold. On the other hand, in the present embodiment, by setting the spring coefficient as described above, the elastic structure follows the volume change of the resin when the pressure acts on both the high pressure section and the low pressure section, and the mold is formed. Volume can vary. Therefore, the above-mentioned problems in active injection compression molding using a conventional pressure device do not occur.

なお、圧力が作用した時の樹脂の体積変化に追従して型の容積を変化させる場合、樹脂の収縮時の収縮量ΔVと、変形量ΔDと、は以下のような関係を満足するのが望ましい。 When the volume of the mold is changed following the volume change of the resin when pressure is applied, it is preferable that the shrinkage amount ΔV and the deformation amount ΔD when the resin shrinks satisfy the following relationship. desirable.

例えば、型内の樹脂への保圧圧力の荷重Pにより生じる型内圧力と樹脂の圧力(P)-体積(V)-温度(T)特性から求められる樹脂の収縮時の収縮量をΔVとする。その場合、収縮量ΔVと、弾性構造体に前記荷重Pが負荷された際の変形量ΔDと、の比Qは、 For example, ΔV is the amount of shrinkage when the resin shrinks, which is obtained from the pressure (P)-volume (V)-temperature (T) characteristics of the mold pressure and resin generated by the load P of the holding pressure on the resin in the mold. do. In that case, the ratio Q between the contraction amount ΔV and the deformation amount ΔD when the load P is applied to the elastic structure is

ΔD=QΔV (1.0≦Q≦1.25)…(3)
の範囲を満足するのが望ましい。
ΔD=QΔV (1.0≦Q≦1.25) (3)
It is desirable to satisfy the range of

また、保圧1を例えば樹脂がガラス転移温度に達するまでの保圧圧力、保圧2をガラス転移温度から室温に達するまでの保圧圧力、のように切り換える場合には、以下のような関係を満足するのが望ましい。 Also, when the holding pressure 1 is switched to, for example, the holding pressure until the resin reaches the glass transition temperature, and the holding pressure 2 is the holding pressure from the glass transition temperature to the room temperature, the following relationship is obtained. should be satisfied.

例えば、型内の樹脂が溶融状態からガラス転移温度に達するまでの保圧圧力の荷重P1により生じる型内圧力および樹脂の圧力(P)-体積(V)-温度(T)特性から求められる溶融状態からガラス転移温度に達するまでの樹脂の収縮量をΔV1とする。その場合、収縮量ΔV1と、前記弾性構造体に荷重P1が負荷された際の変形量ΔD1と、の比Q1は、 For example, the pressure in the mold generated by the load P1 of the holding pressure until the resin in the mold reaches the glass transition temperature from the molten state and the pressure (P) - volume (V) - temperature (T) characteristics of the resin Let ΔV1 be the amount of shrinkage of the resin from the state until it reaches the glass transition temperature. In that case, the ratio Q1 between the contraction amount ΔV1 and the deformation amount ΔD1 when the load P1 is applied to the elastic structure is

ΔD1=Q1ΔV1 (ただし1.0≦Q1≦1.1) …(4)
の範囲を満足するのが望ましい。さらに、樹脂のガラス転移温度から室温に達するまでの保圧圧力の荷重P2により生じる型内圧力および樹脂の圧力(P)-体積(V)-温度(T)特性から求められるガラス転移温度から室温に達するまでの樹脂の収縮量をΔV2とする。その場合、収縮量ΔV2と、前記弾性構造体に荷重P2が負荷された際の変形量ΔD2と、の比Q2は、
ΔD1=Q1ΔV1 (where 1.0≤Q1≤1.1) (4)
It is desirable to satisfy the range of Furthermore, the pressure in the mold generated by the load P2 of the holding pressure from the glass transition temperature of the resin to room temperature and the pressure (P) - volume (V) - temperature (T) characteristics of the resin obtained from the glass transition temperature to room temperature Let ΔV2 be the amount of shrinkage of the resin until it reaches . In that case, the ratio Q2 between the contraction amount ΔV2 and the deformation amount ΔD2 when the load P2 is applied to the elastic structure is

ΔD2=Q2ΔV2 (ただし1.0≦Q2≦1.25) …(5)
の範囲を満足するのが望ましい。
ΔD2=Q2ΔV2 (where 1.0≦Q2≦1.25) (5)
It is desirable to satisfy the range of

<実施形態2>
図3に異なる弾性構造金型の構成例を示す。図3において、7は樹脂成形品、8は型締め方向に形状を持つ第1の形状駒としてのコア駒である。また、9は型閉め方向と平行ではなく、例えば鉛直な方向に転写面の方向が配置された第2の形状駒としてのコア駒、10はスライド駒である。また、11はバネ係数の高い弾性構造体、12はバネ係数の低い弾性構造体で、互いに弾性変形方向の異なる第1ないし第2の弾性構造体に相当し、それぞれコア駒8、9を弾性支持する。
<Embodiment 2>
FIG. 3 shows a configuration example of a different elastic structure mold. In FIG. 3, 7 is a resin molded article, and 8 is a core piece as a first shape piece having a shape in the clamping direction. Further, 9 is a core piece as a second shape piece whose transfer surface direction is arranged not parallel to the mold closing direction, for example, in a vertical direction, and 10 is a slide piece. 11 is an elastic structure with a high spring coefficient, and 12 is an elastic structure with a low spring coefficient. To support.

図3において樹脂成形品7は、例えば電子機器などの外装部品であり、図示のようなL字型の断面を有し、コア駒9は樹脂成形品7の図中右方の部分を成形するよう配置されている。 In FIG. 3, the resin molded product 7 is, for example, an exterior part of an electronic device or the like, and has an L-shaped cross section as shown in the figure, and the core piece 9 molds the right part of the resin molded product 7 in the figure. are arranged like this.

図3のような金型構造では、型締め方向(図中上方)に対しそれと鉛直方向の部分は、スライド駒10により制御されるコア駒9で成形される。そして、スライド駒10のスライド機構(不図示)などが配置され、コア駒9の近傍にはゲートが設けられないため、型締め方向部分に比較し流動末端近くになり、この部位では型内の内圧が低くなる傾向にある。 In the mold structure as shown in FIG. 3, a core piece 9 controlled by a slide piece 10 is formed in a vertical direction with respect to the mold clamping direction (upper in the figure). A slide mechanism (not shown) for the slide piece 10 is arranged, and a gate is not provided near the core piece 9. Therefore, it is closer to the end of the flow than the portion in the clamping direction. Internal pressure tends to be low.

そこで、本実施形態では、型締め方向部分を成形するコア駒8は、バネ係数の高い弾性構造体11で付勢可能なバネ係数の高い弾性構造駒として構成する。また、型締め方向に対して鉛直方向部分を成形するコア駒9は、バネ係数の低い弾性構造体12で付勢可能なバネ係数の低い弾性構造駒として構成する。 Therefore, in the present embodiment, the core piece 8 forming the part in the mold clamping direction is configured as an elastic structure piece with a high spring coefficient that can be biased by an elastic structure 11 with a high spring coefficient. Further, the core piece 9 forming a portion perpendicular to the clamping direction is configured as an elastic structure piece with a low spring coefficient that can be biased by an elastic structure 12 with a low spring coefficient.

また、図3に示すように、図中左端部のバネ係数の高い弾性構造体11と、コア駒9の間には、互いに平行ではない、例えば、ほぼ90°姿勢の異なるバネ係数の低い弾性構造体12が挿入されている。即ち、本実施形態では、バネ係数の高い弾性駒(コア駒8)と、バネ係数の低い弾性駒(コア駒9)とを当接させ、その当接部位を介して互いの変形にかかる荷重によって両者を伝達し合う。このような構造により、効率よく、弾性構造体11、12の弾性変形と形状回復に係る弾性力を相互に融通させることができる。 Also, as shown in FIG. 3, between the elastic structure 11 with a high spring coefficient at the left end in the drawing and the core piece 9, there is an elastic structure with a low spring coefficient that is not parallel to each other, for example, with a different attitude of approximately 90°. A structure 12 is inserted. That is, in the present embodiment, an elastic piece (core piece 8) with a high spring coefficient and an elastic piece (core piece 9) with a low spring coefficient are brought into contact with each other, and loads applied to each other's deformation via the contact portions are applied. Communicate the two by With such a structure, the elastic forces associated with elastic deformation and shape recovery of the elastic structures 11 and 12 can be mutually accommodated efficiently.

表2に、表1と同様の形式で、外装部品としての樹脂成形品の成形例を示す。表2において、作成例5は弾性構造体を配置しない従来構成の金型によるもの、作成例6は図3に示した弾性構造体11、12を配置した本実施形態の金型によるものである。作成例5の金型は図3の構造から弾性構造体11、12を除去したものにほぼ相当する。なお、表2の最下段は、コア駒9によって成形される樹脂成形品のスライド面のヒケ量(mm)を示している。 Table 2 shows molding examples of resin moldings as exterior parts in the same format as Table 1. In Table 2, production example 5 is a mold with a conventional configuration without an elastic structure, and production example 6 is a mold of this embodiment with elastic structures 11 and 12 shown in FIG. . The mold of Preparation Example 5 substantially corresponds to the structure of FIG. 3 from which the elastic structures 11 and 12 are removed. The bottom row of Table 2 shows the amount of sink marks (mm) on the slide surface of the resin molded product molded by the core piece 9 .

Figure 0007262986000002
Figure 0007262986000002

本実施形態による作成例6では、図3のように弾性駒を用いた構造によって、従来構成の金型による作成例5に対し、特にスライド面でのヒケ量を少なくすることができた。このように、本実施形態では、型締め方向に対し鉛直方向の内圧が低くなる部分にバネ係数の低い構造体を設けることで、比容積変化の大きい部分でもヒケのない良好な成形品を得ることが出来た。 In Production Example 6 according to the present embodiment, as compared with Production Example 5 using a mold having a conventional configuration, the amount of sink marks on the slide surface could be particularly reduced by the structure using the elastic pieces as shown in FIG. Thus, in this embodiment, by providing a structure with a low spring coefficient in the portion where the internal pressure in the direction perpendicular to the clamping direction is low, a good molded product without sink marks is obtained even in the portion where the specific volume change is large. I was able to

<実施形態3>
図4は、本実施形態の異なる弾性構造金型の要部の構成を示している。金型の全体は、上記の図1または図3に示した構造と同様に構成することができる。図4において、13は樹脂成形品、14は樹脂成形品に形成されるリブである。図4の樹脂成形品13の下面部の形状は、コア駒15、16によって成形される。コア駒15は樹脂成形品13の下面部の形状を転写する転写面を、また、コア駒16はリブ14の形状を転写する転写面を備える。
<Embodiment 3>
FIG. 4 shows the configuration of the main part of the elastic structure mold that differs from this embodiment. The entire mold can be constructed similarly to the structure shown in FIG. 1 or FIG. 3 above. In FIG. 4, 13 is a resin molded product, and 14 is a rib formed on the resin molded product. The shape of the lower surface of the resin molded product 13 in FIG. 4 is formed by core pieces 15 and 16 . The core piece 15 has a transfer surface for transferring the shape of the lower surface of the resin molded product 13 , and the core piece 16 has a transfer surface for transferring the shape of the rib 14 .

コア駒15、16が一体に形成されていても、バネ係数の選定などにより下記と同様の作用効果を期待できる。しかしながら、本実施形態では、コア駒15、16は別体で、コア駒16はコア駒15の開口中にスライド可能に支持されている。そして、これらコア駒15、16は下方からそれぞれ弾性構造体17および18によって支持される。 Even if the core pieces 15 and 16 are integrally formed, the same effect as described below can be expected by selecting the spring coefficient. However, in this embodiment, the core pieces 15 and 16 are separate bodies, and the core piece 16 is slidably supported in the opening of the core piece 15 . These core pieces 15 and 16 are supported from below by elastic structures 17 and 18, respectively.

弾性構造体17および18は、傾斜した棒状の構造材をX字型に組み合わせた構造を有している。このうち、弾性構造体17はバネ係数の高い弾性構造体、弾性構造体18はバネ係数の低い弾性構造体である。このようなバネ係数の組み合わせは、例えば、弾性構造体17の構造材の径を、弾性構造体18の構造材の径よりも小さく設定したり、あるいは弾性構造体17および18の材料をそれぞれ選定することによって実現できる。 The elastic structures 17 and 18 have a structure in which inclined rod-shaped structural members are combined in an X shape. Among them, the elastic structure 17 is an elastic structure with a high spring coefficient, and the elastic structure 18 is an elastic structure with a low spring coefficient. Such a combination of spring coefficients can be achieved, for example, by setting the diameter of the structural material of the elastic structure 17 smaller than the diameter of the structural material of the elastic structure 18, or by selecting materials for the elastic structures 17 and 18, respectively. It can be realized by

図5は、図4に示した構造に、例えば溶融樹脂の型内への射出によって、樹脂成形品13を形成する樹脂材料からコア駒15、16に樹脂圧力が加わった状態を示している。 FIG. 5 shows a state in which resin pressure is applied to the core pieces 15 and 16 from the resin material forming the resin molded product 13 by injection of molten resin into the mold, for example, to the structure shown in FIG.

図4の構造に樹脂圧力がかかると図5で示すように弾性構造体17、18が各々のバネ係数に従い変形する。図4、5に示したリブ14近傍の内圧は差が少ない為、リブ部とその近傍には同等の圧力が加わる。ここで、弾性構造体17、18がなくコア駒15、16がリジッドに支持される従来構造において、通常成形または油圧シリンダ等により一律の圧力を加えた場合を考える。その場合、内圧は同じでもリブ部の樹脂温度が高いため、リブ14の付け根の収縮量が大きくなり、そのため、リブ14の付け根付近に周囲と異なる外観もしくはヒケが生じる可能性がある。 When resin pressure is applied to the structure of FIG. 4, the elastic structures 17 and 18 are deformed according to their respective spring coefficients as shown in FIG. Since there is little difference in internal pressure in the vicinity of the rib 14 shown in FIGS. Here, in the conventional structure in which the core pieces 15 and 16 are rigidly supported without the elastic structures 17 and 18, a case where a uniform pressure is applied by normal molding or a hydraulic cylinder will be considered. In this case, even if the internal pressure is the same, the resin temperature of the rib portion is high, so the amount of shrinkage at the base of the rib 14 is large, so that there is a possibility that the appearance or sink marks near the base of the rib 14 differ from the surroundings.

これに対して、本発明では図4に示すようにリブ14の付け根部分をコア駒15とは別駒のコア駒16により構成し、コア駒16をバネ係数の低い弾性構造体18と連結している。そのため、冷却時の収縮の大きいリブ14の根元の部位では、コア駒16に図5に示すようにより大きな変形によるストロークが生じる。そのため、射出終了後の冷却、保圧期間では、収縮による樹脂の量を補いながら保圧圧力を加えることになり、リブ14の外観変化やヒケを非常に小さくすることができる。 On the other hand, in the present invention, as shown in FIG. 4, the root portion of the rib 14 is composed of a core piece 16 which is separate from the core piece 15, and the core piece 16 is connected to an elastic structure 18 having a low spring coefficient. there is Therefore, at the root portion of the rib 14, which shrinks significantly during cooling, the core piece 16 undergoes a stroke due to greater deformation as shown in FIG. Therefore, during the cooling and holding pressure period after the injection is completed, the holding pressure is applied while compensating for the amount of resin due to shrinkage.

<実施形態4>
図6は、本実施形態の異なる弾性構造金型の要部の構成を示している。本実施形態では、コア駒と弾性構造体を備えた弾性構造駒内に、冷却用の流体、例えば冷却水などのための通路ないし流路を形成する構造例を示す。
<Embodiment 4>
FIG. 6 shows the configuration of the main part of the elastic structure mold that differs from this embodiment. In this embodiment, a structural example is shown in which passages or channels for a cooling fluid, such as cooling water, are formed in an elastic structure piece having a core piece and an elastic structure.

図6において、20は樹脂成形品、21はキャビ駒、22はコア側形状を持ち内部に流路を設けたコア駒、23は内部に冷却用の流体の流路を設けたコア駒である。また、24は内部に冷却用の流体の流路を設けたバネ係数の低い弾性構造体、25は内部に冷却用の流体の流路を設けたバネ係数の高い弾性構造体、26は例えば上記流路の入口、27は出口である。 In FIG. 6, 20 is a resin molded product, 21 is a cabinet piece, 22 is a core piece having a core side shape and having a flow path inside, and 23 is a core piece having a cooling fluid flow path inside. . Reference numeral 24 denotes an elastic structure having a low spring coefficient and internally provided with a cooling fluid flow path; 25, an elastic structure having a high spring coefficient and internally provided with a cooling fluid flow path; The inlet of the channel, 27 is the outlet.

冷却用の流体の流路を備えたコア駒22、23、ないし弾性構造体24、25は、例えば3Dプリンタなどによる積層造形法を用いて、パイプ構造として造形することができる。このような構造により、内部にそれぞれ流路を有するコア駒22、23をやはり内部に流路を有する弾性構造体24、25で連結して冷却用の流体を流通させることができる。これにより、本実施形態の弾性構造体24、25を用いた、機能的には射出圧縮と同等、ないしそれより高性能な金型において、効率のよい金型冷却が可能となる。 The core pieces 22, 23 and the elastic structures 24, 25 provided with cooling fluid flow paths can be modeled as pipe structures, for example, using a layered manufacturing method such as a 3D printer. With such a structure, the core pieces 22 and 23 each having a channel therein are connected by the elastic structures 24 and 25 also having a channel therein so that the cooling fluid can be circulated. As a result, efficient cooling of the mold using the elastic structures 24 and 25 of the present embodiment is possible in the mold functionally equivalent to or higher than that of injection compression.

ここで、一般的な油圧シリンダを用いた射出圧縮金型の構造を図7に示す。図7において、28は内部に冷却用の流路を設けたコア駒、29はその流路、30はコア駒と油圧シリンダを内包する型駒、31は冷却用の流体の入り口、32は冷却の流体の出口である。また、33は油圧シリンダ、34はコア駒と油圧シリンダを接続する軸、35は油圧シリンダのストロークを規制するストッパ、36は油圧シリンダの作動する加圧空間、37は油圧出入り口である。 Here, FIG. 7 shows the structure of an injection compression mold using a general hydraulic cylinder. In FIG. 7, reference numeral 28 denotes a core piece having a cooling flow path inside; 29, the flow path; 30, a mold piece containing the core piece and the hydraulic cylinder; 31, an inlet for cooling fluid; fluid outlet. 33 is a hydraulic cylinder, 34 is a shaft that connects the core piece and the hydraulic cylinder, 35 is a stopper that regulates the stroke of the hydraulic cylinder, 36 is a pressure space in which the hydraulic cylinder operates, and 37 is a hydraulic inlet/outlet.

図6の本実施形態による弾性構造駒を備えた金型と、従来構成である図7の射出圧縮金型を比較して明らかなように、図7で示す一般的な射出圧縮機構では、油圧シリンダをコア駒の後背部に装備するため、この部分に冷却用の流路を設けるのが困難である。そのため、図7で示す一般的な射出圧縮機構では、油圧シリンダの配置された側の金型を効率よく冷却することができない。これに対して、図6の本実施形態による弾性構造駒を備えた金型では、コア駒のほぼ全体に渡ってその内部に冷却用の流路を配置することができ、コア駒と連結するほぼ全ての金型部分で効率のよい金型冷却が可能である。 As is clear from a comparison of the mold provided with the elastic structure piece according to the present embodiment in FIG. 6 and the conventional injection compression mold in FIG. Since the cylinder is mounted on the rear portion of the core piece, it is difficult to provide a cooling passage in this portion. Therefore, the general injection compression mechanism shown in FIG. 7 cannot efficiently cool the mold on the side where the hydraulic cylinder is arranged. On the other hand, in the mold provided with the elastic structure piece according to this embodiment of FIG. Efficient mold cooling is possible in all mold parts.

当然ながら、射出成形による物品の生産性を高めるには冷却効率を上げて冷却時間を短縮する必要がある。また、ヒケ等の成形不良を解消するにはやはり冷却を強化することが必要である。そして、図6のように、弾性構造駒の部分を利用して冷却用の流路を配置する構造は、射出成形金型の生産性と、成形精度の向上に大きく寄与するものである。 Naturally, in order to increase the productivity of injection molded articles, it is necessary to increase the cooling efficiency and shorten the cooling time. Also, in order to eliminate molding defects such as sink marks, it is necessary to strengthen cooling. Then, as shown in FIG. 6, the structure in which the cooling passages are arranged by using the elastic structure pieces greatly contributes to the improvement of the productivity of the injection molding die and the molding accuracy.

<実施形態5>
図6の構造は、さらに図8のように変形することができる。図8は図6で示した内部に冷却水経路を内蔵した弾性構造駒に、さらに、弾性構造駒の部分を利用してヒートシンク構造を形成したものである。図8において、パイプ状の構造で、内部に冷却水経路を配置した弾性構造体25の表面には、ヒートシンクを構成するフィン構造38を成形してある。上記同様に、フィン構造38は、例えば3Dプリンタなどによる積層造形法を用いて、パイプ状の弾性構造体25を造形する際に、同時にその表面に形成することができる。
<Embodiment 5>
The structure of FIG. 6 can be further modified as shown in FIG. FIG. 8 shows a structure in which a heat sink structure is formed by using the elastic structural piece shown in FIG. In FIG. 8, a fin structure 38 forming a heat sink is formed on the surface of an elastic structure 25 having a pipe-like structure and having a cooling water path arranged therein. In the same manner as described above, the fin structure 38 can be formed on the surface of the pipe-shaped elastic structure 25 at the same time when the pipe-shaped elastic structure 25 is modeled using a layered manufacturing method such as a 3D printer.

図8に示すように、内部に冷却水経路を配置した弾性構造体25の表面にフィン構造38を成形することによって、図6に示した構造よりもさらに金型の放熱効率を向上できる。これにより、金型の冷却時間の短縮を図ることができ、射出成形金型の生産性と、成形精度を大きく向上することができる。 As shown in FIG. 8, by molding the fin structure 38 on the surface of the elastic structure 25 in which the cooling water path is arranged, the heat dissipation efficiency of the mold can be improved more than the structure shown in FIG. As a result, the mold cooling time can be shortened, and the productivity and molding accuracy of the injection mold can be greatly improved.

<実施形態6>
図10は、図9(a)、(b)に示すような樹脂成形品39を射出成形するのに用いることができる弾性構造金型の構成例を示している。
<Embodiment 6>
FIG. 10 shows a configuration example of an elastic structure mold that can be used for injection molding a resin molded product 39 as shown in FIGS. 9(a) and 9(b).

図9は本実施形態の金型で成形可能な箱型の樹脂成形品39であり、その樹脂材料は、例えばPC+ABS樹脂(例えば帝人化成製マルチロン(商標名)TN7500MC)である。樹脂成形品39は、図9(a)、(b)に表裏2面をそれぞれ示すような形状である。図9(a)、(b)の樹脂成形品39は、例えば全体が外径φ46mmの円板状で、肉厚1.8mmの円形天面40と、円形の外径部分に厚み2.0mm、高さ6.0mm、3度の抜き勾配を有する壁状のリブ41を備える。 FIG. 9 shows a box-shaped resin molded product 39 that can be molded with the mold of this embodiment, and the resin material is, for example, PC+ABS resin (for example, Multilon (trade name) TN7500MC manufactured by Teijin Kasei Co., Ltd.). The resin molded product 39 has a shape as shown in FIGS. 9(a) and 9(b). 9(a) and 9(b), for example, the resin molded product 39 has a disk shape with an outer diameter of φ46 mm as a whole, and has a circular top surface 40 with a thickness of 1.8 mm and a circular outer diameter portion with a thickness of 2.0 mm. , wall-like ribs 41 having a height of 6.0 mm and a draft angle of 3 degrees.

また、図9(b)に示すように樹脂成形品39は、リブ41の内周に、円形天面から垂直に異なる高さで造形された複数のボス形状42を有する。また、また、図9(a)に示すように樹脂成形品39の面43には金型加工によってシボを造形する。 Further, as shown in FIG. 9B, the resin molded product 39 has a plurality of boss shapes 42 formed on the inner periphery of the rib 41 at different heights vertically from the circular top surface. Further, as shown in FIG. 9(a), the surface 43 of the resin molded product 39 is patterned with a texture by mold processing.

図10の固定側金型44、可動側金型45は析出硬化型プリハードン鋼を用いて製造されている。可動側金型45には、その先端部によって樹脂成形品39のボス形状42を成形する複数の弾性駒46が立設されている。弾性駒46は、その内部が下記の図11、図12に示すようなアルミ合金のラティス構造体で構成される。この弾性駒46は、パウダーベッド式3Dプリンタ(不図示)などを用いた積層造形法によって製造することができる。 The fixed side mold 44 and the movable side mold 45 in FIG. 10 are manufactured using precipitation hardened pre-hardened steel. A plurality of elastic pieces 46 are erected on the movable side mold 45 for molding the boss shape 42 of the resin molded product 39 with their tip portions. The inside of the elastic piece 46 is composed of an aluminum alloy lattice structure as shown in FIGS. 11 and 12 below. The elastic pieces 46 can be manufactured by lamination molding using a powder bed type 3D printer (not shown) or the like.

図11は図10の射出成形金型に用いた弾性駒46の断面構成の一例を示している。図11の弾性駒46はラティス構造を有している。このラティス構造は、例えば径0.5mmのアルミ合金のラティス支柱47を格子構造として造形したものである。また、弾性駒46の外形部48は0.3mmの肉厚で構成されている。この例では、ラティス支柱47による格子の間隔は水平方向に1.2mm、ラティス支柱47の底面を基準面とした角度は±60度の角度に取られている。 FIG. 11 shows an example of the cross-sectional structure of the elastic pieces 46 used in the injection molding die of FIG. The elastic piece 46 of FIG. 11 has a lattice structure. This lattice structure is formed by forming lattice struts 47 made of aluminum alloy with a diameter of 0.5 mm, for example, as a lattice structure. The outer portion 48 of the elastic piece 46 has a thickness of 0.3 mm. In this example, the lattice spacing of the lattice support 47 is 1.2 mm in the horizontal direction, and the angle with respect to the bottom surface of the lattice support 47 as a reference plane is ±60 degrees.

図12に上記の弾性駒46のラティス支柱47によるラティス構造の設計時のモデリング手順を示している。なお、図12は、弾性駒46の上記の外形部48を構成する外殻50中で、ラティス支柱47によるラティス構造を491、492、493…の如く成長させるかのように図示してある。しかしながら、これは外殻50部分との形状の関係を示すための便宜上のものであり、実際の積層造形の手順を示すものではない。 FIG. 12 shows a modeling procedure when designing the lattice structure by the lattice support 47 of the elastic pieces 46 described above. FIG. 12 shows the lattice structure of the lattice struts 47 growing in the outer shell 50 forming the outer shape portion 48 of the elastic piece 46 as shown by 491, 492, 493, . . . However, this is for the sake of convenience to show the shape relationship with the outer shell 50 portion, and does not show the actual procedure of layered manufacturing.

図12のモデリングでは、格子形状491、492、493…を弾性駒46の外殻50の外形形状に準ずる形状内のXY平面上に等間隔に配置していく。その場合、格子形状491、492、493…は図示のようにZ方向にラティス形状を等間隔にモデリングし、Z(高さ)方向に成長させることにより形成する。例えば、このようなモデリングによる設計手順によって、弾性駒46を設計することができる。 In the modeling of FIG. 12, grid shapes 491, 492, 493, . In that case, the lattice shapes 491, 492, 493, . For example, the elastic piece 46 can be designed by such a design procedure based on modeling.

なお、ラティス支柱47によるラティス構造と外殻50部分を一体として積層造形する場合には、実際には、ラティス構造を491、492、493…と、外殻50とは、その同じ高さの部分を同時に積層造形する。また、外殻50部分とは別体でラティス支柱47によるラティス構造を積層造形する手法を採ってもよく、その場合には、図12の外殻50の部分は、ラティス構造とは別途、積層造形によって製造してもよい。 In addition, when the lattice structure by the lattice support 47 and the outer shell 50 part are integrally laminated, in practice, the lattice structures 491, 492, 493 . . . are laminated at the same time. Alternatively, a method may be adopted in which the lattice structure by the lattice support 47 is layered and manufactured separately from the outer shell 50 portion. In this case, the outer shell 50 portion of FIG. It may be manufactured by molding.

弾性駒46の弾性率は、例えば、樹脂成形品39のボス形状に応じて天面の肉厚方向が63GPa、肉厚と水平方向が127GPaとなるように設計してある。即ち、弾性駒46の弾性構造体は、その異なる部位によって異なる弾性率ないしバネ係数を持つよう設計、製造することができる。このような設計により、弾性駒46は、その各部が支持する転写面に作用する様々な射出圧や保圧圧力に適した弾性率ないしバネ係数を持つよう設計、製造することができる。なお、以上では、弾性駒46の弾性構造体を構成するラティス構造を数値計算により設計し、積層造形によって製造する手法を考えた。しかしながら、弾性駒46に所期の弾性を付与できる構造であれば、当業者において任意の設計を採用して構わない。 The elastic modulus of the elastic piece 46 is designed to be 63 GPa in the thickness direction of the top surface and 127 GPa in both the thickness and horizontal directions according to the shape of the boss of the resin molded product 39, for example. That is, the elastic structure of the elastic piece 46 can be designed and manufactured so that different parts thereof have different elastic moduli or spring coefficients. With such a design, the elastic piece 46 can be designed and manufactured so as to have an elastic modulus or a spring coefficient suitable for various injection pressures and holding pressures acting on the transfer surface supported by each part thereof. In the above description, the method of designing the lattice structure constituting the elastic structure of the elastic piece 46 by numerical calculation and manufacturing it by lamination molding was considered. However, a person skilled in the art may employ any design as long as it is a structure capable of imparting the desired elasticity to the elastic pieces 46 .

下表3に、図10に示した本実施形態の射出成形金型による樹脂成形品の作成例7と、図9と同等の樹脂成形品(39)を成形する、従来構成の射出成形金型(図14)による樹脂成形品の作成例8におけるヒケ量を示す。なお、表中のヒケ量はデジタル顕微鏡で測定した結果である。 Table 3 below shows Example 7 of making a resin molded product using the injection molding die of this embodiment shown in FIG. FIG. 14 shows the amount of sink marks in Example 8 of the resin molded product according to (FIG. 14). The amount of sink marks in the table is the result of measurement with a digital microscope.

作成例8で用いた、図14の従来構成の射出成形金型において、固定側金型44、可動側金型45は析出硬化型プリハードン鋼を用いている。また、ボス形状(42)の部分を成形するコアピン51にはSKD51のような鋼材を用いた。作成例7、8の樹脂成形品(39)の成形条件は、例えば射出充填時間0.5sec、保圧時間3sec、樹脂温度240℃、型温度55℃、冷却時間15s、保圧圧力は40barとした。 In the conventional injection molding die shown in FIG. 14 used in Preparation Example 8, the fixed side die 44 and the movable side die 45 are made of precipitation hardened pre-hardened steel. A steel material such as SKD51 is used for the core pin 51 forming the boss-shaped portion (42). The molding conditions for the resin molded product (39) of Preparation Examples 7 and 8 are, for example, injection filling time 0.5 sec, holding pressure time 3 sec, resin temperature 240°C, mold temperature 55°C, cooling time 15 s, and holding pressure 40 bar. bottom.

下表3に示すように、本実施形態の射出成形金型による作成例7の樹脂成形品ではヒケ量は8μm、図14の従来構成の射出成形金型による作成例8の樹脂成形品ではヒケ量は23μmであった。このように、本実施形態の弾性駒(46)を用いることによって、小さなヒケ量で、良好な成形性能が得られる。 As shown in Table 3 below, the amount of sink marks in the resin molded product of Preparation Example 7 using the injection molding mold of this embodiment is 8 μm, and the sink mark amount in the resin molded product of Preparation Example 8 using the injection molding mold of the conventional configuration shown in FIG. The volume was 23 μm. Thus, by using the elastic piece (46) of the present embodiment, good molding performance can be obtained with a small amount of sink marks.

Figure 0007262986000003
Figure 0007262986000003

以上、上述の各実施形態の射出成形型で説明したように、形状駒の転写面と、金型の基部の間の部位を樹脂のP-V-T収縮に沿う弾性構造体とする構造により油圧シリンダなどの特別な加圧装置や制御装置が不要となる利点がある。 As described above for the injection molding dies of the above-described embodiments, the portion between the transfer surface of the shape piece and the base of the mold is an elastic structure that conforms to the PVT contraction of the resin. There is an advantage that a special pressurizing device such as a cylinder and a control device are not required.

また、弾性構造体で支持することにより、形状駒は樹脂の収縮に追従して弾性変形し、また形状回復するよう動作する。これにより、樹脂に余分な圧力が加わらず、その結果成形品の残留応力が小さくなり、樹脂成形品の精度を向上することができる。 Further, by being supported by the elastic structure, the shaped piece elastically deforms following the contraction of the resin, and also operates to recover its shape. As a result, excess pressure is not applied to the resin, and as a result, the residual stress in the molded product is reduced, and the precision of the resin molded product can be improved.

また、金型内の圧力分布の予測から、バネ係数の異なる弾性駒を配置することにより、各圧力分布および収縮分布に適応した金型圧縮制御が可能となる。これにより、油圧機構などにより金型の全体に同じ圧力を加えるときに比べ、余分な残留応力が減り全体の変形量を減少することができる。合わせて、従来、制御困難であった、部分的に樹脂圧力が低く、収縮の大きい部分においてもヒケ発生のない良好な精度の部品を得ることができる。 In addition, by arranging elastic pieces with different spring coefficients based on prediction of the pressure distribution in the mold, mold compression control adapted to each pressure distribution and shrinkage distribution becomes possible. As a result, excess residual stress can be reduced and the amount of deformation of the entire mold can be reduced compared to when the same pressure is applied to the entire mold by a hydraulic mechanism or the like. At the same time, it is possible to obtain parts with good precision without occurrence of sink marks even in parts where resin pressure is partially low and shrinkage is large, which has been difficult to control conventionally.

また、上述の実施形態に示したような弾性構造体の部位を備えた弾性駒により、リブ構造などで変肉によるヒケ等が発生しやすい局所的な小さな部分でも、個別に適正な圧力を加えることができる。これにより樹脂成形品の外観品位や部品精度を大きく向上することができる。また、薄肉化することで発生しがちなボス裏のヒケを効果的に減少できる。そのため、薄肉化による材料削減を実現しながら、高品位の樹脂成形品を射出成形することができる。 In addition, by means of elastic pieces having elastic structural parts such as those shown in the above embodiments, appropriate pressure can be individually applied even to small localized parts where sink marks or the like are likely to occur due to changes in wall thickness due to rib structures or the like. be able to. As a result, it is possible to greatly improve the appearance quality and component precision of the resin molded product. In addition, it is possible to effectively reduce sink marks on the back side of the boss, which tend to occur due to thinning. Therefore, it is possible to injection-mold a high-quality resin molded product while realizing material reduction by thinning.

また、上述の弾性構造体の部位を備えた弾性駒では、その各部位のバネ係数を、弾性構造体の断面積や3次元形状や、部位が不連続に組み合う形状など、各部位の特性に応じて変化させた構造を用いてよい。また、各部位で不均等、不連続なバネ係数を設定することにより、ガラス転移温度(Tg)を境に圧力と体積の比例関係が変化する現象に追従させることができ、弾性駒は正確に樹脂収縮に追従でき、良好な成形精度を得られる。 In addition, in the elastic pieces having the parts of the elastic structure described above, the spring coefficient of each part depends on the characteristics of each part, such as the cross-sectional area of the elastic structure, the three-dimensional shape, and the shape in which the parts are discontinuously combined. Varied structures may be used accordingly. In addition, by setting uneven and discontinuous spring coefficients at each part, it is possible to follow the phenomenon in which the proportional relationship between pressure and volume changes with the glass transition temperature (Tg) as a boundary, and the elastic piece can be accurately adjusted. It can follow the shrinkage of the resin, and good molding accuracy can be obtained.

弾性構造体の内部に冷却用の流体の流路を配置する、あるいは、その表面をヒートシンク構造とする構成によれば、効率的な金型冷却が可能となり、射出成形による樹脂製の物品の製造を極めて効率よく行えるようになる。また、上述の実施形態で示した弾性構造体の部位を備えた弾性駒を備えた射出成形型は、3Dプリンタなどを用いた積層造形法によって容易に製造することができる。 By arranging a flow path for cooling fluid inside the elastic structure, or by making the surface of the elastic structure into a heat sink structure, it is possible to efficiently cool the mold and manufacture resin articles by injection molding. can be performed very efficiently. In addition, the injection mold provided with the elastic piece having the elastic structure portion shown in the above-described embodiment can be easily manufactured by a layered manufacturing method using a 3D printer or the like.

なお、以上では、「金型」の用語を用いており、弾性構造体の部位を備えた弾性駒を含め、射出成形型を構成する各部材の材質として金属を多く例示した。しかしながら、射出成形型を構成する各部材の材質は金属に限定されるものではなく、樹脂やセラミックなど射出成形型の構成部材が金属以外の材質で構成されている場合でも、本発明の構成は同様に実施可能である。 In the above, the term "mold" is used, and metal is often exemplified as the material of each member constituting the injection molding die, including the elastic piece having the elastic structural body. However, the material of each member that constitutes the injection molding die is not limited to metal, and even if the constituent members of the injection molding die are made of a material other than metal, such as resin or ceramic, the configuration of the present invention can be applied. It can be implemented similarly.

1、2、11、12…弾性構造体、3、8、9、16、22、23…コア駒、4、7、39、52…樹脂成形品、5…回転駒、6…エジェクタピン、10…スラ41…リブ、42…ボス形状、44…固定側金型、45…可動側金型、46…弾性駒、47…ラティス支柱、50…外殻。 1, 2, 11, 12... Elastic structure 3, 8, 9, 16, 22, 23... Core piece 4, 7, 39, 52... Resin molded product 5... Rotary piece 6... Ejector pin 10 41: Rib 42: Boss shape 44: Fixed side mold 45: Movable side mold 46: Elastic piece 47: Lattice support 50: Outer shell.

Claims (18)

転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復
前記樹脂の圧力(P)-体積(V)-温度(T)特性に基づいて定まる前記樹脂の収縮時の比容積変化をΔV、型内の内圧をP、その際の前記弾性構造体の変形の方向に沿った前記樹脂の収縮率をΔt、校正係数qを
q=ΔV/Δt …(1)
とし、前記弾性構造体のバネ係数kが
k=q-1×ΔV/P …(2)
である射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
ΔV is the specific volume change when the resin shrinks, which is determined based on the pressure (P)-volume (V)-temperature (T) characteristics of the resin, P is the internal pressure in the mold, and deformation of the elastic structure at that time. Δt is the shrinkage rate of the resin along the direction of , and the calibration coefficient q is
q=ΔV/Δt (1)
and the spring coefficient k of the elastic structure is
k=q−1×ΔV/P (2)
injection mold.
転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
型内の樹脂への保圧圧力の荷重Pにより生じる型内圧力と前記樹脂の圧力(P)-体積(V)-温度(T)特性から求められる前記樹脂の収縮時の収縮量ΔVと、前記弾性構造体に前記荷重Pが負荷された際の変形量ΔDと、の関係が
ΔD=QΔV (1.0≦Q≦1.25)…(3)
である射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
A shrinkage amount ΔV when the resin shrinks, which is obtained from the pressure (P)-volume (V)-temperature (T) characteristics of the mold pressure generated by the load P of the holding pressure on the resin in the mold, The relationship between the deformation amount ΔD when the load P is applied to the elastic structure and
ΔD=QΔV (1.0≦Q≦1.25) (3)
injection mold.
転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
型内の樹脂が溶融状態からガラス転移温度に達するまでの保圧圧力の荷重P1により生じる型内圧力および樹脂の圧力(P)-体積(V)-温度(T)特性から求められる溶融状態からガラス転移温度に達するまでの樹脂の収縮量ΔV1と、前記弾性構造体に荷重P1が負荷された際の変形量ΔD1と、の関係が
ΔD1=Q1ΔV1 (ただし1.0≦Q1≦1.1) …(4)
であり、かつ、樹脂のガラス転移温度から室温に達するまでの保圧圧力の荷重P2により生じる型内圧力および樹脂の圧力(P)-体積(V)-温度(T)特性から求められるガラス転移温度から室温に達するまでの樹脂の収縮量ΔV2と、前記弾性構造体に荷重P2が負荷された際の変形量ΔD2と、の関係が
ΔD2=Q2ΔV2 (ただし1.0≦Q2≦1.25) …(5)
である射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
From the melted state obtained from the pressure (P)-volume (V)-temperature (T) characteristics of the mold and the pressure inside the mold generated by the load P1 of the holding pressure until the resin in the mold reaches the glass transition temperature from the molten state The relationship between the shrinkage amount ΔV1 of the resin until it reaches the glass transition temperature and the deformation amount ΔD1 when the load P1 is applied to the elastic structure is
ΔD1=Q1ΔV1 (where 1.0≤Q1≤1.1) (4)
And the glass transition obtained from the pressure (P)-volume (V)-temperature (T) characteristics of the mold and the pressure inside the mold caused by the load P2 of the holding pressure from the glass transition temperature of the resin to room temperature The relationship between the shrinkage amount ΔV2 of the resin from temperature to room temperature and the deformation amount ΔD2 when the load P2 is applied to the elastic structure is
ΔD2=Q2ΔV2 (where 1.0≦Q2≦1.25) (5)
injection mold.
転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
前記弾性構造体は、互いに異なる弾性率ないしバネ係数を有する複数の部位を有し、前記複数の部位が前記転写面の互いに異なる部分を支持する射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
The elastic structure has a plurality of portions having elastic moduli or spring coefficients different from each other , and the plurality of portions support different portions of the transfer surface .
転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
記形状駒が第1の形状駒、前記弾性構造体が第1の弾性構造体であり、さらに前記第1の形状駒の転写面と互いに平行でない転写面を備えた第2の形状駒と、前記第2の形状駒を弾性支持し、前記第1の弾性構造体とは弾性変形方向が異なる第2の弾性構造体を備えた射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
a second shape piece having a first shape piece as the shape piece, a first shape piece as the elastic structure, and a transfer surface not parallel to the transfer surface of the first shape piece; An injection molding die comprising a second elastic structure that elastically supports the second shape piece and has a direction of elastic deformation different from that of the first elastic structure.
請求項5に記載の射出成形型において、前記第1の弾性構造体および第2の弾性構造体が互いに異なるバネ係数を有する射出成形型。 6. The injection mold of claim 5, wherein the first elastic structure and the second elastic structure have different spring coefficients. 請求項5または6に記載の射出成形型において、前記第1の弾性構造体および第2の弾性構造体が相互に当接する当接部位を有し、前記当接部位を介して互いに弾性力を伝達し合う射出成形型。 7. The injection molding die according to claim 5, wherein the first elastic structure and the second elastic structure have abutment portions that abut against each other, and apply elastic force to each other via the abutment portions. Injection molds that communicate with each other. 転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
記弾性構造体の内部に冷却用の流体を流通させる通路が配置される射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
An injection mold in which a passage for circulating a cooling fluid is arranged inside the elastic structure.
転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
記弾性構造体の表面がヒートシンク構造を備える射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
An injection mold wherein the surface of said resilient structure comprises a heat sink structure.
転写面を備えた形状駒と、前記形状駒を支持する基部と、型締め方向において前記形状駒と前記基部との間に設けられた弾性構造体と、を備えた射出成形型であって、
前記弾性構造体は、型内に射出される樹脂の注入圧力および保圧圧力に応じて弾性変形し、冷却に伴う樹脂の収縮に追従して形状回復し、
記弾性構造体は格子構造を有する射出成形型。
An injection molding die comprising a shaped piece having a transfer surface, a base supporting the shaped piece, and an elastic structure provided between the shaped piece and the base in a mold clamping direction,
The elastic structure elastically deforms according to the injection pressure and holding pressure of the resin injected into the mold, and recovers its shape following the contraction of the resin accompanying cooling,
The elastic structure is an injection mold having a lattice structure.
請求項2乃至10のいずれか1項に記載の射出成形型において、前記樹脂の圧力(P)-体積(V)-温度(T)特性に基づいて定まる前記樹脂の収縮時の比容積変化をΔV、型内の内圧をP、その際の前記弾性構造体の変形の方向に沿った前記樹脂の収縮率をΔt、校正係数qを
q=ΔV/Δt …(1)
とし、前記弾性構造体のバネ係数kが
k=q-1×ΔV/P …(2)
である射出成形型。
In the injection mold according to any one of claims 2 to 10, the specific volume change during shrinkage of the resin determined based on the pressure (P) - volume (V) - temperature (T) characteristics of the resin ΔV, the internal pressure in the mold is P, the contraction rate of the resin along the direction of deformation of the elastic structure at that time is Δt, and the calibration coefficient q is q=ΔV/Δt (1)
and the spring coefficient k of the elastic structure is k=q−1×ΔV/P (2)
injection mold.
請求項1または請求項3から11のいずれか1項に記載の射出成形型において、型内の樹脂への保圧圧力の荷重Pにより生じる型内圧力と前記樹脂の圧力(P)-体積(V)-温度(T)特性から求められる前記樹脂の収縮時の収縮量ΔVと、前記弾性構造体に前記荷重Pが負荷された際の変形量ΔDと、の関係が
ΔD=QΔV (1.0≦Q≦1.25)…(3)
である射出成形型。
In the injection mold according to any one of claims 1 or 3 to 11, the pressure in the mold caused by the load P of the holding pressure on the resin in the mold and the pressure (P) of the resin - volume ( The relationship between the amount of shrinkage ΔV when the resin shrinks, which is obtained from V)-temperature (T) characteristics, and the amount of deformation ΔD when the load P is applied to the elastic structure is ΔD=QΔV (1. 0≤Q≤1.25) (3)
injection mold.
請求項1、2または請求項4から12のいずれか1項に記載の射出成形型において、型内の樹脂が溶融状態からガラス転移温度に達するまでの保圧圧力の荷重P1により生じる型内圧力および樹脂の圧力(P)-体積(V)-温度(T)特性から求められる溶融状態からガラス転移温度に達するまでの樹脂の収縮量ΔV1と、前記弾性構造体に荷重P1が負荷された際の変形量ΔD1と、の関係が
ΔD1=Q1ΔV1 (ただし1.0≦Q1≦1.1) …(4)
であり、かつ、樹脂のガラス転移温度から室温に達するまでの保圧圧力の荷重P2により生じる型内圧力および樹脂の圧力(P)-体積(V)-温度(T)特性から求められるガラス転移温度から室温に達するまでの樹脂の収縮量ΔV2と、前記弾性構造体に荷重P2が負荷された際の変形量ΔD2と、の関係が
ΔD2=Q2ΔV2 (ただし1.0≦Q2≦1.25) …(5)
である射出成形型。
13. In the injection mold according to any one of claims 1 , 2, or 4 to 12, the pressure in the mold caused by the holding pressure load P1 until the resin in the mold reaches the glass transition temperature from the molten state And the shrinkage amount ΔV1 of the resin until it reaches the glass transition temperature from the molten state obtained from the pressure (P)-volume (V)-temperature (T) characteristics of the resin, and when the load P1 is applied to the elastic structure and the deformation amount ΔD1 is ΔD1=Q1ΔV1 (where 1.0≦Q1≦1.1) (4)
And the glass transition obtained from the pressure (P)-volume (V)-temperature (T) characteristics of the mold and the pressure inside the mold caused by the load P2 of the holding pressure from the glass transition temperature of the resin to room temperature The relationship between the shrinkage amount ΔV2 of the resin from temperature to room temperature and the deformation amount ΔD2 when the load P2 is applied to the elastic structure is ΔD2=Q2ΔV2 (where 1.0≦Q2≦1.25). …(5)
injection mold.
請求項1乃至13のいずれか1項に記載の射出成形型において、前記弾性構造体は、前記弾性構造体の変形量に応じた付勢力を前記形状駒に印加する射出成型装置。 14. The injection molding apparatus according to claim 1, wherein said elastic structure applies an urging force to said shaped piece according to the amount of deformation of said elastic structure. 請求項1乃至14のいずれか1項に記載の射出成形型において、前記形状駒は樹脂の収縮に追従して弾性変形する射出成型装置。 15. The injection molding apparatus according to any one of claims 1 to 14, wherein said shape piece elastically deforms following contraction of resin. 請求項1乃至15のいずれか1項に記載の射出成形型を製造する射出成形型の製造方法において、前記弾性構造体を積層造形法によって造形する工程を含む射出成形型の製造方法。 16. A method of manufacturing an injection mold according to any one of claims 1 to 15 , comprising the step of forming the elastic structure by lamination molding. 請求項1乃至15のいずれか1項に記載の射出成形型と、前記射出成形型に溶融樹脂を注入する射出装置と、を備えた射出成形機。 An injection molding machine comprising: the injection molding die according to any one of claims 1 to 15 ; and an injection device for injecting molten resin into the injection molding die. 請求項1乃至15のいずれか1項に記載の射出成形型に、射出装置によって溶融樹脂を注入し、樹脂成形品を射出成形する樹脂成形品の製造方法。 16. A method of manufacturing a resin molded product, comprising injecting a molten resin into the injection molding die according to any one of claims 1 to 15 by means of an injection device, and injection molding the resin molded product.
JP2018228554A 2018-12-05 2018-12-05 Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method Active JP7262986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228554A JP7262986B2 (en) 2018-12-05 2018-12-05 Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228554A JP7262986B2 (en) 2018-12-05 2018-12-05 Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method

Publications (3)

Publication Number Publication Date
JP2020090035A JP2020090035A (en) 2020-06-11
JP2020090035A5 JP2020090035A5 (en) 2022-01-11
JP7262986B2 true JP7262986B2 (en) 2023-04-24

Family

ID=71012200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228554A Active JP7262986B2 (en) 2018-12-05 2018-12-05 Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method

Country Status (1)

Country Link
JP (1) JP7262986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459708B2 (en) 2020-07-29 2024-04-02 トヨタ紡織株式会社 Nesting
CN114516137B (en) * 2020-11-19 2023-04-14 美的集团股份有限公司 Design method of injection mold, injection molding method and injection mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326260A (en) 2001-05-07 2002-11-12 Ricoh Co Ltd Method and mold for molding plastic molded product
JP2008246847A (en) 2007-03-30 2008-10-16 Meiki Co Ltd Mold for injection compression molding for light guide plate, and method for injection compression molding for light guide plate
JP2009241480A (en) 2008-03-31 2009-10-22 Honda Lock Mfg Co Ltd Resin molding method and mold apparatus for molding resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078522B2 (en) * 1990-05-10 1995-02-01 修 浜田 Gear forming die device
JPH1058502A (en) * 1996-08-19 1998-03-03 Okamura Sangyo Kk Injection compression molding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326260A (en) 2001-05-07 2002-11-12 Ricoh Co Ltd Method and mold for molding plastic molded product
JP2008246847A (en) 2007-03-30 2008-10-16 Meiki Co Ltd Mold for injection compression molding for light guide plate, and method for injection compression molding for light guide plate
JP2009241480A (en) 2008-03-31 2009-10-22 Honda Lock Mfg Co Ltd Resin molding method and mold apparatus for molding resin

Also Published As

Publication number Publication date
JP2020090035A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
Au et al. A scaffolding architecture for conformal cooling design in rapid plastic injection moulding
Mendible et al. Comparative study of rapid and conventional tooling for plastics injection molding
King et al. Alternative materials for rapid tooling
US9902108B1 (en) Rapid prototyping method of producing tooling for an injection mold
Rahmati 10.12. Direct Rapid Tooling
JP7262986B2 (en) Injection mold, injection mold manufacturing method, injection molding machine, and resin molded product manufacturing method
Equbal et al. Rapid tooling: A major shift in tooling practice
CN111558689A (en) Novel manufacturing process of impeller
Deepika et al. Plastic injection molded door handle cooling time reduction investigation using conformal cooling channels
JP2019166825A (en) Reusable mold for injection molding and molding method
Rahmati et al. Design and manufacture of a wax injection tool for investment casting using rapid tooling
Garcia et al. Conformal cooling in moulds with special geometry
Dimla et al. Thermal comparison of conventional and conformal cooling channel designs for a non-constant thickness screw cap
JP6607557B2 (en) Additive molding mold and injection molding method using the mold
Martinho et al. Hybrid moulds: the use of combined techniques for the rapid manufacturing of injection moulds
JP6191356B2 (en) Mold and injection molding method
JP2006110920A (en) Micro forming and processing apparatus and method
Ersoy et al. Utilization of additive manufacturing to produce tools
Lin et al. Improved contact lens injection molding production by 3D printed conformal cooling channels
Weaver et al. Time compression-rapid steel tooling for an ever-changing world
Amer et al. Improving injection moulding processes using experimental design
JP2010201866A (en) Metal mold device, heat insulating member and method of manufacturing metal mold device
JP6509038B2 (en) Method of manufacturing metal powder injection molded body
Saifullah et al. An investigation on warpage analysis in plastic injection moulding
Mizukami et al. Fabrication of cemented carbide molds with internal cooling channels using hybrid process of powder layer compaction and milling

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R151 Written notification of patent or utility model registration

Ref document number: 7262986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151